

Error estimation in homogenisation

Strobl, 27th of January, 2015

Daniel Alves Paladim¹

(alvesPaladimD@cardiff.ac.uk)

Pierre Kerfriden¹

José Moitinho de Almeida²

Stéphane P. A. Bordas^{1,3}

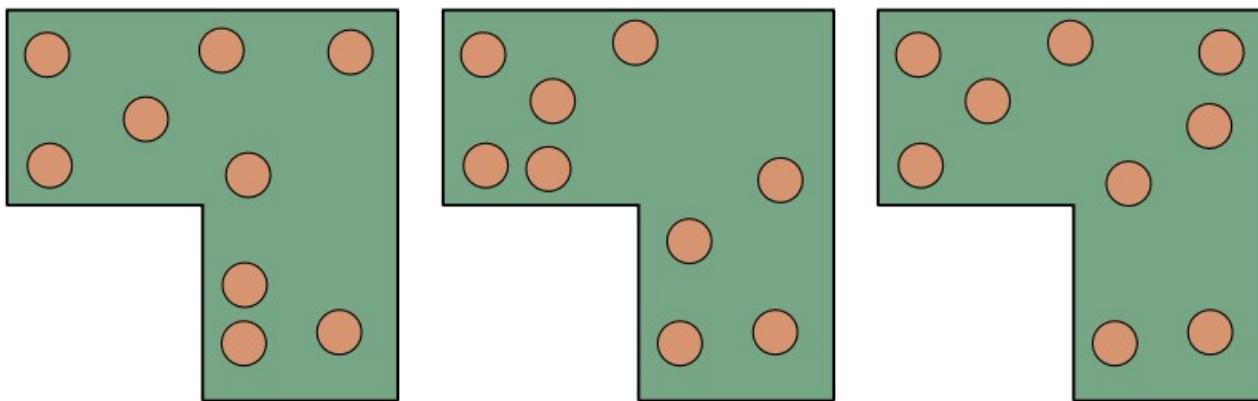
¹School of Engineering, Cardiff University

²Instituto Superior Técnico, Universidade de Lisboa

³Faculté des Sciences, Université du Luxembourg

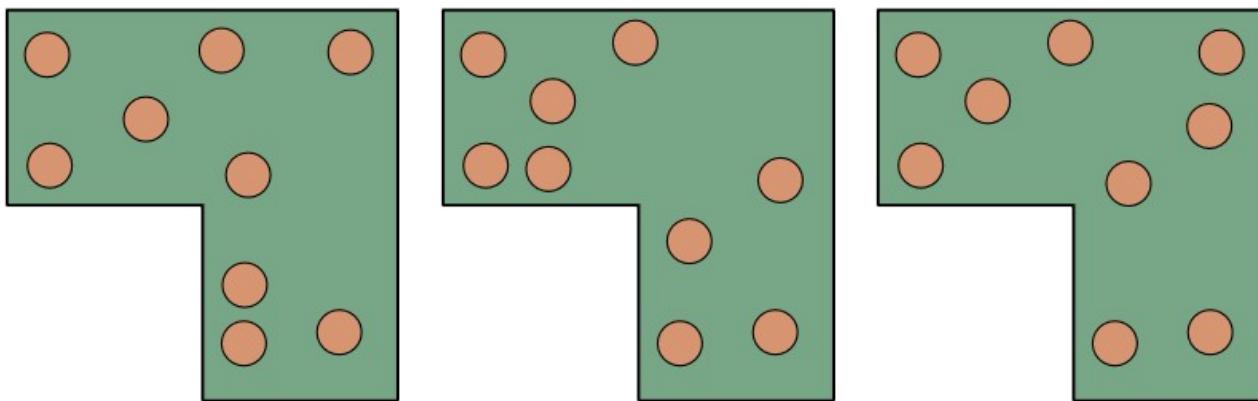
Motivation

Problem: Analysis of an heterogeneous materials. Vague information available. The position of the particles is not available.

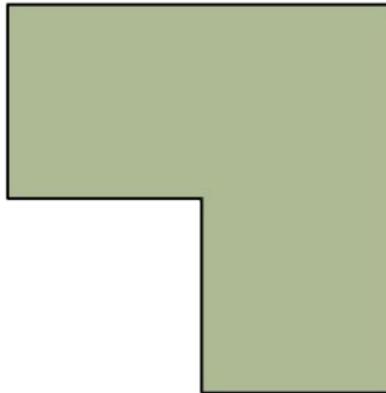


Motivation

Problem: Analysis of an heterogeneous materials. Vague information available. The position of the particles is not available.

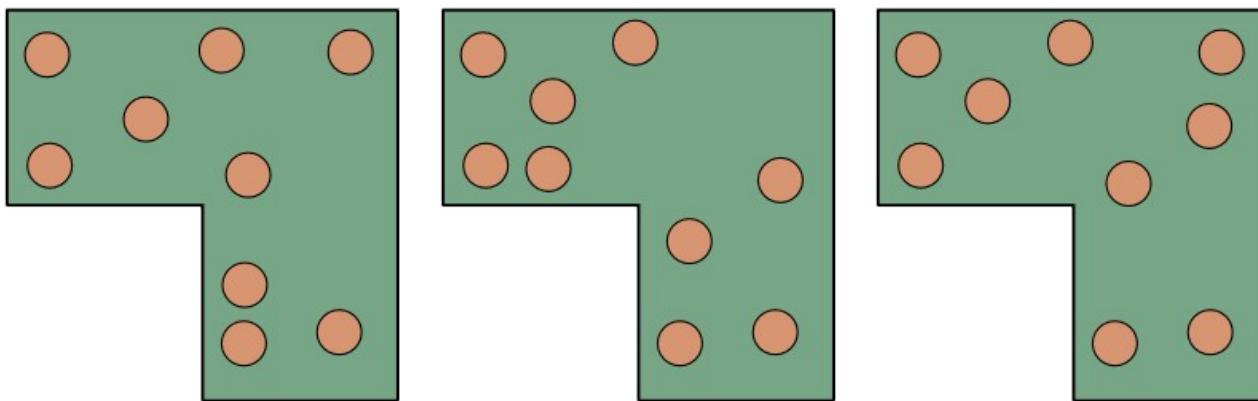


Solution: Homogenisation.

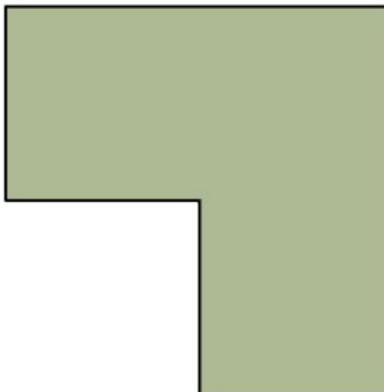


Motivation

Problem: Analysis of an heterogeneous materials. Vague information available. The position of the particles is not available.



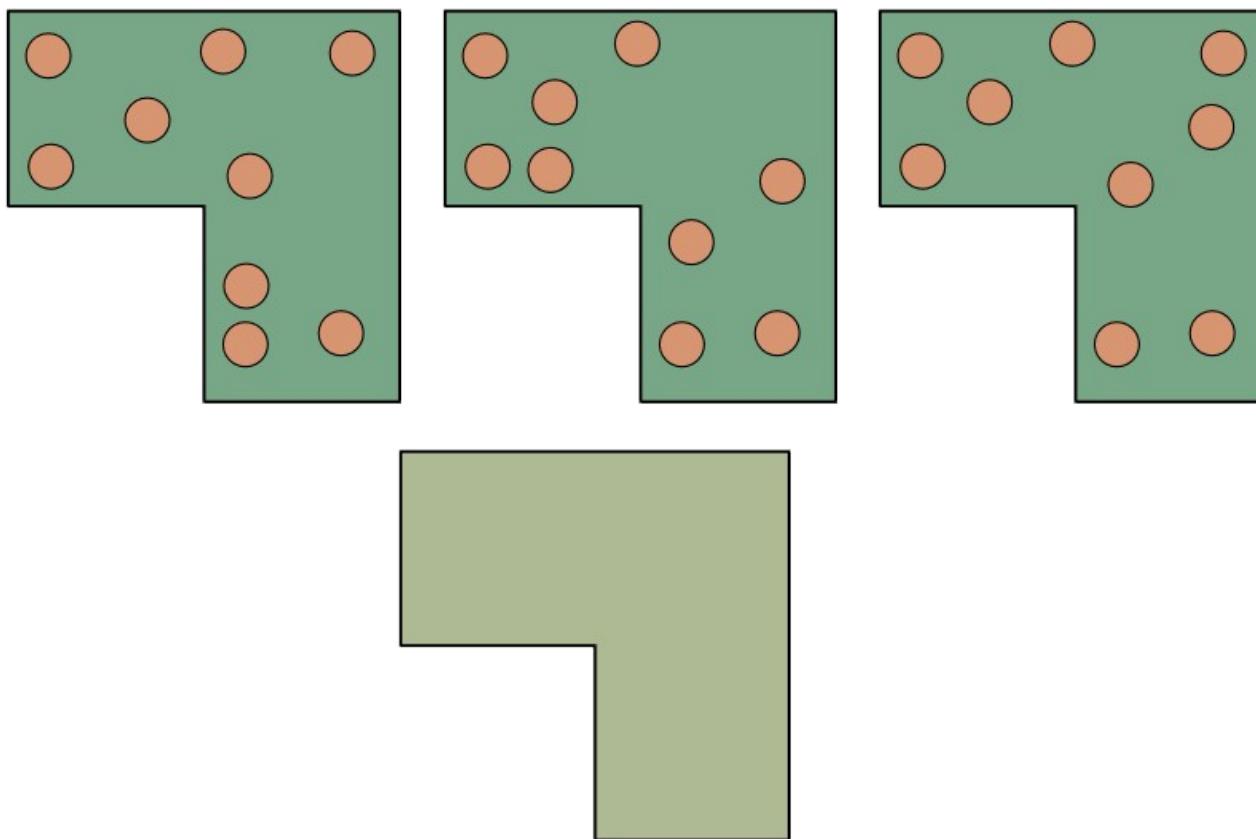
Solution: Homogenisation.



New problem:
Assess the validity of the
homogenisation.

Proposed solution

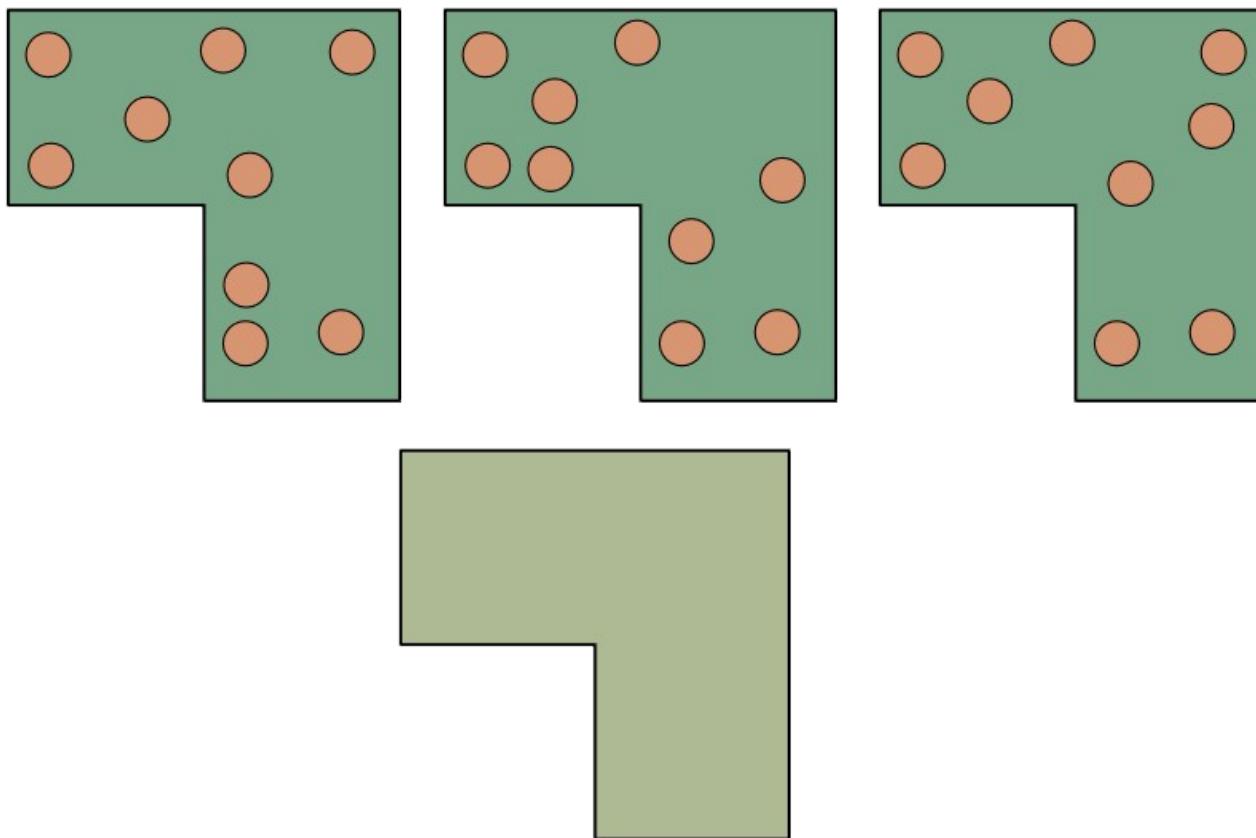
Idea: Understand the original problem as an SPDE (the center of particles is a random variable) and bound the distance between both models



Proposed solution

SPDE: Stochastic partial differential equation.

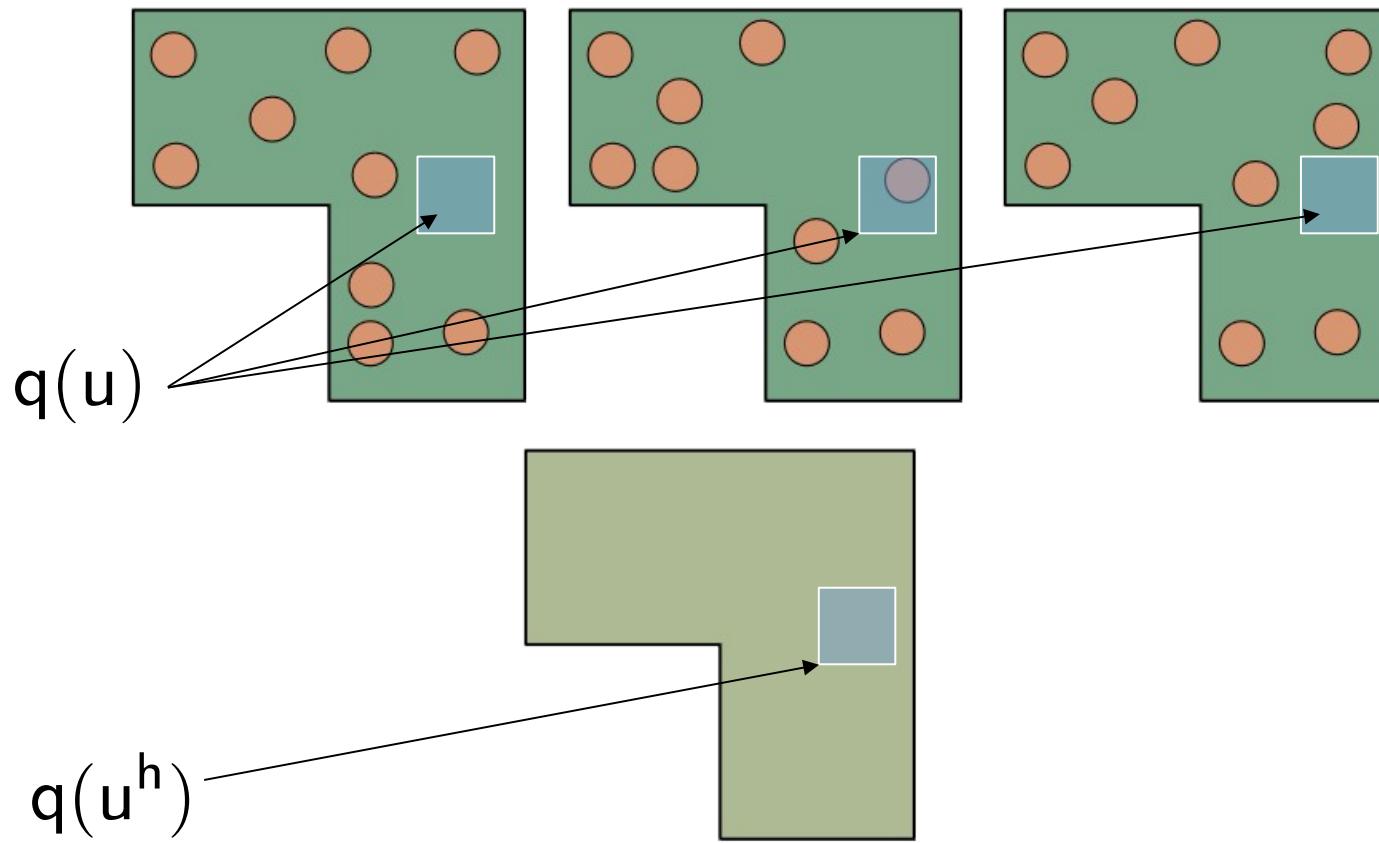
Collection of parametric problems + probability density function



Proposed solution

QoI: Quantity of interest. The output. Scalar that depends of the solution.

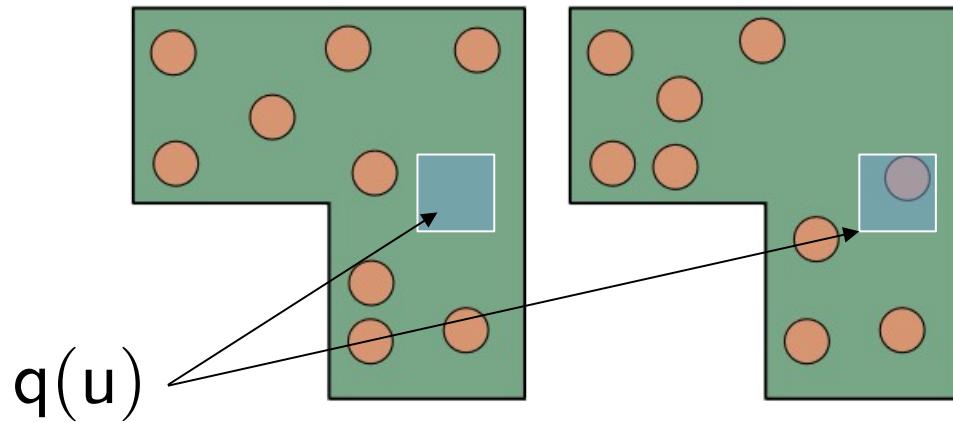
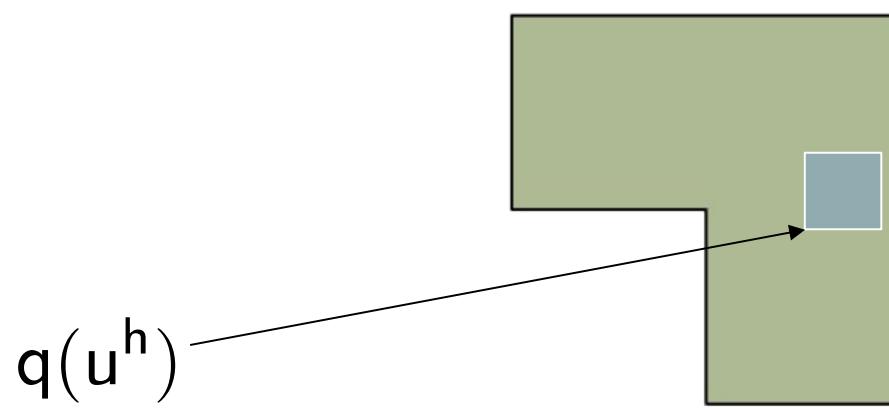
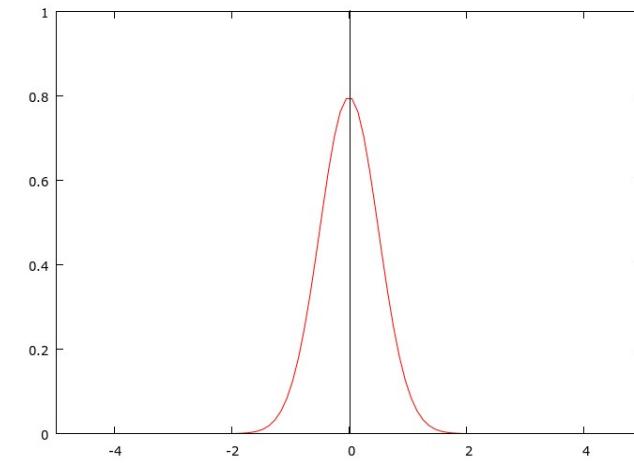
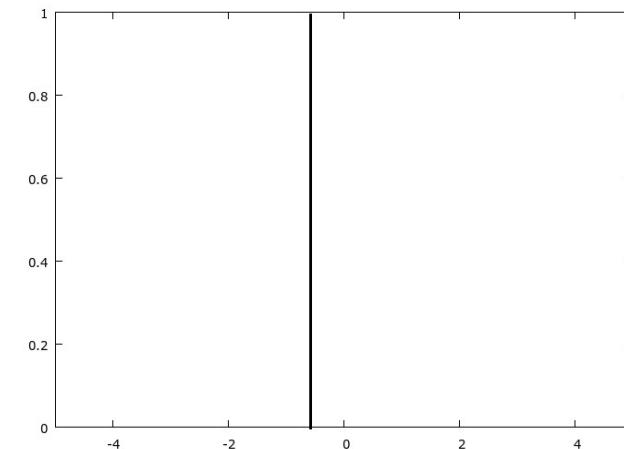
$$q(u) = \int_{\Omega} \int_{\Theta} \gamma(x) \cdot u(x, \theta) \quad (\text{linear})$$



Proposed solution

QoI: Quantity of interest. The output. Scalar that depends of the solution.

$$q(u) = \int_{\Omega} \int_{\Theta} \gamma(x) \cdot u(x, \theta) \quad (\text{linear})$$



Problem statement

Heat equation

Heterogeneous problem

$$a(u, v) = \int_{\Omega} \int_{\Theta} k \nabla u \cdot \nabla v$$

$$l(v) = \int_{\Omega} \int_{\Theta} fv - \int_{\partial\Omega} gv$$

$$a(u, v) = l(v) \quad \forall v \in V$$

Problem statement

Heat equation

Heterogeneous problem

$$a(u, v) = \int_{\Omega} \int_{\Theta} k \nabla u \cdot \nabla v$$

$$I(v) = \int_{\Omega} \int_{\Theta} fv - \int_{\partial\Omega} gv$$

$$a(u, v) = I(v) \quad \forall v \in V$$

Homogeneous problem

$$a_0(u_0, v) = \int_{\Omega} k_0 \nabla u \cdot \nabla v$$

$$a_0(u_0, v) = I(v) \quad \forall v \in V_0$$

$$a_0(u^h, v) = I(v) \quad \forall v \in V_0^h \subseteq V_0$$

Problem statement

Heat equation

Heterogeneous problem

$$a(u, v) = \int_{\Omega} \int_{\Theta} k \nabla u \cdot \nabla v$$

$$I(v) = \int_{\Omega} \int_{\Theta} fv - \int_{\partial\Omega} gv$$

$$a(u, v) = I(v) \quad \forall v \in V$$

Homogeneous problem

$$a_0(u_0, v) = \int_{\Omega} k_0 \nabla u \cdot \nabla v$$

$$a_0(u_0, v) = I(v) \quad \forall v \in V_0$$

$$a_0(u^h, v) = I(v) \quad \forall v \in V_0^h \subseteq V_0$$

Aim: Bound

$$q(u) - q(u^h)$$

The computation of the bound must be deterministic.

Derivation

Hypothesis

Deterministic boundary conditions

Derivation

Hypothesis

Deterministic boundary conditions

Constant volume fraction

$$\int_{\Omega} k(x, \theta) = v_f k_I + (1 - v_f) k_M \quad \forall \theta \in \Theta$$

Derivation

Hypothesis

Deterministic boundary conditions

Constant volume fraction

$$\int_{\Omega} k(x, \theta) = v_f k_I + (1 - v_f) k_M \quad \forall \theta \in \Theta$$

Constant PDF over the domain

$$\underbrace{\int_{\Theta} k(x, \theta)}_{E[k]} = v_f k_I + (1 - v_f) k_M \quad \forall x \in \Omega$$

“Flux” FE

The unknown is the flux field and

$$\nabla \cdot \hat{\mathbf{Q}} = f \quad x \in \Omega$$

$$\hat{\mathbf{Q}} \cdot \mathbf{n} = g \quad x \in \partial\Omega_N$$

are fulfilled strongly.

“Flux” FE

The unknown is the flux field and

$$\nabla \cdot \hat{Q} = f \quad x \in \Omega$$

$$\hat{Q} \cdot n = g \quad x \in \partial\Omega_N$$

are fulfilled strongly.

In contrast, in “temperature” FE , the temperature is the unknown and

$$u^h = h \quad x \in \partial\Omega_D$$

“Flux” FE

The unknown is the flux field and

$$\nabla \cdot \hat{Q} = f \quad x \in \Omega$$

$$\hat{Q} \cdot n = g \quad x \in \partial\Omega_N$$

are fulfilled strongly.

In contrast, in “temperature” FE , the temperature is the unknown and

$$u^h = h \quad x \in \partial\Omega_D$$

In order to derive bounds, we will also need to use an homogenised “flux” FE solution \hat{Q}

Error in the energy norm

Rewriting the problem in terms of the flux and the temperature

$$\nabla \cdot Q = f \quad \forall x \in \Omega \times \Theta$$

$$Q \cdot n = g \quad \forall x \in \partial\Omega_N \times \Theta$$

$$u = h \quad \forall x \in \partial\Omega_D \times \Theta$$

$$Q + k \nabla u = 0 \quad \forall x \in \Omega \times \Theta$$

Error in the energy norm

Rewriting the problem in terms of the flux and the temperature

$$\nabla \cdot Q = f \quad \forall x \in \Omega \times \Theta$$

$$Q \cdot n = g \quad \forall x \in \partial\Omega_N \times \Theta$$

$$u = h \quad \forall x \in \partial\Omega_D \times \Theta$$

$$Q + k \nabla u = 0 \quad \forall x \in \Omega \times \Theta$$

\hat{Q} will fulfill exactly the first 2 equations.

Error in the energy norm

Rewriting the problem in terms of the flux and the temperature

$$\nabla \cdot Q = f \quad \forall x \in \Omega \times \Theta$$

$$Q \cdot n = g \quad \forall x \in \partial\Omega_N \times \Theta$$

$$u = h \quad \forall x \in \partial\Omega_D \times \Theta$$

$$Q + k \nabla u = 0 \quad \forall x \in \Omega \times \Theta$$

\hat{Q} will fulfill exactly the first 2 equations.

u^h will fulfill exactly the 3rd equation.

Error in the energy norm

Rewriting the problem in terms of the flux and the temperature

$$\nabla \cdot Q = f \quad \forall x \in \Omega \times \Theta$$

$$Q \cdot n = g \quad \forall x \in \partial\Omega_N \times \Theta$$

$$u = h \quad \forall x \in \partial\Omega_D \times \Theta$$

$$Q + k\nabla u = 0 \quad \forall x \in \Omega \times \Theta$$

\hat{Q} will fulfill exactly the first 2 equations.

u^h will fulfill exactly the 3rd equation.

In general, $\hat{Q} + k\nabla u^h \neq 0$ Discrepancy = measure of the error

Error in the energy norm

Formalizing this idea, it can be shown that

$$\|u - u^h\| = \|e\| \leq \|\hat{Q} + k\nabla u^h\|_{k-1} =: \eta$$

Error in the energy norm

Formalizing this idea, it can be shown that

$$\|u - u^h\| = \|e\| \leq \|\hat{Q} + k\nabla u^h\|_{k^{-1}} =: \eta$$

Expanding η^2

$$\begin{aligned}\eta^2 &= \int_{\Omega} \int_{\Theta} k^{-1} \hat{Q} \cdot \hat{Q} + \int_{\Omega} \int_{\Theta} k \nabla u^h \cdot \nabla u^h + 2 \int_{\Omega} \int_{\Theta} \hat{Q} \cdot \nabla u^h \\ &= E[k^{-1}] \int_{\Omega} \hat{Q} \cdot \hat{Q} + E[k] \int_{\Omega} \nabla u^h \cdot \nabla u^h + 2 \int_{\Omega} \hat{Q} \cdot \nabla u^h\end{aligned}$$

Error in the energy norm

Formalizing this idea, it can be shown that

$$\|u - u^h\| = \|e\| \leq \|\hat{Q} + k\nabla u^h\|_{k^{-1}} =: \eta$$

Expanding η^2

$$\begin{aligned}\eta^2 &= \int_{\Omega} \int_{\Theta} k^{-1} \hat{Q} \cdot \hat{Q} + \int_{\Omega} \int_{\Theta} k \nabla u^h \cdot \nabla u^h + 2 \int_{\Omega} \int_{\Theta} \hat{Q} \cdot \nabla u^h \\ &= E[k^{-1}] \int_{\Omega} \hat{Q} \cdot \hat{Q} + E[k] \int_{\Omega} \nabla u^h \cdot \nabla u^h + 2 \int_{\Omega} \hat{Q} \cdot \nabla u^h\end{aligned}$$

Deterministic quantity

Error in the quantity of interest

The error in energy norm is not always relevant.

Solution: Bound for the quantity of interest $q(u)$

Error in the quantity of interest

The error in energy norm is not always relevant.

Solution: Bound for the quantity of interest $q(u)$

Dual problem

$$a(\phi, v) = q(v) \quad \forall v \in V \quad \quad a_0(\phi^h, v) = q(v) \quad \forall v \in V^h \subseteq V_0$$

Error in the quantity of interest

The error in energy norm is not always relevant.

Solution: Bound for the quantity of interest $q(u)$

Dual problem

$$a(\phi, v) = q(v) \quad \forall v \in V \quad a_0(\phi^h, v) = q(v) \quad \forall v \in V^h \subseteq V_0$$

$$q(u) - q(u^h) = R(\phi^h) + a(u - u^h, \phi - \phi^h) = R(\phi^h) + a(e, e_\phi)$$

Error in the quantity of interest

The error in energy norm is not always relevant.

Solution: Bound for the quantity of interest $q(u)$

Dual problem

$$a(\phi, v) = q(v) \quad \forall v \in V \quad a_0(\phi^h, v) = q(v) \quad \forall v \in V^h \subseteq V_0$$

$$q(u) - q(u^h) = R(\phi^h) + a(u - u^h, \phi - \phi^h) = R(\phi^h) + a(e, e_\phi)$$

Cauchy-Schwarz inequality

$$|a(e_\phi, e)| \leq \|e_\phi\| \|e\|$$

Error in the quantity of interest

The error in energy norm is not always relevant.

Solution: Bound for the quantity of interest $q(u)$

Dual problem

$$a(\phi, v) = q(v) \quad \forall v \in V \quad a_0(\phi^h, v) = q(v) \quad \forall v \in V^h \subseteq V_0$$

$$q(u) - q(u^h) = R(\phi^h) + a(u - u^h, \phi - \phi^h) = R(\phi^h) + a(e, e_\phi)$$

Cauchy-Schwarz inequality

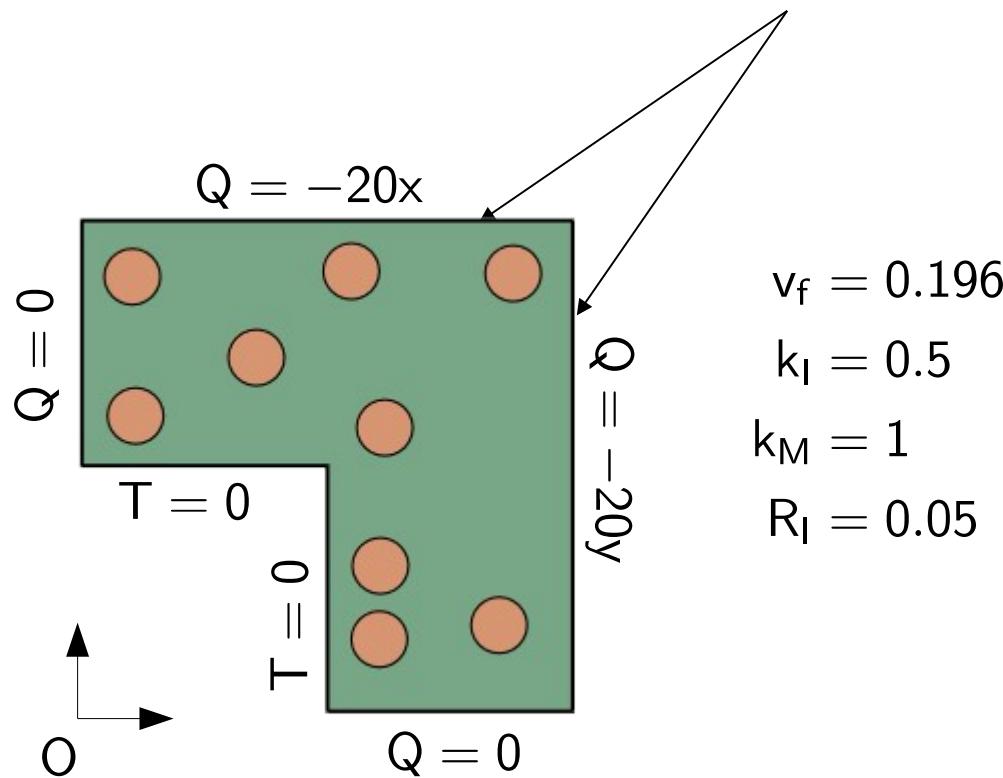
$$|a(e_\phi, e)| \leq \|e_\phi\| \|e\|$$

Use the bound in the energy norm,

$$R(\phi^h) - \eta \eta_\phi \leq q(u) - q(u^h) \leq R(\phi^h) + \eta \eta_\phi$$

Validation

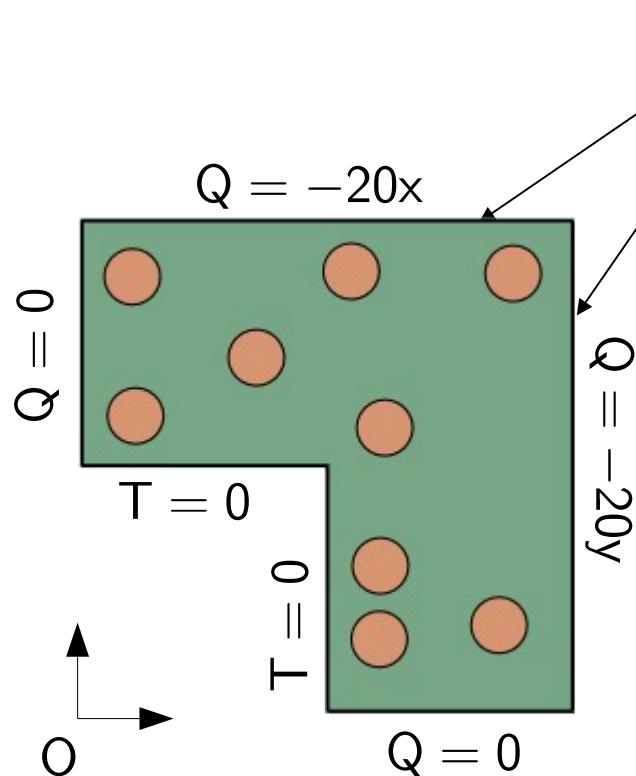
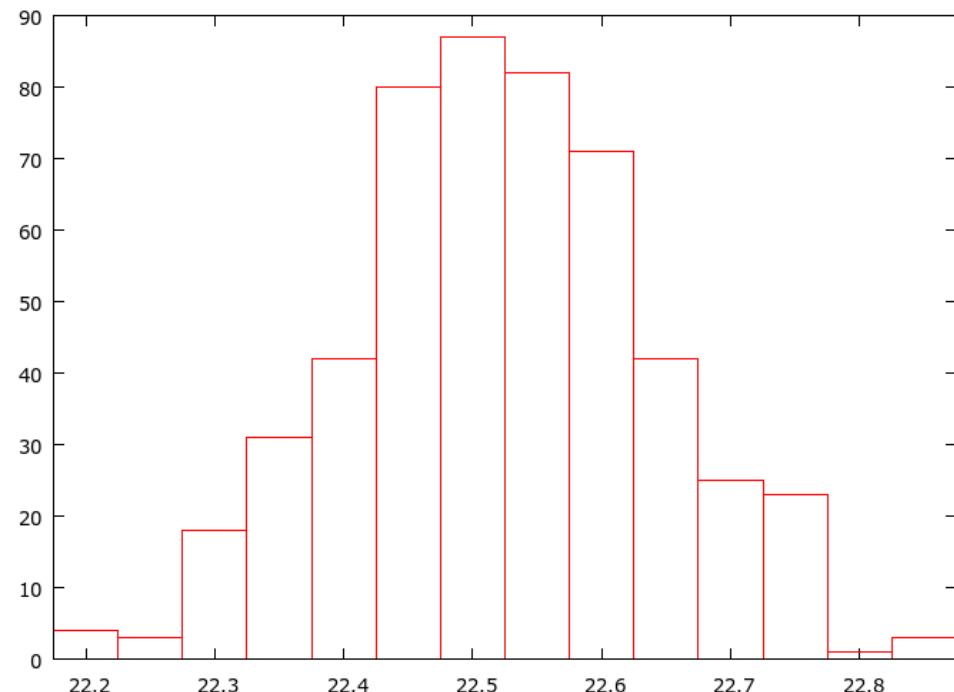
The quantity of the interest is the average temperature in the exterior faces.



The “exact” quantity of interest is computed with 512 MC realisations.

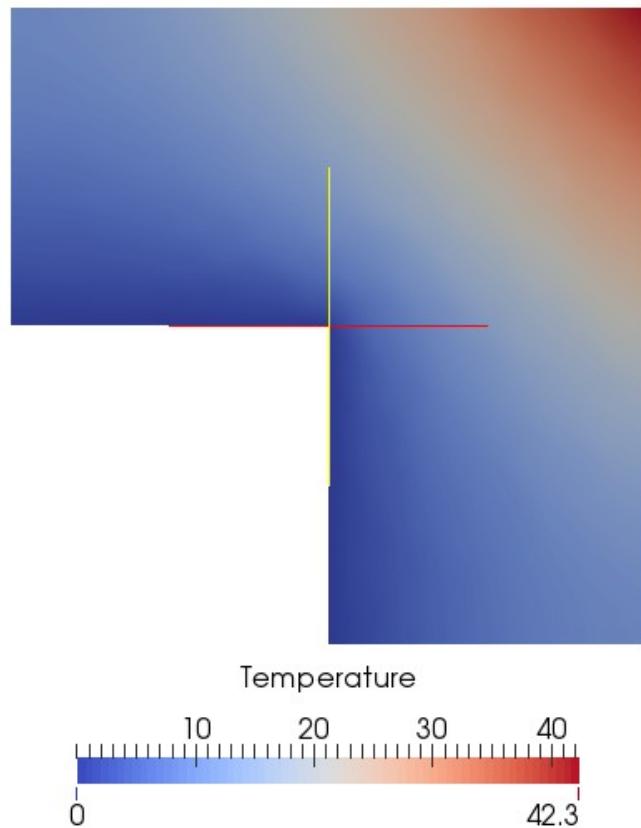
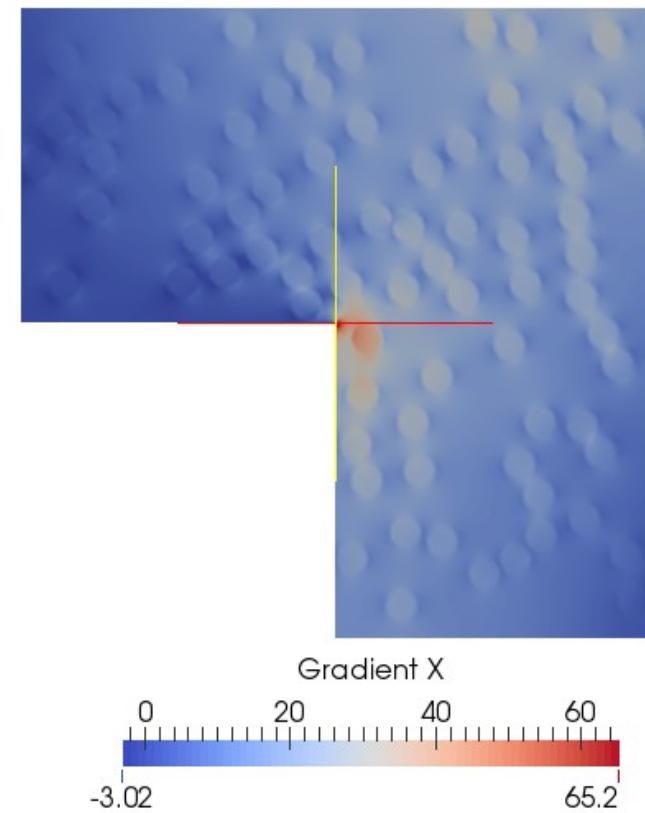
Validation

The quantity of the interest is the average temperature in the exterior faces.



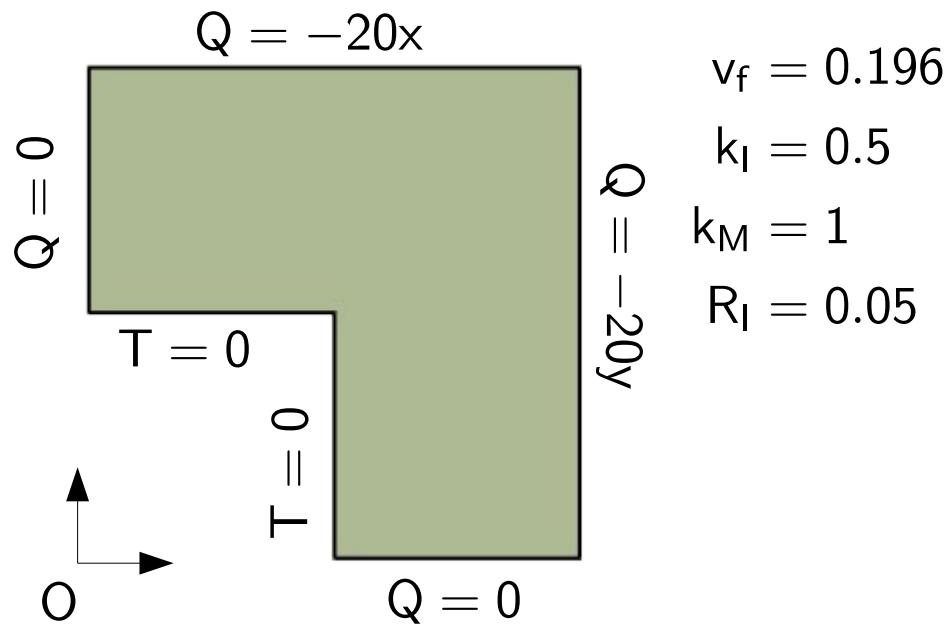
The “exact” quantity of interest is computed with 512 MC realisations.

Validation



Validation

Studied in a domain homogenised through rule of mixture.



$$v_f = 0.196$$

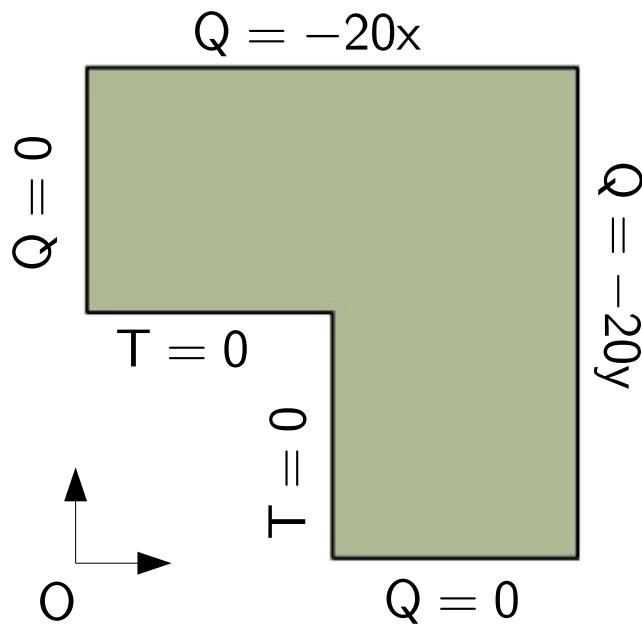
$$k_l = 0.5$$

$$k_M = 1$$

$$R_l = 0.05$$

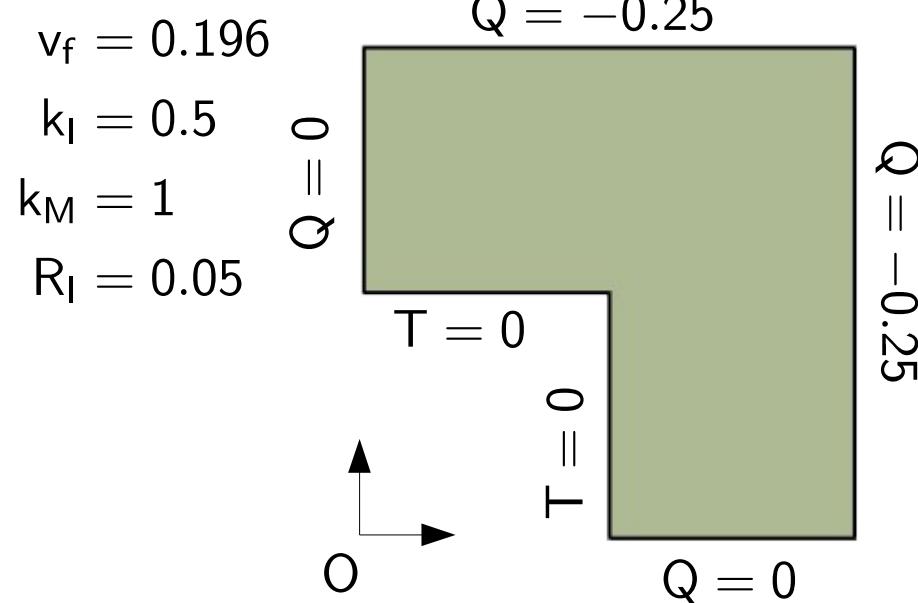
Validation

Studied in a domain homogenised through rule of mixture.



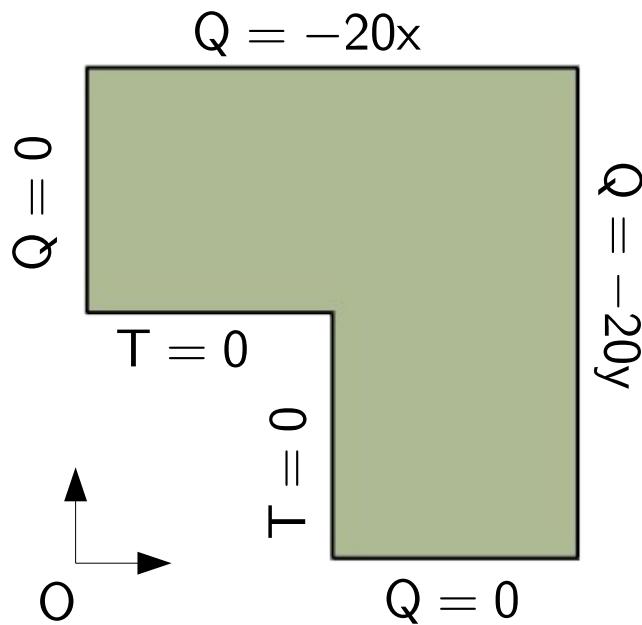
Dual problem

$$a_0(\phi^h, v) = q(v)$$

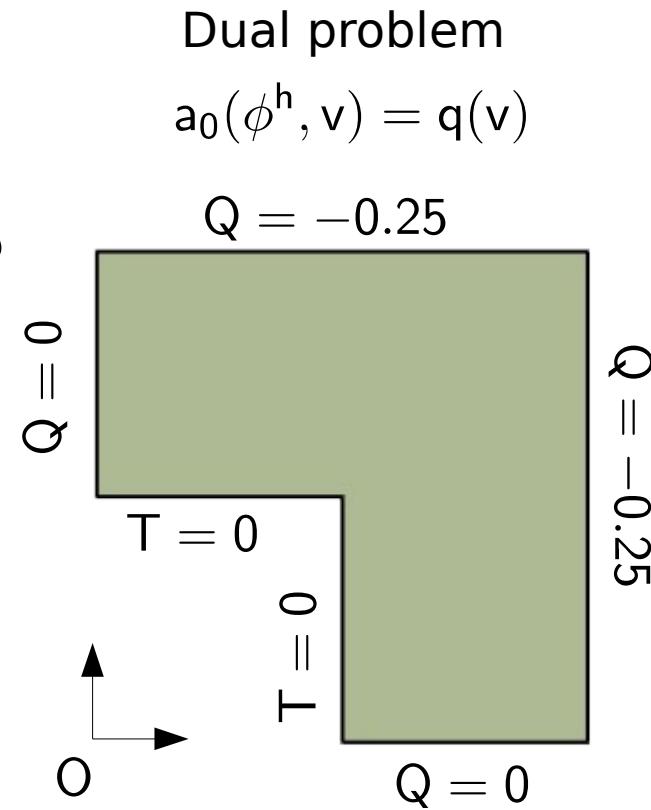


Validation

Studied in a domain homogenised through rule of mixture.



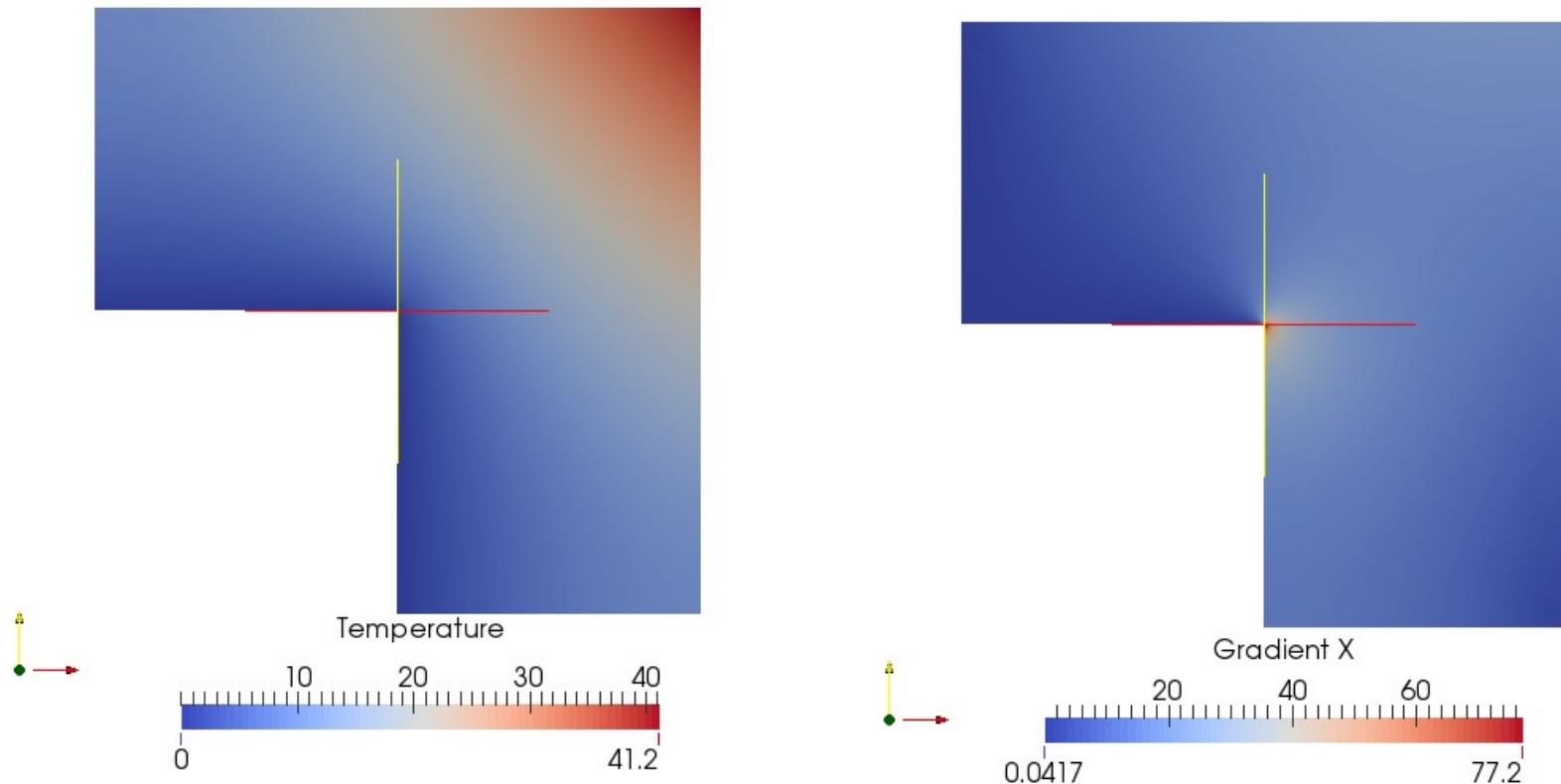
$$\begin{aligned}v_f &= 0.196 \\k_l &= 0.5 \\k_M &= 1 \\R_l &= 0.05\end{aligned}$$



Two problems solved twice:

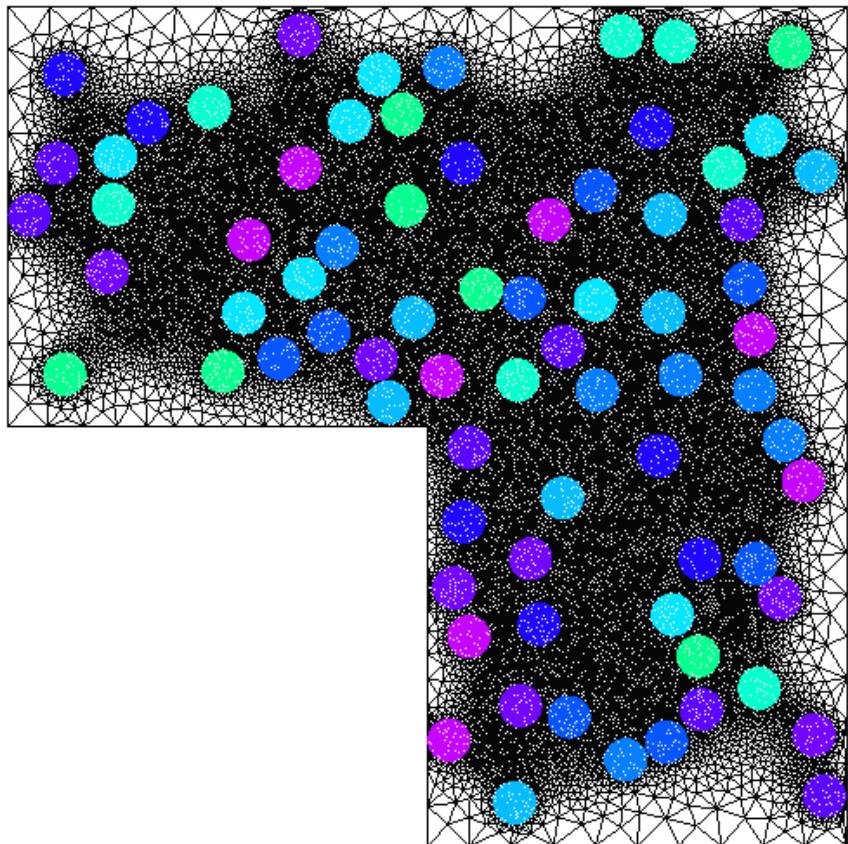
- Using “temperature” FE u^h, ϕ^h
- Using “flux” FE \hat{Q}, \hat{Q}_ϕ

Validation

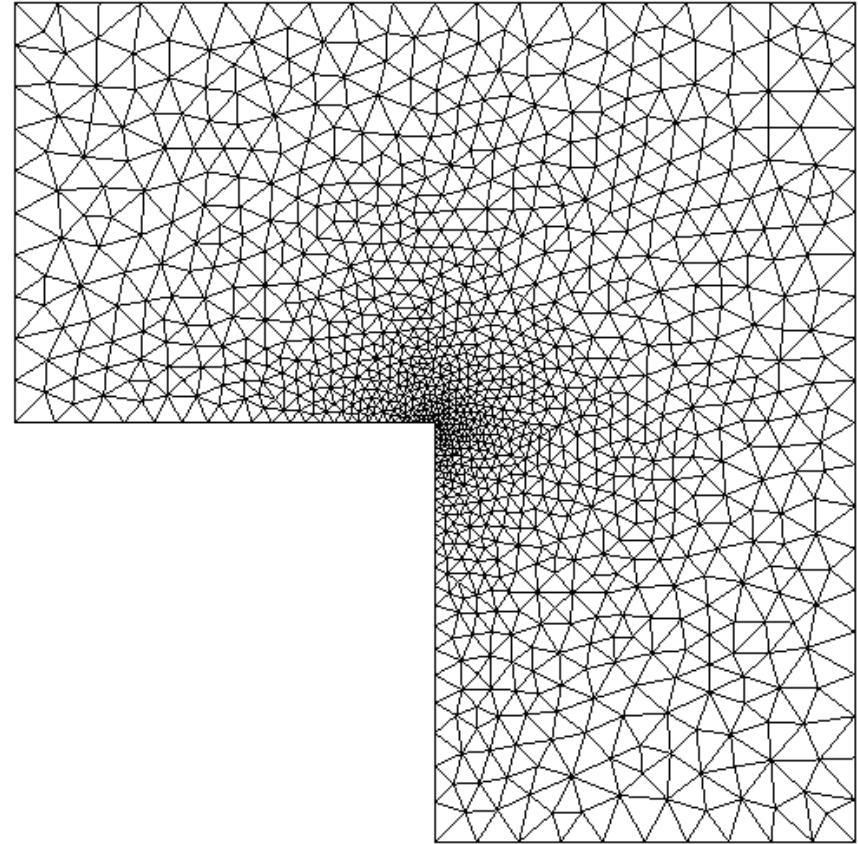


$q(u^h)$	$ q(u) - q(u^h) $	$\leq \zeta_u$	$\zeta_l + q(u^h) \leq$	$q(u)$	$\leq \zeta_u + q(u^h)$
21.92	0.63	1.84	20.08	22.55	23.76

Validation



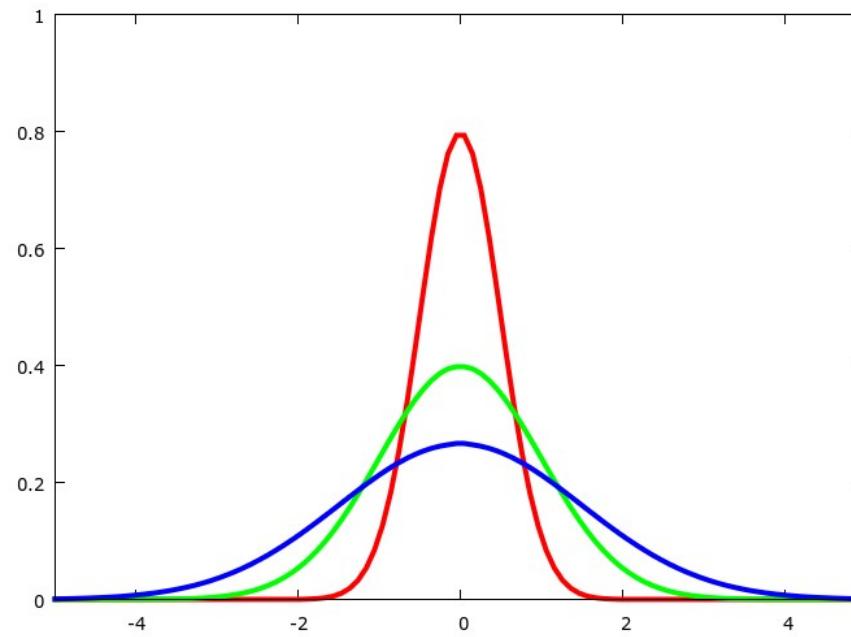
Around 60 000 elements
512 problems, 512 different meshes
Full PDF



Around 2000 elements
4 problems, 1 mesh
Bounds on the expectation

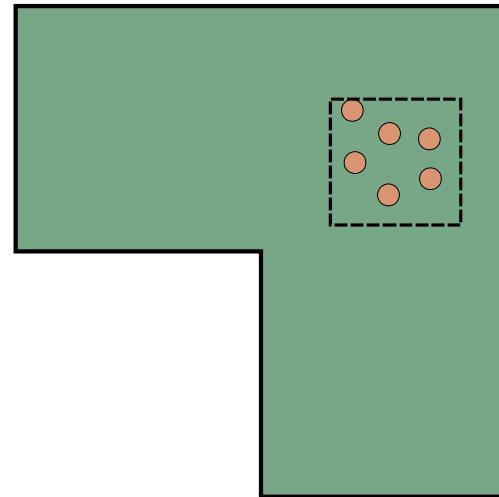
Work in progress

- A bound on the variance.



Work in progress

- Enhanced model. Insert patches with particles in parts of the domain.



Summary

- A bound for the homogenisation error was presented.
- The computation of the bound is deterministic.
- The error estimate, should be used with care when there is a high contrast between the material properties.

Summary

- A bound for the homogenisation error was presented.
- The computation of the bound is deterministic.
- The error estimate, should be used with care when there is a high contrast between the material properties.

Thank you for your attention.