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Abstract This paper presents an improvement of the cognitive architecture, 4D/RCS,
developed by the NIST. This improvement consist of the insertion of Fuzzy Logic
cells (FLCs), in different parts and hierarchy levels of the architecture, and the adap-
tation of this architecture for Unmanned Aerial Vehicles (UAVs). This advance pro-
vides an improvement in the functionality of the system based on the uses of the
Miguel Olivares’ Fuzzy Software for the definition of the FLCs and its adaptative
learning algorithm. These adaptative-FLCs contribute with the reduction of the un-
certainty in the data sensor adquisition, a more adaptative behavior of the system to
the real world and the reduction of the computational cost in the decision making.

1 Introduction

The autonomous decision making based on the data sensor acquisition is one of
the most pursued topics in robotics. There so much approach developed in order
to solve this problem, and commonly it is based on cognitive techniques and the
use of ontologies. One of the earliest was the ACT architecture [6]. ACT grew out
of research on human memory. ACT has evolved into ACT*, and then in, ACT-R,
being used in an Advanced Decision Architectures Collaborative Technology Al-
liance. The Soar architecture [11] grew out of research on human problem solving,
and has been used for problem solving, language understanding, computational lin-
guistics, theorem proving, and cognitive modeling. Other cognitive architectures in-
clude Prodigy [12], ICARUS [22], IMPRINT (Improved Performance Research In-
tegration Tool) [7], EPIC (Executive-Process Interactive Control) [10], and 4D/RCS
(Real-time Control Systems) [19] [3] [1].
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In this work is used the 4D/RCS. This architecture is a control system inspired
by a theory of cerebellar function. 4D/RCS models the brain as a hierarchy of goal-
directed sensory-interactive intelligent control processes that theoretically could be
implemented by neural nets, finite state automata, cost-guided search, or production
rules. 4D/RCS is similar to other cognitive architectures in that it represents proce-
dural information in terms of production rules, and represents declarative informa-
tion in abstract data structures such as frames, classes, and semantic nets. 4D/RCS
differs from other cognitive architectures in that it also includes signals, images, and
maps in its knowledge database, and maintains a tight real-time coupling between
metric and symbolic data structures in its world model. 4D/RCS is also different
in: a) its focus on task decomposition as the fundamental organizing principle; b)
its level of specificity in the assignment of duties and responsibilities to agents and
units in the behavior generating hierarchy; and c) its emphasis on controlling real
machines in real-world environments. The criticized points of this architecture are
the lacks of connection with the real world and the high computational cost to plan
an action ref. To these points are focussed the improvement that is presented in
this paper, based on the inclusion of Fuzzy Logic Cells (FLCs) in different parts
of a 4D/RCS architecture. This FLCs are implemented using the Miguel Olivares’
Fuzzy Software (MOFS) [21] [8] which allow the possibilities to the FLCs to adapt
to the environment by its adaptative learning algorithm, and reduce the computa-
tional cost by the Fuzzy Logic nature, and, also, reduce the uncertainty of the sensor
data acquisition. Being one of the advantages of the Fuzzy logic in contrast to the
conventional control, the possibility to include the different data sensor like inputs
of a multiple inputs and single/multiple outputs, making the fuzzy logic a good so-
lution to manage a sensor fusion and a considerable size of data from sensors.

This paper is divided in Section 2, which explains the 4D/RCS architecture in
brief, the Section 3 shows the Miguel Olivares’ Fuzzy Software by the possibilities
that it bring to create the FLCs and the explanation of how the adaptative learning
algorithm works. Section 4 presents the explanation of how the Fuzzy Logic Cells
are include inside the 4D/RCS architecture. Some behavior definitions for a UAV
using the presented improvement is shown in the Section 5.

2 Background of the 4D/RCS

The 4D/RCS integrates the NIST Real-time Control System (RCS) [4] architecture
with the German (Universitat der Bundeswehr Munchen) VaMoRs 4-D approach
to dynamic machine vision [9]. It incorporates many concepts developed under the
U.S. Department of Defense Demo I, Demo II, and Demo III programs [3][23],
which demonstrated increasing levels of robotic vehicle autonomy. The theory em-
bodied in 4D/RCS borrows heavily from cognitive psychology, semiotics, neuro-
science, and artificial intelligence. It incorporates concepts and techniques from
control theory, operations research, game theory, pattern recognition, image under-
standing, automata theory, and cybernetics from the application domain perspec-
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tive. The 4D/RCS architecture consists of a multi-resolution hierarchy of feedback
control loops between sensing and acting that integrate reactive behavior with per-
ception2, world modeling, and planning - and forming a hybrid deliberative/reactive
system [17] [18]. A review of projects that have used RCS and a description of how
RCS relates to other intelligent system architectures are contained in [4] [5].

4D/RCS evolved from the bottom up as a real-time intelligent control system for
real machines operating on real objects in the real world (robust real-time control).
The first version of RCS was developed as a sensory-interactive goal-directed con-
troller for a laboratory robot. The fundamental element is the control loop with a
goal, a transition function, a feedback loop, and an action output such as a force, ve-
locity, or position. Over the years, RCS has evolved into an intelligent controller for
industrial robots, machine tools, intelligent manufacturing systems, automated gen-
eral mail facilities, automated stamp distribution systems, automated mining equip-
ment, unmanned underwater vehicles, and unmanned ground vehicles [20] [2] [1].
The most recent version of RCS (4D/RCS) embeds elements of Dickmanns 4-D ap-
proach to machine vision within the 4D/RCS control architecture. 4D/RCS consists
of a multi-layered multi-resolutional hierarchy of computational nodes each con-
taining elements of Sensory Processing (SP), World Modeling (WM), Value Judge-
ment (VJ), Behavior Generation (BG), and a knowledge database (KD), as shown in
Figure 1. Throughout the hierarchy, interaction between SP, WM, VIJ, BG, and KD
give rise to perception, cognition, and reasoning. At low levels, representations of
space and time are short-range and high-resolution. At high levels, distance and time
are long-range and low-resolution. This enables high-precision fast-action response
at low levels, while long-range plans and abstract concepts are being simultaneously
formulated at high levels. The hierarchical approach also helps to manage compu-
tational complexity.
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Fig. 1 Node of the 4D/RCS cognitive architecture

4D/RCS closes feedback loops at every level, through every node. SP processes
focus attention (i.e., window regions of space or time), group (i.e., segment regions
into entities), compute entity attributes, estimate entity state, and assign entities to
classes at every level. WM processes maintain a rich and dynamic database of infor-
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mation about the world in the form of images, maps, entities, events, and relation-
ships at every level. Other WM processes use that information to generate estimates
and predictions that support perception, reasoning, and planning at every level. VJ
processes assign worth and importance to objects and events, compute confidence
levels for variables in the knowledge database, and evaluate the anticipated results
of hypothesized plans.

3 Fuzzy Logic Cells

This section explains the definition and implementation of the Fuzzy Logic Cells
and the Adaptive Learning Algorithm using the Miguel Olivares’ Fuzzy Software
(MOFS).

3.1 Fuzzy Controllers

For this work it used the software MOFS, developed in previous works [14], [13],
[16] and [15]. This software was independently designed, defining one class for
each part of the fuzzy-logic environment (variables, rules, membership functions,
and defuzzification modes), in order to facilitate future updates and easy interaction
with the system, as is shown in Fig. 2. There are different classes depending on the
system that want to create; being possible to define the number of inputs and outputs
that is prefered. Furthermore, it allows to make parts of the system work in serial or
parallel mode. Also, is possible to define the type of the membership functions, the
fuzzification and defuzzification methods. For this work is used for the inference
process (in the defuzzification) an adaptation of the minimum and product classic
method with the consideration of the weights assigned at each fuzzy-rule. The idea
about the weights will be explained in the next subsection. For the defuzzification
part itself, it is used the Height Method, but with the adaptation of weighting of the
fuzzy-rules (Eq. 1a, 1b), where w' is the rule weight and W is the maximum weight

possible.
!

_ XY min(up (7)) i
I, min (1 (7)) 2

_ Ly I (ue ) 4 (1b)
ST (1 () b

(1a)




Fuzzy-4D/RCS for Unmanned Aerial Vehicles 5

MOFSMode
"RuleNode” ruleStore

-VarsNode* fuzzy_inputs_vars

-VarsNode* fuzzy_outputs_vars
-MOFSDefuzzificationModel* defuzz_model
[+MOFSMogelchar file, int mode)

+int ReadVars(ifstream file_in)

+int ReadRuleBase(ifstream” file_in)

+float Inputirqfloat inputs[], float output)
+float Action(float *ouput)

[+void SaveModel(char* file)

MOFSVar
char* name MOFSMembershipFunction
MOFMembershipFunction® functionType
XAray* xValuesArray
[*MOF SVar(ifstream file_in)

[+int calc(float x)
L+ Outputs(float y_array(l)
+SetsAmay(char sets_array[])

MOFSinferenceModel

_ _ +*MOF SinferenceModel()
(-MOFSMembershipFunction () #float Calc{fioat inputs, float begin, float eding)
[float Calcifloat inputs, float begin, float ending, int type) JAY

MOFSRule MOFSDefuzzification
-Set” data -MOFSInferenceModel” inferenceType
-Float weight +MOFSDefuzzification()
-char* inputs

(+Mloat defuzz{void* rule_data_list, int var_number)

-char ouput

[*MOFSRUle(char inputs], char ouput, float weight)
[+int L inputs], char output, float
[*int UpdateOutput(char ouput)

TriangularFunction

HeightWeight Prod Weight| [Min Weight

Fig. 2 Software definition.

3.2 Adaptative learning algorithm

The MOFS-Learning algorithm is based on the idea of the synapse-weight, where a
weight variable for each rule is defined and represents the contribution of each rule
in the system output. The default value of the weights is 0.3 and the maximum value
is 3. The decision of the user, knowledge database in simulated or real missions will
make the weight of the rules increase or decrease depending on the situation and
in accordance with the system output. For each situation 2 7#mber of inputs pyleg are
selected, given the fact that it is used a simple overlap in the variables.

To develop a robust system it is important to start with a base of knowledge an to
accomplish some real tests in order to train the system by a supervised commands
and solutions. In the training period the system compares each rule output and with
the user decision, which had been fuzzificated by using the same process. When
the rule output and the user or the simulated decision are different the system will
decrease the weight of the rule, and in the case of a negative rule weight the system
will change the output of the rule by using the set of user decisions that has the
highest value. In the case where the rule output is like one of the two sets of the
user decision the system will increase the weight by a quarter of the set membership
value. So with this method the system will adapt its behavior to the users’ behavior.

In the execution phase, when the user or simulation are not making any decision
the system continues learning, based on the rules that have higher weights, which
represents the users behavior. The way in which the system compares the output of
the selected rules for the situation with the output of the system, is the same way as
in the training phase.



6 Miguel A. Olivares-Méndez et al.

4 Fuzzy-4D/RCS system definition

Based on the architecture of the 4D/RCS and the Fuzzy Logic Cells developed using
the MOFS, a new architecture of Fuzzy-4D/RCS is presented in this section. This
improvement consists of the inclusion of Fuzzy Logic Cells (FLC) in different parts
of the 4D/RCS architecture. The affected modules are SP, WM, VJ and BG. The
number of the FLC working depend on the situation, being possible to act from
three to one.

The uses of those FLCs improve the 4D/RCS system by the next advantages:

o The adaptative learning algorithm implemented inside the MOFS, explained in
the previous section, improve the learning of the system to face new situations
and to consolidate old ones by the simulations in the virtual environment and in
the real world, improving one of the parts of the 4D/RCS that is being criticized
by the lacks of connection with the real world.

e The MOFS system allows to adapt different rules bases, in order to it can act
in different ways to similar situations, but with different level of emergency, for
example, increasing the velocity in the basic movements to accomplish faster one
mission.

e Reduce the uncertainty of the sensor data acquisition. It is possible by the use
of FLCs for analyze this kind of data. The Fuzzy logic allows to reduce the
uncertainty for a better recognition of the situations, and objects, and among
others.

e The use of the FLCs for take decisions improve the behavior of the system and
reduce the time of computation, being the high computational cost of the 4D/RCS
architecture another of the most criticized point Balakirsky.

The function of the FLC depends on the module and the hierarchical level where
each one is include. Next, the explanation of the FLCs functions inside the cognitive
architecture is presented:

Sensory Processing.  The principal function of this module is to keep in contact
with the environment through the different sensor installed in the aircraft. In this
module, the FLC acts to reduce the uncertainty of the sensor measures, by the
reduction of false-positives and the noise, at the first level. For the next levels,
different FLC would be train for the recognition of the characteristic parts of
some objects, for, in the upper levels, the detection of full objects, maps or parts
of complex objects by using fuzzy logic for clustering or patter recognition with
the information that flow through the bottom up architecture.

World Modeling. The reduced uncertainty information and the objects recogni-
tion information from the Sensory Processing modules is passed to the Behavior
modules. This information is compared with the knowledge database to detects
the different situations that the aircraft is facing. Commonly the situations that
the aircraft can be involved are not well defined, in the fact that the information
could not belong to just one situation. For this reason the information and its
belongings to the different situations are measure using the fuzzy logic.
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Value Judgement. Value judgment evaluates perceived and planned situations,
thereby enabling behavior generation to select goals and set priorities. For im-
prove the computation task of the important (for attention), and what is reward-
ing or punishing (for learning), another FLC is introduce in this module, using
the developed learning system of the MOFS, explained in the previous section.
The FLC-Value judgement assigns priorities and computes the level of resources
to be allocated to tasks. It assigns values to recognized objects and events, and
computes confidence factors for observed, estimated, and predicted attributes and
states. The union between the FLC-Value judgement and the World Modeling,
simulates situations for modified the rules-base of the FLC of the task knowl-
edge for improve the decisions of the Behavior Generation module.

Behavior Generation. Behavior generation plans and executes tasks in order to
accomplish successful mission goals. The introduced FLC in the Behavior gen-
eration module uses task knowledge, skills, and abilities along with knowledge in
the world model to plan and control appropriate behavior in the pursuit of goals,
by uses fuzzy rules. Furthermore the FLC modified it base of rules by learning
about the successful accomplished tasks.

The explained FUZZY-4D/RCS node architecture is shown in fig 3.
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Fig. 3 Internal structure of 4D/FUZZY-RCS node

S Fuzzy-4D/RCS behavior definition for a UAV

The defined behaviors are located in the ”Subsystem Level” of the hierarchy of the
architecture. These are bottom-up communication, up-bottom and at the same level,
as shown below, in the explanation of these behavior. The FLCs not only help in
the acquisition external data, processing and creation of these plans, also integrated
within the control and management of the UAV. The hierarchical structure of the
architecture 4D/FUZZYRCS with different behaviors can be defined seen in Figure
4.
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Fig. 4 Hierarchical architecture of the FUZZY-4D/RCS

5.1 Basic Movement

The main performance is the basic movement, since it is the most often used by
other modules and the indispensable task for the UAV is in the air. According to
the structure our architecture, this behavior is controlled at the level Lowest ”’servo
level” control of the 3 servos charge manage the main rotor plate, the servo manager
acceleration of the engine and tail rotor servo (yaw), total 5 servos. At the next
level, “Primitive level” would defined the tasks that make possible the basic side
movements, and elevation, and descend of the aircraft.

5.2 Complex Movements

The complex movements include different behaviors defined separately in the ”Sub-
system Level” as well. These are: takeoff, landing, hovering, tracking moving base
station and the action to establish a surveillance route. These complex movements
need the feedback signal of different sensors, such as GPS, gyroscopes, cameras,
among others. Furthermore, the different behaviors communicate on the same level
with the behavior of basic movements.
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5.3 Obstacle Avoidance

This behavior is also very importance for the control of the aircraft. This need the
feedback of the data issued by multiple sensors and acts in communication with the
motion basic, and also in direct communication with the sub-tasks defined for this
behavior. This behavior based on the use of vision cameras, and LADAR for data
acquisition and management within the Fuzzy Logic Cells.

5.4 Detection Tasks

It also defined some detection systems. These are defined separately, taking into
account many sub-common tasks. The defined detection behaviors are: detection
of fires, for it would use the heat camera, which after detecting a heat in a wood
or other surface, send location data to the central station. Other detection system
is for people in danger situations, it uses the cameras, which, through image pro-
cessing algorithms and the situations analyzes, can detect people in this kind of
situations. Once the person is found the UAV must be capable to send a rescue kit
with a parachute. It is usable both on land and on water, rescue kits using different
according to the medium.

6 Conclusions and Future Works

This paper presents an improvement of the cognitive architecture 4D/RCS. The im-
plementation of the Fuzzy Logic Cells (FLCs) using the MOFS, are used for this
aim. The work mode depends on the part of the node and the level of the hierarchi-
cal or the architecture that it is includes. The principal objectives of this improve-
ment is to have a better interaction with the real world, using the learning algorithm
developed inside the MOFS, with better adaptation to new situations. The reduc-
tion of the uncertainty of the data sensor acquisition, and better object and situation
recognition by the Fuzzy Logic technique. Obtain a computational reduction of the
decision making task, using a FLC working like Fuzzy controller.

For future works, a real tests are proposed in order to evaluate this approach using
areal UAV.
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