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1. Introduction

Vision is in fact the richest source of information for ourself and also for outdoors Robotics,
and can be considered the most complex and challenging problem in signal processing for
pattern recognition. The first results using Vision in the control loop have been obtained in
indoors and structured environments, in which a line or known patterns are detected and
followed by a robot (Feddema & Mitchell (1989), Masutani et al. (1994)). Successful works
have demonstrated that visual information can be used in tasks such as servoing and
guiding, in robot manipulators and mobile robots (Conticelli et al. (1999), Mariottini et al.
(2007), Kragic & Christensen (2002).)

Visual Servoing is an open issue with a long way for researching and for obtaining
increasingly better and more relevant results in Robotics. It combines image processing and
control techniques, in such a way that the visual information is used within the control loop.
The bottleneck of Visual Servoing can be considered the fact of obtaining robust and on-line
visual interpretation of the environment, which can be usefully treated by control structures
and algorithms. The solutions provided in Visual Servoing are typically divided into Image
Based Control Techniques and Pose Based Control Techniques, depending on the kind of
information provided by the vision system that determine the kind of references that have to
be sent to the control structure (Hutchinson et al. (1996), Chaumette & Hutchinson (2006)
and Siciliano & Khatib (2008)). Another classical division of the Visual Servoing algorithms
considers the physical disposition of the visual system, yielding to eye-in-hand systems and
eye-to-hand systems, that in the case of Unmanned Aerial Vehicles (UAV) can be translated
as on-board visual systems (Mejias (2006)) and ground visual systems (Martinez et al.
(2009)).

The challenge of Visual Servoing is to be useful in outdoors and non-structured
environments. For this purpose the image processing algorithms have to provide visual
information that has to be robust and works in real time. UAV can therefore be considered
as a challenging testbed for visual servoing, that combines the difficulties of abrupt changes
in the image sequence (i.e. vibrations), outdoors operation (non-structured environments)
and 3D information changes (Mejias et al. (2006)). In this chapter we give special relevance
to the fact of obtaining robust visual information for the visual servoing task. In section
(2).we overview the main algorithms used for visual tracking and we discuss their
robustness when they are applied to image sequences taken from the UAV. In sections (3).
and (4). we analyze how vision systems can perform 3D pose estimation that can be used for
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controlling whether the camera platform or the UAV itself. In this context, section (3).
analyzes visual pose estimation using multi-camera ground systems, while section (4).
analyzes visual pose estimation obtained from onboard cameras. On the other hand, section
(5)., shows two position based control applications for UAVs. Finally section (6). explodes
the advantages of fuzzy control techniques for visual servoing in UAVs.

2. Image processing for visual servoing

Image processing is used to find characteristics in the image that can be used to recognize an
object or points of interest. This relevant information extracted from the image (called
features) ranges from simple structures, such as points or edges, to more complex structures,
such as objects. Such features will be used as reference for any visual servoing task and
control system.

On image regions, the spatial intensity also can be considered as a useful characteristic for
patch tracking. In this context, the region intensities are considered as a unique feature that
can be compared using correlation metrics on image intensity patterns.

Most of the features used as reference are interest points, which are points in an image that
have a well-defined position, can be robustly detected, and are usually found in any kind of
images. Some of these points are corners formed by the intersection of two edges, and others
are points in the image that have rich information based on the intensity of the pixels. A
detector used for this purpose is the Harris corner detector (Harris & Stephens (1988)). It
extracts corners very quickly based on the magnitude of the eigenvalues of the
autocorrelation matrix. Where the local autocorrelation function measures the local changes
of a point with patches shifted by a small amount in different directions. However, taking
into account that the features are going to be tracked along the image sequence, it is not
enough to use only this measure to guarantee the robustness of the corner. This means that
good features to track (Shi & Tomasi (1994)) have to be selected in order to ensure the
stability of the tracking process. The robustness of a corner extracted with the Harris
detector can be measured by changing the size of the detection window, which is increased
to test the stability of the position of the extracted corners. A measure of this variation is
then calculated based on a maximum difference criteria. Besides, the magnitude of the
eigenvalues is used to only keep features with eigenvalues higher than a minimum value.
Combination of such criteria leads to the selection of the good features to track. Figure 1(a)
shows and example of good features to track on a image obtained on a UAV.

The use of other kind of features, such as edges, is another technique that can be applied on
semi-structured environments. Since human constructions and objects are based on basic
geometrical figures, the Hough transform (Duda & Hart (1972)) becomes a powerful
technique to find them in the image. The simplest case of the algorithm is to find straight
lines in an image that can be described with the equation y = mx + b. The main idea of the
Hough transform is to consider the characteristics of the straight line not as image points x
or y, but in terms of its parameters m and b, representing the same line as

y= (— ij‘]:g) X + (ghg) in the parameter space, that is based on the angle of the vector from
the origin to this closest point on the line (6) and distance between the line and the origin
(r). If a set of points form a straight line, they will produce sinusoids that cross at the
parameters of that line. Thus, the problem of detecting collinear points can be converted to
the problem of finding concurrent curves. To apply this concept just to points that might be

on a line, some pre-processing algorithms are used to find edge features, such as the Canny
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edge detector (Canny (1986)) or the ones based on derivatives of the images obtained by a
convolution of image intensities and a mask (Sobel L. (1968)). These methods have been used
in order to find power lines and isolators in an UAYV inspection application (Mejias et al.
(2007)).

The problem of tracking features can be solved with different approaches. The most popular
algorithm to track features and image regions, is the Lucas-Kanade algorithm (Lucas &
Kanade (1981)) which have demonstrated a good performance for real time with a good
stability for small changes. Recently, feature descriptors have been successfully applied on
visual tracking, showing a good robustness for image scaling, rotations, translations and
illumination changes, eventhough they are time expensive to calculate. The generalized
Lucas Kanade algorithm is overviewed on subsection 2.1, where it is applied for patch
tracking and also for optical flow calculation, using the sparse L-K (subsection 2.1.1) and
pyramidal L-K (subsection 2.1.2) variations. On subsection 2.2, features descriptors are
introduced and used for robust matching, as explained on subsection 2.3

2.1 Appearance tracking

Appearance-based tracking techniques does not use features. They use the intensity values
of a “patch’ of pixels that correspond to the object to be tracked. The method to track this
patch of pixels is the generalized L-K algorithm, that works under three premises: first, the
intensity constancy: the vicinity of each pixel considered as a feature does not change as it is
tracked from frame to frame; second, the change in the position of the features between two
consecutive frames must be minimum, so that the features are close enough to each other;
and third, the neighboring points move in a solidarity form and have spatial coherence.

The patch is related to the next frame by a warping function that can be the optical flow or
another model of motion. Taking into account the previously mentioned L-K premisses, the
problem can be formulated in this way: lets define X as the set of points that form the patch
window or template image T, where x= (x,y)Tis a column vector with the coordinates in the
image plane of a given pixel and T(x) = T(x,y) is the grayscale value of the images a the
locations x The goal of the algorithm is to align the template T with the input image I
(where I(x) = I(x,y) is the grayscale value of the images a the locations x). Because T
transformed must match with a sub-image of I, the algorithm will find the set of parameters
MU= (Utb, ..4,) for a motion model function ( e.g., Optical Flow, Affine, Homography)
W(x 1), also called the warping function. The objective function of the algorithm to be
minimized in order to align the template and the actual image is equation 1:

e(W) = ¥ (1W(xip) = T(x))*w(x) M

WxeX

where w(x) is a function to assign different weights to the comparison window. In general
w(x) = 1. Alternatively, w could be a Gaussian function to emphasize the central area of the
window. This equation can also be reformulated to make it possible to solve for track sparse
feature as is explained on section 2.1.1.

The Lucas Kanade problem is formulated to be solved in relation to all features in the form
of a least squares’ problem, having a closed form solution as follows.

Defining w(x) = 1, the objective function (equation 1) is minimized with respect to ¢ and the
sum is performed over all of the pixels x on the template image. Since the minimization
process has to be made with respect to 4, and there is no lineal relation between the pixel
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position and its intensity value, the Lucas-Kanade algorithm assumes a known initial value
for the parameters x and finds increments of the parameters du. Hence, the expression to be
minimized is:
. 5 2

Y (I(W(Gu + ) — T(x)) @)
WxeX

and the parameter actualization in every iteration is ¢ = u+du. In order to solve equation 2
efficiently, the objective function is linearized using a Taylor Series expansion employing
only the first order terms. The parameter to be minimized is Ju. Afterwards, the function to

be minimized looks like equation 3 and can be solved like a “least squares problem” with
equation 4.

oW _
VXE(:X{I(W(X;;:) + Vfa—ﬂop — T(x))? )
= H" Y (VI)T(T(x) ~ (WO p0) @
YxeX H

where H is the Hessian Matrix approximation,

_ oW . r JdW
H—VZ (VIa—#} (VIa—#) (5)
xeX

More details about this formulation can be found in (Buenaposada et al. (2003) and Baker
and Matthews (2002)), where some modifications are introduced in order to make the
minimization process more efficient, by inverting the roles of the template and changing the
parameter update rule from an additive form to a compositional function. This is the so
called ICIA (Inverse Compositional Image Alignment) algorithm, first proposed in (Baker
and Matthews (2002)). These modifications where introduced to avoid the cost of computing
the gradient of the images, the Jacobian of the Warping function in every step and the
inversion of the Hessian Matrix that assumes the most computational cost of the algorithm.

2.1.1 Sparse Lucas Kanade

The Lucas Kanade algorithm can be applied on small windows around distinctive points as
a sparse technique. In this case, the template is a small window (i.e., size of 3, 5, 7 or 9 pixels)
and the warping function is defined by only a pure translational vector. In this context, the
first assumption of the Lucas-Kanade method can be expressed as given a point x; = (x, y) at
time t which intensity is I(x, y, t) will have moved by v,, v, and At between the two image
frames, the following equation can be formulated:

I(x,y,t) = I(x + vy, y + vy, Al) (6)

If the general movement can be consider small and using the Taylor series, equation 6 can be
developed as:

ol oI oI
I(x + vy, y + vy, t + At) = I(x,y,t) + av_‘- + @zry + §Af + H.O.T. 7)

www.intechopen.com



Visual Servoing for UAVs 185

Because the higher order terms H.O.T. can being ignored, from equation we found that:

o et L+ A ar=o 8
ax X T gyt A= @)

where v,,0, are the x and y components of the velocity or optical flow of I(x,y, t) and I, = g_—i,

I,= ;;':)—; and I; = %—{ are the derivatives of the image at point p = (x,y, t)

.l!x'f.’x + I_;;‘Uy = '—IF (9)

Equation 9 is known as the Aperture Problem of the optical flow. It arises when you have a
small aperture or window in which to measure motion. If motion is detected in this small
aperture, it is often that it will be seeing as a edge and not as a corner, causing that the
movement direction can not be determined. To find the optical flow another set of equations
is needed, given by some additional constraint.

The Lucas-Kanade algorithm forms the additional set of equation assuming that there is a
local small window of size m x m centered at point p = (x,y) in which all pixels moves
coherently. If the windows pixel are numerates as 1...n, with n = m?, a set of equations can be
found:

Lyox + Iy, vy = — 1
nr_\-z'f’_\- + I_uzvy = —Igz
(10)

I-YJ.I Ux + I_l.lrn Uy = — Ifu

Equation 10 have more than two equations for the two unknowns and thus the system is
over-determined. A systems of the form Ax= b can be former as equation 12 shows.

Ly Iy, 1
I_'-s Ia . _Ih
A= 7, ":H’ b=| .
S Uy :
lel fy” - Irn
or (11)
Ly I, _1,
e Il o] |-l
S B 7 B
I_\-” th_ _If“

The least squares method can be used to solve the over determined system of equation 12,
finding that the optical flow can be defined as:

ATAx=ATb
or (12)
[3r:| — (ATA)"'ATb
y
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2.1.2 Pyramidal L-K

On images with high motion, good matched features can be obtained using the Pyramidal
Lucas-Kanade algorithm modification (Bouguet Jean Yves (1999)). It is used to solve the
problem that arise when large and non-coherent motion are presented between consecutive
frames, by firsts tracking features over large spatial scales on the pyramid image, obtaining
an initial motion estimation, and then refine it by down sampling the levels of the images in
the pyramid until it arrives to the original scale.

The overall pyramidal tracking algorithm proceeds as follows: first, a pyramidal
representation of an image I of size widthpixels x heightpixels is generated. The zero* level is
composed by the original image and defined as I°, then pyramids levels are recursively
computed by dawnsampling the last available level (compute I' form I°, then 2 from I' and
so on until I'» form 1)), Typical maximum pyramids Levels L, are 2, 3 and 4. Then, the
optical flow is computed at the deepest pyramid level L,. Then, the result of that
computation is propagated to the upper level L,, - 1 in a form of an initial guess for the pixel
displacement (at level L,, - 1). Given that initial guess, the refined optical flow is computed
at level L,, - 1, and the result is propagated to level L,, - 2 and so on up to the level 0 (the
original image).

2.2 Feature descriptors and tracking

Feature description is a process to obtain interest points in the image which are defined by a
series of characteristics that make it suitable for being matched on image sequences. This
characteristics can include a clear mathematical definition, a well-defined position in image
space and a local image structure around the interest point. This structure has to be rich in
terms of local information contents that has to be robust under local and global
perturbations in the image domain. These robustness includes those deformations arising
from perspective transformations (i.e, scale changes, rotations and translations) as well as
illumination/brightness variations, such that the interest points can be reliably computed
with high degree of reproducibility.

There are many feature descriptors suitable for visual matching and tracking, from which
Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Feature algorithm (SURF)
have been the more widely use on the literature and are overview in sections 2.2.1 and 2.2.2.

2.2.1 SIFT features

The SIFT (Scale Invariant Feature Transform) detector (Lowe (2004)) is one of the most widely
used algorithms for interest point detection (called keypoints in the SIFT framework) and
matching. This detector was developed with the intention to be used for object recognition.
Because of this, it extracts keypoints invariant to scale and rotation using the gaussian
difference of the images in different scales to ensure invariance to scale. To achieve invariance
to rotation, one or more orientations based on local image gradient directions are assigned to
each keypoint. The result of all this process is a descriptor associated to the keypoint, which
provides an efficient tool to represent an interest point, allowing an easy matching against a
database of keypoints. The calculation of these features has a considerable computational cost,
which can be assumed because of the robustness of the keypoint and the accuracy obtained
when matching these features. However, the use of these features depends on the nature of the
task: whether it needs to be done fast or accurate. Figure 1(b) shows and example of SIFT
keypoints on an aerial image taken with an UAV.
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SIFT features can be used to track objects, using the rich information given by the keypoints
descriptors. The object is matched along the image sequence comparing the model template
(the image from which the database of features is created) and the SIFT descriptor of the
current image, using the nearest neighbor method. Given the high dimensionality of the
keypoint descriptor (128), its matching performance is improved using the Kd-tree search
algorithm with the Best Bin First search modification proposed by Lowe (Beis and Lowe
(1997)). The advantage of this method lies in the robustness of the matching using the
descriptor, and in the fact that this match does not depend on the relative position of the
template and the current image. Once the matching is performed, a perspective
transformation is calculated using the matched Keypoints, comparing the original template
with the current image.

2.2.2 SURF features

Speeded Up Robust Feature algorithm (Herbert Bay et al. (2006)) extracts features from an
image which can be tracked over multiple views. The algorithm also generates a descriptor
for each feature that can be used to identify it. SURF features descriptor are scale and
rotation invariant. Scale invariance is attained using different amplitude gaussian filters, in
such a way that its application results in an image pyramid. The level of the stack from
which the feature is extracted assigns the feature to a scale. This relation provides scale
invariance. The next step is to assign a repeatable orientation to the feature. The angle is
calculated through the horizontal and vertical Haar wavelet responses in a circular domain
around the feature. The angle calculated in this way provides a repeatable orientation to the
feature. As with the scale invariance the angle invariance is attained using this relationship.
Figure 1(c) shows and example of SURF features on an aerial image.

SUREF descriptor is a 64 element vector. This vector is calculated in a domain oriented with
the assigned angle and sized according to the scale of the feature. Descriptor is estimated
using horizontal and vertical response histograms calculated in a 4 by 4 grid. There are two
variants to this descriptor: the first provides a 32 element vector and the other one a 128
element vector. The algorithm uses integral images to implement the filters. This technique
makes the algorithm very efficient.

The procedure to match SURF features is based on the descriptor associated to the extracted
interest point. An interest point in the current image is compared to an interest point in the
previous one by calculating the Euclidean distance between their descriptor vectors.

(b) ©

Fig. 1. Comparison between features point extractors. Figure 1(a) are features obtained using
Good Features to Track, figure 1(b) are keypoints obtained using SIFT (the green arrows
represents the keypoints orientation and scale) and figure 1(c) are descriptors obtained
using SUREF (red circles and line represents the descriptor scale and angle).
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2.3 Robust matching

A set of corresponding or matched points between two images are frequently used to
calculate geometrical transformation models like affine transformations, homographies or
the fundamental matrix in stereo systems. The matched points can be obtained by a variety
of methods and the set of matched points obtained often has two error sources. The first one
is the measurement of the point position, which follows a Gaussian distribution. The second
one is the outliers to the Gaussian error distribution, which are the mismatched points given
by the selected algorithm. These outliers can severely disturb the estimated function, and
consequently alter any measurement or application based on this geometric transformation.
The goal then, is to determine a way to select a set of inliers from the total set of
correspondences, so that the desired projection model can be estimated with some standard
methods, but employing only the set of pairs considered as inliers. This kind of calculation is
considered as robust estimation, because the estimation is tolerant (robust) to measurements
following a different or unmodeled error distribution (outliers).

Thus, the objective is to filter the total set of matched points in order to detect and
eliminated erroneous matched and estimate the projection model employing only the
correspondences considered as inliers. There are many algorithms that have demonstrated
good performance in model fitting, some of them are the Median of Squares (LMeds)
(Rousseeuw & Leroy (1987)) and Random Sample Consensus (RANSAC) algorithm (Fischer
& Bolles (1981)). Both are randomized algorithms and are able to cope with a large
proportion of outliers.

In order to use a robust estimation method for a projective transformation, we will assume
that a set of matched points between two projective planes (two images) obtained using
some of the methods describe in section (2). are available. This set includes some unknown
proportion of outliers or bad correspondences, giving a series of matched points
(xi,y1) (x5 for i = 1. . .n, from which a perspective transformation must be calculated,
once the outliers have been discarded.

For discard the outliers from the set of matched points, we use the RANSAC algorithm
(Fischer & Bolles (1981)). It achieves its goal by iteratively selecting a random subset of the
original data points by testing it to obtain the model and evaluating the model consensus,
which is the total number of original data points that best fit the model. The model is
obtained using a close form solution according to the desired projective transformation (an
example is show on section 2.3.1). This procedure is then repeated a fixed number of times,
each time producing either a model which is rejected because too few points are classified as
inliers, or a refined model. When total trials are reached, the algorithm return the projection
model with the largest number of inliers. The algorithm 1 shows a the general steps to
obtain a robust transformation. Further description can be found on (Hartley & Zisserman
(2004), Fischer & Bolles (1981)).

2.3.1 Robust homography

As an example of the generic robust method described above, we will show its application
for a robust homography estimation. It can be viewed as the problem of estimating a 2D
projective transformation that given a set of points X; in P? and a corresponding set of
points X, in P2, compute the 3x3 matrix H that takes each X; to X, or X; = HX;. In general
the points X; and X are points in two images or in 2D plane surfaces.
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Algorithm 1 Projective Transformation estimation using RANSAC

Require: Set of matched points x; = (x;,y;) < x'; = (x},y;) fori=1...n
Define s = Minimum set of points to estimate the minimal solution.
Define p = Probability that al least one of the random samples is free form outliers
Define t = distance threshold to consider a point as an inlier for some model.
Define € = Initial probability that any selected point is an outlier.
Define Concesus = Desired number of minimum Inliers based on the total number of matched points
Calculate the maximum number os samples N = log(1 — p)/log(1 — (1 —€)%)
while N > Trials do
Randomly select s pairs of matched points
Calculate the minimal solution for the model under test, using selected s points
inliers =0
fori =0tondo
Calculate the distance d
if dpygusper <t then
inliers = inliers + 1
end if
end for
if inliers > Concensus then
Calculate the final projective transformation using all inliers points
Concensus = inliers
end if
recalculate € = 1 — (inliers/n)
recalculate N = log(1 — p)/log(1 — (1 — €)%)
Trials = Trials + 1
end while

d(x';, Hx;)? +d(x;, H 1x/;)?

2 —_
transfer

Taking into account that the number of degrees of freedom of the projective transformation
is eight (defined up to scale) and because each point to point correspondences (x;, ;) «<>(x},y5)
gives rise to two independent equations in the entries of H, is enough with four
correspondences to have a exact solution or minimal solution. If more than four points
correspondences are given, the system is over determined and H is estimated using a
minimization method. So, in order to use the algorithm 1, we define the minimum set of
points to be s = 4.

If matrix H is written in the form of a vector h = [h11, h12, hi3, ho1, ho, hos, ha1, hao, has]! the
homogeneous equations X = Hx for n points could be formed as Ah = 0, with A a 2n x 9
matrix defined by equation 13:

1 oy 1 0 0 0 —xx; —py —x
0 0 0 x yi 1 —xiyy -niyy v

A=1: +o0o0n : : : (13)
Xy yn 1 0 0 0 —xux, —yux) —x),

0 0 0 Xn yn 1 _-‘frry:; _yiiy:: —b’:;

In general, equation 13 can be solved using three different methods (the inhomogeneous
solution, the homogeneous solution and non-linear geometric solution) as explained in
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Criminisi et al. (1999). The most widely use of these methods is the inhomogeneous solution.
In this method, one of the nine matrix elements is given a fixed unity value, forming an
equation of the form A’l = b as is shown in equation 14.

}Il]
x1 oy 1 0 0 0 —xx7 -y} Iz
0 0 0 x1 »i 1 —-xy -y 213
S : : }21 = (14)
- - - - - - - - 122
Xn yﬁ 1 0 0 0 — Xy x:‘- _y}; x:, h23
0 0 0 xn yu 1 _xﬂy:: _yHb’L h31
| f135 |

The resulting simultaneous equations for the 8 unknown elements are then solved using a
Gaussian elimination in the case of a minimal solution or using a pseudo-inverse method in
case of an over-determined system Hartley and Zisserman (2004).

Figure 2 shows an example of a car tracking using a UAV, in which SURF algorithm, is used
to obtain visual features, and the RANSAC algorithm is used for outliers rejection.

Fig. 2. Robust Homography Estimation using SURF features on a car tracking from a UAV.
Up: Reference template. Down: Scene view, in which are present translation, rotation, and
occlusions.

3. Ground visual system for pose estimation

Multi-camera systems are considered attractive because of the huge amount of information
that can be recovered and the increase of the camera FOV (Field Of View) that can be
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obtained with these systems. These characteristics can help solving common vision
problems such as occlusions, and can offer more tools for control, tracking, representation of
objects, object analysis, panoramic photography, surveillance, navigation of mobile vehicles,
among other tasks. However, in spite of the advantages offered by these systems, there are
some applications where the hardware and the computational requirements make a multi-
camera solution inadequate, taking into account that the larger the number of cameras used,
the greater the complexity of the system is.

For example, in the case of pose estimation algorithms, when there is more than one camera
involved, there are different subsystems that must be added to the algorithm:

e  Camera calibration

e  Feature Extraction and tracking in multiple images

e  Feature Matching

¢ 3D reconstruction (triangulation)

Nonetheless, obtaining an adequate solution for each subsystem, it could be possible to
obtain a multiple view-based 3D position estimation at real-time frame rates.

This section presents the use of a multi-camera system to detect, track, and estimate the
position and orientation of a UAV by extracting some onboard landmarks, using the
triangulation principle to recovered their 3D location, and then using this 3D information to
estimate the position and orientation of the UAV with respect to a World Coordinate System.
This information will be use later into a UAV’s control loop to develop positioning and
landing tasks.

3.0.2 Coordinate systems

Different coordinate systems are used to map the extracted visual information from R2to R3,
and then to convert this information into commands to the helicopter. This section provides
a description of the coordinate systems and their corresponding transformations to achieve
vision-based tasks.

There are different coordinate systems involved: the Image Coordinate System (X;), that
includes the Lateral (X;) and Central Coordinate Systems (X,) in the image plane, the Camera
Coordinate System (X.), the Helicopter Coordinate System (X), and an additional one: the World
Coordinate System (Xu), used as the principal reference system to control the vehicle (see
figure 3).

¢  Image and Camera Coordinate Systems

The relation between the Camera Coordinate System and the Image Coordinate System is taken
from the “pinhole” camera model. It states that any point referenced in the Camera Coordinate
System X is projected onto the image plane in the point x¢ by intersecting the ray that links
the 3D point X, with the center of projection and the image plane. This mapping is described
in equation15, where x;and Xrare represented in homogenous coordinates.

nxg fr 0 ¢cx O '1:"‘
nyg | =1 0 fy ¢ O s
n 00 1 0| (15)

x¢ = KX [1]0]xc
The matrix K¥ contains the intrinsic camera parameters of the k" camera, such as the
coordinates of the center of projection (cx, c,) in pixel units, and the focal length (f., f,), where
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i : yaw

rofl

Hellcopter
Coordinate System

World -
Coordinate System B

Fig. 3. Coordinate systems involved in the pose estimation algorithm.

fx=fmyand f, = fm, represent the focal length in terms of pixel dimensions, being m, and m,
the number of pixels per unit distance.

The above-mentioned camera model assumes that the world point, the image point, and the
optical center are collinear; however, in a real camera lens there are some effects (lens
distortions) that have to be compensated in order to have a complete model. This
compensation can be achieved by the calculation of the distortion coefficients through a
calibration process (Zhang (2000)), in which the intrinsic camera parameters, as well as the
radial and tangential distortion coefficients, are calculated.

e  Camera and World Coordinate Systems

Considering that the cameras are fixed, these systems are related by a rigid transformation
that allows to define the pose of the k" camera in a World Coordinate Frame. As presented in
equation (16), this transformation is defined by a rotation matrix R*and a translation vector
t¥ that link the two coordinate systems and represent the extrinsic camera parameters. Such
parameters are calculated through a calibration process of the trinocular system.

RE &
Xe = [ of 1 ]xw (16)

o  World and Helicopter Coordinate Systems

The Helicopter Reference System, as described in figure 3, has its origin at the center of mass of
the vehicle and its correspondent axes: Xj, aligned with the helicopter’s longitudinal axis;
Y}, transversal to the helicopter; and Z;, pointing down. Considering that the estimation of
the helicopter’s pose with respect to the World Coordinate System is based on the distribution
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of the landmarks around the Helicopter Coordinate System, and that the information extracted
from the vision system will be used as reference to the flight controller, a relation between
those coordinate systems has to be found.

In figure 3, it is possible to observe that this relation depends on a translation vector that
defines the helicopter’s position (t), and on a rotation matrix R that defines the orientation of
the helicopter (pitch, roll and yaw angles). Considering that the helicopter is flying at low
velocities (< 4m/s), pitch and roll angles are considered = 0, and only the yaw angle () is
taken into account in order to send the adequate commands to the helicopter.

Therefore, the relation of the World and the Helicopter Coordinate Systems can be expressed as
follows:

Xz cos(0) —sin(0) 0 ty Xy
Yo | _ | sin(8) cos(d) 0 ty Vi
Zw - 0 0 1 Zp 17
1 0 0 0 1 1

Where (t,, t,, t) will represent the position of the helicopter (xu, . .Yw,., Zw,.,) With respect to
the World Coordinate System, and 6 the helicopter’s orientation.

3.1 Feature extraction

The backprojection algorithm proposed by Swain and Ballar in ( Swain & Ballard (1991)) is
used to extract the different landmarks onboard the UAV. This algorithm finds a Ratio
histogram Rhlk for each landmark i in the k¥ camera as defined in equation 18:

RIK(j) = min {ﬁ:;’(% ,1] (18)
This ratio Rh,k represents the relation between the bin j of a model histogram Mh; and the
bin j of the histogram of the image Ii* which is the image of the ky camera that is being
analyzed. Once Rhf‘ is found, it is then backprojected onto the image. The resulting image is
a gray-scaled image, whose pixel’s values represent the probability that each pixel belongs
to the color we are looking for.
The location of the landmarks in the different frames are found using the previous-
mentioned algorithm and the Continuously Adaptive Mean Shift (CamShift) algorithm (Bradski
(1998)). The CamShift takes the probability image for each landmark i in each camera k and
moves a search window (previously initialized) iteratively in order to find the densest
region (the peak) which will correspond to the object of interest (colored-landmark 7). The
centroid of each landmarks (E,k , y{‘ ) is determined using the information contained inside
the search window to calculate the zeroth (ml}:m ), and first order moments (mlklo , mffn ),
(equation 19). These centroids found in the different images (as presented in figure. 4) are
then used as features for the 3D reconstruction stage.

=T, g (19)

i mt ! mk
oo 00

When working with overlapping FOVs in a 3D reconstruction process, it is necessary to find
the relation of the information between the different cameras. This process is known as
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Camerai Camera2 Camera3

Fig. 4. Feature Extraction. Different features must be extracted from images taken by
different cameras. In this example color-based features have been considered.

feature matching. This is a critical process, which requires the differentiation of features in
the same image and also the definition of a metric which tells us if the feature i in image I'is
the same feature i in image I (image -I- of camera k).

However, in this case, the feature matching problem has been solved taking into account the

color information of the different landmarks; so that, for each image IXthere is a matrix lﬂ&z
that will contain the coordinates of the features i found in this image. Then, the features are
matched by grouping only the characteristics found (the central moments of each landmark)

with the same color, that will correspond to the information of the cameras that are seing the
same landmarks.

3.1.1 3D reconstruction

Assuming that the intrinsic parameters (K¥) and the extrinsic parameters (R¥and t*) of each
camera are known (calculated through a calibration process), the 3D position of the matched
landmarks can be recovered by intersecting in the 3D space the backprojection of the rays
from the different cameras that represent the same landmark.

The relation of the found position of each landmark, expressed in the Lateral Coordinate
System (image plane), with the position expressed in the Camera Coordinate System, is defined
as:

k= R g ko gkt 20
fi x — x;{::f fi ¥y y#r_ ( )

where (xj‘cl , yf:i ) is the found position of each landmark expressed in the image plane, (xé ,
Ye, s Z, ) represent the coordinates of the landmark expressed in the Camera Coordinate
System, (c’; , c’y( ) the coordinates of the center of projection in pixel units, and ( ff , fyk) the
focal length in terms of pixel dimensions.

If the relation of the 3D position of landmark i with its projection in each Camera Coordinate
System is defined as:

Rk K
x‘c‘i=[0-r l]xw. (21)

Then, integrating equation 21 and equation 20, and reorganizing them, it is possible to
obtain the following equations:
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fk llx“" + r{fzyw; + f;-fg,zw,- + fﬁ- )
”J r';l w; r'gg])‘m_. + I‘j3‘3sz- + f’§

r21 Xy, + r’ﬁz Yuw,; + r’}_azw + tﬁ

vk == (23)

?’3] Xa; + r'szyw.l + ?"“Zw + Io

Where x and yu represent the coordinates of landmark i expressed in the Central Camera
Coordmate System of the k' camera, and # are the components of the rotation matrix Rxand
the translation vector t* that represent the extrinsic parameters, and Xw, s Y, s Zp, are the
3D coordinates of landmark i.

From equations 22 and 23 we have a linear system of two equations and three unknowns
with the following form:

1.1 1 1.1 1 1.1 1
(xe;r31 — 1) Xw, + (X130 — 112V + (X, 133 — 113) 20, =
(fx — x5 82)

1.1 1 1.1 1 1.1 1
(We,r31 = 121)%w; + (Yo, 130 — 122) Yo, + (Ve 733 — 123)2 iv, =
(t JL /.

(24)

Ac=Db

If there are at least two cameras seeing the same landmark, it is possible to solve the
overdetermined system using the least squares method whose solution will be equation 25,
where the obtained vector erepresents the 3D position (xy, , Yy, » Zy, ) Of the it landmark:

A*b=(ATA) 'ATb (25)

Once the 3D coordinates of the landmarks onboard the UAV have been calculated, the
UAV’s position (X, ) and its orientation with respect to World Coordinate System can be
estimated using the 3D position found and the landmark’s distribution around the Helicopter
Coordinate System (see figure 5). The helicopter’s orientation is defined only with respect to
the Zj axis (Yaw angle 6) and it is assumed that the angles, with respect to the other axes, are
considered to be = 0 (helicopter on hover state or flying at low velocities < 4 m/s). Therefore,
equation 17 can be formulated for each landmark.
Reorganizing equation 17, considering that c6= cos(8), s€= sin(6), x, =t Yy v
zy = t;, and formulating equation 17 for all the landmarks detected, it isuf>0551ble t(;mcu:reate
a su}nzlstem of equations of the form Ac = b as in equation 26, with five unknowns: cé, s6,
' Y, + Zw,, 1f at least the 3D position of two landmarks is known, this system of
eq&gtlons can ]gne solved as in equation 25, and the solution ¢ is a 4 x 1 vector whose
components define the orientation (yaw angle) and the position of the helicopter expressed
with respect to a World Coordinate System.

[ xp, =y, 10 07 [ xw, i
Yn, Xn, 010 ch Yuyy
0 0 0 0 1 s Zwy — Zp,
L : Yo | =| (26)
Xp; =Y, 1 0 0 Yuwa Xaw;
W, X, 0 1 Lt Y,
0 0 0 0 1} L Zw, — Zp;
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Fig. 5. Distribution of landmarks. The distribution of the landmarks in the Helicopter
coordinate system is a known parameter used to extract the helicopter position and
orientation with respect to the World coordinate system.

In figures: 6(a), 6(b), 6(c) and 6(d), it is possible to see an example of the UAV’s position
estimation using a ground-based multi camera system (see Martinez et al. (2009) for more
details). In these figures, the vision-based position and orientation estimation (red lines) is
also compared with the estimation obtained by the onboard sensors of the UAV (green
lines).

4. Onboard visual system for pose estimation

In this section, a 3D pose estimation method based on projection matrix and homographies
is explained. The method estimates the position of a world plane relative to the camera
projection center for every image sequence using previous frame-to-frame homographies
and the projective transformation at first frame, obtaining for each new image, the camera
rotation matrix Rand a translational vector t. This method is based on the propose by Simon
et. al. (Simon et al. (2000), Simon & Berger (2002)).

4.1 World plane projection onto the Image plane

In order to align the planar object on the world space and the camera axis system, we
consider the general pinhole camera model and the homogeneous camera projection matrix,
that maps a world point x, in P® (projective space) to a point X on i image in P?, defined by
equation 27:

sx' =Plxp =K[R|t]xp =K[r} b 1§ t]xp (27)

where the matrix K is the camera calibration matrix, R and t are the rotation and translation
that relates the world coordinate system and camera coordinate system, and s is an arbitrary

www.intechopen.com



Visual Servoing for UAVs 197

scale factor. Figure 7 shows the relation between a world reference plane and two images
taken by a moving camera, showing the homography induced by a plane between these two
frames.
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Fig. 6. Vision-based estimation vs. helicopter state estimation. The state values given by the
helicopter state estimator after a Kalman f ilter (green lines) are compared with a multiple
view-based estimation of the helicopter’s pose (red lines).

Fig. 7. Projection model on a moving camera and frame-to-frame homography induced by a
plane.
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If point x,, is restricted to lie on a plane I, with a coordinate system selected in such a way
that the plane equation of I1 is Z = 0, the camera projection matrix can be written as equation
28:

wracrlf o]

sx' =P'xpp =P ol = (P') |Y (28)
1 1

where (P) denotes that this matrix is deprived on its third column or (P) = K| I{ Ié t ]. The

deprived camera projection matrix is a 3 X 3 projection matrix, which transforms points on

the world plane ( now in P?) to the i image plane (likewise in P?), that is none other that a

planar homography le H™ defined up to scale factor as equation 29 shows.

H,=K[r 1, t]=() (29)

i

Equation 29 defines the homography which transforms points on the world plane to the i

image plane. Any point on the world plane xi = [xn,yn,1]Tis projected on the image plane as
x = [x,y,1]". Because the world plane coordinates system is not known for the i image, le
can not be directly evaluated. However, if the position of the word plane for a reference
image is known, a homography Hg, , can be defined. Then, the i image can be related with
the reference image to obtain the homography HB . This mapping is obtained using
sequential frame-to-frame homographies Hf_l , calculated for any pair of frames (i-1,i) and

used to relate the i frame to the first imagen Hj using equation 30:

o=H_H[_}..-Hj (30)

This mapping and the aligning between initial frame to world plane reference is used to
obtain the projection between the world plane and the i image H;, = Hf) H?U . In order to
relate the world plane and the i image, we must know the homography H?U A simple
method to obtain it, requires that a user selects four points on the image that correspond to
corners of rectangle in the scene, forming the matched points (0,0) < (x1,y1), (0ITwiam) <
(x2,2), (MLengnt,0) <> (x3,y3) and (Miengnt,IIwiam) <> (xa,y4). This manual selection generates a
world plane defined in a coordinate frame in which the plane equation of ITis Z = 0. With
these four correspondences between the world plane and the image plane, the minimal
solution for homography Hg, = [hlg, hzgu hsg,] is obtained using the method described on
section 2.3.1.

The rotation matrix and the translation vector are computed from the plane to image
homography using the method described in (Zhang (2000)). From equation 29 and defining
the scale factor 4 =1/s, we have that:

1 1 t]=AK'H,=AK '[h; hy hj]
where (31)
rp :;\K_lhl, I'ZZAK_‘]hz, t:)lK_lh3
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The scale factor A can be calculated using equation 32:

U D
[K~Thy||  [K~Thy||

(32)

Because the columns of the rotation matrix must be orthonormal, the third vector of the
rotation matrix 13 could be determined by the cross product of 1 X ». However, the noise on
the homography estimation causes that the resulting matrix R = [11 1> 13] does not satisfy the
orthonormality condition and we must find a new rotation matrix R’ that best approximates
to the given matrix Raccording to smallest Frobenius norm for matrices (the root of the sum
of squared matrix coefficients) (Sturm (2000), Zhang (2000)). As demonstrated by (Zhang
(2000)), this problem can be solved by forming the Rotation Matrix R = [r1 »» 3] and using
singular value decomposition (SVD) to form the new optimal rotation matrix R’ as equation
33 shows:

R=[r 1 (rxn)=USv’
S = diag(c1,02,03) (33)
R =UVT

Thus, the solution for the camera pose problem is defined by equation 34:

x = PX = K[R'|]X (34)

4.2 UAV 3D estimation based on planar landmarks

This section shows the use of a pose estimation method based on frame to frame object
tracking using robust homographies. The method, makes a matching between consecutive
images of a planar reference landmark, using either, homography estimation based on good
features to track (Shi & Tomasi (1994)), matched using the pyramidal L-K method, or the
ICIA algorithm (Baker & Matthews (2002)) for an object template appearance tracking using
a homography warping model. The frame to frame matching is used to estimate a projective
transformation between the reference object and the image, using it to obtain the 3D pose of
the object with respect to the camera coordinate system.

For these tests a Monocromo CCD Firewire camera with a resolution of 640x480 pixels is
used. The camera is calibrated before each test, so the intrinsic parameters are know. The
camera is installed in such a way that it is looking downward with relation to the UAV. A
know rectangular helipad is used as the reference object to which estimate the UAV 3D
position. It is aligned in such a way that its axes are parallel to the local plane North East
axes. This helipad was designed in such a way that it produces many distinctive corner for
the visual tracking. Figure 8(a), shows the helipad used as reference and figure 8(b), shows
the coordinate systems involved in the pose estimation.

The algorithm begins, when a user manually selects four points on the image that
correspond to four points on a rectangle in the scene, forming the matched points (0,0) «
(x1y1), (910mm,0) « (x2,y2), (0,1190mm) < (x3,y3) and (910mm,1190mm) <> (x4,ys). This
manual selection generates a world plane defined in a coordinates frame in which the plane
equation of IT is Z = 0 (figure 7) and also defining the scale for the 3D results. With these
four correspondences between the world plane and the image plane, the minimal solution

for homography Hg) is obtained.
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Fig. 8. 8(a) Helipad used as a plane reference for UAV 3D pose estimation based on
homographies. 8(b) Helipad, camera and U.A.V coordinate systems.

Once the alignment between the camera coordinate system and the reference helipad is
known (Hg, ) the homographies between consecutive frames are estimated, using either, the
Pyramidal L.K. or the ICIA algorithm as is described below:

Optical Flow and RANSAC: good features to track are extracted on the zone corresponding

to the projection of the helipad on image Ip. Then a new image I; is captured, and for
each corner on image I, the pyramidal implementation of the Lucas Kanade optical
flow method is applied, obtaining for each one either, the corresponding position
(velocity vector) on image I (if the corresponding point was found on the second
image), or “null” if it was not found. With these points that have been matched or its
optical flow was found on image I, a Homography Hé is robustly estimated using the
algorithm described on section ??. Homography H(l) is used to estimate the alignment
between image I1 and the reference helipad using H%U = Hé H(Z)U, which is used to
obtain the rotation matrix R. and the translation vector t. using the method
described on section 4.1. Then, the original frame formed by points ((x1,y1), (x2y2), (x3,3)
and (x4,y4)) are projected on image I; using xﬂl = H} xﬂo , defining the actual position of
the helipad on the image I;. For this position, good features to track are once again
estimated and used to calculate a new set of matched points between images I; and L.
These set of matched points are used to calculate HZ, and then H3 and H2, from
which R?U and tﬁ, is estimated. The process is successively repeated until either, the
helipad is lost or the user finishes the process.
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Fig. 9. Homography motion model estimated on a partial occluded image using either, the
Lucas-Kanade Algorithm with RANSAC robust function fitting (left) or with the Inverse
Compositional Algorithm ICA (right). Superimposed (top left), is the original frame or
template under tracking.

ICIA: The zone corresponding to the projection of the helipad on image Iy is defined as the
template to track T(x) on the image sequence. Then for each new image Ii on the
sequence, the following equation Zyx x(T(W(x% d) — [(W(x4))? is minimized in order to
get the parameters u= (u1,t0, ...Mn) for a Homography motion model (section 2.1),
obtaining directly the homography HS that relates the image I with the template T(x)
on image Io. The alignment between frame k and the world plane is obtained using
HY = H), Hf from which R¥ and ) is estimated.

Figure 9 shows the homography estimation using both, the Pyramidal Lucas Kanade tracker
and the ICIA algorithm.
The translational vector obtained using the method described on section 4.1, is already
scaled based on the dimensions defined for the reference plane during the alignment
between the helipad and image Ip, so in our case the resulting vector tiu is in mm. The
rotation matrix can be decomposed on Tait-Bryan or Cardan Angles. The Tait-Bryan or
Cardan angles are formed when the three rotation sequences each occur about a different
axis. This is the preferred sequence in flight and vehicle dynamics. Specifically, these angles
are formed by the sequence: (1) y about z axis (yaw), (2) &about y, (pitch), and (3) ¢about
the final x, axis (roll), where a and b denote the second and third stage in a three-stage
sequence or axes. This set of rotation sequences is defined by the rotation matrices as
equation 35 shows:

cosy sing 0 cos@ 0 —sinf 1 0 0
R.y=|—sinp cosp 0|, Ryp=| 0 1 0 . Ryp=1{0 cos¢ sing|(35)
0 0 1 sinf 0 cos® 0 —sing cos¢

The final coordinate transformation matrix for Tait-Bryan angles is defined by the
composition of the rotations R, jR,, sR; , forming the equation 36.
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cosfcosy cosfsiny —sind
singsinfcosyP —cosPsiny singsinfsiny + cos¢cosyp singcosh

cos¢sinfcosip +singsiny cosPsinfsiny — singcosyP cosPcosd (36)

Rait Bryan —

The angles i, 8and ¢ can be obtained from the rotation matrix R;U (remember the rotation
sequence order) using the equation 37.

. 11 "2 N3

— R — . ;
Repyir— Bryan = Ry=|rn1 rn ra
r31 132 133

where
6 = —arcsin(ry3) (37)
_ .o 112
i = arcsin( D )
_ s r'23
¢ = arcsin( C—OSS}

Equation 37 is singular when #=0or 6= 7.

Figure 10 shows some examples of the 3D pose estimation, based on a reference helipad.
This figure shows the original reference image, the current frame, the optical flow between
last and current frame, the helipad coordinates in the current frame camera coordinate
system and the Tait-Bryan angles obtained from the rotation matrix.

The estimated 3D pose is compared with helicopter position estimated by the Kalman Filter
of the controller on the local plane with reference to the takeoff point (Center of the
Helipad). Because the local tangent plane to the helicopter is defined in such a way that the
X axis is the North position, the Y axis is the East position and Z axis is the Down Position
(negative), the measured X and Y values must be rotated according with the helicopter
heading or yaw angle, in order to be comparable with the estimated values obtaining from
the homographies. Figures 11(a), 11(b) and 12(a) shows the landmark position with respect
to the UAV and figure 12(b), shows the estimated yaw angle.

5. UAV position control

The 3D pose estimation techniques on sections 3.and 4.are integrated with the UAV control
loop using Position Based Visual Servoing architectures in Dynamic Look and Move Systems
(Hutchinson et al. (1996), Chaumette and Hutchinson (2006), Siciliano and Khatib (2008)). In
this kind of control, an error between the current and the desired position of the UAV is
calculated and used by the low level controller (onboard flight controller) to generate the
control commands to move the UAV to the desired position. Depending on the camera
configuration in the control system, we will have an eye-in-hand or an eye-to-hand
configuration. In the case of onboard control, it is considered to be an eye-in-hand, while in
the case of ground control it is an eye-to-hand configuration as is shown on figure 13.

When the ground control is used (figure 13(a)), the vision system determines the position of
the UAV in the World Coordinate System, so that the position xw__ .~ and the position

information given by the trinocular system Xy __, both defined in the World Coordinate

System, will be compared to generate references to the position controller. These references
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Fig. 10. Two different test for 3D pose estimation based on a helipad tracking using Robust
Homography estimation. The reference image is on the small rectangle on the upper left
corner. Left it the current frame and Right the Optical Flow between the actual and last
frame. Superimposed are the Translation vector and the Tait-Bryan angles.
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Fig. 13. UAV visual control system following a dynamic look-and-move architecture. 13(a) is an

eye-to-hand configuration (ground control), while 13(b) is an eye-in-hand configuration
(onboard control)

are first transformed into commands to the helicopter xy,_, .~ by taking into account the
helicopter’s orientation, and then those references are sent to the position controller in order
to move the helicopter to the desired position (figure 13(a))

In case of the Onboard (figure 13(b)) control and depending on the control task, a reference
point in coordinates relative to the helipad will be defined (e.g. For landing the reference
point will be (0,0,0)). Because, the estimated position of the helipad (relative to the camera
coordinate system onboard the UAV) is known by the visual system, the reference point can
be transformed to coordinates relative to the helicopter coordinate system and will be used
to generate the references (X,Y,Z) and (Heading) commands, relative to the UAV coordinate
system, that will be used by the low-level controller to position the helicopter (e.g. in the
landing case the command will be the translation vector obtained by the visual system)
(figure 13(b)).

These control architectures have been tested with the COLIBRI III testbed that is shown in
figure 14 (COLIBRI (2009), Campoy et al. (2009)). It has a low-level controller based on PID
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Fig. 14. COLIBRI III Electric helicopter UAV used in a dynamic look-and-move control
architecture.
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Fig. 15. UAV control. Vision-based position commands (figure 15(b) yellow line) are sent to
the flight controller to develop a vision-based landing task. The vision-based estimation (red
line) is compared with the position estimation of the onboard sensors during the task.

control loops to ensure the helicopter” stability, using the state estimation obtained by a
Kalman Filter on information given by the GPS, IMU and Magnetometer sensors. In order to
enable the UAV to perform onboard image processing, it has a dedicated onboard computer
in which the visual systems runs.

The system runs in a client-server architecture using TCP/UDP messages working in a
multi-client wireless network, allowing the integration of vision systems and visual tasks
with the low level flight control. This architecture allows applications to run both, onboard
the autonomous helicopter or with an external processes, through a high level switching
layer. The visual control system sends position references to the flight control through this
layer using TCP/UDP messages, forming a dynamic look-and-move system architecture that is
shown in figure 13.

In figure 15, the client server architecture, and the control architectures presented in figure
13 have been used to send position-based commands (figure 15(b) yellow line) to the flight
controller in order to develop a vision-based landing task. Those position commands have
been generated using the vision-based position estimation (figure 15 red line) obtained with
the multi-camera system presented in section 3.. In figure 15(a) the 3D reconstruction of the
vision-based position estimation (red line) during the landing task and the position
estimation using the onboard sensors (green line) are compared.
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6. Fuzzy controllers for visual servoing

This section shows the implementation of a visual control system using a tracker algorithm
and three controllers working in parallel. Two of these controllers used to control the
camera platform onboard the UAV (one for the pitch axis and the other for the yaw axis)
and the third one is used to control the yaw angle of the helicopter (heading). The
implementation of the controllers is based on Fuzzy logic, because this controller offers
faster setpoint recovery with less overshoot than PID control for both setpoint changes and
load changes. At the same time, it offers immunity to process noise when it is near setpoint
because the controller develops a nonlinear response analogous to an error-squared PID
controller. Also, when the error is larger, the control action is larger than for PID; while
when it is smaller, the control action is smaller. However, the nonlinearity is less severe than
for an error-squared controller and robustness is not compromised. Also, this controller is
ideally suited for large time constants (not dead time) where overshoot and slow recovery
are both undesirable. In fact, this controller generally outperforms PID loops in most
situations. Another thing in favor is that using Fuzzy controllers it is not necessary to get the
model of the helicopter in order to fit the controllers.

The system uses a firewire camera mounted on a pan and tilt platform, that takes images
with 320x240 pixels resolution. The visual system is used to track an object of interest, using
its position on the image plane (pixels) as the input for the fuzzy system, getting a yaw error
(for platform and helicopter) in the range of -160 to 160 pixels, and a range of -120 to 120
pixels error for the platform pitch error.

The fuzzification of the inputs and the outputs are defined by using a triangular and
trapezoidal membership functions. The controllers have two inputs, the error between the
center of the object and the center of the image (figures 16(a) and 17(a)) and the difference
between the last and the actual error (figures 16(b) and 17(b)), derivative of the position or
the velocity of the object to track. The platform controllers output represents how many
degrees the servo-motor must turn, in the two axis, to gets the center of the object in the
center of the image. The output of both variables of the axis of the visual platform have the
same output, as is shown in figure 18(a).

The heading controller uses the two same inputs of the yaw controller (figures 16(a) and
16(b)) and the output of the controller represents how many degrees must, the helicopter,
turn to line up to the object to track (figure 18(b)).

The process of fuzzification transforms a numerical value to a linguistic value. We defined a
linguistic value of each set at the inputs and output of each variables, putting the acronyms
in the images of figure 18. The Meaning of these acronyms are shown in the table 1.

The three controllers are working in parallel giving a redundant operation to the yaw axis, but
what we want to do with this action is to reduce the error that we have with the yaw-platform
controller, where the limitations of the visual algorithm and the movements velocity of the
servos hinders us to take a quicker response. The controllers are guided by a 49 rules base. The
platform controllers output are defining in such a way that the sector near to the zero
response, has more membership functions, as is shown in figure 18(a). This option, give us the
possibility to define a very sensible controller when the error is so small (the object is very near
to the center of the image), and a very quick respond controller when the object is so far. For
the heading controller we defined a trapezoidal part in the middle of the output in order to
help the platform controller, just when the object to track is with so far to the center of the
image. With these trapezoidal definition we get a more stable behavior of the helicopter, in the
situations where the object to track is near to the center, obtaining a 0 value.
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VBL Very Big to the Left
BL Big to the Left
LL Little to the Left
Error C Center
LR Little to the Right
BR Big to the Right
VBR Very Big to the Right
VBN Very Big Negative
BN Big Negative
LN Little Negative
Derivative Error Z Zero
LP Little Positive
BP Big Positive
VBP Very Big Positive
VBL Very Big to the Left
BL Big to the Left
L Left
LL Little to the Left
Output: Turn C Center
LR Little to the Right
R Right
BR Big to the Right
VBR Very Big to the Right

Table 1. Meaning of the acronym of the linguistic value of the fuzzy variables inputs and the
output.

DE\E | VBL | BL LL C LR BR VBR
VBN VBL VBL VBL BL L LL Z
BN VBL VBL BL L LL V4 LR
IN VBL BL L LL Z LR R

Z BL L LL Z LR R BR
LP L LL Z LR | R BR VBR
BP LL Z LR R BR VBR VBR
VBP Z LR R BR | VBR VBR VBR

Table 2. Rules base of the Yaw and Pitch controllers. Where DE is the derivative error and E
the error.

For the inference process (in the defuzzification) we used a product classic method, and for
the defuzzification part itself, we used the Height Method (equation 38).

7))
V) 38
e T (e (7)) 9

In tables 2 and 3 the base of fuzzy rules used by the controllers are shown.

i = ;ﬂl?_]—[(}" B (

y
I
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DE\ E VBL BL LL C LR BR VBR
VBN BL BL BL BL L LL Z
BN BL BL BL L LL Z LR
LN BL BL L LL Z LR R
Y/ BL L LL Z LR R BR
LP L LL Z LR R BR BR
BP LL Z LR R BR BR BR
VBP Z LR R BR BR BR BR

Table 3. Rules base of the Heading controller. Where DE is the derivative error and E the
error.
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Fig. 16. Inputs Variables of the Yaw and Heading controllers.
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Fig. 17. Inputs Variables of the Pitch controllers.
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Fig. 18. Variables of the Fuzzy-MOFS controllers.

These controllers are implemented using the software MOFS (Miguel Olivares’ Fuzzy
Software), with a definition in classes shown in figure 19. Details about this software and the
differences between this and others implementations of Fuzzy Logic software can be

consulted on Olivares and Madrigal (2007) and Olivares et al. (2008).
In the following paragraphs some results from real tests onboard the UAV, tracking static

and moving objects are presented. For these tests, we use the Fuzzy controllers to control the

pan and tilt camera platform.
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Fig. 20. 3D flight reconstruction from the GPS and the IMU data from the UAV. Where, the
X" axis represents the NORTH axis of the surface of the tangent of the earth, the "Y” axis
represents the EAST axis of the earth, the "Z’ is the altitude of the helicopter and the red
arrows show the pitch angle of the helicopter.
Tracking Static Objects
In this test, we tracked a static object during the full flight of the UAV, from takeoff to
landing. This flight was made by sending set-points from the ground station. Figure 20
shows a 3D reconstruction of the flight using the GPS and IMU data on three axes: North
(X), East (Y), and Altitude (Z), the first two of which are the axes forming the surface of the
local tangent plane. The UAV is positioned over the north axis, looking to the east, where
the mark to be tracked is located. The frame rate is 15 frames per second, so those 2500
frames represent a full flight of almost 3 minutes.
Figure 21 shows the UAV’s yaw and pitch movements. In figure 23, the output of the two
Fuzzy-MOFS controllers in order to compensate the error caused by the changes of the
different movements and angle changes of the UAV flight, where we can see the different
responses of the controllers, depending the sizes and the types of the perturbations.
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Fig. 21. Different pitch and yaw movements of the UAV.
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Fig. 22. Error between center of the image and center of the object to track.
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Fig. 23. Output from the Fuzzy Controller.

Tracking Moving Objects

In this part we present the tracking of a van with continuous movements of the helicopter
increasing the difficulty of the test. In figure 24 we can see the error in pixels of the two axes
of the image. Also, we can see the moments where we deselected the template and re-
selected it, in order to increase the difficulty to the controller. These intervals show up as the
error remains fixed in one value for a long time. At the same time the pilot move the
helicopter in order to increase the difficulty to the controllers, and also, the template was

deselected and reselected for made the situation more adverse. In figure 24 it is possible to
see the error in pixels of the x and y axis of the image.
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Fig. 24. Error between center of the image and center of the dynamic object (a van) to track.

In figures 25 and 26 we can see the response of the two controllers, showing the large
movements sent by the controller to the servos when the mark is re-selected. Notice that in
all the figures that show the controller responses, there are no data registered when the
mark selection is lost because no motion is tracked. Figure 24 shows the data from the flight
log, the black box of the helicopter. We can see that the largest response of the controllers
are almost +10 degrees for the yaw controller and almost 25 degrees for the pitch controller,
corresponding to the control correction in a period of fewer than 10 frames.
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Fig. 25. Response of the Fuzzy control for the Yaw axis of the visual platform tracking a
dynamic object (a van).

Puach Ouwipat of ihe Furzy Cantraller (withaus saamj

=0 100 1500 000 =
frames

Fig. 26. Response of the Fuzzy control for the Pitch axis of the visual platform tracking a
dynamic object (a van).

UAYV Heading Control

Finally, we present results of one of the tests where the heading of the helicopter, and the
camera platform are controlled using the three controllers explained.

In figure 28 we can see the response of the Fuzzy controller of the visual platform pitch
angle, responding very quickly and with good behavior. In addition, figure 29 shows the
controller response of the other axis of the platform. We can see a big and rapid movement
near 1600 frames, reaching an error of almost 100 pixels. For this change we can see that the
response of the controller is very fast, only 10 frames.
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Fig. 27. Error between the static object tracked and the center of the image, running with the
UAYV simulator.
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Fig. 28. Response of the Fuzzy control for the Pitch axis of the visual platform tracking a
static object with the simulator of the UAV control.
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Fig. 29. Response of the Fuzzy control for the Yaw axis of the visual platform tracking a
static object with the simulator of the UAV control.

The response of the heading controller is shown in figure 30, where we can see that it only
responds to big errors in the yaw angle of the image. Also, we can see, in figure 31, how
these signals affect the helicopter’s heading, changing the yaw angle in order to collaborate
with the yaw controller of the visual platform.

Heading - Dutput of 1ve Furry Controlier

Qe
&

] 200 o 7] 7] T TR0 ] ) PR
irames

Fig. 30. Response of the Fuzzy control for the heading of the helicopter.
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Fig. 31. Heading Response.

7. Conclusion

In this chapter, we have presented some of the techniques used for real time visual servoing
on UAVs. These techniques includes visual algorithms for features detection and tracking,
pose estimation, visual and pose based control systems, and fuzzy controllers, using them to
increase the capabilities of UAVs in situations like object tracking, low altitude tasks such as:
positioning and landing.

The methods explained have been integrated in a UAV control architecture, forming both,
visual and pose based control systems, that have been tested on real UAV flights, showing
the advantages of using visual systems on this kind of robots. Additional examples and
videos of the visual systems and process presented in this chapter are available at the
Colibri Project web page COLIBRI (2009)
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