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Abstract. In this paper we study three semantics to combine constitutive and
regulative norms. In the first semantics, called the simple-minded semantics, the
output of the constitutive norms are intermediate facts used as input for the regu-
lative norms. The second method is called throughput, and adds the input of the
constitutive norms to the intermediate facts. The third method is called reusable
throughput, because it reuses the output of the regulative norms in the input of the
constitutive norms. In addition, we refine these three so-called abstract semantics
such that the obligations are labeled with the intermediate facts used to derive
them. These explanations in the labels can be used for norm change, interpre-
tation or defeasible argumentation. We present complete axiomatisations for the
abstract and refined versions of the three semantics.
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1 Introduction

Constitutive norms are normative reasoning discussed in the handbook of deontic logic
and normative systems [6], besides permissive norms, prima facie norms, and norma-
tive positions. They are usually contrasted with norms regulating the behavior of human
beings by indicating which behaviors are obligatory, permitted and forbidden. Consti-
tutive norms do not regulate actions or states-of-affairs, but rather they define new pos-
sible actions or states of affairs. In this paper we have little to say about constitutive
norms themselves, and we refer the reader to the overview chapter of Grossi and Jones
in the handbook [9]. Instead, we are interested in the combination of constitutive and
regulative norms. As there are various ways to combine these two kinds of norms, and
we believe none of them is perfect, this raises a new question. Besides choosing a logic
for constitutive norms and a logic for regulative norms, the new question is:

Research question. Which combination method to choose for combining constitutive
and regulative norms?

Our approach in this paper to answer this question is to define three ways of com-
bining these two kinds of norms, and to axiomatize these combinations. As always, the
axiomatization presents the characteristic properties of the combination methods, which
can be used to choose the method appropriate for a particular application. Moreover, we



make as little commitments as possible about the representation of the norms. For exam-
ple, constitutive norms are represented by count-as conditionals “X counts as Y in the
context Z” [24, 12, 10], but there does not seem to be a consensus on the representation
of the context. We therefore follow Lindahl and Odelstad [15] and Boella and van der
Torre [1,2] and abstract away from the context. We thus represent constitutive norms
as rules “X counts as Y.” We use the general input/output logic approach [17, 18] to
represent both constitutive and regulative norms, and in particular we use a ‘minimal’
input/output logic recently introduced by Parent and van der Torre [20, 21].

The research question breaks down into the following four subquestions. First, how
to axiomatize the simple-minded combination method, as used by Lindahl and Odel-
stad [15], visualized below in Figure 1? Here C' and R are the set of constitutive and
regulative norms respectively. A is a set of formulas representing the facts. I is an-
other set of formulas representing the intermediate concepts derived by the fact A and
constitutive norms C'. These intermediate facts are the input of regulative norms R.
O is the output of intermediate facts I together with regulative norms R. If we write
I(C, A) for the intermediate facts derived from the facts A using constitutive norms C,
and O(R, I) for the obligations derived from the intermediate facts I using the reg-
ulative norms R, then we can represent their simple-minded combination method as

o*(R,C,A) =O(R,I(C,A)).
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Fig. 1. Lindahl & Odelstad’s combination Fig. 2. Reusable input/output logic

Second, how to relate obligations explicitly to their intermediate facts, such that
these can be used for explanation tasks in norm change, interpretation, and defeasible
argumentation? For example, assume that a piece of paper counts as a contract, repre-
sented by the constitutive norm (paper, contract), and that the contract obliges us to
pay money, represented by the regulative norm (contract, pay). From these two norms
we want to derive the intermediate fact contract from the fact paper, and the obligation
Paycontract- Which means we are obliged to pay because there is a contract. For ex-
ample, in argumentation, we can present a rebutting argument there is no obligation to
pay, or an undercutting argument that there is no contract. As another example, consider
the well known story of ti-td discussed by Ross [23]. Suppose (eat, ti-tii) represents
“If a person has eaten the chief’s food, then she is ti-t0”, and (td-td, purification) rep-
resents “If a person is tl-t{i, then she is obligatory to be subjected to a ceremony of
purification.” Given the fact eat, from these two norms we can derive the institutional
fact of #i-tii and the obligation purificationg;_,;, which means the person should be
subjected to a ceremony of purification because she is ti-ti. Likewise, an obligation
congratulate .p, o cfmate S2yS that you have to congratulate your opponent because you
are checkmate in chess, and the obligation takecarefamily,, ,.io4 Says that you have to



take care of your family because you are married. Ross argues that similar examples can
be found everywhere in the law. Taxation law, for instance, provides an abundance of
examples: it usually stipulates who is to count as a taxable subject, and it also provides
numerous examples of mandatory norms predicated on the basis of these classifications
in the form of tax liabilities.

Third, how to introduce the assumption that brute facts can be used to detach obli-
gations from regulative norms too? Tosatto et al. [26] discuss the difference between
o*(R,C,A) = O(R,I(C,A)) and o(R,C,A) = O(R,Au I(C,A)). For example,
given R = {(a,z),(p,y)}, C = {(b,p)} and A = {a, b}, we have ©*(R,C, A) = {y}
because I(C,A) = {p} and O(R,{p}) = {y}, and 6(R,C,A) = {z,y} because
AuI(C,A) ={a,b,p} and O(R,{a,b,p}) = {z,y}.

Fourth, how to ensure that the combined system has the same properties as the
individual systems? For example, Parent and van der Torre [21] argue for a new form
of deontic detachment, called aggregative deontic detachment. The corresponding rule
for aggregative deontic detachment is called aggregative cumulative transitivity (ACT):

e O(R,a) ye O(R,anz)
zAye O(R,a)

In this paper we use aggregative input/output logic to represent constitutive and regula-
tive norms. The two combinations mentioned by Tosatto et al. [26] are therefore repre-
sented by O(R, O(C, A)) and O(R, Au O(C, A)), where the operator O is defined
by Parent and van der Torre [21]. We show in this paper that even though aggregative
input/output logic satisfies ACT, both OQ(R,O(C, A)) and O(R,A v O(C, A)) do
not. We therefore define a third combination of constitutive and regulative norms by
forcing O(R, Au O(C, A)) to satisfy ACT. We call these three combinations simple-
minded, throughput and reusable throughput combination respectively. For each of the
three combinations, we further distinguish an abstract combination, where the output
of the combination is a set of obligations, and a detailed combination, where the output
of the combination is a set of obligations together with institutional facts.

Inspired by the input/output terminology, we use the following notation. We use
©1, ©F and ©3 for the semantics for the simple-minded, throughput and reusable
throughput abstract combination respectively. The corresponding derivation system are
represented by [, b}r and @g. For the detailed combinations, we use ®;, @7 and
@®3 for semantics and [, DI and D; for derivation system.

The layout of this paper is as follows. We survey aggregative input/output logic in
Section 2. Then we introduce simple-minded, throughput and reusable combinations
in Section 3 to 5 respectively. In Section 6 and 7 we discuss related work and future
research.

(ACT)

2 Aggregative input/output logic

Parent and van der Torre [20, 21] introduce aggregative input/output logic, based on the
following ideas. On the one hand, deontic detachment (DD) or cumulative transitivity
(CT) is fully in line with the tradition in deontic logic. For instance, the Danielsson-
Hansson-Lewis semantics [5, 11, 14] for conditional obligation validates such a law. On



the other hand, they also observe that potential counterexamples to DD may be found
in the literature. Parent and van der Torre illustrate this with the following example, due
to Broome [4, §7.4]:

You ought to exercise hard everyday
If you exercise hard everyday, you ought to eat heartily

?7* You ought to eat heartily
Intuitively, the obligation to eat heartily no longer holds if you take no exercise.

Like the others, Parent and van der Torre claim that this counterexample suggests an
alternative (they call it “aggregative”) form of detachment, which keeps track of what
has been detached. They therefore reject the CT rule, and they accept the weaker ACT
rule. As a consequence, and following an established tradition in the literature [7, 27,
25], weakening the output is no longer accepted either. In Parent and van der Torre [21],
ACT is motivated as follows: “the counterexample usually given to CT in the literature
no longer work when ACT is used in place of CT. This is because they all rely on the
intuition that the obligation y ceases to hold when the obligation of (a,x) is violated”.
Essentially the same argument is reproduced here by the example above. For another
example consider the following:

Example 1. Consider the following situation:

— (order, deliver) When you receive a purchase order from a customer, you have to
deliver the good to the customer.

— (order A deliver, pay) If a customer sends a purchase order and the good are de-
livered to the customers, then the customer has the obligation to pay.

— order A —deliver The goods are ordered but not delivered.

Given the above situation, applying CT we derive (order,pay). Then using factual
detachment, which is a basic mechanism of input/output logic, we detach pay as our
obligation. This conclusion is problematic, because intuitively we do not have to pay if
the good is not delivered. On the contrary, applying ACT we can derive the argument
(order, deliver A pay) but not (order, pay). The problematic conclusion has disap-
peared.

Let P = {po,p1,...} be a set of propositional letters and L be the propositional
language built upon IP. We write ¢ —+ 1) for logical equivalence in the logic L. Let R
be a set of ordered pairs of formulas of L. A pair (a,x) € R, call it a regulative norm,
is read as “given q, it ought to be 2”. Let A ¢ L, R(A) = {z € L|(a,x) € R,a € A}
be set theoretically understood as the image of A under function R. The semantics of
aggregative input/output logic is defined as following:

Definition 1 (Aggregative input/output logic [21]). For every R ¢ L x L, A ¢ L,
x € O(R,A) iff there is finite R’ ¢ R with R'(A) # @ such that YB = Cn(B), if
AU R/'(B) c Bthenx -+ A\R'(B).

The above definition is partially visualized by Figure 2. In the definition there is
a qualification over a logically closed set B, which represents the input of R. B is
required to extend A U R'(B) because the left arrow is labeled by A and there is influx
from the right arrow (representing R’(B)) to the left arrow.



At a first glance it seems that such a reusable approach conflates the distinction be-
tween “p is the case” and “p is obligatory.” This is true in the sense that both facts and
detached obligations are used as input to detach new obligations. Of course “p is the
case” and “p is obligatory” are semantically different, but we believe such difference is
not a sufficient reason to reject aggregative deontic detachment. For defense of aggrega-
tive deontic detachment the readers are suggested to consult the companying paper of
Parent and van der Torre [21].

The following example illustrates aggregative deontic detachment.

Example 2. Let regulative norms be R = {(a,z),(a A z,y)} and input A = {a}. We
have O(R, A) = {x, x A y,...}. The table below illustrates how to calculate O(R, A),
where B* is the smallest set of formulas such that we have B* = Cn(B*) and moreover
AUR'(B*) c B*. For R = R’ we can then derive the obligation for A y, but not an
obligation for y, illustrating that ACT holds in aggregative input/output logic, but CT
does not.

[A] R ] B* [R(B") [NR'(B") |
{a}{(a, )} Cn({a,z}) [{z} {z,...}
{a}| R [Cn({a,z,y}){z,y} Hzry,...}

The proof system contains three rules: strengthening of the antecedent (SI), output
equivalence (OEQ) and aggregative cumulative transitivity (ACT).

Definition 2 ((Proof system of aggregative input/output logic [21]). Let D(R) be
the smallest set of arguments such that R ¢ D(R) and D(R) is closed under the
following rules:

— SI: from (a,x) and b + a to (b, x)
- OEQ: from (a,x) and x -+ y to (a,y)
— ACT: from (a,z) and (a A xz,y) to (a,z A y).

The rule AND is derivable in aggregative input/output logic.
— AND: from (a, z) and (a,y) to (a,x Ay)

Parent and van der Torre define x € D(R, A) iff there exist a1, . .., a, € A such that
(a1 A...Aap,x) € D(R). The following completeness result is proved [21].

Theorem 1 (Completeness of aggregative input/output logic [21]). Given an arbi-
trary normative system R and a set A of formulas, D(R, A) = O(N, A).

In this paper we use a variant of aggregative input/output logic: we delete the restric-
tion of R'(A) # @ in Definition 1. Correspondingly, we require (T, T) to be included in
the derivation system to ensure the soundness and completeness result.

Definition 3 (Variant of aggregative input/output logic). For every R< LxL, Ac L,
x € O(R, A) iff there is finite R' € R such that VB = Cn(B), if Au R'(B) ¢ B then
x - AR'(B). [>(R) is the smallest set of arguments such that {(T,T)}UR ¢ [>(R)
and [>(R) is closed under the rules SI, OEQ and ACT.

Soundness and completeness of O and [> follows the same lines as the soundness
and completeness proofs of O and D.



3 Simple-minded combination

We use O not only for regulative norms, but also for constitutive norms. However, as
constitutive norms cannot be violated, the issue raised by Parent and van der Torre does
not occur for constitutive norms. In other words, we could have taken an input/output
logic like reusable output or outs as well. The reason we choose to use O is unifor-
mity, and in the detailed combination the derived obligations are more informative in
the sense that the subscript contains a// the institutional facts needed to derive the obli-
gation.

The idea of simple-minded combination is illustrated by Figure 3. There is a set of
constitutive norms C' € Lx L and a set of regulative norms R € Lx L. The input A is a set
of formulas representing facts. I = O(C, A) is the output produced by the semantics of
aggregative input/output logic given C' and A. I is understood as the intermediate facts
and used as the input to regulative norms R to generate obligations O = O(R, I).

We use aggregative input/output logic as our tool to analyze both constitutive and
regulative norms. Since aggregative input/output logic is reusable in the sense its out-
put can be reused as input, we represent simple-minded combination by Figure 3 with
arrows representing reusability.

RN

Fig. 3. Simple-minded combination

3.1 Simple-minded abstract combination

Simple-minded abstract combination can be built straightforwardly by a composition
of two aggregative input/output logics.

Definition 4 (Semantics of simple-minded abstract combination). Let C, R be two
sets of constitutive and regulative norms respectively, the semantics of simple-minded
abstract combination is:

©1(C, R, A) = O(R,O(C, A)).

Example 3. Let A = {eat}, C = {(eat, ti-tii)}, R = {(ti-td, purification), (eat, sorry)}.
Here (eat, sorry) means “if a person has eaten the chief’s food, then she should say
sorry.” Then we have O(C, A) = {#i-ti,... }, ©,(C, R, A) = {purification,. .. }. Note
we do not have sorry € ©,(C, R, A) because ear ¢ O(C, A).

The proof system of simple-minded abstract combination is base on the derivation
system [> for constitutive and regulative norms, with an additional composition.

Definition 5 (Derivation system of simple-minded abstract combination). Let C, R
be two sets of constitutive and regulative norms respectively, the proof system of simple-
minded abstract combination is defined as follows:



>, (C,R) = {(a,x) | there is p € L such that (a,p) € [>(C) and (p,z) € [>(R)}

We call the rule to derive (a,x) € > (C,R) from (a,p) € [>(C) and (p,z) € [>(R)
abstract constitutive regulative transitivity (ACRT).

Example 4. From C = {(a, ), (arz,y)}, R = {(y, z) } we can derive (a, 2) € >, (C, R)
as following:

(a,2)eC (arm,y)eC (y,2) eR
(a,zny) e >>(C) (xry,z) e D>(R)
(a,z) € [@1(0,]%)

Like in the proof theory of aggregative input/output logic, we let x € (C, R, A)
iff there exist aq,...,a, € A such that (a; A ... Aap,x) € (C,R). The semantics
and proof theory of simple-minded abstract combination are connected by the following
completeness result:

(ACT) (SI)

(DCRT)

Theorem 2 (Completeness of simple-minded abstract combination). Ler C, R be
two sets of constitutive and regulative norms respectively, and a a formula, we have

T € @l(cvRaA) lffl'e ©1(07R5A)

The reader may be surprised about our choice of calling [>, a proof system, whereas
it has a semantical flavor, in the sense that it is defined by the composition of binary
relations—which is a set-theoretic and not a syntactic operation. Consequently, the co-
incidence is not a classical completeness result in the sense of connecting a calculus
with a set-theoretic construction. However, [, still is a kind of very simple proof sys-
tem, building on derivations in the underlying logic [>, and it is in spirit similar to
the other proof systems used in the input/output logic framework and in this paper. We
therefore prefer to call Theorem 2 an completeness rather than a representation result.

The following proposition shows some basic properties of simple-minded abstract
combination.

Proposition 1. [, (C, R) validates SI, OEQ and AND, but not ACT.

3.2 Simple-minded detailed combination

In the semantics of aggregative input/output logic (Definition 2), we pick a set R’ of the
norms and qualify over a set of formulas B, which is closed under logical consequence.
In the semantics of simple-minded detailed combination, we pick two sets C’ and R’,
and we qualify over two sets of formulas By, B, which are both closed under logical
consequence. The set B is the input for C’. As visualized in Figure 3, we require it to
extend AuC’( By ) because there is an arrow labelled A inject to C’ and there is another
arrow, the arrow from I to A, also inject to C’. Here note that [ is C’(By). Similarly,
the set By is the input for R'. We require it to contain C’(By) U R'(Bsz) because there
is an arrow labeled I inject to R and there is another arrow, the arrow from O to I, also
inject to R. Here note that O is R'(Bs).



For the detailed combinations, we want to produce not only an obligation, but an
obligation together with institutional facts. Formally, the output for the detailed com-
bination is of the form x,, where z,p € L. As far as we know, such mixed output
has not been defined in the input/output logic literature yet. Technically, the seman-
tics of simple-minded detailed combination is defined as follows, in a flavor similar to
aggregative input/output logic:

Definition 6 (Semantics of simple-minded detailed combination). Let C, R be two
sets of constitutive and regulative norms respectively, we define x, € ®(C,R,A)
iff there is finite C' ¢ C,R' ¢ R such that for all By = Cn(B1), By = Cn(Bs), if
AUC'(B1) € By thenp 4 AN C'(B1), if C'(B1)UR'(B3) C By, then x 4+ A\ R'(B2).

Definition 7 (Proof theory of simple-minded detailed combination). Let C, R be
two sets of constitutive and regulative norms respectively, the proof theory of simple-
minded detailed combination is:

& (C,R) ={(a,x}) | there is p € L such that (a,p) € [>(C) and (p,z) € [>(R)}

We call the rule deriving (a,x,) € @ (C, R) from (a,p) € [>(C) and (p,x) € [>(R)
detailed constitutive regulative transitivity (DCRT).

Example 5 illustrates that the subscript contains all the institutional facts needed to
derive the obligation.

Example 5 (continued). From C = {(a,x),(a A z,y)}, R = {(y,2)} we can derive
(@, zzny) € B, (C, R) as follows:
(a,z)eC (anz,y)eC (y,2) e R
(a,zny) e >(C) (zry,z) e D(R)
(avzz/\y) € D1(Ca R)

In other words, to derive the obligation for z we need the institutional facts = and y.

(ACT)

(SI)
(DCRT)

With the proof theory and semantics as defined, we have the following completeness
result.

Theorem 3 (Completeness of simple-minded detailed combination). Let C, R be
two sets of constitutive and regulative norms respectively,

xp € [>1(C7 R7A) l.ffLUp € @1(C,R,A)

The above proof theory relies heavily on the proof theory of aggregative input/output
logic. Moreover, it works separately on constitutive and regulative norms and combines
them together at the last step by the DCRT rule. We alternatively define an equivalent
proof theory more directly on expressions of the form (a, x,).

Definition 8 (Alternative proof theory of simple-minded detailed combination).
Given C, R, let b’l (C, R) be the smallest set of arguments such that (T,T+) € b’l (C,R),
{(a,Tp) | (a,p) eC} b’l(C, R) and [>'1(C, R) is closed under the following rules:

— SI: strengthening of the input: from (a,x,) to (b, z,) whenever b+ a



— IOEQ: intermediate and output equivalence: from (a,x,) to (a,yq) if p 4+ q and
T -y

— ACTI: aggregative cumulative transitivity for the intermediate: from (a,x,) and
(anp,zq) to (a,2pnq)

— ACTO: aggregative cumulative transitivity for output: from (a,x,) and (a A x,yp)
10 (a,xz Ayp),

and the following indexed constitutive/regulative transitivity (ICRT) rule:
- if(a,Tp) € @’1(07 R) and (p,z) € >(R) then (a,x,) € b’l(C, R).

Example 6. (continued) Given C' = {(a,z),(a A z,y)}, R = {(y, 2)}, we first derive
(a,T;) and (a Az, T,), then we derive (a, 2,y ) € B> (C, R) as follows:

(a,7.)e B (C,R) (anz,T,)e B (C,R)
(a,Tzny)e B (C.R)

(a) 2zny) € @’1(0, R)

(y,2)eR
(ACTD e SR (SI)

(ICRT)

The proof theory b’l(C7 R) may look unusual at first glance, but it resembles the
proof theory of aggregative input/output logic. They both contain rules like strength-
ening of the input, output equivalence and aggregative cumulative transitivity. The two
derivation systems > (C, R) and [ (C, R) are equivalent.

Proposition 2. Let C, R be two sets of constitutive and regulative norms respectively,

I>1(C7 R) = l>,1(05 R)

4 Throughput combination

In this section we strengthen simple-minded combination to throughput combination
such that the input A can directly be used by regulative norms R, see Figure 4.

A=l

—| C
[

Fig. 4. Throughput combination




4.1 Throughput abstract combination

Throughput abstract combination is visualized by Figure 4, where both A and the output
O(C, A) are part of the input of O(R, I).

Definition 9 (Semantics of throughput abstract combination). Let C, R be two sets
of constitutive and regulative norms respectively, @1 (C, R, A) = O(R, AuQ(C, A)).

The following is the proof system, in which the abstract constitutive regulative tran-
sitivity rule of simple minded combination is replaced by abstract constitutive regulative
cumulative transitivity.

Definition 10 (Proof system of throughput abstract combination). Let C, R be two
sets of constitutive and regulative norms respectively, the proof system of throughput
abstract combination is:

B, (C, R) = {(a,x) | there is p € L such that (a,p) € [>(C) and (a Ap,z) € [>(R)}
We call the rule to derive (a,x) € >, (C, R) from (a,p) € >(C), (a Ap,x) € >(R)

abstract constitutive regulative cumulative transitivity (ACRCT).

Example 7. Given C' = {(a,z),(a Az,y)} and R = {(a A x A y,2)}, we can derive
(a,2) € B>, (C, R) as following:
(a,2)eC (anz,y)eC
(a,z Ay) e >(C) (anzArny,z)eR
(a,2) € Py (C, R)
Here note that (a,z) ¢ >, (C, R) because (z Ay, z) ¢ [>(R). It can be further proved
that >, (C, R) € b, (C, R)

(ACT)

(ACRT)

The semantics and proof theory of throughput abstract combination are connected
by the following completeness result.

Theorem 4 (Completeness of throughput abstract combination). Ler C, R be two
sets of constitutive and regulative norms respectively, we have x € @7(C,R,a) iff

(a,z) € bI(C, R).

4.2 Throughput detailed combination

In parallel to the simple-minded detailed combination, we introduce the semantics and
proof theory of throughput detailed combination. The semantics of simple-minded de-
tailed combination is similar to the semantics of aggregative input/output logic.

Definition 11 (Semantics of throughput detailed combination). Let C, R be two sets
of constitutive and regulative norms respectively, A ¢ L, we define x,, ¢ ®1(C, R, A) iff
there is finite C' ¢ C, R' € R such that for all By = Cn(By), By = Cn(B>), if we have
AuC'(By) € By, then p -+ AN C'(By), if AuC’(B1)UR'(B2) € Bs, then we also have
x - AR'(B>).



Like the semantics of simple-minded detailed combination, here we pick two sets C’
and R/, and we qualify over two sets of formulas By, Bo, which are both closed under
logical consequence. The only difference is that for By, here we require it to extend A,
while in simple-minded detailed combination we do not have such a requirement. The
reason of this difference can be visualized by comparing Figure 3 and 4. In Figure 4
there is an arrow from A to I, while in Figure 3 there is not.

Definition 12 (Proof system of throughput detailed combination). Let C, R be two
sets of constitutive and regulative norms respectively, the proof system of throughput
detailed combination is:

B>, (C, R) = {(a,x,) | there is p € L such that (a,p) € [>(C) and (a Ap,z) € [>(R)}.
We call the rule to derive (a,x,) € B (C, R) from (a,p) € [>(C), (anp,z) € [>(R)
detailed constitutive regulative cumulative transitivity (DCRCT).

The proof system defined by Definition 12 and semantics are sound and complete.

Theorem 5 (Completeness of throughput detailed combination). For all set of con-
stitutive norms C, and regulative norms R, (a,x,) € B> (C, R) iffz, € ®7(C, R, a).

Like the proof system [, b{ heavily relies on the proof system of aggregative in-
put/output logic. A more independent proof system is defined as follows:

Definition 13 (Alternative proof system of throughput detailed combination). Ler
C, R be two sets of constitutive and regulative norms respectively, Let b; (C,R) be
the smallest set such that (T,7+) € B> (C,R), {(a,T,) | (a,p) € C} € & (C,R),

{(a,z7) | (a,z) € R} ¢ bI’(C, R) and bI’(C, R) is closed under the rules SI,
IOEQ, ACTI, ACTO and the following rule:

- if(a,Tp) € @;’(C, R) and (a Ap,x) € [>(R) then (a,x,) € b{l(C, R)

One difference between @I’(C, R) and > (C, R) is: for @II(C, R) we require it to
extend {(a,z1) | (a,x) € R}. This feature reveals that regulative arguments can be

derived directly in throughput combination. The equivalence of b{ and @;, is stated
in the following proposition.

Proposition 3. Forall C,Rc Lx L, (a,z,) € B (C, R) iff (a,,) € @;,(C’, R).

S Throughput reusable combination

Now we turn to throughput reusable combinations. As illustrated by the arrow from
O to A in Figure 5, throughput reusable combination is the extension of throughput
combination which allowing the output of regulative norms to be reused as input for
constitutive norms. In this case the input of C' have three resource: the arrow A, the
arrow from [ to A, and the arrow from O to A. The input of R have exactly the same
resource. Therefore we can change Figure 5 to Figure 6 such that C' and R have the
same input.
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5.1 Throughput reusable abstract combination

The fact that throughput reusable combination is the extension of throughput combi-
nation which allows the reusability of output from R suggests that the former can
be defined as the extension of latter validating the ACT rule. While the proof the-
ory of throughput reusable abstract combination is a straightforward extension of its
non-reusable companion, its semantics looks closer to the semantics of aggregative in-
put/output logic.

Definition 14 (Semantics of throughput reusable abstract combination). Let C, R
be two sets of constitutive and regulative norms respectively, and A € L, we define
z € ©3(C, R, A) iff there exist finite C' < C, R’ € R such that for all B = Cn(B) :
if AuC’(B)UR'(B) ¢ B thenx 4+ \ R'(B).

Definition 15 (Proof system of throughput reusable abstract combination). Let C, R
be two sets of constitutive and regulative norms respectively, the proof system of through-
put reusable abstract combination is defined as follows:

B (C,R) is the smallest set such that B> (C,R) € >3 (C,R) and p5(C,R) is
closed under the ACT rule.

The above semantics reflects the ideas illustrated by Figure 6. We qualify over a set B,
which is the input for C' and R. Such B is an extension of A, I = C'(B) and O = R(B).
We therefore require A u C'(B) u R'(B) ¢ B. The semantics and proof theory of
throughput reusable abstract combination are connected by the following completeness
result:

Theorem 6 (Completeness of throughput reusable abstract combination). Let C, R
be two sets of constitutive and regulative norms respectively, we have x € @3 (C, R, a)

iff (a,7) € b5 (C, R).

5.2 Throughput reusable detailed combination

The semantics of throughput reusable detailed combination is an extension of its ab-
stract companion.

Definition 16 (Semantics of throughput reusable detailed combination). Let C, R
be two sets of constitutive and regulative norms respectively, and A ¢ L, we define
zp € @3 (C, R, A) iff there exist finite C' < C, R’ € R such that for all B = Cn(B),
if AuC'(B)UR'(B) c Bthenp -+ ANC'(B) and x 4+ A R'(B).



The following variant from an example of Makinson [16] illustrates that the combi-
nations studied in this paper can also be used in other combination problems, not only
for combining constitutive and regulative norms.

Example 8. Let C = {( A4, size),(125x15, area)}, R = {(size, 25x15), (area, ref10)}.

CLINNT3

Here “A4” means “the paper is an A4 paper”, “size” means “the paper is of standard
size”, “t25x15” means “the text area is 25 by 15 cm”, “area” means “the paper is of
standard text area”, “ref10” means “the font size for the reference is 10 points.” In this
setting we have ©3 (C, R, {A4}) = {T,125x15, 125x15 A ref10, .. .}. For detailed com-
bination we have @3 (C, R, {A4}) = {T+, 125x15,4, 2515 A 1efl10g,0 areas - - -}-
The calculation can be illustrated by the following table, in which the column of A rep-
resents the input, C’ and R’ represent the subset of C' and R, B* represents the smallest

set such that that B* = Cn(B*) and AuC'(B*)u R'(B*) < B*.

A o [ 7 F CE) R
Al o o Cn({A4}) Z o
A4[{(A4, size)}|{(size, 25x15)} |Cn({A4, size, 25x15}) |{size} |{t25x15}
A4 C R Cn({A4,size,25x15, area,|{size, [{t25x15,
ref10}) area } [refl0}

In the second row of the table, C'(B*) = R'(B*) = @. This explains the reason of
T € ©3(C,R,{A4}) and T € ®%(C, R,{A4}). The third row explains the reason
for 125x15 € @3 (C, R, {A4}), 125x15;,. € @3 (C, R, {A4}), and the fourth row for
t25%x15 A refl0.

Definition 17 introduces the proof system of throughput reusable detailed combi-

nation D; It is an extension of DI,, but its formation is simpler in the sense we add
one rule called ACTIO but delete both ACTI and ACTO. Both ACTI and ACTO are
derivable in b;.

Definition 17 (Proof system of reusable detailed combination). Le? @;(C, R) be
the smallest set such that (T,T+) € B> (C, R), {(a,21) | (a,z) € R} ¢ B> (C,R),
{(a,7,) | (a,p) € C} € 5 (C, R) and ®5(C, R) is closed under the rules SI, IOEQ,
the following rule ACTIO

— ACTIO: aggregative cumulative transitivity for the intermediate and output: from
(a,zp) and (a Ap AT, Yq) 10 (A, T A Yprg),

and the following rule
- if(a,Tp) € bg(C, R) and (a Ap,x) € [>(R) then (a,x,) € b;(C, R).

Example 9 (continued). From C = {(A4, size), (125x 13, area)}, R = {(size, t25x15),
(area, ref10)} we can derive expressions (A4,Tgj,0), (25x15,Tarea), (size, 25x15+)
and (area, ref10; ). The following is the derivation:

) (size, t25x15+)
s1ze (A4AT/\SiZe, t25x 15-|- )
(A4, 25xI5n,, . )

(A4, 125 x 15

(A4,T

(8D

(ACTIO)

(IOEQ)
size )



Theorem 7 (Completeness of reusable detailed combination). Given an arbitrary
constitutive normative system C, regulative normative system R and a set A of formu-

las, (a,2,) € B3 (C, R) iff v, € ®%(C, R, a).

6 Related work

Grossi and Jones [9] track the distinction between constitutive norms and regulative
norms to at least Rawls [22]. Searle [24] uses ‘X counts as Y in context C”” as a canon-
ical presentation of constitutive norms. Jones and Sergot [12] formalize the context as
an institution. Grossi et al. [10] formalize the context as a set norms.

Grossi and Jones [9] present a classification of approaches to formalize constitutive
norms, and we refer to their chapter for further background on the logic of constitutive
norms. On the one hand the choice of logic of constitutive norms is orthogonal to the
choice of combination method. On the other hand, we adopt aggregative input/output
logic as our logic for constitutive norms, which is different from all the approaches
summarized by Grossi and Jones [9].

Modalities can be combined using possible world semantics. Boutilier [3] intro-
duces a model M = (W, >1,>5,V) with >;,>5 total pre-orders over W, reflecting
normality and preference respectively. Each pre-order defines a classical Danielsson-
Hansson-Lewis dyadic operator O¢. Roughly, Boutilier defines a modality O'?(B|A)
as the best of the most normal A worlds satisfy B:

_ M,we OI(B| A) iff opts, (|A]) < | B|, fori=1,2
- M,we O(B| A) iff opts, (opts, (| A])) < | B

Here opts, (S) = {w € S|Vu € S,w >; u}, forevery S € W. According to the semantics,
the combined modality does not satisfy the combination properties discussed in this

paper:
Observation 1 {O'(q|p), O*(r | q)} # O (r|p)

Lang and van der Torre [13] define O'2(B | A) in the same models by: the most
normal A A B is preferred to the most normal A A - B, and they compare their definition
with Boutilier’s. Observation 1 also holds for Lang and van der Torre’s combination. A
further comparison between these modal logic approaches and our approach is left for
further research.

7 Future research

We use aggregative input/output logic as our basis. Apart from the problem of pragmatic
oddity and the irrelevant obligation problem mentioned in Parent and van der Torre [21],
how to deal with the case when the output of constitutive norms is inconsistent is worthy
of future research. The throughput reusable combination is formed by adding ACT to
throughput combination. We can form a weaker version of reusable combination by
adding ACT to simple-minded combination. The task is to define a semantics and prove
the completeness result.

Makinson and van der Torre [17] developed input/output logic not only for obliga-
tions:



“In a range of contexts, one comes across processes resembling inference, but
where input propositions are not in general included among outputs, and the
operation is not in any way reversible. Examples arise in contexts of conditional
obligations, goals, ideals, preferences, actions, and beliefs. Our purpose is to
develop a theory of such input/output operations.”

Therefore, in future research we want to investigate whether our framework can be used
also for combining other modalities. Consider the well known problem of combining
beliefs and desires: you may desire to go to the dentist, you may believe that going to
the dentist means that you will have pain, but you do not desire to have pain. We can
model this in our framework, if C' stands for beliefs (or knowledge) and R are desires (or
obligations), then we have C' = (dentist,pain) and R = (T,dentist). In all the three
abstract combinations we have dentist € O.s(C, R, @) but not pain € O.s(C, R, ).
It has been argued also that side effects are important, and that we need to avoid only
unwanted side effects [8].

Input/output logic can be translated into modal logic. Makinson and ver der Torre
have done such a translation in their original paper [17]. In our case, we can translate
(a,p) € >(C) to Ic(a) = Oc(p), (p,xz) € >(R) to I;(p) - Or(x). Here L, I,
O. and O, are all modal operators. Moreover, we can translate (a,z) € p(C, R) to
I.(a) > O,(x) and (a,z,) € B(C,R)toI.(a) > O.(p) A O,(z). How to give sound
and complete representations of the logics and combination methods discussed in this
paper using modal logic are problems to be solved in the future. We generalized in-
put/output logic by considering two sets of norms. It can be further extended to LIONS,
as foreseen by Makinson and van der Torre [19]. Moreover, to refer to the special topic
of DEON14, it may be a first step towards a Kratzer style semantics of natural language,
because Kratzer’s semantics can combine various kinds of ordering bases too.

8 Summary

To reason with constitutive and regulative norms, one has to choose a logic for the
constitutive norms, a logic for the regulative norms, and a semantics to combine these
two logics. In this paper we consider the question which semantics to choose for com-
bining constitutive and regulative norms, a topic which has not raised much attention
thus far, without committing ourselves to particular logics for constitutive or regulative
norms. To make our analysis general, we use the ‘minimal’ logic introduced by Parent
and van der Torre. Nevertheless, it contains two assumptions. First, strengthening of
the input seems to reflect that rules do not have exceptions, whereas both constitutive
and regulative norms encountered in practice often do have such exceptions. We do not
consider this a limitation, because if we add priorities or a normality relation to reflect
prima facie norms, exactly the same analysis can be given. Second, Parent and van der
Torre’s logic satisfies aggregative deontic detachment. This is only a weak notion of
deontic detachment, and some kind of deontic detachment is needed in the logics to be
able to define the reusability semantics. We distinguished three semantics to combine
constitutive and regulative norms:

The simple-minded combination is the least committed, and thus the safest one to
use. It clearly distinguishes the input, intermediate facts and output obligations,



there is no possible source for confusion. It may be used, for example, when the
input may not be true at the intermediate stage. For example, in legal interpretation
the input may contains a bicycle which is also a vehicle, but the bicycle may not
count as a vehicle in the legal sense. Using the simple-minded semantics, the inter-
mediate facts may not contain a fact that the bicycle is a vehicle, whereas the input
does. The proof system shows that the extension of the semantic is minimal, in the
sense that it contains only a transitivity proof rule for the combination (Definition
4 and Theorem 2).

The throughput combination includes the input among the intermediate facts. The
proof system shows that the difference with the simple-minded semantics is small,
we just have to replace the transitivity axiom by a cumulative transitivity rule (The-
orem 4). However, it means that for example in the bicycle case, we need to intro-
duce another concept in the intermediate facts to represent that the bicycle does not
count as a vehicle in the legal sense. In many common examples, it seems that the
throughput semantics is preferred to the simple-minded semantics.

The throughput reusable combination considers as the intermediate state the facts
closed under both the constitutive and regulative norms. This seems very strong,
but the proof system shows that this corresponds precisely to the aggregative cu-
mulative transitivity rule for the combined system (Theorem 6). So if this rule is
desired, then this semantics has to be chosen. For example, if we start from a sys-
tem satisfying ACT, and then refining it with systems for constitutive and regulative
norms, then we need to refine it in this way.

In this paper we also introduce new detailed logics for combining constitutive and
regulative norms, deriving expressions x,, for x is obligatory because of the intermedi-
ate concepts p, or simply x meaning x is obligatory without referring to intermediate
concept. We have extended each of the three above systems with a proof system for
these refined expressions.
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