
STIT based deontic logics for the miners puzzle

Xin Sun1, Zohreh Baniasadi2

1,2Faculty of Science, Technology and Communication, University of Luxembourg,
1xin.sun@uni.lu, 2zohreh.baniasadi.001@student.uni.lu

Abstract. In this paper we first develop two new STIT based deontic logics ca-
pable of solving the miners puzzle. The key idea is to use pessimistic lifting to lift
the preference over worlds into the preference over sets of worlds. We also discuss
a more general version of the miners puzzle in which plausibility is involved. In
order to deal with the more general puzzle we add a modal operator representing
plausibility to our logic. We present a sound and complete axiomatization.

1 Introduction

Research on deontic logic is divided into two main groups: the ought-to-be group and
the ought-to-do group. The ought-to-do group originates from von Wright’s pioneering
paper [26]. Dynamic deontic logic [18, 25], deontic action logic [21, 5, 23], and STIT-
based deontic logic [10, 12, 22] belong to the “ought-to-do” family.

In recent years, the miners puzzle [11] quickly grabs the attention of lots of deontic
logicians [27, 6, 3, 4, 8]. The miners puzzle goes like this:

Ten miners are trapped either in shaft A or in shaft B, but we do not know
which one. Water threatens to flood the shafts. We only have enough sandbags
to block one shaft but not both. If one shaft is blocked, all of the water will go
into the other shaft, killing every miner if they are inside. If we block neither
shaft, both will be partially flooded, killing one miner.

Lacking any information about the miners’ exact whereabouts, it seems acceptable to
say that:

(1) We ought to block neither shaft.

However, we also accept that

(2) If the miners are in shaft A, we ought to block shaft A.

(3) If the miners are in shaft B, we ought to block shaft B.

But we also know that

(4) Either the miners are in shaft A or they are in shaft B.

And (2)-(4) seem to entail

(5) Either we ought to block shaft A or we ought to block shaft B.



Which contradicts to (1).
Various solution to this puzzle has been proposed [27, 6, 3, 4, 8]. Willer [27] claims

that any adequate semantics of dyadic deontic modality must offer a solution to the
miners puzzle.

The existing STIT-based deontic logic [10, 12, 22] does not offer a satisfying solu-
tion to this puzzle: although the deduction from (2)-(4) to (5) is blocked by the dyadic
deontic operator defined in Sun [22], but both Horty [10] and Sun [22] are unable to
predict (1). We discuss this in detail in Section 2.2.

In this paper we first develop two new STIT-based deontic logics, referring them as
pessimistic utilitarian deontic logic (PUDL1 and PUDL2), which are capable of block-
ing the deduction from (2)-(4) to (5) and are able to predict (1)-(4). We further consider
a more general version of the miners puzzle in which the factor of plausibility is in-
volved. Plausibility dose not play a serious role in the original miners puzzle. It seems
the plausibility of miners being in shaft A is equal to the plausibility of miner being in
shaft B. If we are in a new scenario that the miners are more plausibly in shaft A, then
in addition to statements (2) and (3), the following is acceptable:

(6) We ought to block shaft A.

A logic for the miners scenario should both solve the original miners puzzle and give
right predictions in the plausibility involved scenario. In this paper we extend PUDL2

to PUDL+
2 by adding a modal operator representing plausibility. We show that PUDL+

2

gives right predictions in the plausibility involved miners scenario.
The structure of this paper is as following: in Section 2 we review the existing

solutions to the miners puzzle and the existing STIT-based deontic logic. In Section 3
we develop PUDL1 and PUDL2 to solve the original miners puzzle. In Section 4 we
develop PUDP+

2 for the plausibility involved miners scenario. Section 5 is conclusion
and future work.

2 Background

2.1 Solutions to the miners puzzle

Several authors have provided different solutions to the miners puzzle. We summarize
the following approaches:

Kolodny and MacFarlane [11] give a detailed discussion of various escape routes.
Then they conclude that the only possible solution to the puzzle is to invalidate the argu-
ment from (2) to (5). To do this, Kolodny and MacFarlane state we have three choices:
rejecting modus ponens (MP), rejecting disjunction introduction (∨I), rejecting disjunc-
tion elimination (∨E). Among these three Kolodny and MacFarlane further demonstrate
that the only wise choice is to reject MP.

Willer [27] develops a fourth option to invalidate the argument form (2) to (5): fal-
sify the monotonicity. In his solution MP can be preserved (there are very good reasons
to do so) and we are unable to derive the inconsistency.

Cariani et al [3] argue that the traditional Kratzer’s semantics [13] of deontic con-
ditionals is not capable of solving the puzzle. They propose to extend the standard



Kratzer’s account by adding a parameter representing a “decision problem” to solve
the puzzle. Roughly, a decision problem contains a representation of action and a de-
cision rule to select best action. Cariani et al [3] use a partition of all possible worlds
to represent actions, and the decision rule they used to select action is essentially the
same as the MaxiMin principle–the decision theoretic rule that requires agents to eval-
uate actions in terms of their worst conceivable outcome and choose the ‘least bad” one
among them. Such treatment shares some similarity with a special case of our logic to
be in Section 3. In our logic every agent’s actions are also represented by a partition of
all worlds. And we use pessimistic lifting (to be introduced later) to compare actions,
which is the same as MaxiMin.

Carr [4] argues that the proposal of Cariani et al is still problematic. To develop
a satisfying semantics, Carr uses three parameters to define deontic modality: an in-
formational parameter, a value parameter and a decision rule parameter. According to
Carr’s proposal, (1) to (3) are all correct predictions and no contradiction arise within
her framework.

Gabbay et al [8] offers a solution to the miners puzzle using ideas from intuitionistic
logic. In their logic “or” is interpreted in an intuitionistic favour. Then the deduction
from statement (2), (3) and (4) to (5) is blocked.

2.2 STIT-based deontic logic

In STIT-based deontic logic, agents make choices and each choice is represented by
a set of possible worlds. A preference relation over worlds is given as primitive. Such
preference relation is then lifted to preference over sets of worlds. A choice is better than
another iff the representing set of worlds of the first choice is better than the representing
set of worlds of the second. A proposition φ is obligatory (we ought to see to it that φ)
iff it is ensured by every best choice, i.e., it is true in every world of every best choice.

Therefore the interpretation of deontic modality is based on best choices, which can
only be defined on top of preference over sets of worlds. Preference over sets of worlds
is defined by lifting from preference over worlds. There is no standard way of lifting
preference. Lang and van der Torre [14] summarize the following three ways of lifting:

– strong lifting: For two sets of worlds W1 and W2, W1 is strongly better than W2

iff ∀w ∈ W1, ∀v ∈ W2, w is better than v. That is, the worst world in W1 is better
than the best world in W2.

– optimistic lifting: W1 is optimistically better than W2 iff ∃w ∈ W1, ∀v ∈ W2, w
is better than v. That is, the best world in W1 is better than the best world in W2.

– pessimistic lifting: W1 pessimistically better than W2 iff ∀w ∈ W1, ∃v ∈ W2, w
is better than v. That is, the worst world in W1 is better than the worst world in W2.

In Horty [10], Kooi and Tamminga [12] and Sun [22] the strong lifting is adopted.
Applying the strong lifting to the miners scenario, all the three choices block neither,
block A and block B are the best choices. “we ought to block neither” is then not true in
the miners scenario. To understand this more accurately, we now give a formal review
of STIT-based deontic logic of Sun [22]. We call such logic utilitarian deontic logic
(UDL).



The language of the UDL is built from a finite set Agent = {1, . . . , n} of agents
and a countable set Φ = {p, q, r, . . .} of propositional letters. Let p ∈ Φ,G ⊆ Agent.
The UDL language Ludl is defined by the following Backus-Naur Form:

φ ::= p | ¬φ | φ ∧ φ | [G]φ | ©Gφ | ©G(φ/φ)

Intuitively, [G]φ is read as “group G sees to it that φ”.©Gφ is read as “G ought to
see to it that φ”.©G(φ/ψ) is read as “G ought to see to it that φ under the condition
ψ”.

The semantics of UDL is based on utilitarian models, which is a non-temporal frag-
ment of the group STIT model.

Definition 1 (Utilitarian model). A utilitarian model is a tuple (W,Choice,≤, V ),
where W is a nonempty set of possible worlds, Choice is a choice function, and ≤,
representing the preference of the group Agent, is a reflexive and transitive relation
over W . V is a valuation which assigns every propositional letter a set of worlds.

The choice function Choice : 2Agent 7→ 22
W

is built from the individual choice
function IndChoice:Agent 7→ 22

W

. IndChoicemust satisfy the following conditions:

(1) for each i ∈ Agent it holds that IndChoice(i) is a partition of W ;
(2) for Agent = {1, ..., n}, for every x1 ∈ IndChoice(1), . . . , xn ∈ IndChoice(n),

x1 ∩ . . . ∩ xn 6= ∅;

A function s: Agent 7→ 2W is a selection function if for each i ∈ Agent, s(i) ∈
IndChoice(i). Let Selection be the set of all selection functions, for every G ⊆
Agent, if G 6= ∅, then we define Choice(G) = {

⋂
i∈G s(i) : s ∈ Selection}. If

G = ∅, then we define Choice(G) = {W}.

w ≤ v is read as v is at least as good as w. w ≈ v is short for w ≤ v and v ≤ w. Having
defined utilitarian models, we are ready to review preferences over sets of possible
worlds.

Definition 2 (preferences over sets of worlds via strong lifting [22]). Let X,Y ⊆W
be two sets of worlds. X �s Y (Y is at least as good as X) if and only if

(1) for each w ∈ X , for each w′ ∈ Y , w ≤ w′ and
(2) there exists some v ∈ X , some v′ ∈ Y , v ≤ v′.

X ≺s Y (Y is better than X) if and only if X �s Y and Y 6�s X . Here the superscript
s in �s is used to represent strong lifting.

Definition 3 (dominance relation [10]). Let G ⊆ Agent and K, K ′ ∈ Choice(G).
K �sG K ′ iff for all S ∈ Choice(Agent−G), K ∩ S �s K ′ ∩ S.

K �sG K ′ is read as “K ′ weakly dominates K”. From a decision theoretical per-
spective, K �sG K ′ means that no matter how other agents act, the outcome of choos-
ing K ′ is no worse than that of choosing K. K ≺sG K ′ is used as an abbreviation of
K �sG K ′ and K ′ 6�sG K. If K ≺sG K ′, then we say K ′ strongly dominates K.



Definition 4 (restricted choice sets [10]). Let G a groups of agents.

Choice(G/X) = {K : K ∈ Choice(G) and K ∩X 6= ∅}

Intuitively, Choice(G/X) is the collection of those choices of group G that are
consistent with condition X .

Definition 5 (conditional dominance [22]). Let G be a group of agents and X a set of
worlds. Let K, K ′ ∈ Choice(G/X).

K �sG/X K ′ iff for all S ∈ Choice((Agent−G)/(X∩(K∪K ′))),K∩X∩S �s
K ′ ∩X ∩ S.

K �sG/X K ′ is read as “K ′ weakly dominates K under the condition of X”. And
K ≺sG/X K ′, read as “K ′ strongly dominates K under the condition of X”, is used to
express K �sG/X K ′ and K ′ 6�sG/X K.

Definition 6 (Optimal and conditional optimal [10]). Let G be a group of agents,

– OptimalsG = {K ∈ Choice(G) : there is no K ′ ∈ Choice(G) such that K ≺sG
K ′}.

– OptimalsG/X = {K ∈ Choice(G/X) : there’s no K ′ ∈ Choice(G/X) such that
K ≺sG/X K ′}.

In the semantics of UDL, the optimal choices and conditional optimal choices are
used to interpret the deontic operators.

Definition 7 (truth conditions). Let M = (W, choice,≤, V ) be a utilitarian model
and w ∈W .

M,w |= p iff w ∈V(p);
M,w |= ¬φ iff it is not the case that M,w |= φ;
M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ;
M,w |= [G]φ iff M,w′ |= φ for all w′ ∈ W such that there is K ∈

Choice(G), {w,w′} ⊆ K;
M,w |=©Gφ iff K ⊆ ||φ|| for each K ∈ OptimalsG;
M,w |=©G(φ/ψ) iff K ⊆ ||φ|| for each K ∈ OptimalsG/ψ .

Here ‖φ‖ = {w ∈W :M,w |= φ}.

Challenge from the miners puzzle The miners scenario is described formally by
a utilitarian model as Miners = (W,Choice,≤, V ), where W = {w1, . . . , w6},
Choice(G) = {{w1, w2}, {w3, w4}, {w5, w6}}, Choice(Agent −G) = {W}, w3 ≈
w6 ≤ w1 ≈ w2 ≤ w4 ≈ w5, V (in A) = {w1, w3, w5},V (in B) = {w2, w4, w6},
V (block A) = {w5, w6}, V (block B) = {w3, w4},V (block neither) = {w1, w2}. We
visualize the miners scenario by the following figure:
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Figure 2.2: W = {w1, . . . , w6}, w3 ≈ w6 ≤ w1 ≈ w2 ≤ w4 ≈ w5.

GroupG has three choices: block neither, block A and block B. The group of other
agents has one dummy choice: choosingW . According to the semantics based on strong
lifting, all the three choices are optimal. Therefore Miners, w1 6�©G(block neither),
which means UDL fails to solve the miners puzzle.

3 Pessimistic utilitarian deontic logic

We now introduce pessimistic utilitarian deontic logic (PUDL) to solve the miners puz-
zle. We use such name because we adopt pessimistic lifting instead of strong lifting in
PUDL. We develop two logics, call them PUDL1 and PUDL2 respectively. PUDL1 is
obtained from simply replacing the strong lifting in UDL by pessimistic lifting. It turns
out that PUDL1 is sufficient to solve the miner puzzle. But it turns out that PUDL1 is
bothered by other problems in deontic logic. PUDL2 also solves the miners puzzle, and
it is less problematic than PUDL1.

3.1 PUDL1

Informally, according to the pessimistic lifting block neither is the only optimal choice
in the miners scenario. Therefore “we ought to block neither” is true. It can be further
proved that both (2) and (3) are true while the deduction from (2)-(4) to (5) is not valid.
Therefore PUDL1 offers a satisfying solution to the miners paradox. We now start to
explain these arguments formally.

Definition 8 (preferences over sets of worlds via pessimistic lifting). Let X,Y ⊆W
be two sets of worlds. X �p Y if and only if there exists w ∈ X , such that for all
w′ ∈ Y , w ≤ w′. X ≺p Y if and only if X �p Y and Y 6�p X .

Proposition 1. �p is reflexive and transitive.1

The pessimistic version of dominance (�pG), conditional dominance (�pG/X ), opti-
mal (OptimalpG) and conditional optimal (OptimalpG/X ) are obtained by simply chang-
ing ≤s to ≤p in their strong version counterpart. We add©p1

G φ and©p1
G (φ/ψ) to Ludl

to represent “from the pessimistic perspective, G ought to see to it that φ” and “from
the pessimistic perspective, G ought to see to it that φ in the condition ψ” respectively.
The truth condition for©p1

G φ and©p1
G (φ/ψ) are defined as follows:

1 Due to the limitation of length, we present all proofs of propositions and theorems in the full
version.



Definition 9 (truth conditions). Let M be a utilitarian model and w ∈W .
M,w |=©p1

G φ iff K ⊆ ||φ|| for each K ∈ OptimalpG;
M,w |=©p1

G (φ/ψ) iff K ⊆ ||φ|| for each K ∈ OptimalpG/ψ .

Now we return to the miners scenario. According to the pessimistic semantics,
block neither is the only optimal choice. So we can draw the prediction that “we ought
to block neither” i.e. Miners, w1 � ©p1

G (block neither). Moreover, given the con-
dition of miners being in A, block A becomes the only conditional optimal choice.
Hence we have “if the miners are in A, then we ought to block A”, i.e. Miners, w1 �
©p1
G (block A/in A). The case for miners being in B are similar. Although we have

both “if the miners are in A, then we ought to block A” and “if the miners are in B,
then we ought to blockB”, by Proposition 2 below we can avoid the prediction that “we
ought to block either A or B”. Hence no contradiction arise. Therefore PUDL1 gives
right prediction meanwhile avoids contradictions. It therefore offers a viable solution to
the miners puzzle.

Proposition 2. 6�©p1
G (p/q) ∧©p1

G (p/r)→©p1
G (p/(q ∨ r)).

3.2 PUDL2

Although PUDL1 solves the miners puzzle, it still has some drawbacks. On the intuitive
side, PUDL1 is not free from Ross’ paradox. Ross’ paradox [19] originate from the logic
of imperatives, and is a well-known puzzle in deontic logic which can be concisely
stated as following:

Suppose you ought to mail the letter. Since mail the letter logically entails mail
the letter or burn it, you ought to mail the letter or burn it.

PUDL1 validates the formula ©p1
G p → ©

p1
G (p ∨ q), which means it is not free from

Ross’ paradox.
On the technical side, PUDL1 is not finitely axiomatizable. This is because PUDL1

contains group STIT. Herzig and Schwarzentruber [9] show that if |Agent| ≥ 3 then
group STIT is not finitely axiomatizable.

To fix these flaws, we develop PUDL2. We show that PUDL2 solves the miners puz-
zle and is free from the Ross’s paradox. We further give an axiomatization of PUDL2.

Language Similar to Ludl, the language of the PUDL2 is built from Agent and Φ. But
for the sake of axiomatization, we simplify group STIT in UDL to individual STIT. In
order to syntactically define pessimistic lifting we add a preference modality as well
as the universal modality to our language . For p, q ∈ Φ and i ∈ Agent, the language
L2
pudl is given by the following Backus-Naur Form:

φ ::= p | ¬φ | φ ∧ φ | [i]φ | �φ | [≤]φ | [≥]φ | [<]φ

Intuitively, [i]φ means “agent i sees to it that φ”. �φ means “φ is true everywhere”.
[≤]φ means “φ is weakly preferable” while [<]φ means “φ is strictly preferable”. [≥]φ



means “φ is unpreferable ”. We use ♦, 〈≤〉 and 〈<〉 as the dual for �, [≤] and [<]
respectively.

Semantically the preference relation≤ corresponding to [≤] is required to be a weak
linear order. That is, ≤ is reflexive, transitive and connected. The preference relation
< corresponding to [<] is required to satisfy the following: w < v iff w ≤ v and
v 6≤ w. Lifting of preference can be defined in L2

pudl only with these constrains. Liu
[16] observes that it is sufficient to define optimistic lifting with ≤ being partial order.
But to define strong and pessimistic lifting, ≤ is required to be linear.

– strong lifting: φ ≤s ψ ::= �(ψ → [<]¬φ). Intuitively, �(ψ → [<]¬φ) says that
for all ψ-world, there is no φ world which is better. In other words, every ψ-world
is at least as good as every φ-world. That is, the worst ψ-world is at least as good
as the best φ-world.

– optimistic lifting: φ ≤o ψ ::= �(φ→ 〈≤〉ψ). Intuitively, �(φ→ 〈≤〉ψ) says that
for all φ-world w there is a ψ-world which is at least as good as w. In other words,
for the best φ-world w there is a ψ-world which is at least as good as w. That is,
the best ψ-world is at least as good as the best φ-world.

– pessimistic lifting: φ ≤p ψ ::= �(ψ → 〈≥〉φ). Intuitively, �(ψ → 〈≥〉ψ) says
that for all ψ-world w, it is at least as good as some φ-world. That is, the worst
ψ-world is at least as good as the worst φ-world. 2

We use φ <p ψ as an abbreviation of (φ ≤p ψ) ∧ ¬(ψ ≤p φ). Obligation and
conditional obligation are defined in our language as follows:

– ©p2
i φ ::= ♦[i]φ ∧ (¬φ <p [i]φ). Intuitively, agent i is obligatory to see to it that φ

iff it is possible for i to see to it that φ and seeing to it that φ is strictly better than
¬φ in the pessimistic sense.

– ©p2
i (φ/ψ) ::= ♦[i]φ ∧ ((¬φ ∧ ψ) <p ([i]φ ∧ ψ)).

Semantics The semantics of pessimistic utilitarian deontic logic is based on pessimistic
utilitarian model, which is a non-temporal individual fragment of the STIT model.

Definition 10 (Pessimistic utilitarian model). A pessimistic utilitarian model is a tu-
ple M = (W, IndChoice,≤, <, V ), where W is a nonempty set of possible worlds,
IndChoice is an individual choice function, ≤ is a reflexive, transitive and connected
relation over W , representing the preference of the group Agent. < is a sub-relation of
≤ such that for all w,w′ ∈W , w < w′ iff w ≤ w′ and w′ 6≤ w.

The individual choice function IndChoice : Agent 7→ 22
W

must satisfy the follow-
ing conditions:

(1) for each i ∈ Agent it holds that IndChoice(i) is a partition of W ;
(2) for Agent = {1, ..., n}, for every x1 ∈ IndChoice(1), . . . , xn ∈ IndChoice(n),

x1 ∩ . . . ∩ xn 6= ∅;
2 In Definition 3.8 of Liu [16], pessimistic lifting φ ≤p ψ is defined as ♦(φ ∧ [<]¬ψ). Such

treatment is problematic because we can construct a counter example such that φ ≤p ψ is true
but the worst ψ-world is NOT at least as good as the worst φ-world. Here is a counter example:
W = {w1, w2}, w1 < w2, φ = {w2}, ||ψ|| = {w1, w2}.



Let Ri be the equivalence relation induced by IndChoice(i). Then (w,w′) ∈ Ri iff
there is K ∈ IndChoice(i) such that {w,w′} ⊆ K. IndChoice(i) = {Ri(w) : w ∈
W}, where Ri(w) = {w′ ∈ W : (w,w′) ∈ Ri}. The truth condition of formulas of
L2
pudl is defied as follows:

Definition 11 (truth conditions). Let M be a pessimistic utilitarian model, w ∈W .
M,w |=pudl2 [i]φ iff M,w′ |= φ for all w′ such that (w,w′) ∈ Ri;
M,w |=pudl2 [≤]φ iff M,w′ |= φ for all w′ such that w ≤ w′;
M,w |=pudl2 [≥]φ iff M,w′ |= φ for all w′ such that w′ ≤ w;
M,w |=pudl2 [<]φ iff M,w′ |= φ for all w′ such that w < w′;
M,w |=pudl2 �φ iff M,w′ |= φ for all w′ ∈W .

The axiomatization of PUDL2 is a fragment of the axiomatization of PUDL+ in the
next section. The following proposition shows that PUDL2 is free from Ross’ paradox.

Proposition 3. 6�pudl2 ©
p2
i p→©

p2
i (p ∨ q).

Another analysis to the miners puzzle The miners scenario is described formally by
a pessimistic utilitarian model as Minersp = (W, IndChoice,≤, <, V ), where W =
{w1, . . . , w6}, IndChoice(i) = {{w1, w2}, {w3, w4}, {w5, w6}}, IndChoice(j) =
{W} for all j 6= i,w3 ≈ w6 < w1 ≈ w2 < w4 ≈ w5, V (in A) = {w1, w3, w5},V (in B ) =
{w2, w4, w6}, V (block A) = {w5, w6}, V (block B) = {w3, w4},V (block neither) =
{w1, w2}.

Agent i is able to see to it that: block neither, block A and block B. [i]block neither
is true in worlds w1 and w2. According to the pessimistic semantics, [i]block neither is
strictly better than¬block neither. Therefore i ought to block neither. That is,Minersp, w1 �
©p2
G (block neither).

Moreover, given the condition of miners being inA, [i]block A is better than¬block A.
Hence we have “if the miners are inA, then i ought to blockA”. That is,Minersp, w1 �
©p2
i (block A/in A). The case for miners being in B is similar.

It remains to show that although we have both “if the miners are in A, then we
ought to block A” and “if the miners are in B, then we ought to block B”, but we
cannot logically derive “we ought to block eitherA orB”. This is done by the following
proposition.

Proposition 4. 6�pudl2 ©
p2
i (p/q) ∧©p2

i (p/r)→©p2
i (p/(q ∨ r))

4 Plausiblity involved pessimistic utilitarian deontic logic

The interplay of plausibility and preference are heavily discussed in qualitative decision
theory [2, 7]. Boutilier [1] uses the modality of plausibility and preference to define
conditional goals. Lang et al [15] use plausibility and preference to define hidden desire.

In this section we develop plausiblity involved pessimistic utilitarian deontic logic
PUDL+

2 to analyze the plausibility involved miners puzzle. The language of PUDL+
2 is

L2
pudl extended with plausibility operators. Formally, for p, q ∈ Φ and i ∈ Agent, the

language L2+
pudl is given by the following Backus-Naur Form:



φ ::= p | ¬φ | φ ∧ φ | [i]φ | �φ | [≤]φ | [≥]φ | [<]φ | [≤p]φ | [<p]φ

Plausibility involved pessimistic lifting is defined as follows:

φ ≤pp ψ ::= (φ ∧ [<p]¬φ) ≤p (ψ ∧ [<p]¬ψ)

Intuitively, φ ≤pp ψ says that the most plausible ψ worlds are better than the most
plausible φ worlds from a pessimistic perspective. We use φ <pp ψ as an abbreviation
of (φ ≤pp ψ) ∧ ¬(ψ ≤pp φ). Plausibility involved obligation and conditional obligation
are defined in L2+

pudl as follows:

–
⊙

i φ ::= ♦[i]φ ∧ (¬φ <pp [i]φ).
–
⊙

i(φ/ψ) ::= ♦[i]φ ∧ ((¬φ ∧ ψ) <pp ([i]φ ∧ ψ)).

4.1 Semantics

Definition 12 (Plausibility involved pessimistic utilitarian model). A plausibility in-
volved pessimistic utilitarian model is a tuple (W, IndChoice,≤, <,≤p, <p, V ), where
(W, IndChoice,≤, <, V ) is a pessimistic utilitarian model. ≤p is a reflexive, transi-
tive and connected relation over W , representing plausibility. <p is a sub-relation of
≤p such that for all w,w′ ∈W , w <p w

′ iff w ≤p w′ and w′ 6≤p w.

The truth condition of formulas in L2+
pudl is the same as L2

pudl, except those formulas
contains plausibility operators.

Definition 13 (truth conditions). Let M be a pessimistic utilitarian model, w ∈W .
M,w |=pudl+2 [≤p]φ iff M,w′ |= φ for all w′ such that w ≤p w′;
M,w |=pudl+2 [<p]φ iff M,w′ |= φ for all w′ such that w <p w

′;

In the generalized miners puzzle. Since it is more plausible that miners are in shaft
A, block A is the only optimal choice. Therefore

⊙
i block A is true. Given the miner

are in B, block B is the conditional optimal choice, therefore
⊙

i(block B/in B).

(10)
w5

(0)
w6

in B

in B

in B

(0)

(9)w1

w3

in A

in A

in A

(10)

(9)w2

w4

block neither

block B

block A

Figure 4.1: W = {w1, . . . , w6}, w3 ≈ w6 ≤ w1 ≈ w2 ≤ w4 ≈ w5,
w2 ≈p w4 ≈p w6 <p w1 ≈p w3 ≈p w5.



4.2 Proof system

The proof system of PUDL+
2 consists the following axioms and the rules of modus

pones, and necessitation for [1], . . . , [n],�, [≤], [≥], [<], [≤p] and [<p]. The following
is the list of axioms:

1. S4.3 for [≤]
(a) [≤](φ→ ψ)→ ([≤]φ→ [≤]ψ)
(b) [≤]φ→ φ
(c) [≤]φ→ [≤][≤]φ
(d) 〈≤〉φ ∧ 〈≤〉ψ → (〈≤〉(φ ∧ 〈≤〉ψ) ∨ 〈≤〉(φ ∧ ψ) ∨ 〈≤〉(ψ ∧ 〈≤〉φ))

2. S4.3 for [≤p]
(a) [≤p](φ→ ψ)→ ([≤p]φ→ [≤p]ψ)
(b) [≤p]φ→ φ
(c) [≤p]φ→ [≤p][≤p]φ
(d) 〈≤p〉φ ∧ 〈≤p〉ψ → (〈≤p〉(φ ∧ 〈≤p〉ψ) ∨ 〈≤p〉(φ ∧ ψ) ∨ 〈≤p〉(ψ ∧ 〈≤p〉φ))

3. Mutual converse for [≤] and [≥]:
(φ→ [≤]〈≥〉φ) ∧ (φ→ [≥]〈≤〉φ)

4. K for [<]:
[<](φ→ ψ)→ ([<]φ→ [<]ψ)

5. K for [<p]:
[<p](φ→ ψ)→ ([<p]φ→ [<p]ψ)

6. Interaction
(a) [<]φ→ [<][≤]φ
(b) [<]φ→ [≤][<]φ
(c) [≤]([≤]φ ∨ ψ) ∧ [<]ψ → φ ∨ [≤]ψ
(d) [<p]φ→ [<p][≤p]φ
(e) [<p]φ→ [≤p][<p]φ
(f) [≤p]([≤p]φ ∨ ψ) ∧ [<p]ψ → φ ∨ [≤p]ψ

7. Inclusion
(a) [≤]φ→ [<]φ
(b) �φ→ [≤]φ
(c) [≤p]φ→ [<p]φ
(d) �φ→ [≤p]φ
(e) �φ→ [i]φ, for i ∈ Agent

8. S5 for � and [i], i ∈ Agent
9. Agent independent: (♦[1]φ1 ∧ . . . ∧ ♦[n]φn)→ ♦([1]φ1 ∧ . . . ∧ [n]φn)

For every φ is derivable from the proof system of PUDL+
2 , then we say φ is a

theorem of of PUDL+
2 and write ` φ. For a set of formulas Γ ∪φ, we say φ is derivable

form Γ (write Γ ` φ) if ` φ or there are formulas ψ1, . . . , ψn ∈ Γ such that ` (ψ1 ∧
. . . ∧ ψn)→ φ.

Theorem 1 (soundness and completeness). Γ ` φ iff Γ �pudl+2 φ

The proof of soundness is routine. For completeness, we adopt the canonical model
method in addition with Bulldozing [20]: we first build a canonical model, then we
transform the canonical model via Bulldozing to make a new model to satisfy the re-
quirement of plausibility involved pessimistic utilitarian model. We sketch the proof in
the appendix.



5 Conclusion and future work

In this paper we first develop two new STIT based deontic logics capable of solving the
miners puzzle. The key idea is to use pessimistic lifting to lift preference over worlds to
preference over sets of worlds. To deal with the more general miners scenario we add
modal operators representing plausibility. A complete axiomatization is given. Con-
cerning future works, the most natural extension is to replace non-temporal STIT by
temporal STIT logic [17].
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Appendix

Proposition 5. If every consistent Γ is satisfiable on some model M , then Γ �pudl+2 φ

implies Γ ` φ.

Definition 14 (maximal consistent set (MCS)). A set of formulas Γ is maximal con-
sistent if Γ is consistent and any proper extension of Γ is not consistent.

For every consistent Γ , Γ can be extend to a MCS Γ+, we then construct a canonical
model for Γ+

Definition 15 (canonical model). The canonical model M0 for Γ+ is a relational
structure (W 0, {R0

i }i∈Agent,≤0<0,≤0
p, <

0
p, V

0) where:

– W 0 = {w|w is a MCS and for all �φ ∈ Γ+, φ ∈ w};
– For every i ∈ Agent, R0

i is a binary relation on W 0 defined by wR0
i v iff for all φ,

[i]φ ∈ w implies φ ∈ v;
– ≤0 is a binary relation on W 0 defined by w ≤0 v iff for all φ, [≤]φ ∈ w implies
φ ∈ v;

– <0 is a binary relation on W 0 defined by w <0 v iff for all φ, [<]φ ∈ w implies
φ ∈ v;

– ≤0
p is a binary relation on W 0 defined by w ≤0

p v iff for all φ, [≤p]φ ∈ w implies
φ ∈ v;

– <0
p is a binary relation on W 0 defined by w <0

p v iff for all φ, [<p]φ ∈ w implies
φ ∈ v;

– V 0 is the valuation defined by V 0(p) = {w ∈W 0 | p ∈ w}.



Proposition 6. M0, Γ+ �pudl+2 Γ .

Proposition 7. M0 has the following properties:

(1) Both ≤0 and ≤0
p are reflexive, transitive and connected relations.

(2) If w ≤0 v and v �0 w then w <0 v.
(3) If w ≤0

p v and v �0
p w then w <0

p v.
(4) If w <0 v then w ≤0 v.
(5) If w <0

p v then w ≤0
p v.

(6) R0
i is an equivalence relation for each i ∈ Agent.

(7) For every w ∈W 0, R0
1(w) ∩ . . . ∩R0

n(w) 6= ∅.

Deleting <-cluster Note that converse of item (2) of Proposition 7 is not true because
there may be two world w and v in W 0 such that w <0 v and v <0 w. In this case we
say that w and v are in the same <0-clusters. To deal with this we follow Benthem [24]
to use the technique called Bulldozing [20] to transform M0 to a new model M1 such
that there is no <-cluster in M1.

Definition 16 (cluster). A <-cluster is an inclusion-maximal set of worlds C such that
w < v for all worlds w, v ∈ C. Similarly for ≤p-cluster.

Let M1 = (W 1, {R1
i }i∈Agent,≤1, <1,≤1

p, <
1
p, V

1) where:

– W 1 = W 0− ∪
⋃
i∈I C

′
i, here I is a set index of all <-clusters of W 0, W 0− =

W 0 −
⋃
i∈I Ci, C

′
i = Ci × Z, Z is the set of natural numbers.

– R1
i is defined by wR1

i v iff β(w)R0
i β(v), for every i ∈ Agent.

– <1 is defined as follows: For each Ci, choose an arbitrary linear order <1,i. Define
a map β :W 1 →W 0 by β(x) = x if x ∈W 0− and β(x) = w if x is a pair (w, n)
for some world w and integer n. We define <1 via the following cases:
• Case 1: x or y is in W 0−. In this case we let x <1 y iff β(x) <0 β(y).
• Case 2: x ∈ C ′i and y ∈ C ′j , i 6= j. In this case we let x <1 y iff β(x) <0 β(y).
• Case 3: x ∈ C ′i and y ∈ C ′i. In this case , x = (w,m) and y = (v, n). There

are two sub-cases:
∗ Case 3.1: If m 6= n, we use the natural ordering on Z: (w,m) <1 (v, n)

iff m < n.
∗ Case 3.2: If m = n, we use the linear ordering <1,i: (w,m) <1 (v,m) iff
w <1,i v.

– ≤1 is defined via the following cases:
• Case 1: x or y is in W 0−. In this case we let x ≤1 y iff β(x) ≤0 β(y).
• Case 2: Otherwise, we take the reflexive closure of <1: x ≤1 y iff x <1 y or
x = y.

– ≤1
p is defined by w ≤1

p v iff β(w) ≤0
p β(v).

– <1
p is defined by w <1

p v iff β(w) <0
p β(v).

– V 1 is defined by w ∈ V 1(p) iff β(w) ∈ V 0(p).

Definition 17 (Bounded Morphism). A mapping f : M = (W, {Ri}i∈Agent,≤, <
,≤p, <p, V ) → M ′ = (W, {R′i}i∈Agent,≤′, <′,≤′p, <′p, V ′) is a bounded morphism
if it satisfies the following conditions:



– w and f(w) satisfy the same propositionletters.
– if w ≤ v then f(w) ≤′ f(v). And similarly for <,≤p, <p, Ri.
– if f(w) ≤′ v′ then there exists v such that w ≤ v and f(v) = v′. And similarly for
<′,≤′p, <′p, Ri.

Lemma 1. If f is a bounded morphism from M to M ′, then for all φ, for all w ∈ M ,
M,w �pudl+2 φ iff M ′, f(w) �pudl+2 φ.

Proposition 8. For every consistent set Φ, if M0, Γ �pudl+2 Φ, then there exist Γ ′ such
that M1, Γ ′ �pudl+2 Φ.

Proposition 9. M1 has the following properties:

(1) Both ≤1 and ≤1
p are reflexive, transitive and connected relations.

(2) w <1 v iff w ≤1 v and v �1 w
(3) If w ≤1

p v and v �1
p w then w <1

p v.
(4) If w <1

p v then w ≤1
p v.

(5) R1
i is an equivalence relation for each i ∈ Agent.

(6) For every w ∈W 1, R1
1(w) ∩ . . . ∩R1

n(w) 6= ∅.

Deleting <p-cluster Now we use bulldozing again to delete <Gclusters.
Let M2 = (W 2, {R2

i }i∈Agent,≤2, <2,≤2
p, <

2
p, V

2) where:

– W 2 = W 1− ∪
⋃
i∈I C

′
i, here I is a set index of all <G-clusters of W 1, W 1− =

W 1 −
⋃
i∈I Ci, C

′
i = Ci × Z, Z is the set of natural numbers.

– R2
i is defined by wR2

i v iff σ(w)R1
i σ(v), for every i ∈ Agent.

– <2
p is defined as follows: For each Ci, choose an arbitrary linear order <2,i

p . Define
a map σ :W 2 →W 1 by σ(x) = x if x ∈W 1− and σ(x) = w if x is a pair (w, n)
for some world w and integer n. We define <2

p via the following cases:
• Case 1: x or y is in W 1−. In this case we let x <2

p y iff σ(x) <1
p σ(y).

• Case 2: x ∈ Ci and y ∈ Cj , i 6= j. In this case we let x <3
p y iff σ(x) <2

p σ(y).
• Case 3: x ∈ Ci and y ∈ Ci. In this case , x = (w,m) and y = (v, n). There

are two sub-cases:
∗ Case 3.1: If m 6= n, we use the natural ordering on Z: (w,m) <2

p (v, n)
iff m < n.
∗ Case 3.2: If m = n, we use the linear ordering <2,i

p : (w,m) <2
p (v,m) iff

w <2,i
p v.

– ≤2
p is defined via the following cases:
• Case 1: x or y is in W 1−. In this case we let x ≤2

p y iff σ(x) ≤1
p σ(y).

• Case 2: Otherwise, we take the reflexive closure of <2
p: x ≤2

p y iff x <2
p y or

x = y.
– ≤2 is defined by w ≤2 v iff σ(w) ≤1 σ(v).
– <2 is defined by w <2 v iff σ(w) <1 σ(v).
– V 2 is defined by w ∈ V 2(p) iff σ(w) ∈ V 1(p).

Proposition 10. For every consistent set Φ, if M1, Γ �pudl+2 Φ, then there exist Γ ′ such
that M2, Γ ′ �pudl+2 Φ.



Proposition 11. M2 has the following properties:

(1) Both ≤2 and ≤2
p are reflexive, transitive and connected relations.

(2) w <2 v iff w ≤2 v and v �2 w
(3) w <2

p v iff w ≤2
p v and v �2

p w
(4) R2

i is an equivalence relation for each i ∈ Agent.
(5) For every w ∈W 2, R2

1(w) ∩ . . . ∩R2
n(w) 6= ∅.


