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Business Process Regulatory Compliance is
Hard

Silvano Colombo Tosatto, Guido Governatori and Pierre Kelsen

Abstract—Verifying whether a business process is compliant with a regulatory framework is a difficult task. In the present paper
we prove the hardness of the business process regulatory compliance problem by taking into account a sub-problem of the
general problem. This limited problem allows to verify only the compliance of structured processes with respect to a regulatory
framework composed of a set of conditional obligations including a deadline. Experimental evidence from existing studies shows
that compliance is a difficult task. In this paper, despite considering a sub-problem of the general problem, we provide some
theoretical evidence of the difficulty of the task. In particular we show that the source of the complexity lies in the core language
of verifying conditional obligations with a deadline. We prove that for this simplified case verifying partial compliance belongs
to the class of NP-complete problems, and verifying full compliance belongs to the class of coNP-complete problems. Thus
by proving the difficulty of a simplified compliance problem we prove that the general problem of verifying business process
regulatory compliance is hard.

Index Terms—Compliance, Computational Complexity, NP-Completeness, Hamiltonian Path, Tautology
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1 INTRODUCTION

Compliance initiatives are becoming more and more
important in enterprises with the increase of the
number of regulatory frameworks explicitly requiring
businesses to show compliance with them. As a con-
sequence IT support for compliance activities within
enterprises is growing.

One of the possibilities to show compliance with
a regulatory framework is through business process
models. Using these models an enterprise can rep-
resent its ways to achieve a business objective. The
business process regulatory compliance problem stud-
ies whether a business process is compliant with the
obligations specified by the regulatory framework.

A business process can be compliant with the
obligations specified by the regulatory framework in
two ways. If all the ways of achieving the business
objective contained in the business process fulfil the
obligations, then the business process is fully compli-
ant. Differently if at least one of the ways to achieve
the business objective fulfils the obligations, then the
business process is considered to be partially com-
pliant with the regulatory framework. However, the
business process is not compliant with the regulatory
framework in the case where none of the ways of
achieving a business objective contained in a business
process fulfills the obligations.
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Solutions for the business process regulatory com-
pliance problem have been already proposed in the
literature (e.g., Governatori et al. [1], [2], Goedertier
and Vanthienen [3], Hoffmann et al. [4], Awad et al.
[5], Ly et at. [6] and Ramezani et al. [7]). However the
solutions proposed do not consider the complexity of
the problem or, in case they do, they only provide
approximate solutions.

The paper is structured as follows: Section 2 de-
scribes the compliance problem by defining its ele-
ments: the process models and the obligations. Sec-
tion 3 contains the complexity proof showing that
the problem of verifying partial compliance is NP-
complete. Section 4 proves that the problem of verify-
ing full compliance is coNP-complete. Section 5 gives
the proof showing that the problem of verifying non
compliance is coNP-complete. Section 6 concludes the
paper.

2 THE BUSINESS PROCESS REGULATORY
COMPLIANCE PROBLEM

This section describes the business process regulatory
compliance problem. To describe the problem we first
introduce the business process models and secondly
the abstract framework defining the regulatory frame-
work and compliance.

We adopt an abstract approach because of the goal
of studying the complexity of the problem itself. By
opting for an abstract approach we are capable of
focusing on the most general and common features
of the problem and leaving out the minor ones, used
only by some specific instances of the problem.



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. X, NO. X, X X 2

2.1 Business Process
In the present paper we study the complexity of
verifying the compliance of a particular class of busi-
ness processes: the structured processes. Such class
of business processes, similar to the structured work-
flows defined by Kiepuszewski et al. [8], is limited
in its expressivity because it does not allow cycles
and its components have to be properly nested. An
advantage of using structured processes is that their
correctness can be verified in polynomial time. While
not all business processes are structured, the struc-
tured processes are a substantial class of real-life
processes. According to Polyvanyy et al. [9], 406 of
the 604 processes in the SAP reference models [10] are
structured. In addition Polyvanyy et al. [9] identify
conditions under which unstructured processes can
be transformed into structured ones, and proposes an
algorithm for the transformation. They also report that
seventy-eight of the unstructured processes in the SAP
reference models can be converted into behaviourally
equivalent structured process models.

We define the structured processes used in this
paper compositionally and following the semantics
used by Business Process Model and Notation 2.01. We
first define the basic blocks constituting a structured
process. The most basic element is the task; it ab-
stractly represents an atomic action that can be exe-
cuted to help towards the achievement of the business
objective purposed by the business process. The tasks
can be then combined in more complex structures,
like sequences, and blocks and xor blocks. In turn
such structures can be used to build more complex
structures.

Definition 1 (Process Block): A process block B is a
directed graph: the nodes are called elements and the
edges are called transitions. We also use the terms
nodes and vertices for elements and edges for transi-
tions. The set of elements of a process block is identi-
fied by the function V (B) and the set of transitions by
the function E(B). The set of elements is composed
of tasks and coordinators. The coordinators are of 4
types: and split, and join, xor split and xor join. Each
process block B has two distinguished nodes called
the initial and final element. The initial element has
no incoming transition from other elements in B and
is denoted by b(B). Similarly the final element has
no outgoing transitions to other elements in B and is
denoted by f(B).

A directed graph composing a process block is
defined inductively as follows:
• A single task constitutes a process block. The task

is both initial and final element of the block.
• Let B1, . . . , Bn be process blocks with n > 1:

– SEQ(B1, . . . , Bn) denotes the process block
with node set ∪V (Bi) and edge set ∪E(Bi)∪
{(f(Bi), b(Bi+1)) : 1 ≤ i < n}.

1. http://www.omg.org/spec/BPMN/2.0

– XOR(B1, . . . , Bn) denotes the block with ver-
tex set ∪V (Bi)∪ {xsplit, xjoin} and edge set
∪E(Bi) ∪ {(xsplit, b(Bi)), (f(Bi), xjoin) : 1 ≤
i ≤ n} where xsplit and xjoin denote an
xor split coordinator and an xor join coordi-
nator, respectively.

– AND(B1, . . . , Bn) denotes the block with ver-
tex set ∪V (Bi) ∪ {asplit, ajoin} and edge set
∪E(Bi) ∪ {(asplit, b(Bi)), (f(Bi), ajoin) : 1 ≤
i ≤ n} where asplit and ajoin denote an
and split and an and join coordinator, respec-
tively.

Using the process blocks introduced in Definition
1, it is then possible to define the structured business
processes. These type of processes are defined by
enclosing a process block within two specific pseudo-
tasks: the start and end, which are respectively placed
before and after a process block to construct a struc-
tured business process.

Definition 2 (Structured Process Model): The pseudo-
tasks start and end are used respectively to identify
the beginning of a structured process model and
when it terminates. A structured process model P
is a directed graph composed of a process block B
called the main process block. The vertex set of P
is V (P ) = V (B) ∪ {start, end} and its edge set is
E(P ) = E(B) ∪ {(start, b(B)), (f(B), end)}.

The processes used in this paper can be graphically
represented using Business Process Model and Notation
2.0. We use , , ,{ }to represent the start coordinator and
, , ,{ }to represent the end coordinator. The and split and
and join coordinators are represented both by, , ,{ }. The
and split is identified by a single incoming transition
and multiple outgoing transitions. The opposite is
true for the and join, which is identified by multiple
incoming transitions and a single outgoing transition.
In the same way, the operator, , ,{ }identifies both
xor split and xor join coordinators.

In a structured process model XOR blocks and AND
blocks have to be properly nested, meaning that if the
block A starts inside the block B, A has to end within
B. An example of a structured process model is shown
in Fig. 1.

Example 1: Fig. 1 shows a structured business pro-
cess containing four tasks labelled t1, . . . , t4. The struc-
tured process contains an XOR block delimited by the
xor split and the xor join. The XOR block contains the
tasks t1 and t2. The XOR block is itself nested inside an
AND block with the task t3. The AND block is nested
in a SEQ block where it is followed by task t4.

Structured processes exclude business processes
containing badly nested blocks (Fig. 2.(a)) and busi-
ness processes with loops (Fig. 2.(b)).

An execution of a structured process is a sequence
of a subset of the tasks belonging to the model and
it represents a possible way to achieve the business
objective, which has been modelled in the process. A
valid execution identifies a path from the start to the
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Fig. 1. A structured business process
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Fig. 2. Examples of non-structured processes

end of the process and follows the semantics of the
coordinators and transitions that are traversed.

Before proceeding to define an execution of a busi-
ness process, we recall the definition of partial ordered
set which is used as an auxiliary concept in defining
the serialisation of a process block. A process block
serialisation is then used to define a business process
execution. In addition to recalling the definition of
partial ordered set, we introduce some operations on
this type of set.

Definition 3 (Partial Ordered Set): A partial order set
P = (S,≺s) is a tuple where S is a set of elements and
≺s is a set of ordering relations between two elements
of S such that ≺s⊆ S × S and for which transitivity
and antisymmetry2 hold.

Two special cases of a partial ordered set are the set
and the sequence:
• Set: a set is a partial ordered set where no or-

dering relations have been defined between its
elements, formally: (S, ∅).

• Sequence: a sequence is a particular partial or-
dered set, called total order, where an order-
ing relation is defined between each pair of
elements belonging to the set, formally (S,≺s)

2. Antisymmetry: if a ≺s b and b ≺s a, then a = b.

where ∀x, y ∈ S such that x 6= y, x ≺ y ∈≺s or
y ≺ x ∈≺s.

Let P1 = (S1,≺s1) and P2 = (S2,≺s2) be partial
ordered sets, we define the following four operations:
• Union: P1 ∪P P2 = (S1 ∪ S2,≺s1 ∪ ≺s2), where ∪

is the disjoint union.
• Intersection: P1 ∩P P2 = (S1 ∩ S2,≺s1 ∩ ≺s2)
• Concatenation: P1 +P P2 = (S1 ∪ S2,≺s1 ∪ ≺s2
∪{s1 ≺ s2|s1 ∈ S1 and s2 ∈ S2}).

• Linear Extensions: I(P1) = {(S,≺s)|S =
S1, (S,≺s) is a sequence and ≺s1⊆≺s}.

In other words, the linear extensions of a partial
ordered set is the set containing all the possible total
orders over the elements of the partial ordered set
which keeps true the orderings specified in the partial
ordered set.

The associative property holds for Union, Intersec-
tion and Concatenation.

A serialisation of a process block is a linear exten-
sion of the partial order set representing the semantics
of such process block.

Definition 4 (Process Block Serialisations):
Given a process block B, the set of
serialisations of B, written Σ(B) =
{ε|ε is a sequence and is a serialisation of B}. The
function Σ(B) is defined as follows:

1) If B is a task t, then Σ(B) = {({t}, ∅)}
2) if B is a composite block with sub-blocks

B1, . . . , Bn let εi be the projection of ε on block
Bi (obtained by ignoring all tasks which do not
belong to Bi)

a) If B = SEQ(B1, . . . , Bn), then Σ(B) = {ε1+P
· · ·+P εn|εi ∈ Σ(Bi)}

b) If B = XOR(B1, . . . , Bn), then Σ(B) =
Σ(B1) ∪ · · · ∪ Σ(Bn)

c) If B = AND(B1, . . . , Bn), then⋃
ε1,...,εn

I(ε1 ∪P · · · ∪P εn|∀εi ∈ Σ(Bi))

Given a structured process model, we can now
define its possible executions in terms of the serial-
isations of its main process block. Each execution of a
process model corresponds to one of the serialisations
of its main process block to which are attached the
pseudo-tasks start and end.

Definition 5 (Execution): Given a structured process
P whose main process block is B, the set of possible
executions of P is Σ(P ) = {Pstart+Pε+PPend|ε ∈ Σ(B)}
where Pstart = ({start}, ∅) and Pend = ({end}, ∅).

Example 2 (Execution): The executions of the struc-
tured process illustrated in Fig. 3 are shown in the
first column of Table 1.

We use a set of literals to represent the world at a
given point of the execution of a business process and
we call it the state of the process.

The state of a process can evolve during the execu-
tion of the process. An annotated process is a process
whose tasks are associated with consistent sets of
literals. These set of literals are called annotations [11]
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and determine how the state of the process changes
when a task is executed.

Definition 6 (Consistent literal set): A set of literals L
is consistent if and only if it does not contain both l
and its complement l̃ for each literal l ∈ L, where
l̃ = a if l = ¬a, or l̃ = ¬a if l = a.

Definition 7 (Annotated process): Let P be a struc-
tured process and let T be the set of tasks contained
in P . An annotated process is a pair (P, ann), where
ann is a partial function associating to each task in T
a consistent set of literals: ann : T 7→ 2L.

We define the function ann as partial to allow tasks
to be annotated by an empty set of literals.

Example 3: Fig. 3 shows a structured process con-
taining four tasks labeled t1, t2, t3 and t4 and their
annotations. The process contains an AND block fol-
lowed by a task and an XOR block nested within the
AND block. The annotations indicate what has to hold
after a task is executed. If t1 is executed, then the
literal a has to hold in the state of the process.

t4

t3

t1

t2

{a}

{b,c}

{c,d}

{¬ a}

Fig. 3. An annotated process

We represent the state of a process as a pair con-
taining a set of literals and a task. The set of literals
describes the world holding after the execution of the
task contained in the state.

Definition 8 (Process State): The state of a process is
represented by a pair σ = (t, L) where L is the set of
literals holding after the execution of the task t.

We define an update operator (inspired by AGM
belief revision [12]).

Definition 9 (Literal set update): Given two consis-
tent sets of literals L1 and L2, the update of L1 with
L2, denoted by L1 ⊕ L2 is a set of literals defined as
follows:

L1 ⊕ L2 = L1 \ {l̃ | l ∈ L2} ∪ L2

A trace represents the evolution of the state of a
process during one of its executions. It is represented
by a sequence of states, holding at the different stages
of an execution.

Definition 10 (Trace): Given an annotated process
(P, ann) and an execution sequence ε = (t1, . . . , tn)
such that ε ∈ Σ(P ), a trace θ is a finite sequence of
states: (σ1, . . . , σn). Each state of σi ∈ θ contains a set
of literals Li capturing what holds after the execution
of a task ti. Each Li is a set of literals such that:

1) L1 = ann(t1);

2) Li+1 = Li ⊕ ann(ti+1), for 1 ≤ i < n.
We use Θ(B, ann) to denote the set of traces of a

process block B given an annotation function ann. In
a similar way we use Θ(P, ann) to denote the set of
traces of a process P .

Example 4: Table 1 shows the traces of the anno-
tated process (P, ann) illustrated in Fig. 3. The first
column contains the possible executions of P . The
second column the corresponding traces.

2.2 Regulatory Framework

The regulatory framework defines, using a set of
conditional obligations, which are the correct ways to
achieve a business objective. Each trace contained in a
business process defines a possible way of achieving a
business objective. We define different extents of com-
pliance depending on the amount of traces, contained
in a business process, fulfilling the obligations.

A business process is fully compliant if all its traces
fulfil the obligations. Similarly, a business process is
partially compliant if at least one of its traces fulfils the
obligations. In the remaining case, when none of the
traces of a business process fulfil the obligations, then
this business process is not compliant.

We represent the regulatory framework as a set of
obligations } = {À1, . . .Àk}, where Ài represents an
obligation. We use a subset of Process Compliance
Logic (PCL) [13] to specify the obligations.

Each obligation has a lifeline and a deadline. These
elements define the validity period of the obligation.
Once triggered by its lifeline, an obligation becomes
active. If an obligation is already active, further trig-
gers of its lifeline have no effect. Similarly when its
deadline is triggered, an obligation is deactivated. The
last state of a trace deactivates every obligation.

An obligation can be of two types: achievement and
maintenance. We also consider the punctual obliga-
tion which is a special case of both achievement and
maintenance. The condition of an obligation, along
with its type, determines how an activated obligation
should be fulfilled.

The lifeline, deadline and condition of an obligation
are represented using propositional formulae over a
set of literals.

Definition 11 (Obligations): Let ϕc, ϕb and ϕd be
propositional formulae. An obligation À is a triple
À = 〈O, ϕb, ϕd〉 where ϕb is the lifeline condition, ϕd
is the deadline condition and O is one of the following
types, where ϕc is the fulfilment condition:

O ::= Oa(ϕc) achievement
| Om(ϕc) maintenance

Example 5 (Achievement Obligation): In a scenario
where a customer dines in a restaurant, there exists
the obligation that the bill has to be payed before
leaving. In this case we can picture the dining at
a restaurant as a process and paying the bill as an
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Σ(P ) Θ(P, ann)
(start, t1, t3, t4, end) ((start, ∅), (t1, {a}), (t3, {a, c, d}), (t4, {¬a, c, d}), (end, {¬a, c, d}))
(start, t2, t3, t4, end) ((start, ∅), (t2, {b, c}), (t3, {b, c, d}), (t4, {¬a, b, c, d}), (end, {¬a, b, c, d}))
(start, t3, t1, t4, end) ((start, ∅), (t3, {c, d}), (t1, {a, c, d}), (t4, {¬a, c, d}), (end, {¬a, c, d}))
(start, t3, t2, t4, end) ((start, ∅), (t3, {c, d}), (t2, {b, c, d}), (t4.{¬a, b, c, d}), (end, {¬a, b, c, d}))

TABLE 1
Executions and Traces of the annotated process in Fig. 3.

achievement obligation triggered when the customer
orders. This achievement obligation has to be fulfilled
before leaving the restaurant, which corresponds with
the deadline.

Example 6 (Maintenance Obligation): While
accessing secure data there exists the obligation to
have the proper credentials for the whole period. In
this case we can see “having the proper credentials”
as a maintenance obligation which is triggered when
the secure data is being accessed. The deadline is
represented by terminating the access to the secure
data.

An obligation is activated in a state satisfying the
lifeline and deactivated in a state satisfying the dead-
line. If an obligation is already active, then a state
satisfying the lifeline would have no effect. The same
applies if an obligation is not active and a state
satisfies the deadline.

The propositional formulae, used to represent the
lifeline, deadline and condition of an obligation, are
satisfied in a state if and only if the interpretation of
the propositional variables given by such state makes
the propositional formulae true.

Definition 12 (Formula Entailment): Given a state
σ = (t, L) and a formula ϕ, σ |= ϕ if and only if∧
x ∧∧¬y |= ϕ, where each x ∈ L and each y 6∈ L.
The following exceptions apply:
• Given the state σ = (end, L) and a formula ϕ, σ |=
ϕ is always the case if ϕ is a deadline condition.

• Given the state σ = (end, L) and a formula ϕ, σ 6|=
ϕ is always the case if ϕ is a lifeline condition.

To be fulfilled, achievement obligations’ fulfil-
ment condition needs to be satisfied in at least one
state within their activation period. Once fulfilled
an achievement obligation is deactivated. Differently,
maintenance obligations need that their fulfilment
condition is satisfied in each state of their activation
period and are deactivated only when the deadline is
triggered. In case an obligation has multiple activation
periods, it must be fulfilled in each of them.

In legal theory it is often the case that a compen-
sation is provided when an obligation is not fulfilled.
Compensations represent additional obligations to be
fulfilled in case others were not. However, in the
present paper we do not include compensations in
the sub-problem being used to analyse the complexity
of the business process regulatory compliance. Thus
when an obligation is not fulfilled, we consider a trace
to be violating such obligation and we avoid further

analysis. Because of this limitation we also avoid to
deal with perdurant obligations, which are still consid-
ered active even when not fulfilled. Thus when a trace
does not fulfil an obligation, we revert the status of
the obligation to inactive, and we consider the trace
to be not compliant with the regulatory framework.

Definition 13 (Obligation Fulfilment): Given an obli-
gation À = 〈O, ϕb, ϕd〉 and a trace θ, θ fulfils À,
written θ ` À, iff:
• O = Oa(ϕc): θ ` 〈Oa(ϕc), ϕb, ϕd〉 iff:
∀σi ∈ θ where σi |= ϕb implies ∃σj ∈ θ such that
σj |= ϕc and σj � σi, and ¬∃σh ∈ θ such that
σh |= ϕd and σi ≺ σh ≺ σj .

• O = Om(ϕc): θ ` 〈Om(ϕc), ϕb, ϕd〉 iff:
∀σi ∈ θ where σi |= ϕb implies ∃σh ∈ θ such that
σh |= ϕd and ∀σj ∈ θ such that σj |= ϕc and
σi ≺ σj � σh.

Otherwise θ does not fulfil À, written θ 6` À.
An alternative way of representing the activation

period of an obligation is by using a finite state
automaton. Fig. 4.(a) shows the automaton modelling
the activation period of an achievement obligation.
Fig. 4.(b) represents the automaton modelling the
activation period of a maintenance obligation. We can
notice that in both cases, an obligation becomes active
only if is inactive and a state triggering the lifeline
is found. Finding such state while the obligation is
already active has no impact on the activation period
of the obligation. Similarly, when an obligation is in-
active, states triggering the deadline or the condition
of an obligation do not influence its state.

The activation period always terminates when a
state fulfilling the deadline is found. Moreover for
achievement obligations, the activation period can
terminate if a state fulfilling the condition is found.
Differently for a maintenance obligation, an active
obligation becomes not fulfilled and inactive when a
state not fulfilling the condition is found.

The two automata are consistent with the semantics
of Definition 13. Notice that for the sake of clarity
we avoid representing explicitly in the figure the
transitions which would not have changed the state
of the automaton. For instance a state σ of a trace,
where σ |= ϕb, reading σ does not change the state
of the automaton if the automaton is in the Active
state. Also notice that the ε in the automata mean that
from the states Fulfilled and Not Fulfilled, the state of
the automata becomes Inactive without reading and
consuming a state of a trace.Once the obligation is
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either fulfilled or not, the state of the automaton is
brought back to Inactive thanks to the ε transitions.
This represents that an obligation can be activated
multiple times by a trace.

Given a trace and an obligation, the automaton in
Fig. 4 can be used to determine whether an obligation
is active or inactive with respect to the states of the
given trace. For this reason we avoid to represent any
final state in the automaton.

Inactive Active

Not 
Fulfilled

Fulfilled

Start

Inactive Active

Not 
Fulfilled

Fulfilled

Start

(a)

(b)

� |= 'd ^ � |= 'c

� |= 'b

� |= 'c✏

� |= 'b

✏

✏

✏ � 6|= 'c

� |= 'd ^ � 6|= 'c

Fig. 4. Activation Periods using Finite State Automaton

2.2.1 Punctual Obligations
Punctual obligations are a special type of obligations.
The peculiarity of this type of obligation is, that it has
to be fulfilled in exactly one state. This means that
such obligations become active for exactly one state.
To allow such behaviour, the deadline of punctual
obligations can be satisfied by any state. Punctual
obligations are a particular kind of both achievement
and maintenance. If these obligations can be fulfilled
in only one state, independently on the type the
condition of the obligation has to be achieved in such
state.

For this reason, in the following definition we rep-
resent the deadline of a punctual obligation using
the tautology formula >. Knowing that the activation
period of this type of obligation is limited to a single

state, we define define the semantics of punctual
obligations as follows:

Definition 14 (Punctual Obligation Fulfilment): Given
a punctual obligation À = 〈Op(ϕc), ϕb,>〉 and a trace
θ = (σ0, ..., σn), θ ` À iff:

∀σi ∈ θ, 0 ≤ i ≤ n : if σi |= ϕb then σi+1 |= ϕc.

Otherwise θ 6` À.
Notice that following from Definition 7 and Defini-

tion 10, a trace of a process model always ends with
a state containing the pseudo-task end. Thus the last
state of a proper trace would never trigger the lifeline
of a punctual obligation according to Definition 12,
hence verifying σi+1 |= ϕc is still possible.

2.2.2 Set Compliance
A trace is compliant with a set of obligations if it
fulfils all the obligations belonging to the set. Note
that according to Definition 13 (and Definition 14 for
punctual obligations), an obligation never activated
by a trace is considered to be fulfilled by such trace.

Definition 15 (Set Fulfilment): Given a trace θ and a
set of obligations } = {À1, . . . ,Àn},

θ ` } iff ∀Ài ∈ }, (θ ` Ài)

Otherwise θ 6` }.

2.2.3 Types of Compliance
Given a set of obligations, an annotated process can be
fully compliant, partially compliant or not compliant
with such set. An annotated process is fully compliant
if each trace is compliant with the set of obligations.
It is partially compliant, if at least one trace of the
annotated process is compliant with the set of obliga-
tions. If none of the traces are compliant with the set
of obligations, then a process is not compliant.

Definition 16 (Process Set Compliance): Given an an-
notated process (P, ann) and a set of obligations }.
• Full Compliance:

(P, ann) `F } iff ∀θ ∈ Θ(P, ann), θ ` }.

• Partial Compliance:

(P, ann) `P } iff ∃θ ∈ Θ(P, ann), θ ` }.

• Non Compliance:

(P, ann) 6` } iff ¬∃θ ∈ Θ(P, ann), θ ` }.

In first order logic ∀x does not necessarily implies
∃x, because the former is true while considering the
empty set but the latter is not. However, in the present
context where we want to classify whether a business
process is fully, partially or not compliant with a set
of obligations, we can safely say that full compliance
implies partial compliance. Following from Definition
2 a business process contains at least a trace, hence
the case where a business process would be fully
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compliant but not partially due to its set of traces
being empty does not apply in this setting.

Observation 1: In business process regulatory com-
pliance, whenever a process is fully compliant with a
set of obligations, then such a process is also partially
compliant with the same set.

3 VERIFYING PARTIAL COMPLIANCE IS NP-
COMPLETE

In this section we prove that verifying whether a
structured annotated process is partially compliant
with a set of obligations is an NP-complete problem.

Definition 17 (NP-complete): A decision problem is
NP-complete if it is in the set of NP problems and
if every problem in NP is polynomial-time many-one
reducible to it.

To prove the NP-completeness of the problem of
verifying whether a business process is partially com-
pliant with a regulatory framework, first we show
that the problem is in NP and second that another
NP-complete problem is polynomial-time many-one
reducible to it.

3.1 NP Membership

To prove membership in NP, we need to show that
an annotated business process is partially compliant
with a set of obligations if and only if there is a
certificate whose size is at most polynomial in terms
of the length of the input (comprising the annotated
business process and the set of obligations) with
which we can check whether it fulfils the regulatory
framework in polynomial time. As a certificate we
will choose a particular trace satisfying the obligations
composing the regulatory framework. The size of any
proper traces is always polynomial with respect to the
business process considered and the set of literals.

Since the type of business processes considered in
the present paper is structured, cycles are not allowed
and a task belonging to this type of processes can
be executed at most once. Thus given a structured
process, the maximum length of a proper trace is not
greater than the number of the tasks contained in such
process. Additionally the size of the states contained
in a trace is at most as big as the set of literals used in
the process. Before verifying the compliance of such
a trace, we first need to check that the trace is indeed
a valid trace for the annotated business process (done
by Algorithm 1 below) and that the trace does indeed
satisfy the obligations (done by Algorithm 2 described
below). We will further show that the time complexity
of both algorithms is at most polynomial in the size
of the input, thus concluding that verifying partial
compliance is in NP.

Claim 1: Verifying whether a structured business pro-
cess is partially compliant with a regulatory framework is
in NP.

3.1.1 Verifying the Validity
We hereby describe Algorithm 1 which checks
whether a certificate is a valid trace of an annotated
structured business process.

Algorithm 1: Given a trace θ =
(σstart, σ1, . . . , σn, σend) where σstart = (start, L0)
and σend = (end, Ln+1), an execution ε = (t1, . . . , tn)
representing the corresponding serialisation of θ,
and an annotated process (P, ann) where B is the
main process block of P , the following algorithm
A1(θ, ε, (P, ann), B) decides if θ is a valid trace of
(P, ann).

Algorithm A1

1: if P1(ε,B) and P2(θ, (P, ann)) then
2: return θ ∈ Θ(P, ann)
3: else
4: return θ 6∈ Θ(P, ann)
5: end if
P1(ε,B) verifies wether ε is a correct serialisation of

B. P1 returns true or false accordingly to the result
and uses the following recursive procedure:

Procedure 1: P1(ε,B)

1) if B = t, then ε is valid if ε = (t)
2) if B is a composite block with sub-blocks

B1, . . . , Bn let εi be the projection of ε on block
Bi (obtained by ignoring all tasks which do not
belong to Bi)

a) if B = SEQ(B1, . . . , Bn) then ε is valid if it
is the concatenation of ε1, . . . , εk and each
εi is a valid serialisation for Bi

b) if B = XOR(B1, . . . , Bn), then ε is valid if
exactly one εi is non-empty and that εi is
valid for Bi

c) if B = AND(B1, . . . , Bn), then ε is valid if
the set of tasks in ε is the disjoint union of
the sets of tasks in εi (for each i) and each
εi is a valid serialisation for Bi

P2(θ, (P, ann)) verifies wether the sequence of
states in θ is valid for (P, ann):

Procedure 2: P2(θ, (P, ann))

• L0 = ∅
• For each Li ∈ θ and i > 0: Li = Li−1 ⊕ ann(ti)
• Ln = Ln+1

P2 returns true if all of these properties hold and
false otherwise.

Correctness:
Proof:

The correctness of procedure P1 follows from Defi-
nition 4. The first part of the procedure verifies the
first property of the definition. The uniqueness of
the task is instead given by construction of a process
model as in Definition 1. The second part of the pro-
cedure verifies the three properties of the Definition
4.

The correctness of procedure P2 follows directly
from Definition 10.

The correctness of the algorithm A1 follows directly
from Definitions 4 and 10.
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Complexity:
To analyse the complexity of checking whether a

trace is a valid serialisation of a business process
whose main process block is B (procedure P1), con-
sider the tree reflecting the hierarchical structure of a
process block. If B is a single task, the tree consists
of a single node representing a task. Otherwise the
tree has a root corresponding to B and subtrees repre-
senting the different sub-blocks Bi of B. The recursive
procedure spends polynomial time (as a function of
n, where n is the number of tasks in B) for each node
of the tree for pre-processing, launching the recursive
calls and recombining the results. Since the size of the
tree itself is O(n) the overall time for the procedure is
polynomial in n.
Procedure P2 can clearly be executed in time poly-
nomial in n × k where k is the size of the set of
literals. Therefore the time complexity of Algorithm
1 is O(n × k), which is polynomial in the size of the
input.

3.1.2 Verifying the Fulfilment
In the present sub-section we describe Algorithm 2,
which verifies whether a certificate fulfils the obliga-
tions contained in a regulatory framework.

Algorithm 2: Given a set of obligations } and a
trace θ = (σstart, σ1, . . . , σn, σend) such that σstart =
(start, L0) and θ ∈ Θ(P, ann), the algorithm A2(θ,}) is
defined as follows (in the following, Ob denotes the
set of active obligations and we treat θ as a vector):

Algorithm A2

1: Ob = ∅
2: for j = 0; j ≤ n+ 1; j + + do
3: σi = θ[j]
4: for each 〈O, ϕb, ϕd〉 in Ob do
5: if O = Oa(ϕc) then
6: if σi |= ϕc then
7: Ob = Ob \ 〈Oa(ϕc), ϕb, ϕd〉
8: else
9: if σi |= ϕd then

10: return θ 6` }
11: end if
12: end if
13: else
14: if O = Om(ϕc) then
15: if σi 6|= ϕc then
16: return θ 6` }
17: end if
18: if σi |= ϕd then
19: Ob = Ob \ 〈Om(ϕc), ϕb, ϕd〉
20: end if
21: end if
22: end if
23: end for each
24: for each 〈O, ϕb, ϕd〉 in } do
25: if σi |= ϕb then
26: Ob = Ob ∪ 〈O, ϕb, ϕd〉
27: end if
28: end for each
29: end for
30: return θ ` };

Algorithm 2 identifies wether a certificate fulfils a
set of obligations. If the certificate is a valid trace of a

structured process, then following from Definition 16,
the fact that the certificate fulfils the set of obligations
is a sufficient condition to say that the structured
process is partially compliant with the regulatory
framework containing such set of obligations.

Correctness:
Proof: Soundness: θ ` }⇒ A2(θ,}) = θ ` }.

Direct proof:
From the hypothesis we know that θ ` }, hence we

know that ∀À ∈ }, θ ` À from Definition 15. Inde-
pendently of the type of an obligation, if its lifeline is
never triggered, then it is fulfilled (Definition 13). This
is captured in Algorithm 2 because the lines returning
not compliant are inside the for-each cycle (from line
4 to 28), which requires the obligation’s lifeline to be
triggered.

In the case the lifeline of an obligation is triggered,
we distinguish whether the obligation to fulfill it is
an achievement or a maintenance obligation.

• Achievement: In this case the lines from 5 to 12
are concerned. Among those, the only line return-
ing not compliant is 10, which is executed when
the state analyzed by the algorithm satisfies the
deadline condition. However we know that each
obligation is fulfilled by the trace and from Def-
inition 13 it follows that: ∃σj ∈ θ such that σj |=
ϕc and ¬∃σh ∈ θ such that σh |= ϕd and σh ≺
σj . Thus because the algorithm analyzes the
states of the trace in order, the condition of line
9 cannot be fulfilled before the condition at line
6. When the condition at line 6 is fulfilled, it
removes the obligation from the cycle, hence
preventing the result not compliant.

• Maintenance: In this case the lines from 14 to 21
are concerned. Among those, the only line return-
ing not compliant is 16, which is executed when
the state analyzed by the algorithm does not
satisfy the condition of the obligation. However
we know that each obligation is fulfilled by the
trace and from Definition 13 it follows that: ∃σh ∈
θ such that σh |= ϕd and ∀σj ∈ θ such that σj |=
ϕc and σj � σh. Thus the condition at line 15
is never satisfied in the same state or in one
preceding a state satisfying the condition at line
18, which removes the obligation and prevents
the result not compliant.

Thus we have shown that if the trace being ana-
lyzed fulfills the set of obligations, then Algorithm 2
returns compliant as result.

Proof: Completeness: A2(θ,}) = θ ` }⇒ θ ` }.
Proof by contradiction:

We assume that θ 6` }. From this assumption, it
follows that exists an obligation À in } such that θ 6`
À (Definition 15). Independently of the type of the
obligation, in order not to be fulfilled by a trace, the
obligation’s lifeline has to be triggered by such trace at
least once (Definition 13). We analyse independently
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two cases, depending on the type of the obligation to
be fulfilled:
• Achievement: If an achievement obligation is not

fulfilled by a trace, it means that it is triggered
in a state σh and the following holds: ∃σi ∈
θ such that σi � σh and σi |= ϕd and ¬∃σj ∈
θ such that σj |= ϕc and σh ≺ σj ≺ σi (Definition
13).
Because the obligation’s lifeline is triggered, we
know that the for-each cycle (from line 4 to line
28) is entered. In particular, because the obliga-
tion to be fulfilled is an achievement, we consider
the lines between 5 and 12 of Algorithm 2.
Because the algorithm analyses the states of the
trace in order and this achievement obligation is
not fulfilled by the trace, we have that line 6 is
never fulfilled before the condition in line 9. Thus
the obligation is never removed from the loop
which will end in fulfilling line 9 and executing
line 10 which returns θ 6` }. Line 9 is guaranteed
to be fulfilled because the last state of the trace
always fulfils the deadline condition (Definition
13). In this case we have that A2(θ,}) = θ 6` }.

• Maintenance: If a maintenance obligation is not
fulfilled by a trace, it means that it has been trig-
gered in a state σh and the following holds: ∃σi ∈
θ such that σi � σh and σi |= ϕd and ∃σj ∈
θ such that σj 6|= ϕc and σh ≺ σj � σi (Definition
13).
Because the obligation’s lifeline is triggered, we
know that the for-each cycle (from line 4 to line
28) is entered. In particular, because the obliga-
tion to fulfil is a maintenance, we consider the
lines between 14 and 21 of Algorithm 2.
Because the algorithm analyses the states of the
trace in order and this maintenance obligation
is not fulfilled by the trace, we have that line
18 is never fulfilled before the condition in line
15. Thus the obligation is never removed from
the loop which will end in fulfilling line 15 is
and executing 16 which returns θ 6` }. Line
15 is guaranteed to be fulfilled because the last
state of the trace always fulfils the deadline con-
dition (Definition 13). In this case we have that
A2(θ,}) = θ 6` }.

We have shown that independently of the type of
the obligation to be fulfilled, if we assume that θ 6` },
then A2(θ,}) = θ 6` }. The result contradicts the
premise that A2(θ,}) = θ ` }, hence A2(θ,}) = θ `
}, then θ ` } is true.

Complexity:
The time complexity of checking whether a trace is

compliant with the set of obligations using Algorithm
2 is at most O(n×o×T ) where n is the number of tasks
in the process, o is the number of obligations and T is
the maximum time to check whether a state satisfies
a formula. Since checking whether a state satisfies

a propositional formula can be done in time that is
at most polynomial (in fact linear) in the length of
the formula, the above asymptotic time bound is at
most polynomial in the length of the input (which
includes the annotated business process and the set
of obligations, including the associated formulas).

We conclude that given a yes-instance of the partial
compliance problem, there is a certificate of size poly-
nomial in the length of the input (namely the trace
that satisfies the obligations) for which we can check
compliance in time polynomial in the length of the
input. We conclude that verifying Partial Compliance
is indeed in NP.

3.2 NP-Hardness

After having proven the NP membership of the prob-
lem in the previous sub-section, to prove that the
problem is NP-complete we have to show that the
problem is NP-Hard.

To prove the NP-hardness of Verifying Partial
Compliance, we show that the problem of deciding
whether a directed graph contains an hamiltonian
path (another NP-Complete problem) is polynomial-
time many-one reducible to it.

In graph theory, the hamiltonian path problem is
the decision problem of determining wether an hamil-
tonian path exists in a given directed graph. This
problem is part of the commonly known NP-complete
problems.

In a directed graph G = (N,D) where N is a set
of nodes and D is a set of directed edges represented
as a binary relation N × N , a hamiltonian path is a
path in G that visits each node exactly once. A path
can travel from one node to another if there exists a
directed edge starting from a node and pointing to
the one following it in the path.

Definition 18 (Hamiltonian Path): Let G = (N,D) be
a directed graph where the size of N is n. A hamil-
tonian path ham = (v1; . . . ; vn) satisfies the following
properties:

1) N = {v1, . . . , vn}
2) ∀i, j((vi, vj ∈ ham ∧ j = i+ 1), ((vi, vj) ∈ D)

Claim 2: Hamiltonian Path Problem ≤p Verifying Par-
tial Compliance

Given a directed graph G = (N,D), we reduce the
problem of deciding whether G contains an hamilto-
nian path to the decision problem of deciding whether
an annotated structured process (P, ann) is partially
compliant with a regulatory framework.

3.2.1 Reduction
Given a directed graph G = (N,D), it can be trans-
lated to an annotated structured process (P, ann) as
follows:

1 Assuming that B is the main process block of P ,
B contains a task labeled Nodei for each vertex
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Noden

Noden−1

Node1

Node2

Nodefake

Fig. 5. Hamiltonian path problem as verifying partial
compliance.

vi contained in N . In addition, B also contains a
task labeled Nodefake.
The main process block B is structured as an
AND block followed by a task. The AND block
contains in each branch a single task Nodei.
The task Nodefake, follows the AND block:
SEQ(AND(Node1, . . . , Noden), Nodefake).
Intuitively a serialisation of the AND block rep-
resents a tentative hamiltonian path. The task
Nodefake has no correspondence in the original
graph, its purpose is to terminate the serialisation
of vertices. Annotations and obligations are used
to verify that two adjacent nodes in the serialisa-
tion can be indeed also adjacent in an hamiltonian
path (explained in detail in 2). Thus, since the last
vertex in an hamiltonian path does not need a
successor, the task Nodefake allows to ignore the
obligations triggered by such vertex.

2 In this reduction we use the annotations to iden-
tify which node is being selected in the sequence
constituting the tentative hamiltonian path. Thus
we use for the annotations a language containing
a literal for each node in G. The annotation of
each task in (P, ann) is the following:

– ∀i|1 ≤ i ≤ k, ann(Nodei) = {¬l1, . . . ,¬ln} ⊕
{li}

– ann(Nodefake) = {¬l1, . . . ,¬ln}
The obligations are used to represent the directed
edges departing from a vertex, in other words
which vertices are the suitable successors in the
hamiltonian path. The set } contains the follow-
ing obligations:

– ∀vi, vj |(vi, vj) 6∈ D, 〈Op(¬lj), li,>〉
Notice that the annotation of Nodefake is com-
posed in such a way that it always fulfils all the
obligations triggered by the task serialised last in
the AND block.

We claim that there exists a trace θ ∈ Θ(P, ann) such
that θ ` } if and only if G has an hamiltonian path.

Correctness:

Here we prove the soundness ((P, ann) `P } ⇒
∃ham) and the completeness (∃ham⇒ (P, ann) `P })
of our reduction. We refer to the two conditions stated
in Definition 18 as (1) and (2) respectively.

Proof:
Soundness: (P, ann) `P }⇒ ∃ham

Direct Proof:
The condition (1) is fulfilled by construction of

the reduction because all the tasks representing the
nodes of the graph are included in an AND block
which has always to be serialised. Thus each possible
serialisation of the process and consequently each of
its traces contains each of the tasks in the AND block
exactly once (Definition 4).

From the hypothesis it follows that ∃θ ∈
Θ(P, ann) such that θ ` } (Definition 13). Thus it
also follows that ∀O ∈ }, θ ` O (Definition 15).

By construction of the reduction we
know that each obligation in } is of type
punctual. We know that there exists a trace
θ = ((start, L0), (Nodei1 , L1), . . . , (Nodein ,
Ln), (Nodefake, Ln+1), (end, Ln+2)) fulfilling each
of the punctual obligations in }, hence for
each (Nodeik , Lk) and (Nodeik+1

, Lk+1) in θ,
it follows that there is no punctual obligation
〈Op(¬lik+1

), lik ,>〉 ∈ }. Thus by construction of the
reduction it follows that for each (Nodeik , Lk) and
(Nodeik+1

, Lk+1) in θ, there exists (vik , vik+1
) ∈ D,

which fulfils the condition (2) because there exists
and edge between vik and vik+1

in G.
Because there exists at least a trace in the process

fulfilling the conditions (1) and (2), it follows that
∃ham in G.

Proof: Completeness: ∃ham⇒ (P, ann) `P }
Direct Proof:

From the hypothesis we know that
∃ham = (v1; . . . ; vn) satisfying conditions (1)
and (2) in Definition 18. If we substitute each vi in
ham with Nodei we obtain a valid process block
serialisation ε = (Node1, . . . , Noden) for the AND
block of the process obtained with the reduction
(Definition 4). If we append Nodefake at the end
of ε obtaining ε′ = (Node1, . . . , Noden, Nodefake),
we have that ε′ ∈ Σ(P ) is a valid execution of the
main block of P (Definition 5). Using the annotations
in P we can use ε′ to construct a trace θ =
((start, L0), (Node1, L1), . . . , (Nodek, Lk), (Nodefake,
Ln+1), (end, Ln+2)) which is a valid trace of P
(Definition 10).

Because (2) is fulfilled we know that for each
vi, vi+1 ∈ ham there exists (vi, vi+1) ∈ D. From
this and the construction of the reduction it follows
that there is no obligation À = 〈Op(¬li+1), li,>〉. By
construction of the reduction we know that only punc-
tual obligations are allowed, hence it is sufficient to
consider two neighbouring states in the trace to verify
their fulfilment. By construction of the annotations we
know that for each (Nodei, Li) and (Nodei+1, Li+1) in
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θ, only À would not be fulfilled in θ (Definition 13).
Thus, because there is no such obligation like À for
any (Nodei, Li) and (Nodei+1, Li+1) in θ, then θ ` }
(Definition 14).

Because there exists at least a trace of P fulfilling
each obligation in }, then (P, ann) `P }.

Complexity:
The complexity of reducing the input of an hamil-

tonian path problem to a problem deciding whether
an annotated structured process is partially compliant
with a regulatory framework is polynomial in terms
of the size of the input. The time complexity of con-
structing the annotated structured business process
is O(n2), where n is the number of vertices in G.
The time complexity of constructing the regulatory
framework is O(e), where e is the number of edges
in G. Since e is at most n × n, we can conclude that
the time complexity of the reduction is O(n2).

4 VERIFYING FULL COMPLIANCE IS CONP-
COMPLETE

In this section we prove that the problem of verifying
whether a structured annotated process is fully com-
pliant with a set of obligations is a coNP-complete
problem.

Definition 19 (coNP-complete): A decision problem is
coNP-complete if it is in coNP and if every problem
in coNP is polynomial-time many-one reducible to
it. A decision problem is in coNP if and only if its
complement is in the complexity class NP.

To prove that a decision problem is coNP-complete
we first show that the complementary problem be-
longs to NP and second we show that the the tautol-
ogy problem, a known coNP-complete problem, is re-
ducible to the problem of verifying whether a business
process is fully compliant with a set of obligations.

4.1 Not full compliance is in NP
We define the complement of the problem of verifying
full compliance as its negation. This means verifying
whether a structured business process is not fully
compliant with a given regulatory framework, which
is composed by a set of obligations.

According to Definition 16, full compliance with
respect to a set of obligations } is defined as follows:

Full Compliance:

(P, ann) `F } iff ∀θ ∈ Θ(P, ann), θ ` }.

Therefore, we define the complement of full compli-
ance, not full compliance, as follows:

Definition 20 (Not Full Compliance): Given an anno-
tated process (P, ann) and a set of obligations }.

Not Full Compliance:

¬(P, ann) `F } iff ∃θ ∈ Θ(P, ann), θ 6` }.

From Definition 20 it follows that to verify not full
compliance it is sufficient to show that there exists
a trace belonging to the structured business process
which does not fulfil the regulatory framework.

4.1.1 NP Membership
To prove membership in NP, we show that an anno-
tated business process is not fully compliant with a set
of obligations if and only if there is a certificate whose
size is at most polynomial in terms of the length of the
input and which can be verified in polynomial time.
As a certificate we choose a particular trace. Moreover
we need to show that verifying whether it is a valid
trace of the annotated business process and is not fully
compliant can be done in polynomial time.

Proof:
To verify whether a certificate is indeed a valid

trace of the annotated business process we can reuse
Algorithm 1 introduced in Section 3.1.

In the same way, we can reuse Algorithm 2 to verify
the not full compliance of the annotated business
process. This can be done because Algorithm 2 returns
either θ ` } or θ 6` }. Thus in case the algorithm
returns θ 6` }, according to Lemma 20 the certificate
proves that the structured annotated process is not
fully compliant with the set of obligations.

In Section 3.1 it is proven that the complexity of
both Algorithms 1 and 2 is polynomial in the length
of the input, hence the problem of verifying whether
a structured annotated process is not fully compliant
is indeed in NP.

4.2 Completeness of Full Compliance
To show that the problem of verifying whether a
business process is fully compliant with a set of obli-
gations is coNP-complete, we reduce the tautology
problem to it.

Definition 21 (Tautology): A formula of proposi-
tional logic is a tautology if the formula itself is always
true regardless of which valuation is used for the
propositional variables.

4.2.1 Reduction
Let ϕ be a propositional formula for which we want
to verify whether it is a tautology or not, and let L
be the set of literals contained in ϕ. We include in L
only the positive version of a literal, for instance if l
or ¬l are contained in ϕ, then only l is included in L.

For each literal l belonging to L we construct an
XOR block containing two tasks, one labeled and
containing in its annotation the positive literal (i.e. l)
and the other the negative literal (i.e. ¬l). All the XOR
blocks constructed from L are then included within a
single AND block. This AND block is in turn followed
by a task labeled “test” and containing a single literal
in its annotation: ltest. The sequence containing the
AND block and the task test is then enclosed within a
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start and an end, composing the annotated business
process model (P, ann), graphically represented in
Figure 6.

test

l1

¬l1

l2

¬l2

ln�1

¬ln�1

ln

¬ln

Fig. 6. Tautology problem as verifying full compliance.

The set of obligations, to which the constructed
business process has to be verified to be fully com-
pliant with, is composed of a single obligation con-
structed as follows from the propositional formula ϕ:

〈Oa(ϕ), ltest,⊥〉
We claim that for all traces θ ∈ Θ(P, ann) we have
θ ` } if and only if ϕ is a tautology.

Correctness:
Here we prove the soundness ((P, ann) `F }⇒ ϕ ≡

>) and the completeness (ϕ ≡ > ⇒ (P, ann) `F }) of
our reduction.

Proof:
Soundness: (P, ann) `F }⇒ ϕ ≡ >
From the hypothesis and Definition 16, we know

that each trace of the business process (P, ann) fulfils
the obligations in }. Following from the construction
of the reduction we know that the only obligation
belonging to } is 〈Oa(ϕ), ltest,⊥〉.

From Definition 10 and the construction of the
reduction we know that each trace of P contains the
task ltest. Therefore, according to Definition 13, in
order for the obligation 〈Oa(ϕ), ltest,⊥〉 to be fulfilled
each trace contains a state following the one where
ltest appears.

From the construction of the reduction, in particular
how (P, ann) is constructed, and Definition 5 we have
that in the only state following the one where ltest
appears the first time, the set of literals associated
to that state corresponds to an interpretation of the
propositions contained in ϕ. Moreover, again from
the construction of the reduction, we know that in

all the traces of (P, ann), all the possible combinations
of interpreting the propositions belonging to ϕ are
considered.

Therefore, since the obligation 〈Oa(ϕ), ltest,⊥〉 is
fulfilled by each trace and each trace corresponds to
an interpretation, it follows from Definition 21 that ϕ
is indeed a tautology.

Proof:
Completeness: ϕ ≡ > ⇒ (P, ann) `F }
From the construction of the reduction we know

that the condition of the only obligation contained in
} is constituted by ϕ. However from the hypothesis
we know that ϕ is a tautology, hence according to Def-
inition 13, such obligation is always fulfilled indepen-
dently on the trace taken into consideration. Therefore
following from Definition 16, it follows that if ϕ is a
tautology, then the compliance problem constructed
using the reduction results in full compliance.

Complexity:
The process P and the obligation 〈Oa(ϕ), ltest,⊥〉

can be constructed in time proportional to |L| + |ϕ|
where |ϕ| denotes the length of formula ϕ. Since |L| ≤
|ϕ| by construction, the time is at most polynomial in
the length of the formula ϕ.

5 VERIFYING NON COMPLIANCE IS CONP-
COMPLETE

In this section we prove that the problem of verifying
whether a structured annotated process is not compli-
ant with a regulatory framework is a coNP-complete
problem. In the same way as we proved that verifying
full compliance is coNP-complete, also in this case
we have to prove that the complementary problem
of verifying non compliance is in NP-complete.

5.1 Not non compliance is NP-complete
Once again we define the complement of the problem
as its negation.

According to Definition 16, non compliance with
respect to a set of obligations } is defined as follows:

Non Compliance:

(P, ann) 6` } iff ¬∃θ ∈ Θ(P, ann), θ ` }.

Therefore, we define the complement of non com-
pliance, not non compliance, as follows:

Definition 22 (Not Non Compliance): Given an anno-
tated process (P, ann) and a set of obligations }.

Not Non Compliance:

¬(P, ann) 6` } iff ∃θ ∈ Θ(P, ann), θ ` }.

We can see that the condition of non compliance is
the same as that of partial compliance. Thus the NP-
completeness of partial compliance implies the NP-
completeness of not non compliance and hence also
the coNP-completeness of non compliance.
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6 CONCLUSION
In this paper we show that in general the problem
of verifying business process regulatory compliance
is hard. More specifically we prove that the problem
of verifying whether a structured process is partially
compliant with a set of obligations is NP-complete,
and that the problem of verifying whether a struc-
tured process is fully compliant with a set of obliga-
tion is coNP-complete.

In the third section of the paper we prove that ver-
ifying partial compliance is NP-complete by showing
the membership in NP and the NP-Hardness of the
problem. The NP-Hardness is shown by reducing the
hamiltonian path problem to a problem of verifying
partial compliance.

In the fourth section of the paper we prove that
verifying full compliance is coNP-complete by show-
ing that verifying the complement is an NP problem
and we prove the completeness by reducing the tau-
tology problem to it. We prove the NP membership of
the complementary problem by reusing some of the
results obtained in Section 3.

In a similar way, in the fifth section we prove that
verifying non compliance is also coNP-complete.

The results obtained are in line with the statement
of Observation 1, where it is stated that full compli-
ance implies partial.

Our results explain why existing solutions like
Hoffmann et al. [4], Ghose and Koliadis [14], Gov-
ernatori et al. [1], Awad et al. [5] and Ramezani et al.
[7] do not provide efficient solutions, or in case they
do, the solutions provided are an approximation of
the real ones.

The approaches of Awad et al. [5], Ramezani et al.
[7] and Elgammal et al. [15] use Linear Temporal Logic
(LTL) to model processes and compliance require-
ments. In particular they define business process pat-
terns corresponding to compliance requirements. The
problem of determining whether a business process
is compliant reduces to a model checking problem
in the underlaying logic, LTL, which is known to
be PSPACE-complete [16]. Accordingly, such systems
adopt a more complex (and more expressive) for-
malism. Despite the more expressive language these
frameworks are restricted to “structural” compliance,
namely the compliance requirements are just about
the presence of tasks in a process and relationships
among tasks and not about the effects of the tasks. In
addition there are some concerns that temporal logics,
and in particular LTL, might not be able to model
compliance requirements as shown by Governatori
[17].

The approaches of Governatori and Sadiq [1], Ghose
and Koliadis [14], and Hoffmann et al. [4] attach
effects to the tasks in a process and propagate the
effects while traversing a process model.

The approach proposed by Governatori and Sadiq
[1] and further developed in [2] defines a sound and

complete polynomial time algorithm (implemented in
[18]) to check whether a trace of a process is compli-
ant. For a process the algorithm has to be applied to
all traces in a process, but the number of traces in a
given process, in general, is exponential in terms of
the number of tasks and gateways in the process.

Ghose and Koliadis [14] adopt the same update
semantics presented in this paper. In case of XOR
and AND splits a copy of the current state of the
process before the split is created for each branch of
the split and then propagated independently from the
other branches. The states are merged using union in
cases of AND joins. The number of copies generated
is exponential in the number of the XOR gateways
occurring in the process, and traces corresponding
to interleaving tasks from different branches of AND
blocks are not considered.

The approach by Hoffman et al. [4] offers a polyno-
mial time approximate solution to the business pro-
cess regulatory compliance problem. This approach
is based on the technique of I-propagation. Similarly
to Ghose and Koliadis [14] the annotations of the
branches in AND and OR blocks are computed inde-
pendently. The difference is that for XOR join they
consider the intersection of the incoming set of literals
(one set for each incoming branch). This permits an
efficient computation, but it loses information related
to the XOR splits. Also, as in Ghose and Koliadis [14]
it does not consider the traces resulting from inter-
leaving the tasks in parallel branches of AND blocks.

Finally PENELOPE [3] and SeaFlow [6] use, respec-
tively, Event Calculus and first order logic to model
compliance requirements. Given that Event Calculus
is a specialised first order logic theory, in both cases
compliance is reduced to an entailment problem in
first order logic, which is known to be computation-
ally intractable.

The goal of the present paper is to show the in-
tractability of the business process regulatory com-
pliance problem. We represent the possible ways of
achieving a business objective using a business pro-
cess model and we consider the regulatory framework
to be composed by a set of obligations. Given these
elements, we formally prove that verifying whether
a business process is partially compliant with the
regulatory framework is an NP-complete problem
and the complexity of verifying whether a business
process is either fully compliant, or not compliant
with the regulatory framework is coNP-complete.

As future work we plan to extend the present
work in two ways: first, we plan to study larger
and more complete problems, like the ones includ-
ing compensations for the obligations violated in the
form of contrary to duties described by Prakken and
Sergot[19] and by Jones and Carmo [20]. With this
further analysis we want to see whether the com-
plexity of the problem increases and to which extent.
Second we plan to study the complexity of the sub-
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problems of the problem tackled in the present paper.
The results of this analysis will help the community
by pointing out which sub-problems may be solved
efficiently.
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