

Commutative n -ary superalgebras with an invariant skew-symmetric form¹

E.G. Vishnyakova

Abstract

We study n -ary symmetric superalgebras and L_∞ -algebras that possess skew-symmetric invariant forms, using the derived bracket formalism. This class of superalgebras includes for instance Lie algebras and their n -ary generalizations, commutative associative and Jordan algebras with invariant forms. We give a classification of m -dimensional $(m-3)$ -ary algebras with invariant form, and a classification of real simple m -dimensional Lie $(m-3)$ -algebras with positive definite invariant form up to isometry. We develop the Hodge Theory for L_∞ -algebras with symmetric invariant forms, and we describe quasi-Frobenius structures on skew-symmetric n -ary algebras.

1 Introduction

Derived bracket formalism. The derived bracket approach was successfully used in different areas of mathematics: in Poisson geometry, in the theory of Lie algebroids and Courant algebroids, BRST formalism, in the theory of Loday algebras and different types of Drinfeld Doubles. For detailed introduction we recommend a beautiful survey of Y. Kosmann-Schwarzbach [KoSch1].

The idea of the formalism is the following. *One fixes an algebra L , usually a Lie superalgebra, and constructs another multiplication on the same vector space (or some subspace) using derivations of L and the (iterated) multiplication in L . We obtain a class of new algebras, which properties can be studied using original algebra L .* For example, using this formalism we can obtain all Poisson structures on a manifold M from the canonical Poisson algebra on T^*M as was shown by Th. Voronov in [Vor3]. Voronov's idea allows A. Cattaneo and M. Zambon [CZ] to introduce a unified approach to the reduction of Poisson manifolds. Another example was suggested in [Vor1] and [Vor2], where a series of strongly homotopy algebras was obtained from a given Lie superalgebra.

We use this formalism to study n -ary symmetric superalgebras with invariant skew-symmetric forms. More precisely, consider a vector superspace V with a

¹ Supported by AFR-grant, University of Luxembourg.

non-degenerate even skew-symmetric form $(,)$. In this case there exists a natural Lie superalgebra structure on $S^*(V)$, where $S^*(V)$ is the symmetric power of V . The main observation is that *we get all symmetric n -ary and strongly homotopy superalgebras on V with invariant skew-symmetric form $(,)$. In other words, the property of these n -ary superalgebras having an invariant skew-symmetric form is encoded by the Lie superalgebra $S^*(V)$* . The observation that using the superalgebra $S^*(V)$ we can obtain all Lie algebras with invariant symmetric forms was made by B. Kostant and S. Sternberg in [KS]. The superalgebra $S^*(V)$ was also used in Poisson Geometry to study for instance Lie bialgebras and Drinfeld Doubles, see [KoSch1, KoSch2], [LR] and others.

Multiple generalizations of Lie algebras. Using the derived bracket formalism we can study all n -ary symmetric superalgebras with skew-symmetric invariant forms. This class of superalgebras includes for instance different n -ary generalizations of Lie algebras with symmetric invariant form. First of all let us give a short review of such generalizations.

Multiple generalizations arise usually from different readings of the Jacobi identity. For example, the Jacobi identity for a Lie algebra is equivalent to the statement that all adjoint operators are derivations of this Lie algebra. If we use this point of view for the n -ary case we come to the notion of a *Filippov n -algebra* [Fil]. V.T. Filippov considered alternating n -ary algebras A satisfying the following Jacobi identity:

$$\{a_1, \dots, a_{n-1}, \{b_1, \dots, b_n\}\} = \sum \{b_1, \dots, b_{i-1} \{a_1, \dots, a_{n-1}, b_i\}, \dots, b_n\}, \quad (1)$$

where $a_i, b_j \in A$. In other words, the operators $\{a_1, \dots, a_{n-1}, -\}$ are derivations of the n -ary bracket $\{b_1, \dots, b_n\}$. Such algebras appear naturally in Nambu mechanics [Nam] in the context of Nambu-Poisson manifolds, in supersymmetric gravity theory and in supersymmetric gauge theories, the Bagger-Lambert-Gustavsson Theory, see [AI].

Another natural n -ary generalization of the Jacobi identity has the following form:

$$\sum (-1)^{(I,J)} \{\{a_{i_1}, \dots, a_{i_n}\}, a_{j_1}, \dots, a_{j_{n-1}}\} = 0, \quad (2)$$

where the sum is taken over all ordered unshuffle multi-indexes $I = (i_1, \dots, i_n)$ and $J = (j_1, \dots, j_{n-1})$ such that (I, J) is a permutation of $(1, \dots, 2n - 1)$. We will call such algebras *Lie n -algebras*. This type of n -ary algebras was considered for instance by P. Michor and A. Vinogradov in [MV] and by P. Hanlon and M.L. Wachs [HW]. The homotopy case was studied in [SS] in context of the Schlesinger-Stasheff homotopy algebras and L_∞ -algebras. Such algebras are related to the Batalin-Fradkin-Vilkovisky theory and to the string field theory, see [LSt]. In [VV1] A.M. Vinogradov and M.M. Vinogradov proposed a three-parameter family

of n -ary algebras such that for some n the above discussed structures appear as particular cases.

The theory of Filippov n -ary algebras is relatively well-developed. For instance, there is a classification of simple real and complex Filippov n -ary algebras and an analog of the Levi decomposition [Ling]. W.X. Ling in [Ling] proved that there exists only one simple finite-dimensional n -ary Filippov algebra over an algebraically closed field of characteristic 0 for any $n > 2$. The simple Filippov n -ary superalgebras in the finite and infinite dimensional case were studied in [CK]. It was shown there that there are no simple linearly compact n -ary Filippov superalgebras which are not n -ary Filippov algebras, if $n > 2$, and a classification of linearly compact n -ary Filippov algebras was given.

In this paper we give a classification of $(m - 3)$ -ary algebras with symmetric invariant forms, where $\dim V = m$, satisfying the Jacobi identity (2) over \mathbb{C} and \mathbb{R} up to an isomorphism preserving the invariant form in terms of coadjoint orbits of the Lie group $\mathrm{SO}(V)$. In the real case we give a classification of simple algebras of this type. Our result can be formulated as follows: *almost all real $(m - 3)$ -ary algebras with symmetric invariant forms are simple. The exceptional cases are: the trivial $(m - 3)$ -ary algebra and all $(m - 3)$ -ary algebras that corresponds to decomposable elements.*

Hodge decomposition for real strongly homotopy algebras. A definition of a strongly homotopy Lie algebras (or L_∞ -algebras or sh-algebras) was given by Lada and Stasheff in [LSt]. For more about strongly homotopy algebras see also [LM], [Vor1], [Vor2]. Another result of our paper is a Hodge Decomposition for real metric homogeneous strongly homotopy algebras. This result is expected, but a remarkable fact is that we can obtain easily such kind of decomposition using derived bracket formalism.

We can also use this formalism to define the Hodge operator on a Riemannian compact oriented manifold M . Indeed, in this case there exists the metric on cotangent space T^*M that is induced by Riemannian metric on the tangent space TM . Then we can define a Poisson bracket on $\bigwedge T^*M$, see [Roy], and repeat the construction of the Hodge operator given in the present paper.

Quasi-Frobenius structures. We conclude our paper with a description of quasi-Frobenius structures on skew-symmetric n -ary algebras. Our result is as follows. *There is a one-to-one correspondence between quasi-Frobenius structures on a skew-symmetric n -ary algebra and maximal isotropic subalgebras in T_0^* -extension on this algebra.*

2 Commutative n -ary superalgebras with an invariant skew-symmetric form

2.1 Main definitions

Let $V = V_0 \oplus V_1$ be a finite dimensional \mathbb{Z}_2 -graded vector space over the field \mathbb{K} , where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . If $a \in V$ is a homogeneous element, we denote by $\bar{a} \in \mathbb{Z}_2$ the parity of a . As usual we assume that elements in \mathbb{K} are even. Recall that a bilinear form $(,)$ on V is called *even* (or *odd*) if the corresponding linear map $V \otimes V \rightarrow \mathbb{K}$ is even (or odd). A bilinear form is called *skew-symmetric* if $(a, b) = -(-1)^{\bar{a}\bar{b}}(b, a)$ for any homogeneous elements $a, b \in V$.

Definition 1. • An *n -ary superalgebra structure* on V is an n -linear map

$$\begin{aligned} V \times \cdots \times V &\longrightarrow V, \\ (a_1, \dots, a_n) &\mapsto \{a_1, \dots, a_n\}. \end{aligned}$$

- An n -ary superalgebra structure is called *commutative* if

$$\{a_1, \dots, a_i, a_{i+1}, \dots, a_n\} = (-1)^{\bar{a}_i \bar{a}_{i+1}} \{a_1, \dots, a_{i+1}, a_i, \dots, a_n\} \quad (3)$$

for any homogeneous $a_i, a_{i+1} \in V$.

- A commutative n -ary superalgebra structure is called *invariant with respect to the form* $(,)$ if the following holds:

$$(a_0, \{a_1, \dots, a_n\}) = (-1)^{\bar{a}_0 \bar{a}_1} (a_1, \{a_0, a_2, \dots, a_n\}) \quad (4)$$

for any homogeneous $a_i \in V$.

We will write *a commutative invariant n -ary superalgebra structure* or *a commutative invariant n -ary superalgebra* as a shorthand for *a commutative n -ary superalgebra structure on V that is invariant with respect to the form* $(,)$.

Example 1. The class of commutative invariant n -ary superalgebras includes for instance the following algebras.

- *Anti-commutative algebras* on $V = V_1$ with an invariant symmetric form. Indeed, in this case the conditions (3) and (4) are equivalent to the following conditions:

$$\{a, b\} = -\{b, a\}, \quad (\{a, b\}, c) = (a, \{b, c\}). \quad (5)$$

In particular, all Lie algebras with an invariant symmetric form are of this type.

- *Commutative algebras* on $V = V_0$ with an invariant skew-symmetric form. In this case from (3) and (4) it follows:

$$\{a, b\} = \{b, a\}, \quad (\{a, b\}, c) = -(a, \{b, c\}). \quad (6)$$

In particular, commutative associative and Jordan algebras with an invariant skew-symmetric form are of this type.

- *Anti-commutative n -ary algebras on $V = V_1$ with an invariant symmetric form.* In this case the condition (4) is equivalent to the following condition:

$$(y, \{x_1, \dots, x_{n-1}, z\}) = (-1)^n (\{y, x_1, \dots, x_{n-1}\}, z)$$

that is more familiar for physicists. In particular, anti-commutative n -ary algebras satisfying (1) with an invariant symmetric form are of this type. Such algebras are used in the Bagger-Lambert-Gustavsson model (BLG-model), see [AI] for details.

Remark. For a commutative algebra usually one considers the following invariance condition: $(\{a, b\}, c) = (a, \{b, c\})$. If in addition we assume that the form (\cdot, \cdot) is skew-symmetric and non-degenerate, we obtain $2(ab, c) = 0$ for all $a, b, c \in V$, therefore $ab = 0$. In our case we do not have such additional restrictive relations.

2.2 Derived bracket and commutative invariant n -ary superalgebras

Let V be as above. We denote by $S^n V$ the n -th symmetric power of V and we put $S^* V = \bigoplus_n S^n V$. The superspace $S^* V$ possesses a natural structure $[\cdot, \cdot]$ of a Poisson superalgebra. It is defined by the following formulas:

$$\begin{aligned} [x, y] &:= (x, y), \quad x, y \in V; \\ [v, w_1 \cdot w_2] &:= [v, w_1] \cdot w_2 + (-1)^{vw_1} w_1 \cdot [v, w_2], \\ [v, w] &= -(-1)^{vw} [w, v], \end{aligned}$$

where v, w, w_i are homogeneous elements in $S^* V$. One can show that the multiplication $[\cdot, \cdot]$ satisfies the graded Jacobi identity:

$$[v, [w_1, w_2]] = [[v, w_1], w_2] + (-1)^{\bar{v}\bar{w}_1} [w_1, [v, w_2]].$$

This Poisson superalgebra is well-defined. Indeed, we can repeat the argument from [KS, Page 65] for vector superspaces. The idea is to show that this superalgebra is induced by the Clifford superalgebra corresponding to V and (\cdot, \cdot) .

Let us take any element $\mu \in S^{n+1} V$. Then we can define an n -ary superalgebra structure on V in the following way:

$$\{a_1, \dots, a_n\} := [a_1, [\dots, [a_n, \mu] \dots]], \quad a_i \in V. \quad (7)$$

We will denote the corresponding superalgebra by (V, μ) and we will call the element μ the *derived potential* of (V, μ) . The n -ary superalgebras of type (V, μ) have the following two properties:

- The multiplication (7) is *commutative*. (This was noticed in [Vor1].) Indeed, using Jacobi identity for S^*V we have:

$$[a_1, [a_2, \dots, [a_n, \mu] \dots]] = [[a_1, a_2], \dots, [a_n, \mu] \dots]] + (-1)^{\bar{a}_1 \bar{a}_2} [a_2, [a_1, \dots, [a_n, \mu] \dots]]] = (-1)^{\bar{a}_1 \bar{a}_2} [a_2, [a_1, \dots, [a_n, \mu] \dots]].$$

We used the fact that $[[a_1, a_2], \dots, [a_n, \mu] \dots]] = 0$, because $[a_1, a_2] \in \mathbb{K}$. Similarly we can prove the commutativity relation for other a_i .

- The n -ary superalgebra structure (7) is invariant. Indeed,

$$(a_0, \{a_1, \dots, a_n\}) = [a_0, [a_1, [a_2, \dots, [a_n, \mu] \dots]]] = (-1)^{\bar{a}_0 \bar{a}_1} [a_1, [a_0, [a_2, \dots, [a_n, \mu] \dots]]] = (-1)^{\bar{a}_0 \bar{a}_1} (a_1, \{a_0, a_2, \dots, a_n\}).$$

We conclude this section with the following observation.

Proposition 1. *Assume that V is finite dimensional and $(,)$ is non-degenerate. Any commutative invariant n -ary superalgebra structures can be obtained by construction (7).*

Proof. Denote by \mathcal{A}_n the vector space of commutative invariant n -ary superalgebra structures on V and by \mathcal{L}_{n+1} the vector space of symmetric $(n+1)$ -linear maps from V to \mathbb{K} . Clearly, $\dim \mathcal{L}_{n+1} = \dim S^{n+1}V$. Since $(,)$ is non-degenerate, Formula (7) defines an injective linear map $S^{n+1}V \rightarrow \mathcal{A}_n$. We can also define an injective linear map $\mathcal{A}_n \rightarrow \mathcal{L}_{n+1}$ in the following way:

$$\mathcal{A}_n \ni \mu \longmapsto L_\mu \in \mathcal{L}_{n+1}, \quad L_\mu(a_1, \dots, a_{n+1}) = (a_1, \mu(a_2, \dots, a_{n+1})).$$

Note that L_μ is symmetric since μ defines an invariant superalgebra structure. Summing up, we have the following sequence of injective maps or isomorphisms:

$$S^{n+1}V \hookrightarrow \mathcal{A}_n \hookrightarrow \mathcal{L}_{n+1} \simeq S^{n+1}V.$$

Since V is finite dimensional, we get $S^{n+1}V \simeq \mathcal{A}_n$. \square

3 Examples of commutative invariant n -ary superalgebras

Usually one studies superalgebras with an invariant form in the following way. One considers for example a Lie algebra or a Jordan algebra and assumes that the multiplication in the algebra satisfies the following additional condition: it is invariant with respect to a non-degenerate (skew)-symmetric form. The derived bracket formalism permits to express for instance Jacobi, Filippov and Jordan identities in terms of derived potentials and the Poisson bracket on S^*V . In this case the additional invariance condition is fulfilled automatically.

3.1 Strongly homotopy Lie algebras with an invariant skew-symmetric form

We follow Th. Voronov [Vor1] in conventions concerning L_∞ -algebras. We set $I^k := (i_1, \dots, i_k)$ and $J^l := (j_1, \dots, j_l)$, where $i_1 < \dots < i_k$ and $j_1 < \dots < j_l$. We denote $a_{I^k} := (a_{i_1}, \dots, a_{i_k})$, $a_{J^l} := (a_{j_1}, \dots, a_{j_l})$ and $a^s := (a_1, \dots, a_s)$, where $a_i \in V$. We put $[a_{I^k}, \mu] := [a_{i_1}, \dots [a_{i_k}, \mu]]$ and $[a^s, \mu] := [a_1, \dots [a_s, \mu]]$, where $\mu \in S^*V$.

Definition 2. A vector superspace V with a sequence of odd n -linear maps μ_n , where $n \geq 0$, is called an L_∞ -algebra if

- the maps μ_n are commutative in the sense of Definition 1;
- the following generalized Jacobi identities hold:

$$\sum_{k+l=n} \sum_{(I^k, J^l)} (-1)^{(I^k, J^l)} \mu_{l+1}(a_{I^l}, \mu_k(a_{J^k})) = 0, \quad n \geq 0. \quad (8)$$

Here (I^k, J^l) is a unshuffle permutation of $(1, \dots, n)$ and $(-1)^{(I^k, J^l)}$ is the sign obtained using the sign rule for the permutation (I^k, J^l) of homogeneous elements $a_1, \dots, a_n \in V$.

Definition 3. An L_∞ -algebra structure $(\mu_n)_{n \geq 0}$ on V is called *invariant* if all μ_n are invariant in the sense of Definition 1.

The following statement follows from Theorem 1 in [Vor1] and Proposition 1. For completeness we give here a proof in our notations and agreements.

Proposition 2. *Invariant L_∞ -algebra structures on V are in one-to-one correspondence with odd elements $\mu \in S^*(V)$ such that $[\mu, \mu] = 0$.*

Proof. Our objective is to show that $[\mu, \mu] = 0$ is equivalent to (8) together with the invariance condition. Let us take any odd element $\mu = \sum_k \mu_k \in S^*V$, where $\mu_k \in S^{k+1}V$. The equation $[\mu, \mu] = 0$ is equivalent to the following equations

$$\sum_{k+l=n} [a^{n-1}, [\mu_l, \mu_k]] = 0$$

for all $n \geq 0$ and all $a_i \in V$. Furthermore, we have:

$$\begin{aligned}
[a^{n-1}, [\mu_l, \mu_k]] &= \sum_{(I^l, J^{k-1})} (-1)^{(I^l, J^{k-1}) + \bar{a}_{J^{k-1}}} [[a_{I^l}, \mu_l], [a_{J^{k-1}}, \mu_k]] + \\
&\quad \sum_{(I^{l-1}, J^k)} (-1)^{(I^{l-1}, J^k) + \bar{a}_{J^k}} [[a_{I^{l-1}}, \mu_l], [a_{J^k}, \mu_k]] = \\
&\quad \sum_{(I^l, J^{k-1})} (-1)^{(I^l, J^{k-1}) + \bar{a}_{J^{k-1}}} \mu_k(\mu_l(a_{I^l}), a_{J^{k-1}}) + \\
&\quad \sum_{(I^k, J^{l-1})} (-1)^{(J^k, I^{l-1}) + \bar{a}_{J^{l-1}}} \mu_l(\mu_k(a_{I^k}), a_{J^{l-1}}) = \\
&\quad \sum_{(J^{k-1}, I^l)} (-1)^{(J^{k-1}, I^l)} \mu_k(a_{J^{k-1}}, \mu_l(a_{I^l})) + \\
&\quad \sum_{(I^{l-1}, J^k)} (-1)^{(I^{l-1}, J^k)} \mu_l(a_{I^{l-1}}, \mu_k(a_{J^k})).
\end{aligned} \tag{9}$$

Therefore, $[a^{n-1}, \sum_{k+l=n} [\mu_l, \mu_k]] = 0$ is equivalent to the generalized Jacobi identity for $k+l = n$. In other words, the equation $[\mu, \mu] = 0$ is equivalent to the generalized Jacobi identities together with the invariance conditions. \square

Corollary. *Assume that $V = V_{\bar{1}}$ and n is even. Anti-commutative invariant n -ary algebra structures on V satisfying Jacobi (2) are in one-to-one correspondence with elements $\mu \in S^{n+1}(V)$ such that $[\mu, \mu] = 0$.*

Proof. In this case the equation 9 has the form:

$$[a^{2n-1}, [\mu, \mu]] = 2 \sum_{(I, J)} (-1)^{(I, J)} \mu(a^I, \mu(a^J)).$$

Here $I = (i_1, \dots, i_{n-1})$, $J = (j_1, \dots, j_n)$ are unshuffles and $I \cup J = \{1, \dots, 2n-1\}$. Since n is even we have:

$$\sum_{(I, J)} (-1)^{(I, J)} \mu(a^I, \mu(a^J)) = \sum_{(I, J)} (-1)^{(J, I)} \mu(\mu(a^J), a^I).$$

The proof is complete. \square

3.2 Filippov algebras with invariant symmetric forms

Definition 4. A skew-symmetric n -ary algebra is called a *Filippov algebra* if its multiplication satisfies (1). We say that a Filippov algebra has an *invariant form*

$(,)$ if its multiplication is invariant with respect to $(,)$ in the sense of Definition 1.

Filippov algebras with an invariant form are described in the following proposition. The idea of the proof we borrow in [VV1].

Proposition 3. *Assume that $V = V_1$ and $\mu \in S^{n+1}V$ satisfies*

$$[\mu_{a^{n-1}}, \mu] = 0$$

for all $a^{n-1} = (a_1, \dots, a_{n-1})$. Then (V, μ) is a Filippov (or Nambu-Poisson) n -ary algebra with an invariant form.

Conversely, any Filippov n -ary algebra with an invariant form can be obtained by this construction.

Proof. We need to show that $[\mu_{a^{n-1}}, \mu] = 0$ is equivalent to 1, where $\mu_{a^{n-1}} = [a_1, \dots, [a_{n-1}, \mu]]$ and $a_i \in V$. Let us take $b_1, \dots, b_n \in V$. We have:

$$[\mu_{a^{n-1}}, [b_1, \dots, [b_n, \mu]]] = \sum_{i=1}^n [b_1, \dots, [[\mu_{a^{n-1}}, b_i], \dots, [b_n, \mu]]] + [b_1, \dots, [b_n, [\mu_{a^{n-1}}, \mu]]]$$

Further,

$$[\mu_{a^{n-1}}, [b_1, \dots, [b_n, \mu]]] = -\{\{b_1, \dots, b_n\}, a_1, \dots, a_{n-1}\} = (-1)^n \{a_1, \dots, a_{n-1}, \{b_1, \dots, b_n\}\};$$

$$[b_1, \dots, [[\mu_{a^{n-1}}, b_i], \dots, [b_n, \mu]]] = -\{b_1, \dots, b_{i-1}, \{b_i, a_1, \dots, a_{n-1}\}, b_{i+1}, \dots, b_n\} = (-1)^n \{b_1, \dots, b_{i-1}, \{a_1, \dots, a_{n-1}, b_i\}, b_{i+1}, \dots, b_n\};$$

Hence, we have:

$$\{a_1, \dots, a_{n-1}, \{b_1, \dots, b_n\}\} = \sum_{i=1}^n \{b_1, \dots, b_{i-1}, \{a_1, \dots, a_{n-1}, b_i\}, b_{i+1}, \dots, b_n\} + (-1)^n [b_1, \dots, [b_n, [\mu_{a^{n-1}}, \mu]]].$$

We see that 1 holds if and only if $[b_1, \dots, [b_n, [\mu_{a^{n-1}}, \mu]]] = 0$. By Proposition 1 all such algebras are invariant with respect to $(,)$. The proof is complete. \square

3.3 Jordan algebras with symplectic invariant forms

First of all let us recall the definition of a Jordan algebra.

Definition 5. A *Jordan algebra* is a commutative algebra over \mathbb{K} such that the multiplication satisfies the following axiom:

$$(xy)(xx) = x(y(xx)).$$

We call a Jordan algebra *symplectic* if it possesses a non-degenerate skew-symmetric invariant form.

Proposition 4. *Let V be a pure even vector space with a non-degenerate skew-symmetric form. Assume that $A \in S^3V$ satisfies the following identity:*

$$[A_x, A_{[A_x, x]}] = 0,$$

where $A_x = [x, A]$. Then (V, A) is a symplectic Jordan algebra. Conversely, any symplectic Jordan algebra can be obtained by this construction.

Proof. By Proposition 1 any commutative algebra V with a non-degenerate skew-symmetric form can be obtained by the derived bracket construction. Denote by A the derived potential of a commutative algebra V with a non-degenerate skew-symmetric form (\cdot, \cdot) . In other words, the multiplication in V is given by

$$xy = [x, [y, A]].$$

We have:

$$(xy)(xx) = [[y, A_x], [[x, A_x], A]]; \quad x(y(xx)) = -[A_x, [y, [[x, A_x], A]]].$$

Further,

$$[A_x, [y, [[x, A_x], A]]] = [[A_x, y], [[x, A_x], A]] + [y, [A_x, [[x, A_x], A]]].$$

We see that this equation is equivalent to

$$-x(y(xx)) = -(xy)(xx) + [y, [A_x, [[x, A_x], A]]].$$

Hence, the algebra V is Jordan if and only if

$$[y, [A_x, [[x, A_x], A]]] = 0$$

for all $x, y \in V$. The last condition is equivalent to

$$[A_x, [[x, A_x], A]] = 0$$

for all $x \in V$. \square

3.4 Associative algebras with symplectic invariant forms

Proposition 5. *Assume that $V = V_0$ and $\mu \in S^3V$ satisfies the following identity:*

$$[\mu_a, \mu_b] = 0$$

for all $a, b \in V$. Here $\mu_x = [x, \mu]$. Then (V, μ) is a commutative associative algebra with a non-degenerate skew-symmetric invariant form.

Conversely, any commutative associative algebra with a non-degenerate skew-symmetric invariant form can be obtained by this construction.

Proof. Let us use the notation:

$$a \circ b := [a, [b, \mu]].$$

We have to show that the associativity relation for \circ is equivalent to $[\mu_a, \mu_b] = 0$ for all $a, b \in V$. Indeed,

$$\begin{aligned} a \circ (b \circ c) &= [a, [[b, [c, \mu]]\mu]] = -[a, [\mu, [b, [c, \mu]]]] = \\ &= -[\mu_a, [b, [c, \mu]]] = -[[\mu_a, b], [c, \mu]] - [b, [\mu_a, \mu_c]] = [[b, \mu_a], [c, \mu]] - [b, [\mu_a, \mu_c]] = \\ &= (b \circ a) \circ c - [b, [\mu_a, \mu_c]]. \end{aligned}$$

Therefore, the equality $[\mu_a, \mu_c] = 0$ for all $a, c \in V$ and the associativity law are equivalent. \square

Remark. We see that the associativity law for commutative algebras is equivalent to commutativity of all operators μ_a , $a \in V$, where $\mu_a(b) = a \circ b$.

4 Hodge operator and its applications

4.1 *-operator and n -ary algebras

Let V be a pure odd vector space of dimension m with a non-degenerate skew-symmetric even bilinear form $(,)$. Recall that means that $(a, b) = (b, a)$ for all $a, b \in V$. Let us choose a normalized orthogonal basis (e_i) of V . Denote by $L := e_1 \dots e_m$ the top form corresponding to the chosen basis. We define the operator $* : S^p V \rightarrow S^{m-p} V$ by the following formula:

$$*(x_1 \dots x_p) = [x_1, [\dots [x_p, L]]]. \quad (10)$$

In particular, we have:

$$*(e_{i_1} \dots e_{i_p}) = [e_{i_1}, [\dots [e_{i_p}, L]]] = (-1)^\sigma e_{j_1} \dots e_{j_{m-p}},$$

where $\sigma(1, \dots, m) = (i_p, \dots, i_1, j_1, \dots, j_{m-p})$. Clearly, this definition depends only on orientation of V and on the bilinear form $(,)$. Note that $* : S^p V \rightarrow S^{m-p} V$ is an isomorphism for all p . This follows for example from the following formula:

$$** (e_{i_1} \dots e_{i_p}) = (-1)^{\frac{m(m-1)}{2}} e_{i_1} \dots e_{i_p}.$$

The following well-known result we can easily prove using derived bracket formalism:

Proposition 6. *The vector space $\mathfrak{so}(V)$ of linear operators preserving the form (\cdot, \cdot) is isomorphic to $S^2(V)$.*

Proof. The isomorphism is given by the formula $w \mapsto \text{ad } w$, where $w \in S^2(V)$ and $\text{ad } w(v) := [w, v]$ for $v \in V$. Indeed, for all $v_1, v_2 \in V$ we have:

$$0 = \text{ad } w([v_1, v_2]) = [[w, v_1], v_2] + [v_1, [w, v_2]] = ([w, v_1], v_2) + (v_1, [w, v_2]).$$

Obviously, this map is injective. We complete the proof observing that the dimensions of $\mathfrak{so}(V)$ and $S^2(V)$ are equal. \square

We have seen in previous sections that elements from $S^{(n+1)}V$ corresponds to n -ary algebras with an invariant form. The existence of the $*$ -operator for $V = V_1$ leads to the idea that n -ary and $(m-n)$ -ary algebras can have some common properties. In particular such algebras have the same algebra of orthogonal derivations.

Definition 6. A *derivation* of an n -ary algebra (V, μ) is a linear map $D : V \rightarrow V$ such that

$$D(\{v_1, \dots, v_n\}) = \sum_j \{v_1, \dots, D(v_j), \dots, v_n\}.$$

We denote by $\text{IDer}(\mu)$ the vector space of all derivations of the algebra (V, μ) preserving the form (\cdot, \cdot) .

Proposition 7. *Let us take any $w \in S^2(V)$ and $\mu \in S^{n+1}(V)$.*

a. *We have:*

$$\text{IDer}(\mu) \simeq \text{lin}\{w \in S^2(V) \mid \text{ad } w(\mu) = 0\}.$$

b. *The isomorphism $* : S^p(V) \rightarrow S^{m-p}(V)$ is equivariant with respect to the natural action of $\mathfrak{so}(V)$ on $S^*(V)$. In particular,*

$$\text{IDer}(\mu) = \text{IDer}(*\mu).$$

Proof. a. First of all by the standard argument we obtain:

$$\begin{aligned} \text{ad } w(\{v_1, \dots, v_p\}) &= [w, [v_1, \dots, [v_n, \mu] \dots]] = \sum_i^n [v_1, \dots, [[w, v_i] \dots, [v_n, \mu]] \dots] + \\ &[v_1, \dots, [v_n, [w, \mu]] \dots] = \sum_j \{v_1, \dots, [w, v_j], \dots, v_n\} + [v_1, \dots, [v_n, [w, \mu]] \dots]. \end{aligned}$$

We see that $\text{ad } w$ is a derivation if and only if $[w, \mu] = 0$.

b. Let $L = e_1 \dots e_m$ be as above and $w \in S^2(V)$. We have,

$$\begin{aligned} *([w, e_{i_1} \dots e_{i_p}]) &= *(\sum_{j=1}^p e_{i_1} \dots [w, e_{i_j}] \dots e_{i_p}) = \\ &\sum_{j=1}^p [e_{i_1}, \dots, [[w, e_{i_j}] \dots, [e_{i_p}, L]] \dots]. \end{aligned}$$

On the other side,

$$[w, *(\mathbf{e}_{i_1} \dots \mathbf{e}_{i_p})] = [w, [\mathbf{e}_{i_1}, \dots [\mathbf{e}_{i_p}, L]]] = \sum_{j=1}^p [\mathbf{e}_{i_1}, \dots, [[w, \mathbf{e}_{i_j}] \dots, [\mathbf{e}_{i_p}, L]] \dots].$$

We use here the fact that $[w, L] = 0$. Therefore, the $*$ -operator is $\mathfrak{so}(V)$ -equivariant.

Furthermore, assume that $w \in \text{IDer}(\mu)$ or equivalently that $[w, \mu] = 0$. Therefore,

$$[w, * \mu] = *([w, \mu]) = *(0) = 0.$$

Hence, $w \in \text{IDer}(*\mu)$. Conversely, if $w \in \text{IDer}(*\mu)$ then

$$*([w, \mu]) = [w, * \mu] = 0.$$

This finishes the proof. \square

4.2 Hodge decomposition for real metric strongly homotopy algebras

4.2.1 Hodge decomposition for a vector space.

In this Subsection we follow Kostant's approach [Kost, Page 332 - 333]. Let W be a finite dimensional vector space with two linear operators d and δ such that $d^2 = \delta^2 = 0$.

Definition 7. [Kostant] Linear maps d and δ are called *disjoint* if the following holds:

1. $d \circ \delta(x) = 0$ implies $\delta(x) = 0$;
2. $\delta \circ d(x) = 0$ implies $d(x) = 0$.

Denote $\mathcal{L} = \delta \circ d + d \circ \delta$.

Proposition 8. [Kostant] Assume that d and δ are disjoint. Then we have:

$$\text{Ker}(\mathcal{L}) = \text{Ker}(d) \cap \text{Ker}(\delta)$$

and a direct sum (an analog of a Hodge Decomposition):

$$W = \text{Im}(d) \oplus \text{Im}(\delta) \oplus \text{Ker}(\mathcal{L}).$$

In this case the restriction $\pi|_{\text{Ker}(\mathcal{L})}$ of the canonical mapping

$$\pi : \text{Ker}(d) \rightarrow \text{Ker}(d) / \text{Im}(d) =: H(W, d)$$

is a bijection. In other words $\text{Ker}(\mathcal{L}) \simeq H(W, d)$. \square

We will use this Proposition to obtain a Hodge decomposition for metric L_∞ -algebras.

4.2.2 Hodge decomposition for real metric L_∞ -algebras.

Let V be a pure odd real vector space with a non-degenerate skew-symmetric positive defined form $(,)$ and $\mu \in S^*V$ be a homogeneous element such that $[\mu, [\mu, -]] = 0$. If μ is an odd element, the condition $[\mu, [\mu, -]] = 0$ is equivalent to $[\mu, \mu] = 0$. Denote by $d : V \rightarrow V$ the linear operator $v \mapsto [\mu, v]$. Obviously, $d \circ d = 0$. Using Hodge $*$ -operator we can define the following operator

$$\delta = *d*.$$

Again we have $\delta \circ \delta = 0$. We can also define a bilinear product \langle , \rangle in S^*V by the following formula:

$$\langle v_1, v_2 \rangle_L = \begin{cases} (-1)^{\frac{p(p-1)}{2}} v_1 \cdot (*v_2), & \text{if } v_1, v_2 \in S^p V; \\ 0, & \text{if } v_1 \in S^p V, v_2 \in S^q V \text{ and } p \neq q. \end{cases}$$

This bilinear product has the following properties:

Proposition 9. *We have*

$$\langle e_I, e_J \rangle = \begin{cases} 0, & \text{if } I \neq J, \\ 1, & \text{if } I = J. \end{cases}$$

Here $I = (i_1, \dots, i_p)$ and $J = (j_1, \dots, j_p)$ such that $i_1 < \dots < i_p$ and $j_1 < \dots < j_p$. In particular, the pairing \langle , \rangle is symmetric and positive definite.

Proof. A straightforward computation. \square

Proposition 10. *Assume that $\mu \in S^*(V)$ is a homogeneous element and d and δ are as above. Then we have*

$$\langle d(v), w \rangle = -(-1)^{\bar{\mu} \bar{v} + \frac{m(m-1)}{2}} \langle v, \delta(w) \rangle$$

for $v, w \in S^*V$, and the operators d and δ are disjoint.

Proof. Step A. Let us take $\mu_k \in S^{k+2}V$, $v \in S^{p-k}V$ and $w \in S^p V$. (We assume that $S^r V = \{0\}$ for $r < 0$ and $r > m$, where $m = \dim V$.) Then, $v \cdot *w \in S^{m-k}V$ and we have:

$$[\mu_k, v \cdot *w] \subset [S^{k+2}V, S^{m-k}(V)] = 0.$$

Furthermore,

$$\begin{aligned} 0 &= [\mu_k, v \cdot *w] = [\mu_k, v] \cdot *w + (-1)^{\bar{\mu}_k \bar{v}} v \cdot [\mu_k, *w] = \\ &= [\mu_k, v] \cdot *w + (-1)^{\bar{\mu}_k \bar{v} + \frac{m(m-1)}{2}} v \cdot *[\mu_k, *w] = \\ &= d_k(v) \cdot *w + (-1)^{\bar{\mu}_k \bar{v} + \frac{m(m-1)}{2}} v \cdot *\delta_k(w), \end{aligned}$$

where $d_k(v) = [\mu_k, v]$ and $\delta_k(w) = *[\mu_k, *w]$. Therefore,

$$\langle d_k(v), w \rangle = -(-1)^{\bar{\mu}_k \bar{v} + \frac{m(m-1)}{2}} \langle v, \delta_k(w) \rangle$$

for all $v \in S^{p-k}V$ and $w \in S^pV$. Note that this equation holds trivially for $v \in S^pV$ and $w \in S^qV$, where $q - p \neq k$. Therefore, we have

$$\langle d_k(v), w \rangle = -(-1)^{\bar{\mu}_k \bar{v} + \frac{m(m-1)}{2}} \langle v, \delta_k(w) \rangle \quad (11)$$

for all $v, w \in S^*V$, where v is homogeneous, and $\mu_k \in S^{k+2}V$.

Let us take any homogeneous $\mu \in S^*(V)$. Then $\mu = \sum_k \mu_k$, where $\mu_k \in S^k(V)$ and k are all odd or all even. Therefore, d and δ also possess corresponding decomposition: $d = \sum_k d_k$ and $\delta = \sum_k \delta_k$, where $d_k = [\mu_k, -]$ and $\delta_k = *d_k*$. Using 11, we get for homogeneous $v, w \in S^*V$:

$$\begin{aligned} \langle d(v), w \rangle &= \sum_k \langle d_k(v), w \rangle = -\sum_k (-1)^{\bar{\mu}_k \bar{v} + \frac{m(m-1)}{2}} \langle v, \delta_k(w) \rangle = \\ &= -(-1)^{\bar{\mu} \bar{v} + \frac{m(m-1)}{2}} \sum_k \langle v, \delta_k(w) \rangle = -(-1)^{\bar{\mu} \bar{v} + \frac{m(m-1)}{2}} \langle v, \delta(w) \rangle. \end{aligned}$$

The first statement is proven.

Step B. Let us show that $d \circ \delta(v) = 0$ implies $\delta(v) = 0$, i.e. the operators d and δ are disjoint. (This argument we borrow from [Kost].) Indeed,

$$0 = \langle d \circ \delta(v), v \rangle = -(-1)^{\bar{d}(\bar{\delta} + \bar{v}) + \frac{m(m-1)}{2}} \langle \delta(v), \delta(v) \rangle.$$

The pairing \langle , \rangle is positive definite, hence $\delta(v) = 0$. Analogously we can show that $\delta \circ d(v) = 0$ implies $d(v) = 0$. \square

Denote by $H(V, \mu)$ the cohomology space of the L_∞ -algebra (V, μ) , where $\mu \in S^*V$ is an odd element such that $[\mu, \mu] = 0$. By definition $H(V, \mu) := \text{Ker}(d) / \text{Im}(d)$. The main result of this section is the following theorem.

Theorem 1. [Hodge decomposition for real metric L_∞ -algebras] *Let $\mu \in S^*(V)$ be a real metric L_∞ -algebra structure on V and d and δ be as above. Then we have a direct sum decomposition:*

$$V = \text{Im}(d) \oplus \text{Im}(\delta) \oplus \text{Ker}(\mathcal{L}),$$

where $\mathcal{L} = \delta \circ d + d \circ \delta$, and $\text{Ker}(\mathcal{L}) \simeq H(V, \mu)$.

Proof. The statement follows from Propositions 8 and 10 \square .

5 m -dimensional Filippov and Lie $(m-3)$ -algebras

5.1 $(m-3)$ -ary algebras with non-degenerate symmetric forms and coadjoint orbits

Another application of the $*$ -operator is the following: we can classify all $(m-3)$ -ary symmetric algebras up to orthogonal isomorphism in terms of coadjoint orbits. If we assume in addition that such $(m-3)$ -ary algebras are real and that the form $(,)$ is positive definite then we can classify all simple algebras. Let again V be a pure odd vector space with an even non-degenerate skew-symmetric form $(,)$, i.e. $(a, b) = (b, a)$ for all $a, b \in V$. As usual we denote by $O(V)$ the Lie group of all invertible linear operators on V that preserve the form $(,)$ and by $SO(V)$ the subgroup of $O(V)$ that contains all operators with the determinant $+1$. We have $\mathfrak{so}(V) = \text{Lie } O(V) = \text{Lie } SO(V)$.

Definition 8. Two n -ary algebra structures $\mu, \mu' \in S^*V$ on V are called *isomorphic* if there exists $\varphi \in SO(V)$ such that

$$\varphi(\{v_1, \dots, v_n\}_\mu) = \{\varphi(v_1), \dots, \varphi(v_n)\}_{\mu'}$$

for all $v_i \in V$. Here we denote by $\{\dots\}_\nu$ the multiplication on V corresponding to the algebra structure ν .

Sometimes we will consider isomorphism of n -ary algebra structures up to $\varphi \in O(V)$. We need the following two lemmas:

Lemma 1. *Let us take $\varphi \in O(V)$ and $w, v \in S^*V$. Then, $\varphi([w, v]) = [\varphi(w), \varphi(v)]$. In other words, φ preserves the Poisson bracket.*

Proof. It follows from the following two facts:

- $(\varphi(w), \varphi(v)) = (w, v)$, if $w, v \in V$;
- $\varphi(w \cdot v) = \varphi(w) \cdot \varphi(v)$ for all $w, v \in S^*V$. \square

Lemma 2. *Two n -ary algebras (V, μ) and (V, μ') , where $\mu, \mu' \in S^*V$, are isomorphic if and only if there exists $\varphi \in SO(V)$ such that $\varphi(\mu) = \mu'$. In other words, two n -ary algebras are isomorphic if and only if the corresponding n -ary algebra structures are in the same orbit of the action $SO(V)$ on $S^{n+1}V$.*

Proof. From Lemma 1 it follows that

$$\varphi(\{v_1, \dots, v_n\}_\mu) = \{\varphi(v_1), \dots, \varphi(v_n)\}_{\varphi(\mu)}.$$

Furthermore, if (V, μ) and (V, μ') are isomorphic and $\varphi \in SO(V)$ is an isomorphism then from the definition it follows that:

$$\varphi(\{v_1, \dots, v_n\}_\mu) = \{\varphi(v_1), \dots, \varphi(v_n)\}_{\mu'}$$

for all $v_i \in V$. Therefore, $\varphi(\mu) = \mu'$. The converse statement is obvious. \square

Assume that $\dim V = m$.

Theorem 2. *Classes of isomorphic real or complex $(m - 3)$ -ary algebras with the invariant form $(,)$ are in one-to-one correspondence with coadjoint orbits of the Lie group $\mathrm{SO}(V)$.*

Proof. It follows from Proposition 7 and Lemma 2. Note that in the case of the Lie group $\mathrm{SO}(V)$ the adjoint and coadjoint action are equivalent. \square

It is well-known that any real skew-symmetric matrix A can be written in the following form:

$$A = QA'Q^{-1},$$

where

$$A' = \mathrm{diag}(J_{a_1}, \dots, J_{a_k}, 0, \dots, 0),$$

$$J_{a_j} = \begin{pmatrix} 0 & a_j \\ -a_j & 0 \end{pmatrix}, \quad a_j \in \mathbb{R},$$

and $Q \in \mathrm{SO}(V)$. If we assume in addition that $Q \in \mathrm{O}(V)$ and $0 < a_k \leq \dots \leq a_1$, then A' is unique. (This follows from the uniqueness of the Jordan normal form of a given matrix up to the order of the Jordan blocks and from the fact that A has the following eigenvalues: $\pm ia_j$, where $j = 1, \dots, k$, and 0.) Furthermore, by Proposition 6 we have an isomorphism $\mathfrak{so}(V) \simeq S^2V$. Let (ξ_i) be an orthogonal basis of V such that the matrix $A \in \mathfrak{so}(V)$ has the form

$$A = \mathrm{diag}(J_{a_1}, \dots, J_{a_k}, 0, \dots, 0).$$

Then the corresponding element in S^2V is

$$v_A = a_1\xi_1\xi_2 + \dots + a_k\xi_{2k-1}\xi_{2k},$$

where $0 < a_k \leq \dots \leq a_1$ and $a_j \in \mathbb{R}$.

We obtained the following theorem:

Theorem 3. [Classification of real $(m - 3)$ -ary algebras up to $\mathrm{O}(V)$ -isomorphism] *Real $(m - 3)$ -ary algebras with the invariant positive definite form $(,)$ are parametrized by vectors*

$$v = a_1\xi_1\xi_2 + \dots + a_k\xi_{2k-1}\xi_{2k},$$

where $a_i \in \mathbb{R}$, $0 < a_k \leq \dots \leq a_1$ and $0 \leq k \leq [\frac{m}{2}]$. Explicitly such algebras are given by (V, μ_v) , where

$$\mu_v = *(v).$$

5.2 Classification of real simple $(m - 3)$ -ary algebras with positive definite invariant forms

In this section we give a classification of simple $(m - 3)$ -ary algebras with invariant forms up to orthogonal isomorphism.

Definition 9. A vector subspace $W \subset V$ is called an *ideal* of a symmetric n -ary algebra (V, μ) if $\mu(V, \dots, V, W) \subset W$.

In other words, the vector space W is an ideal if and only if it is invariant with respect to the set of endomorphisms $\mu_{v_1, \dots, v_{n-1}} : V \rightarrow V$, where $v_i \in V$. Clearly, the vector space W is an ideal if and only if it is invariant with respect to the Lie algebra \mathfrak{g} that is generated by all $\mu_{v_1, \dots, v_{n-1}}$.

Definition 10. An n -ary Lie algebra is called *simple* if it is not 1-dimensional and it does not have any proper ideals.

Example 2. The classification of simple complex and real Filippov n -ary algebras was done in [Ling]: there is one series of complex Filippov n -ary algebras A_k , where k is a natural number and several real forms for each A_k . All these algebras have invariant forms and in our terminology they are given by the top form L and formula (7).

Example 3. Let $m = 5$. By Theorem 3 we see that we have three types of 2-ary algebras up to isomorphism:

- $\mu_1 = 0$;
- $\mu_2 = b_1 \xi_3 \xi_4 \xi_5$, where $b_1 \neq 0$;
- $\mu_3 = b_1 \xi_3 \xi_4 \xi_5 + b_2 \xi_1 \xi_2 \xi_5$, where $b_1, b_2 \neq 0$.

Obviously, the zero algebra $\mu_1 = 0$ is not simple. The second algebra structure $\mu_2 = b_1 \xi_3 \xi_4 \xi_5$ has a non-trivial center because

$$(\mu_2)_{\xi_1} = (\mu_2)_{\xi_2} = 0,$$

Therefore it is also not simple. We will see that the algebra μ_3 is simple. It is not a Lie algebra because $[\mu_3, \mu_3] = -2b_1 b_2 \xi_1 \xi_2 \xi_3 \xi_4 \neq 0$.

Theorem 4. [Classification of real simple $(m - 3)$ -ary algebras with invariant forms] Assume that $m > 4$. All real $(m - 3)$ -ary algebras from Theorem 3 are simple except of two cases:

- $v = 0$;
- $v = a_1 \xi_1 \xi_2$, where $a_1 \neq 0$.

Proof. Clearly, the trivial derived potential $\mu = 0$ determines a non-simple algebra. The algebra (V, μ) , where $\mu = *(v)$ and $v = a_1\xi_1\xi_2$, has a non-trivial center. Indeed, we have $*(v) = \pm a_1\xi_3 \cdots \xi_m$. Therefore,

$$[x_1, \dots, [\xi_1, \mu]] = 0 \text{ for all } x_i \in V$$

We see that $\text{lin}\{\xi_1\}$ is an ideal. Hence, this algebra is also not simple.

Let us show that the other algebras from Theorem 3 are simple. Consider the Lie algebra $\mathfrak{g}(\mu) \subset S^2V$ generated by linear operators $\mu_{v_1, \dots, v_{m-4}} : V \rightarrow V$, where $v_i \in V$, and the linear space $L(\mu) = \text{lin}\{\mu_{v_1, \dots, v_{m-3}}\} \subset V$. The idea of the proof is to show by induction that

1. $\mathfrak{g}(\mu) := \text{Lie}\{\mu_{v_1, \dots, v_{m-4}, -}\} = S^2V \simeq \mathfrak{so}(V)$;
2. $L(\mu) = \text{lin}\{\mu_{v_1, \dots, v_{m-3}}\} = V$.

From the first observation it follows that V is an irreducible module of $\mathfrak{g}(\mu)$ or equivalently that (V, μ) does not contain any non-trivial ideals. The second observation is an auxiliary statement.

Base case. Consider the case $\dim V = 5$ and $k = 2$. Then

$$\mu = *(a_1\xi_1\xi_2 + a_2\xi_3\xi_4) = b_1\xi_3\xi_4\xi_5 + b_2\xi_1\xi_2\xi_5,$$

where $b_i = \pm a_i$. A direct computation shows that:

$$[\xi_1, \mu] = b_2\xi_2\xi_5, \quad [\xi_2, \mu] = -b_2\xi_1\xi_5, \quad [\xi_3, \mu] = b_1\xi_4\xi_5, \quad [\xi_4, \mu] = -b_1\xi_3\xi_5$$

Therefore, the Lie algebra $\mathfrak{g}(\mu)$ contains all endomorphisms of the form $w \cdot \xi_5$, where $w \in \text{lin}\{\xi_1, \dots, \xi_4\}$. Further, let us take $\xi_i\xi_5$ and $\xi_j\xi_5$ in $\mathfrak{g}(\mu)$, where $i \neq j$ and $i, j \in \{1, \dots, 4\}$. Then

$$[\xi_i\xi_5, \xi_j\xi_5] = \pm \xi_i\xi_j \in \mathfrak{g}(\mu).$$

Therefore, $\mathfrak{g}(\mu) = S^2V$ and we prove the first statement. Again by direct computation we obtain:

$$[\xi_i, \xi_i\xi_5] = \xi_5, \quad [\xi_5, \xi_i\xi_5] = -\xi_i.$$

Hence, $L(\mu) = V$ and the second statement is proven in this case.

Inductive step. Assume that $\dim V = m > 5$ and $\mu = *(v)$, where

$$v = a_1\xi_1\xi_2 + \dots + a_k\xi_{2k-1}\xi_{2k}, \quad a_i \neq 0, \quad k > 1, \quad m \geq 2k.$$

Explicitly the derived potential μ is given by

$$\mu = \sum_{i=1}^k b_i\xi_1 \cdots \hat{\xi}_{2i-1} \hat{\xi}_{2i} \cdots \xi_m, \quad b_i = \pm a_i.$$

Here $\hat{\xi}_{2i-1}\hat{\xi}_{2i}$ are omitted. Consider first the cases $m > 2k$. Then, $\mu = \mu'\xi_m$, where μ' is an $(m-4)$ -ary algebra on the vector space $V' = \text{lin}\{\xi_1, \dots, \xi_{m-1}\}$ of dimension $m-1$. By induction, we have

$$\mathfrak{g}(\mu') \simeq \mathfrak{so}(V') \quad \text{and} \quad L(\mu') = V'. \quad (12)$$

Using $[\xi_m, \mu] = \pm\mu'$ and (12), we see that $\mathfrak{g}(\mu) \supset \mathfrak{so}(V')$ and $L(\mu) \supset V'$. Again using (12), the second equality, we get that for any $w \in V'$ there exist $x_1, \dots, x_{m-4} \in V'$ such that

$$[x_1, \dots, [x_{m-4}, \mu']] = w.$$

Therefore,

$$[x_1, \dots, [x_{m-4}, \mu]] = w \cdot \xi_m.$$

In other words, $\mathfrak{g}(\mu)$ contains all endomorphisms of the form $w \cdot \xi_m$, where $w \in V'$. Hence,

$$\mathfrak{g}(\mu) \supset \mathfrak{so}(V') \oplus (V' \cdot \xi_m) = \mathfrak{so}(V).$$

Since, $[\xi_i, \xi_i \xi_m] = \xi_m$, where $i \neq m$, we have $L(\mu) = V$.

Now consider the case $m = 2k$. We can rewrite μ in the following form

$$\mu = (\mu')\xi_{m-1}\xi_m + b_k\xi_1\xi_2 \cdots \xi_{2k-2}, \quad b_k \neq 0,$$

where μ' is an $(m-5)$ -ary algebra on the vector space $\text{lin}\{\xi_1, \dots, \xi_{m-2}\}$ of dimension $m-2$. Since

$$[\xi_m, \mu] = \pm\mu'\xi_{m-1} \quad \text{and} \quad [\xi_{m-1}, \mu] = \pm\mu'\xi_m,$$

we see as above that $\mathfrak{g}(\mu) \supset \mathfrak{so}(V')$ and $\mathfrak{g}(\mu) \supset \mathfrak{so}(V'')$, where $V' = \text{lin}\{\xi_1, \dots, \xi_{m-1}\}$ and $V'' = \text{lin}\{\xi_1, \dots, \xi_{m-2}, \xi_m\}$. Since,

$$[\xi_i \xi_m, \xi_i \xi_{m-1}] = \pm \xi_{m-1} \xi_m$$

for any $i \in \{1, \dots, m-2\}$, we get that $\mathfrak{g}(\mu) = \mathfrak{so}(V)$. It is also clear that $L(\mu) \supset V'$ and $L(\mu) \supset V''$, hence $L(\mu) = V$. The proof is complete. \square

5.3 Classification of real simple $(m-3)$ -ary algebras satisfying Jacobi identity 1 and 2

In this Section we classify real simple n -ary algebras with a positive definite invariant form satisfying Jacobi identity 1 and 2.

Jacobi identity 1. In [Ling] it was proven that there exist only one complex Filippov n -ary algebra for any $n > 2$. This algebra is $(n+1)$ -dimensional. In our notations it is given by $*(1) = L$. Another result in [Ling] is the following:

A real simple Filippov n -ary algebra is isomorphic to the realification of a simple complex Filippov n -ary algebra or to a real form of a simple complex Filippov n -ary algebra.

In particular real simple Filippov n -ary algebras are of dimension $n+1$ or $2n+2$. It follows that simple n -ary algebras in Theorem 4 are not of Filippov type. For $n = m - 2$ any derived potential has the form $\mu = *(\nu)$, where $\nu \in V \setminus \{0\}$. All such algebras have non-trivial centers because $[\nu, \mu] = 0$. Therefore, they are not simple. Furthermore, such algebras are of Filippov type. Indeed, since L satisfy 1 by Proposition 3 we have $[L_{a_1, \dots, a_{m-1}}, L] = 0$ for any $a_i \in V$. Hence,

$$[\nu, [L_{a_1, \dots, a_{m-2}, \nu}, L]] = [L_{a_1, \dots, a_{m-2}, \nu}, L_\nu] = [\mu_{a_1, \dots, a_{m-2}}, \mu] = 0.$$

By Proposition 3, we see that (V, μ) is a Filippov algebra. By the same argument the derived potential $[\nu, [w, L]]$ also corresponds to a Filippov algebra.

Theorem 5. *Assume that $m > 4$. Real m -dimensional n -ary Filippov algebras with a symmetric positive definite invariant form, where $n = m - 1$, $m - 2$ or $m - 3$, are given up to isometry by the following derived potentials:*

- $\mu = 0$, the trivial algebra;
- $\mu = a\xi_1 \cdots \xi_m$, where $a \in \mathbb{R} \setminus \{0\}$;
- $\mu = a\xi_1 \cdots \xi_{m-1}$, where $a \in \mathbb{R} \setminus \{0\}$;
- $\mu = a\xi_1 \cdots \xi_{m-2}$, where $a \in \mathbb{R} \setminus \{0\}$;

Jacobi identity 2. Assume that $m > 4$ and (\cdot, \cdot) is a symmetric positive definite form.

Theorem 6. *All algebras in Theorem 3 satisfy Jacobi identity 2 with the exception of the following cases:*

- $m = 5$, the algebras with derived potential $\mu = *(\alpha_1\xi_1\xi_2 + \alpha_2\xi_3\xi_4)$, where $\alpha_1, \alpha_2 \neq 0$;
- $m = 6$, the algebras with derived potentials $\mu = *(\alpha_1\xi_1\xi_2 + \alpha_2\xi_3\xi_4)$ and $\mu = *(\alpha_1\xi_1\xi_2 + \alpha_2\xi_3\xi_4 + \alpha_3\xi_5\xi_6)$, where $\alpha_i \neq 0$;

Proof. Assume that m is odd. By Corollary of Proposition 2 in this case Jacobi identity 2 is equivalent to $[\mu, \mu] = 0$. Assume that $m > 5$, then $[\mu, \mu] \in S^{2m-6}V = \{0\}$. In the case $m = 5$ the result follows from Example 3.

Assume that m is even. First of all consider the case $m = 6$. Let us take

$$\mu = b_1\xi_3\xi_4\xi_5\xi_6 + b_2\xi_1\xi_2\xi_5\xi_6, \quad b_1, b_2 \neq 0.$$

Deanote by LHS the left hand side of 2. Let us calculate LHS for $a_i = \xi_i$, $i = 1 \dots, 5$.

$$LHS = \{\{\xi_1, \xi_2, \xi_5\}, \xi_3, \xi_4\} + \{\{\xi_3, \xi_4, \xi_5\}, \xi_1, \xi_2\} = -2b_1 b_2 \xi_5 \neq 0.$$

The main idea here to use the fact that $\{x, y, z\} = 0$ if $x \in \{\xi_1, \xi_2\}$ and $y \in \{\xi_3, \xi_4\}$. The proof for

$$\mu = b_1 \xi_3 \xi_4 \xi_5 \xi_6 + b_2 \xi_1 \xi_2 \xi_5 \xi_6 + b_3 \xi_1 \xi_2 \xi_3 \xi_4, \quad b_i \neq 0$$

is similar.

Consider the case $m > 6$. Without loss of generality we can assume that between elements a_i , where $i = 1, \dots, 2m - 7$, are at least two equal. Let $a_s = a_t = v$. Clearly, $\{a_{i_1}, \dots, v, \dots, v, \dots, a_{i_n}\} = 0$. Therefore,

$$LHS = \sum_{k,l} J_1^{(k,l)} + \sum_{k,l} J_2^{(k,l)},$$

where $J_1^{(k,l)}$ and $J_2^{(k,l)}$ is the sum of all summands of the form

$$\begin{aligned} & \{\{a_{i_1}, \dots, \underset{k}{a_s}, \dots, a_{i_{m-3}}\}, a_{j_1}, \dots, \underset{l}{a_t}, \dots, a_{j_{m-4}}\}, \\ & \{\{a_{i_1}, \dots, \underset{k}{a_t}, \dots, a_{i_{m-3}}\}, a_{j_1}, \dots, \underset{l}{a_s}, \dots, a_{j_{m-4}}\} \end{aligned}$$

respectively. Further,

$$\begin{aligned} J_1^{(k,l)} = & \pm \sum (-1)^{(I,J)} \{\{a_{i_1}, \dots, \underset{k}{\hat{a}_s}, \dots, a_{i_{m-3}}, a_s\}, a_{j_1}, \dots, \underset{l}{\hat{a}_t}, \dots, a_{j_{m-4}}, a_t\} = \\ & \pm \sum (-1)^{(I',J')} \{\{a_{i_1}, \dots, \underset{k}{\hat{a}_s}, \dots, a_{i_{m-3}}\}_v, a_{j_1}, \dots, \underset{l}{\hat{a}_t}, \dots, a_{j_{m-4}}\}_v, \end{aligned}$$

where $\{\dots\}_v$ is the multiplication corresponding to the derived potential $\mu_v = [v, \mu]$ and $(-1)^{(I',J')}$ is the sign of the permutation

$$(a_1, \dots, \hat{a}_s, \dots, \hat{a}_t, \dots, a_{2m-7}) \longmapsto (a_{i_1}, \dots, \underset{k}{\hat{a}_s}, \dots, a_{i_{m-3}}, a_{j_1}, \dots, \underset{l}{\hat{a}_t}, \dots, a_{j_{m-4}}).$$

Since $\mu_v \in S^{m-3}W$, where $W = \langle v \rangle^\perp$, we see that $[\mu_v, \mu_v] = 0$. Therefore 2 holds for $\{\dots\}_v$ and $J_1^{(k,l)} = 0$. Similarly, $J_2^{(k,l)} = 0$. The proof is complete. \square

Corollary. All simple algebras in Theorem 4 satisfy Jacobi identity 2 for $m > 6$.

6 Quasi-Frobenius skew-symmetric n -ary algebras

Using "derived bracket" construction it is possible to answer the question when a skew-symmetric n -ary algebra is quasi-Frobenius. Let V be a pure odd vector space and $\mu \in S^n(V^*) \otimes V$ be an n -ary symmetric algebra structure on V .

Definition 11. An n -ary algebra (V, μ) is called *quasi-Frobenius* if it is equipped with a symmetric bilinear form φ such that

$$\sum_{cycl} \varphi(a_1, \mu(a_2, \dots, a_{n+1})) = 0. \quad (13)$$

If we forget about superlanguage this means that the algebra (V, μ) is skew-symmetric and φ is a skew-symmetric bilinear form on V .

Example 4. Assume that $n = 2$ and (V, μ) is a Lie algebra. Then our definition coincides with the definition of a quasi-Frobenius Lie algebra. Recall that a *quasi-Frobenius Lie algebra* is a Lie algebra \mathfrak{g} equipped with a non-degenerate skew-symmetric bilinear form β such that

$$\beta([x, y], z) + \beta([z, x], y) + \beta([y, z], x) = 0.$$

We may assign an n -ary algebra $(V \oplus V^*, \mu^T)$ to (V, μ) , called the T_0^* -extension of (V, μ) . (The notion of T_θ^* -extension for algebras was introduced and studied in [Bord]. We will need this notion only for $\theta = 0$.) The construction of $(V \oplus V^*, \mu^T)$ is very simple: the n -ary algebra structure μ^T is just the image of μ by the natural inclusion $S^n(V^*) \otimes V \hookrightarrow S^*(V^* \oplus V)$. Furthermore, the pure odd vector space $V \oplus V^*$ has a skew-symmetric (in supersense) pairing given by

$$(a, \alpha) = (\alpha, a) = \alpha(a),$$

where $\alpha \in V^*$ and $a \in V$. This defines a Poisson bracket on $S^*(V \oplus V^*)$. So $(V \oplus V^*, \mu^T)$ is a quadratic symmetric n -ary algebra, where the multiplication is given by the derived bracket with the derived potential $\mu^T \in S^*(V^* \oplus V)$. More precisely, the new multiplication μ^T in $V \oplus V^*$ is given by:

$$\mu^T|_{S^n(V)} = \mu, \quad \mu^T|_{S^{n-k}(V) \cdot S^k(V^*)} = 0 \text{ if } k > 1, \quad \mu^T(S^{n-1}(V) \cdot S^1(V^*)) \subset V^*$$

and

$$\mu^T(a_1, \dots, a_{n-1}, b^*)(c) := -b^*(\mu(a_1, \dots, a_{n-1}, c)).$$

The main observation here is:

Proposition 11. *Let V be a pure odd vector space and n be even. Then an n -ary algebra (V, μ) has a quasi-Frobenius structure with respect to a symmetric form φ if and only if the maximal isotropic subspace $B_\varphi = \{a + \varphi(a, -)\} \subset V \oplus V^*$ is a subalgebra in $(V \oplus V^*, \mu^T)$.*

In other words, there is a one-to-one correspondence between quasi-Frobenius structures on (V, μ) and maximal isotropic subalgebras in $(V \oplus V^, \mu^T)$ that are transversal to V^* .*

Proof. First of all it is well-known that maximal isotropic subspaces in $V \oplus V^*$ that are transversal to V^* are in one-to-one correspondence with $\varphi \in S^2V$. Let us show that φ satisfies (13) if and only if B_φ is a subalgebra. Denote $a^* := \varphi(a, -) \in V^*$. Then we have:

$$\begin{aligned} & (\mu^T(a_1 + a_1^*, \dots, a_n + a_n^*), c + c^*) = \\ & c^*(\mu(a_1, \dots, a_n)) + \sum_k (\mu^T(a_1, \dots, a_k^*, \dots, a_n), c) = \\ & \varphi(c, \mu(a_1, \dots, a_n)) - \sum_k a_k^* (\mu(a_1, \dots, a_{k-1}, c, a_{k+1}, \dots, a_n)) = \\ & \varphi(c, \mu(a_1, \dots, a_n)) - \sum_k \varphi(a_k, \mu(a_1, \dots, a_{k-1}, c, a_{k+1}, \dots, a_n)). \end{aligned}$$

Furthermore,

$$\begin{aligned} & \varphi(a_k, \mu(a_{k+1}, \dots, a_n, c, a_1 \dots, a_{k-1})) = \\ & (-1)^{(k-1)(n-k-1)} \varphi(a_k, \mu(a_1, \dots, a_{k-1}, a_{k+1} \dots, a_n, c)) = \\ & (-1)^{k(n-k-1)+1} \varphi(a_k, \mu(a_1, \dots, a_{k-1}, c, a_{k+1} \dots, a_n)). \end{aligned}$$

If n is even, $(-1)^{k(n-k-1)+1} = -1$. Therefore, we have:

$$(\mu^T(a_1 + a_1^*, \dots, a_n + a_n^*), a_{n+1} + a_{n+1}^*) = \sum_{cycl} \varphi(a_1, \mu(a_2, \dots, a_{n+1})).$$

This expression is equal to 0 if and only if the algebra (V, μ) is quasi-Frobenius with respect to φ . On other side, $(\mu^T(a_1 + a_1^*, \dots, a_n + a_n^*), a_{n+1} + a_{n+1}^*)$ is equal to 0 if and only if B_φ is a subalgebra in $(V \oplus V^*, \mu^T)$. The proof is complete. \square

Remark. The result of Proposition 11 is well-known for Lie algebras.

References

- [AI] *de Azcarraga J.A., Izquierdo J.M.* n-ary algebras: a review with applications. Journal of Physics A Mathematical and Theoretical, 43, 293001, 2010.
- [Aub] *Aubert A.* Structures affines et pseudo-métriques invariantes à gauche sur des groupes de Lie, Thèse, Université Montpellier II, (1996)
- [Bai] *Bai, Ruipu; Li, Ying.* T_θ^* -extensions of n-Lie algebras. ISRN Algebra 2011, Art. ID 381875, 11 pp.
- [Bord] *Bordemann, M.* Non-degenerate invariant bilinear forms on nonassociative algebras. Acta Math. Univ. Comenian. (N.S.) 66 (1997), no. 2, 151-201.

[CK] *Cantarini N., and Kac V.G.* Classification of Simple Linearly Compact n-Lie Superalgebras. *Communications in Mathematical Physics* 298.3 (2010): 833-853.

[CZ] *Cattaneo, A.; Zambon, M.* A Supergeometric Approach to Poisson Reduction. *Communications in Mathematical Physics*; Mar2013, Vol. 318 Issue 3, p675

[Fil] *Filippov V. T.* n-ary lie algebras, *Sibirskii Math. J.* 24 (1985) 126-140.

[GM] *Gozzi, E.; Mauro, D.* A new look at the Schouten-Nijenhuis, Frölicher-Nijenhuis, and Nijenhuis-Richardson brackets. *J. Math. Phys.* 41 (2000), no. 4, 1916-1933.

[HW] *Hanlon P., Wachs M. L.* On Lie k-algebras, *Adv. in Math.* 113 (1995) 206-236.

[KoSch1] *Kosmann-Schwarzbach, Y.* Derived brackets. *Letters in Mathematical Physics* 69: 6187, 2004.

[KoSch2] *Kosmann-Schwarzbach, Y.* Jacobian quasi-bialgebras and quasi-Poisson Lie groups. In *Mathematical aspects of classical field theory*, pages 459-489. *Contemp. Math.*, 132, Amer. Math. Soc., 1992.

[Kost] *Kostant, B.* Lie algebra cohomology and the generalized Borel-Weil theorem. *Ann. of Math.* (2) 74 1961 329387.

[KS] *Kostant, B., Sternberg S.* Symplectic reduction, BRS cohomology and infinite-dimensional Clifford algebras. *Annals of Physics*, 176:49-113, 1987.

[LM] *Lada T. and Markl M.* Strongly homotopy Lie algebras. *arXiv:hep-th/9406095*

[LSt] *Lada T., Stasheff J.* Introduction to SH Lie algebras for physicists. 1992.

[LR] *Lecomte P. and Roger C.* Modules et cohomologie des bigébres de Lie. *Comptes rendus Acad. Sci. Paris*, 310:405-410, 1990.

[Ling] *Ling W.*, On the structure of n-Lie algebras. Dissertation, University-GHS-Siegen, Siegen, 1993.

[MV] *Michor P., Vinogradov A.M* n-ary Lie and Associative Algebras. Geometrical structures for physical theories, II (Vietri, 1996). *Rend. Sem. Mat. Univ. Politec. Torino* 54 (1996), no. 4, 373-392.

[Nam] *Nambu, Y.* Generalized Hamiltonian dynamics. *Phys. Rev.* (1973), 2405-2412.

[Roy] *Roytenberg, D.* On the structure of graded symplectic supermanifolds and Courant algebroids. Quantization, Poisson brackets and beyond (Manchester, 2001), 169-185, *Contemp. Math.*, 315, Amer. Math. Soc., Providence, RI, 2002.

[SS] *Schlesinger M., Stasheff J. D.* The Lie algebra structure of tangent cohomology and deformation theory, *J. Pure Appl. Algebra* 38 (1985) 313-322.

[VV1] *Vinogradov A. M. and Vinogradov M. M.* On multiple generalizations of Lie algebras and Poisson manifolds. 1998.

[VV2] *Vinogradov A. M. and Vinogradov M. M.* Graded Multiple Analogs of Lie Algebras. 2002

[Vor1] *Voronov, Th.* Higher derived brackets and homotopy algebras. *J. Pure Appl. Algebra* 202 (2005), no. 1-3, 133-153.

[Vor2] *Voronov, Th.* Higher derived brackets for arbitrary derivations. *Travaux mathématiques*. Fasc. XVI, 163186, *Trav. Math.*, XVI, Univ. Luxemb., Luxembourg, 2005.

[Vor3] *Voronov, Th.* Graded manifolds and Drinfeld doubles for Lie bialgebroids. Quantization, Poisson Brackets and Beyond, *Contemp. Math.* 315, Amer. Math. Soc., Providence, 2002, pp. 131-168.

Elizaveta Vishnyakova
 Max Planck Institute for Mathematics Bonn and
 University of Luxembourg
 E-mail address: VishnyakovaE@googlemail.com