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Abstract

We study n-ary symmetric superalgebras and L∞-algebras that possess
skew-symmetric invariant forms, using the derived bracket formalism. This
class of superalgebras includes for instance Lie algebras and their n-ary
generalizations, commutative associative and Jordan algebras with invariant
forms. We give a classification of m-dimensional (m− 3)-ary algebras with
invariant form, and a classification of real simple m-dimensional Lie (m−3)-
algebras with positive definite invariant form up to isometry. We develop
the Hodge Theory for L∞-algebras with symmetric invariant forms, and we
describe quasi-Frobenius structures on skew-symmetric n-ary algebras.

1 Introduction

Derived bracket formalism. The derived bracket approach was successfully
used in different areas of mathematics: in Poisson geometry, in the theory of
Lie algebroids and Courant algebroids, BRST formalism, in the theory of Loday
algebras and different types of Drinfeld Doubles. For detailed introduction we
recommend a beautiful survey of Y. Kosmann-Schwarzbach [KoSch1].

The idea of the formalism is the following. One fixes an algebra L, usually a
Lie superalgebra, and constructs another multiplication on the same vector space
(or some subspace) using derivations of L and the (iterated) multiplication in L.
We obtain a class of new algebras, which properties can be studied using original
algebra L. For example, using this formalism we can obtain all Poisson structures
on a manifold M from the canonical Poisson algebra on T ∗M as was shown by
Th. Voronov in [Vor3]. Voronov’s idea allows A. Cattaneo and M. Zambon [CZ]
to introduce a unified approach to the reduction of Poisson manifolds. Another
example was suggested in [Vor1] and [Vor2], where a series of strongly homotopy
algebras was obtained from a given Lie superalgebra.

We use this formalism to study n-ary symmetric superalgebras with invariant
skew-symmetric forms. More precisely, consider a vector superspace V with a
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non-degenerate even skew-symmetric form ( , ). In this case there exists a natural
Lie superalgebra structure on S∗(V ), where S∗(V ) is the symmetric power of V .
The main observation is that we get all symmetric n-ary and strongly homotopy
superalgebras on V with invariant skew-symmetric form ( , ). In other words, the
property of these n-ary superalgebras having an invariant skew-symmetric form is
encoded by the Lie superalgebra S∗(V ). The observation that using the superalge-
bra S∗(V ) we can obtain all Lie algebras with invariant symmetric forms was made
by B. Kostant and S. Sternberg in [KS]. The superalgebra S∗(V ) was also used in
Poisson Geometry to study for instance Lie bialgebras and Drinfeld Doubles, see
[KoSch1, KoSch2], [LR] and others.

Multiple generalizations of Lie algebras. Using the derived bracket for-
malism we can study all n-ary symmetric superalgebras with skew-symmetric in-
variant forms. This class of superalgebras includes for instance different n-ary
generalizations of Lie algebras with symmetric invariant form. First of all let us
give a short review of such generalizations.

Multiple generalizations arise usually from different readings of the Jacobi iden-
tity. For example, the Jacobi identity for a Lie algebra is equivalent to the state-
ment that all adjoint operators are derivations of this Lie algebra. If we use this
point of view for the n-ary case we come to the notion of a Filippov n-algebra [Fil].
V.T. Filippov considered alternating n-ary algebras A satisfying the following Ja-
cobi identity:

{a1, . . . , an−1, {b1, . . . , bn}} =
∑
{b1, . . . , bi−1{a1, . . . , an−1, bi}, . . . , bn}, (1)

where ai, bj ∈ A. In other words, the operators {a1, . . . , an−1,−} are derivations of
the n-ary bracket {b1, . . . , bn}. Such algebras appear naturally in Nambu mechan-
ics [Nam] in the contecst of Nambu-Poisson manifolds, in supersymmetric gravity
theory and in supersymmetric gauge theories, the Bagger-Lambert-Gustavsson
Theory, see [AI].

Another natural n-ary generalization of the Jacobi identity has the following
form: ∑

(−1)(I,J){{ai1 , . . . , ain}, aj1 , . . . , ajn−1} = 0, (2)

where the sum is taken over all ordered unshuffle multi-indexes I = (i1, . . . , in) and
J = (j1, . . . , jn−1) such that (I, J) is a permutation of (1, . . . , 2n− 1). We will call
such algebras Lie n-algebras. This type of n-ary algebras was considered for in-
stance by P. Michor and A. Vinogradov in [MV] and by P. Hanlon and M.L. Wachs
[HW]. The homotopy case was studied in [SS] in context of the Schlesinger-
Stasheff homotopy algebras and L∞-algebras. Such algebras are related to the
Batalin-Fradkin-Vilkovisky theory and to the string field theory, see [LSt]. In
[VV1] A.M. Vinogradov and M.M. Vinogradov proposed a three-parameter family
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of n-ary algebras such that for some n the above discussed structures appear as
particular cases.

The theory of Filippov n-ary algebras is relatively well-developed. For instance,
there is a classification of simple real and complex Filippov n-ary algebras and an
analog of the Levi decomposition [Ling]. W.X. Ling in [Ling] proved that there ex-
ists only one simple finite-dimensional n-ary Filippov algebra over an algebraically
closed field of characteristic 0 for any n > 2. The simple Filippov n-ary superalge-
bras in the finite and infinite dimensional case were studied in [CK]. It was shown
there that there are no simple linearly compact n-ary Filippov superalgebras which
are not n-ary Filippov algebras, if n > 2, and a classification of linearly compact
n-ary Filippov algebras was given.

In this paper we give a classification of (m − 3)-ary algebras with symmetric
invariant forms, where dimV = m, satisfying the Jacobi identity (2) over C and
R up to an isomorphism preserving the invariant form in terms of coadjoint orbits
of the Lie group SO(V ). In the real case we give a classification of simple algebras
of this type. Our result can be formulated as follows: almost all real (m− 3)-ary
algebras with symmetric invariant forms are simple. The exceptional cases are:
the trivial (m − 3)-ary algebra and all (m − 3)-ary algebras that corresponds to
decomposible elements.

Hodge decomposition for real strongly homotopy algebras. A definition
of a strongly homotopy Lie algebras (or L∞-algebras or sh-algebras) was given by
Lada and Stasheff in [LSt]. For more about strongly homotopy algebras see also
[LM], [Vor1], [Vor2]. Another result of our paper is a Hodge Decomposition for
real metric homogeneous strongly homotopy algebras. This result is expected, but
a remarkable fact is that we can obtain easily such kind of decomposition using
derived bracket formalism.

We can also use this formalism to define the Hodge operator on a Riemannian
compact oriented manifold M . Indeed, in this case there exists the metric on
cotangent space T ∗M that is induced by Riemannian metric on the tangent space
TM . Then we can define a Poisson bracket on

∧
T ∗M , see [Roy], and repeat the

construction of the Hodge operator given in the present paper.

Quasi-Frobenius structures. We conclude our paper with a description of
quasi-Frobenius structures on skew-symmetric n-ary algebras. Our result is as fol-
lows. There is a one-to-one correspondence between quasi-Frobenius structures on
a skew-symmetric n-ary algebra and maximal isotropic subalgebras in T ∗0 -extension
on this algebra.
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2 Commutative n-ary superalgebras with an in-

variant skew-symmetric form

2.1 Main definitions

Let V = V0̄ ⊕ V1̄ be a finite dimensional Z2-graded vector space over the field K,
where K = R or C. If a ∈ V is a homogeneous element, we denote by ā ∈ Z2 the
parity of a. As usual we assume that elements in K are even. Recall that a bilinear
form ( , ) on V is called even (or odd) if the corresponding linear map V ⊗ V → K
is even (or odd). A bilinear form is called skew-symmetric if (a, b) = −(−1)āb̄(b, a)
for any homogeneous elements a, b ∈ V .

Definition 1. • An n-ary superalgebra structure on V is an n-linear map

V × · · ·×V −→ V,

(a1, . . . , an) 7→ {a1, . . . , an}.

• An n-ary superalgebra structure is called commutative if

{a1, . . . , ai, ai+1, . . . , an} = (−1)āiāi+1{a1, . . . , ai+1, ai, . . . , an} (3)

for any homogeneous ai, ai+1 ∈ V .

• A commutative n-ary superalgebra structure is called invariant with respect
to the form ( , ) if the following holds:

(a0, {a1, . . . , an}) = (−1)ā0ā1(a1, {a0, a2, . . . , an}) (4)

for any homogeneous ai ∈ V .

We will write a commutative invariant n-ary superalgebra structure or a com-
mutative invariant n-ary superalgebra as a shorthand for a commutative n-ary
superalgebra structure on V that is invariant with respect to the form ( , ).

Example 1. The class of commutative invariant n-ary superalgebras includes for
instance the following algebras.
• Anti-commutative algebras on V = V1̄ with an invariant symmetric form.

Indeed, in this case the conditions (3) and (4) are equivalent to the following
conditions:

{a, b} = −{b, a}, ({a, b}, c) = (a, {b, c}). (5)

In particular, all Lie algebras with an invariant symmetric form are of this type.

• Commutative algebras on V = V0̄ with an invariant skew-symmetric form.
In this case from (3) and (4) it follows:

{a, b} = {b, a}, ({a, b}, c) = −(a, {b, c}). (6)
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In particular, commutative associative and Jordan algebras with an invariant skew-
symmetric form are of this type.

• Anti-commutative n-ary algebras on V = V1̄ with an invariant symmetric
form. In this case the condition (4) is equivalent to the following condition:

(y, {x1, . . . , xn−1, z}) = (−1)n({y, x1, . . . , xn−1}, z)

that is more familiar for physicists. In particular, anti-commutative n-ary algebras
satisfying (1) with an invariant symmetric form are of this type. Such algebras are
used in the Bagger-Lambert-Gustavsson model (BLG-model), see [AI] for details.

Remark. For a commutative algebra usually one considers the following invari-
ance condition: ({a, b}, c) = (a, {b, c}). If in addition we assume that the form ( , )
is skew-symmetric and non-degenerate, we obtain 2(ab, c) = 0 for all a, b, c ∈ V ,
therefore ab = 0. In our case we do not have such additional restrictive relations.

2.2 Derived bracket and commutative invariant n-ary su-
peralgebras

Let V be as above. We denote by SnV the n-th symmetric power of V and we
put S∗V =

⊕
n

SnV . The superspace S∗V possesses a natural structure [ , ] of a

Poisson superalgebra. It is defined by the following formulas:

[x, y] := (x, y), x, y ∈ V ;

[v, w1 · w2] := [v, w1] · w2 + (−1)vw1w1 · [v, w2],

[v, w] = −(−1)vw[w, v],

where v, w, wi are homogeneous elements in S∗V . One can show that the multi-
plication [ , ] satisfies the graded Jacobi identity:

[v, [w1, w2]] = [[v, w1], w2] + (−1)v̄w̄1 [w1, [v, w2]].

This Poisson superalgebra is well-defined. Indeed, we can repeat the argument
from [KS, Page 65] for vector superspaces. The idea is to show that this superal-
gebra is induced by the Clifford superalgebra corresponding to V and ( , ).

Let us take any element µ ∈ Sn+1V . Then we can define an n-ary superalgebra
structure on V in the following way:

{a1, . . . , an} := [a1, [. . . , [an, µ] . . .]], ai ∈ V. (7)

We will denote the corresponding superalgebra by (V, µ) and we will call the ele-
ment µ the derived potential of (V, µ). The n-ary superalgebras of type (V, µ) have
the following two properties:
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• The multiplication (7) is commutative. (This was noticed in [Vor1].) Indeed,
using Jacobi identity for S∗V we have:

[a1, [a2, . . . , [an, µ] . . .]] =[[a1, a2], [. . . , [an, µ] . . .]]+

(−1)ā1ā2 [a2, [a1, . . ., [an, µ] . . .]] = (−1)ā1ā2 [a2, [a1, . . . , [an, µ] . . .]].

We used the fact that [[a1, a2], [. . . , [an, µ] . . .]] = 0, because [a1, a2] ∈ K.
Similarly we can prove the commutativity relation for other ai.

• The n-ary superalgebra structure (7) is invariant. Indeed,

(a0, {a1, . . . , an}) = [a0, [a1, [a2, . . . , [an, µ] . . .]]] =

(−1)ā0ā1 [a1, [a0, [a2, . . . , [an, µ] . . .]]] = (−1)ā0ā1(a1, {a0, a2, . . . , an}).

We conclude this section with the following observation.

Proposition 1. Assume that V is finite dimensional and ( , ) is non-degenerate.
Any commutative invariant n-ary superalgebra structures can be obtained by con-
struction (7).

Proof. Denote by An the vector space of commutative invariant n-ary superalgebra
structures on V and by Ln+1 the vector space of symmetric (n+1)-linear maps from
V to K. Clearly, dimLn+1 = dimSn+1V . Since ( , ) is non-degenerate, Formula
(7) defines an injective linear map Sn+1V → An. We can also define an injective
linear map An → Ln+1 in the following way:

An 3 µ 7−→ Lµ ∈ Ln+1, Lµ(a1, . . . , an+1) = (a1, µ(a2, . . . , an+1)).

Note that Lµ is symmetric since µ defines an invariant superalgebra structure.
Summing up, we have the following sequence of injective maps or isomorphisms:

Sn+1V ↪→ An ↪→ Ln+1 ' Sn+1V.

Since V is finite dimensional, we get Sn+1V ' An.�

3 Examples of commutative invariant n-ary su-

peralgebras

Usually one studies superalgebras with an invariant form in the following way.
One considers for example a Lie algebra or a Jordan algebra and assumes that
the multiplication in the algebra satisfies the following additional condition: it is
invariant with respect to a non-degenerate (skew)-symmetric form. The derived
bracket formalism permits to express for instance Jacobi, Filippov and Jordan
identities in terms of derived potentials and the Poisson bracket on S∗V . In this
case the additional invariance condition is fulfilled automatically.
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3.1 Strongly homotopy Lie algebras with an invariant
skew-symmetric form

We follow Th. Voronov [Vor1] in conventions concerning L∞-algebras. We set
Ik := (i1, . . . , ik) and J l := (j1, . . . , jl), where i1 < · · · < ik and j1 < · · · < jl.
We denote aIk := (ai1 , . . . , aik), aJ l := (aj1 , . . . , ajl) and as := (a1, . . . , as), where
ai ∈ V . We put [aIk , µ] := [ai1 , . . . [aik , µ]] and [as, µ] := [a1, . . . [as, µ]], where
µ ∈ S∗V .

Definition 2. A vector superspace V with a sequence of odd n-linear maps µn,
where n ≥ 0, is called an L∞-algebra if

• the maps µn are commutative in the sense of Definition 1;

• the following generalized Jacobi identities hold:∑
k+l=n

∑
(Ik,J l)

(−1)(Ik,J l)µl+1(aIl , µk(aJk)) = 0, n ≥ 0. (8)

Here (Ik, J l) is a unshuffle permutation of (1, . . . , n) and (−1)(Ik,J l) is the
sign obtained using the sign rule for the permutation (Ik, J l) of homogeneous
elements a1, . . . , an ∈ V .

Definition 3. An L∞-algebra structure (µn)n≥0 on V is called invariant if all µn
are invariant in the sense of Definition 1.

The following statement follows from Theorem 1 in [Vor1] and Proposition 1.
For completeness we give here a proof in our notations and agreements.

Proposition 2. Invariant L∞-algebra structures on V are in one-to-one corre-
spondence with odd elements µ ∈ S∗(V ) such that [µ, µ] = 0.

Proof. Our objective is to show that [µ, µ] = 0 is equivalent to (8) together with
the invariance condition. Let us take any odd element µ =

∑
k

µk ∈ S∗V , where

µk ∈ Sk+1V . The equation [µ, µ] = 0 is equivalent to the following equations∑
k+l=n

[an−1, [µl, µk]] = 0
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for all n ≥ 0 and all ai ∈ V . Furthermore, we have:

[an−1, [µl, µk]] =
∑

(Il,Jk−1)

(−1)(Il,Jk−1)+ā
Jk−1 [[aIl , µl], [aJk−1 , µk]]+∑

(Il−1,Jk)

(−1)(Il−1,Jk)+ā
Jk [[aIl−1 , µl], [aJk , µk]] =

∑
(Il,Jk−1)

(−1)(Il,Jk−1)+ā
Jk−1µk(µl(aIl), aJk−1)+

∑
(Ik,J l−1)

(−1)(Jk,Il−1)+ā
Jl−1µl(µk(aIk), aJ l−1) =

∑
(Jk−1,Il)

(−1)(Jk−1,Il)µk(aJk−1 , µl(aIl))+∑
(Il−1,Jk)

(−1)(Il−1,Jk)µl(aIl−1 , µk(aJk)).

(9)

Therefore, [an−1,
∑

k+l=n

[µl, µk]] = 0 is equivalent to the generalized Jacobi identity

for k+l = n. In other words, the equation [µ, µ] = 0 is equivalent to the generalized
Jacobi identities together with the invariance conditions.�

Corollary. Assume that V = V1̄ and n is even. Anti-commutative invariant n-
ary algebra structures on V satisfying Jacobi (2) are in one-to-one correspondence
with elements µ ∈ Sn+1(V ) such that [µ, µ] = 0.

Proof. In this case the equation 9 has the form:

[a2n−1, [µ, µ]] = 2
∑
(I,J)

(−1)(I,J)µ(aI , µ(aJ)).

Here I = (i1, . . . , in−1), J = (j1, . . . , jn) are unshuffels and I ∪J = {1, . . . , 2n−1}.
Since n is even we have:∑

(I,J)

(−1)(I,J)µ(aI , µ(aJ)) =
∑
(I,J)

(−1)(J, I)µ(µ(aJ), aI).

The proof is complete.�

3.2 Filippov algebras with invariant symmetric forms

Definition 4. A skew-symmetric n-ary algebra is called a Filippov algebra if its
multiplication satisfies (1). We say that a Filippov algebra has an invariant form
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( , ) if its multiplication is invariant with respect to ( , ) in the sense of Definition
1.

Filippov algebras with an invariant form are described in the following propo-
sition. The idea of the proof we borrow in [VV1].

Proposition 3. Assume that V = V1̄ and µ ∈ Sn+1V satisfies

[µan−1 , µ] = 0

for all an−1 = (a1, . . . , an−1). Then (V, µ) is a Filippov (or Nambu-Poisson) n-ary
algebra with an invariant form.

Conversely, any Filippov n-ary algebra with an invariant form can be obtained
by this construction.

Proof. We need to show that [µan−1 , µ] = 0 is equivalent to 1, where µan−1 =
[a1, . . . , [an−1, µ]] and ai ∈ V . Let us take b1 . . . , bn ∈ V . We have:

[µan−1 , [b1, . . . [bn, µ]]] =
n∑
i=1

[b1, . . . [[µan−1 , bi], . . . [bn, µ]]] + [b1, . . . [bn, [µan−1 , µ]]]]

Further,

[µan−1 , [b1, . . . [bn, µ]]] = −{{b1, . . . , bn}, a1 . . . , an−1} =
(−1)n{a1, . . . , an−1, {b1, . . . , bn}};

[b1, . . . [[µan−1 , bi], . . . [bn, µ]]] = −{b1 . . . , bi−1, {bi, a1 . . . , an−1}, bi+1, . . . , bn} =
(−1)n{b1 . . . , bi−1, {a1 . . . , an−1, bi}, bi+1, . . . , bn};

Hence, we have:

{a1, . . . , an−1, {b1, . . . , bn}} =
n∑
i=1

{b1 . . . , bi−1, {a1 . . . , an−1, bi}, bi+1, . . . , bn}+

(−1)n[b1, . . . [bn, [µan−1 , µ]]].

We see that 1 holds if and only if [b1, . . . [bn, [µan−1 , µ]]] = 0. By Proposition 1 all
such algebras are invariant with respect to ( , ). The proof is complete.�

3.3 Jordan algebras with symplectic invariant forms

First of all let us recall the definition of a Jordan algebra.

Definition 5. A Jordan algebra is a commutative algebra over K such that the
multiplication satisfies the following axiom:

(xy)(xx) = x(y(xx)).
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We call a Jordan algebra symplectic if it possesses a non-degenerate skew-
symmetric invariant form.

Proposition 4. Let V be a pure even vector space with a non-degenerate skew-
symmetric form. Assume that A ∈ S3V satisfies the following identity:

[Ax, A[Ax,x]] = 0,

where Ax = [x,A]. Then (V,A) is a symplectic Jordan algebra. Conversely, any
symplectic Jordan algebra can be obtained by this construction.

Proof. By Proposition 1 any commutative algebra V with a non-degenerate skew-
symmetric form can be obtained by the derived bracket construction. Denote
by A the derived potential of a commutative algebra V with a non-degenerate
skew-symmetric form ( , ). In other words, the multiplication in V is given by

xy = [x, [y, A]].

We have:

(xy)(xx) = [[y, Ax], [[x,Ax], A]]; x(y(xx)) = −[Ax, [y, [[x,Ax], A]]].

Further,

[Ax, [y, [[x,Ax], A]]] = [[Ax, y], [[x,Ax], A]] + [y, [Ax, [[x,Ax], A]]].

We see that this equation is equivalent to

−x(y(xx)) = −(xy)(xx) + [y, [Ax, [[x,Ax], A]]].

Hence, the algebra V is Jordan if and only if

[y, [Ax, [[x,Ax], A]]] = 0

for all x, y ∈ V . The last condition is equivalent to

[Ax, [[x,Ax], A]] = 0

for all x ∈ V .�

3.4 Associative algebras with symplectic invariant forms

Proposition 5. Assume that V = V0̄ and µ ∈ S3V satisfies the following identity:

[µa, µb] = 0
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for all a, b ∈ V . Here µx = [x, µ]. Then (V, µ) is a commutative associative algebra
with a non-degenerate skew-symmetric invariant form.

Conversely, any commutative associative algebra with a non-degenerate skew-
symmetric invariant form can be obtained by this construction.

Proof. Let us use the notation:

a ◦ b := [a, [b, µ]].

We have to show that the associativity relation for ◦ is equivalent to [µa, µb] = 0
for all a, b ∈ V . Indeed,

a ◦ (b ◦ c) = [a, [[b, [c, µ]]µ]] = −[a, [µ, [b, [c, µ]]] =
−[µa, [b, [c, µ]]] = −[[µa, b], [c, µ]]− [b, [µa, µc]] = [[b, µa], [c, µ]]− [b, [µa, µc]] =

(b ◦ a) ◦ c− [b, [µa, µc]].

Therefore, the equality [µa, µc] = 0 for all a, c ∈ V and the associativity law are
equivalent. �

Remark. We see that the associativity law for commutative algebras is equivalent
to commutativity of all operators µa, a ∈ V , where µa(b) = a ◦ b.

4 Hodge operator and its applications

4.1 ∗-operator and n-ary algebras

Let V be a pure odd vector space of dimension m with a non-degenerate skew-
symmetric even bilinear form ( , ). Recall that means that (a, b) = (b, a) for all
a, b ∈ V . Let us choose a normalized orthogonal basis (ei) of V . Denote by
L := e1 . . . em the top form corresponding to the chosen basis. We define the
operator ∗ : SpV → Sm−pV by the following formula:

∗ (x1 . . . xp) = [x1, [. . . [xp, L]]]. (10)

In particular, we have:

∗(ei1 . . . eip) = [ei1 , [. . . [eip , L]]] = (−1)σej1 . . . ejm−p ,

where σ(1, . . . ,m) = (ip, . . . , i1, j1, . . . , jm−p). Clearly, this definition depends only
on orientation of V and on the bilinear form ( , ). Note that ∗ : SpV → Sm−pV is
an isomorphism for all p. This follows for example from the following formula:

∗ ∗ (ei1 . . . eip) = (−1)
m(m−1)

2 ei1 . . . eip .
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The following well-known result we can easily prove using derived bracket formal-
ism:

Proposition 6. The vector space so(V ) of linear operators preserving the form
( , ) is isomorphic to S2(V ).

Proof. The isomorphism is given by the formula w 7−→ adw, where w ∈ S2(V )
and adw(v) := [w, v] for v ∈ V . Indeed, for all v1, v2 ∈ V we have:

0 = adw([v1, v2]) = [[w, v1], v2] + [v1, [w, v2]] = ([w, v1], v2) + (v1, [w, v2]).

Obviously, this map is injective. We complete the proof observing that the dimen-
sions of so(V ) and S2(V ) are equal.�

We have seen in previous sections that elements from S(n+1)V corresponds to
n-ary algebras with an invariant form. The existence of the ∗-operator for V = V1̄

leads to the idea that n-ary and (m−n)-ary algebras can have some common prop-
erties. In particular such algebras have the same algebra of orthogonal derivations.

Definition 6. A derivation of an n-ary algebra (V, µ) is a linear map D : V → V
such that

D({v1, . . . , vn}) =
∑
j

{v1, . . . , D(vj), . . . , vn}.

We denote by IDer(µ) the vector space of all derivations of the algebra (V, µ)
preserving the form ( , ).

Proposition 7. Let us take any w ∈ S2(V ) and µ ∈ Sn+1(V ).
a. We have:

IDer(µ) ' lin{w ∈ S2(V ) | adw(µ) = 0}.
b. The isomorphism ∗ : Sp(V ) → Sm−p(V ) is equivariant with respect to the
natural action of so(V ) on S∗(V ). In particular,

IDer(µ) = IDer(∗µ).

Proof. a. First of all by the standard argument we obtain:

adw({v1, . . . , vp}) = [w, [v1, . . . , [vn, µ] . . .]] =
n∑
i

[v1, . . . , [[w, vi] . . . , [vn, µ]] . . .]+

[v1, . . . , [vn, [w, µ]] . . .] =
∑
j

{v1, . . . , [w, vj], . . . , vn}+ [v1, . . . , [vn, [w, µ]] . . .].

We see that adw is a derivation if and only if [w, µ] = 0.
b. Let L = e1 . . . em be as above and w ∈ S2(V ). We have,

∗([w, ei1 . . . eip ]) = ∗(
p∑
j=1

ei1 . . . [w, eij ] . . . eip) =

p∑
j=1

[ei1 , . . . , [[w, eij ] . . . , [eip , L]] . . .].
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On the other side,

[w, ∗(ei1 . . . eip)] = [w, [ei1 , . . . [eip , L]]] =
p∑
j=1

[ei1 , . . . , [[w, eij ] . . . , [eip , L]] . . .].

We use here the fact that [w,L] = 0. Therefore, the ∗-operator is so(V )-equivariant.
Furthermore, assume that w ∈ IDer(µ) or equivalently that [w, µ] = 0. There-

fore,
[w, ∗µ] = ∗([w, µ]) = ∗(0) = 0.

Hence, w ∈ IDer(∗µ). Conversely, if w ∈ IDer(∗µ) then

∗([w, µ]) = [w, ∗µ] = 0.

This finishes the proof. �

4.2 Hodge decomposition for real metric strongly homo-
topy algebras

4.2.1 Hodge decomposition for a vector space.

In this Subsection we follow Kostant’s approach [Kost, Page 332 - 333]. Let W
be a finite dimensional vector space with two linear operators d and δ such that
d2 = δ2 = 0.

Definition 7. [Kostant] Linear maps d and δ are called disjoint if the following
holds:

1. d ◦δ(x) = 0 implies δ(x) = 0;

2. δ ◦ d(x) = 0 implies d(x) = 0.

Denote L = δ ◦ d + d ◦δ.
Proposition 8. [Kostant] Assume that d and δ are disjoint. Then we have:

Ker(L) = Ker(d) ∩Ker(δ)

and a direct sum (an analog of a Hodge Decomposition):

W = Im(d)⊕ Im(δ)⊕Ker(L).

In this case the restriction π|Ker(L) of the canonical mapping

π : Ker(d)→ Ker(d)/ Im(d) =: H(W, d)

is a bijection. In other words Ker(L) ' H(W, d).�

We will use this Proposition to obtain a Hodge decomposition for metric L∞-
algebras.
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4.2.2 Hodge decomposition for real metric L∞-algebras.

Let V be a pure odd real vector space with a non-degenerate skew-symmetric
positive defined form ( , ) and µ ∈ S∗V be a homogeneous element such that
[µ, [µ,−]] = 0. If µ is an odd element, the condition [µ, [µ,−]] = 0 is equivalent
to [µ, µ] = 0. Denote by d : V → V the linear operator v 7→ [µ, v]. Obviously,
d ◦ d = 0. Using Hodge ∗-operator we can define the following operator

δ = ∗ d ∗.

Again we have δ ◦ δ = 0. We can also define a bilinear product 〈 , 〉 in S∗V by the
following formula:

〈v1, v2〉L =

{
(−1)

p(p−1)
2 v1 · (∗v2), if v1, v2 ∈ SpV ;

0, if v1 ∈ SpV , v2 ∈ SqV and p 6= q.

This bilinear product has the following properties:

Proposition 9. We have

〈eI , eJ〉 =

{
0, if I 6= J,
1, if I = J.

Here I = (i1, . . . , ip) and J = (j1, . . . , jp) such that i1 < · · · < ip and j1 < · · · < jp.
In particular, the pairing 〈 , 〉 is symmetric and positive definite.

Proof. A straightforward computation.�

Proposition 10. Assume that µ ∈ S∗(V ) is a homogeneous element and d and δ
are as above. Then we have

〈d(v), w〉 = −(−1)µ̄v̄+
m(m−1)

2 〈v, δ(w)〉

for v, w ∈ S∗V , and the operators d and δ are disjoint.

Proof. Step A. Let us take µk ∈ Sk+2V , v ∈ Sp−kV and w ∈ SpV . (We assume
that SrV = {0} for r < 0 and r > m, where m = dimV .) Then, v · ∗w ∈ Sm−kV
and we have:

[µk, v · ∗w] ⊂ [Sk+2V, Sm−k(V )] = 0.

Furthermore,

0 = [µk, v · ∗w] = [µk, v] · ∗w + (−1)µ̄k v̄v · [µk, ∗w] =

[µk, v] · ∗w + (−1)µ̄k v̄+
m(m−1)

2 v · ∗ ∗ [µk, ∗w] =

dk(v) · ∗w + (−1)µ̄k v̄+
m(m−1)

2 v · ∗δk(w),

14



where dk(v) = [µk, v] and δk(w) = ∗[µk, ∗w]. Therefore,

〈dk(v), w〉 = −(−1)µ̄k v̄+
m(m−1)

2 〈v, δk(w)〉

for all v ∈ Sp−kV and w ∈ SpV . Note that this equation holds trivially for v ∈ SpV
and w ∈ SqV , where q − p 6= k. Therefore, we have

〈dk(v), w〉 = −(−1)µ̄k v̄+
m(m−1)

2 〈v, δk(w)〉 (11)

for all v, w ∈ S∗V , where v is homogeneous, and µk ∈ Sk+2V .
Let us take any homogeneous µ ∈ S∗(V ). Then µ =

∑
k

µk, where µk ∈ Sk(V )

and k are all odd or all even. Therefore, d and δ also possess corresponding
decomposition: d =

∑
k

dk and δ =
∑
k

δk, where dk = [µk,−] and δk = ∗ dk ∗.

Using 11, we get for homogeneous v, w ∈ S∗V :

〈d(v), w〉 =
∑
k

〈dk(v), w〉 = −
∑
k

(−1)µ̄k v̄+
m(m−1)

2 〈v, δk(w)〉 =

−(−1)µ̄v̄+
m(m−1)

2

∑
k

〈v, δk(w)〉 = −(−1)µ̄v̄+
m(m−1)

2 〈v, δ(w)〉.

The first statement is proven.
Step B. Let us show that d ◦δ(v) = 0 implies δ(v) = 0, i.e. the operators d

and δ are disjoint. (This argument we borrow from [Kost].) Indeed,

0 = 〈d ◦δ(v), v〉 = −(−1)d̄(δ̄+v̄)+
m(m−1)

2 〈δ(v), δ(v)〉.

The pairing 〈 , 〉 is positive definite, hence δ(v) = 0. Analogously we can show that
δ ◦ d(v) = 0 implies d(v) = 0.�

Denote by H(V, µ) the cohomology space of the L∞-algebra (V, µ), where
µ ∈ S∗V is an odd element such that [µ, µ] = 0. By definition H(V, µ) :=
Ker(d)/ Im(d). The main result of this section is the following theorem.

Theorem 1. [Hodge decomposition for real metric L∞-algebras] Let µ ∈
S∗(V ) be a real metric L∞-algebra structure on V and d and δ be as above. Then
we have a direct sum decomposition:

V = Im(d)⊕ Im(δ)⊕Ker(L),

where L = δ ◦ d + d ◦δ, and Ker(L) ' H(V, µ).

Proof. The statement follows from Propositions 8 and 10 �.
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5 m-dimensional Filippov and Lie (m−3)-algebras

5.1 (m − 3)-ary algebras with non-degenerate symmetric
forms and coadjoint orbits

Another application of the ∗-operator is the following: we can classify all (m− 3)-
ary symmetric algebras up to orthogonal isomorphism in terms of coadjoint orbits.
If we assume in addition that such (m−3)-ary algebras are real and that the form
( , ) is positive definite then we can classify all simple algebras. Let again V be
a pure odd vector space with an even non-degenerate skew-symmetric form ( , ),
i.e. (a, b) = (b, a) for all a, b ∈ V . As usual we denote by O(V ) the Lie group of
all invertible linear operators on V that preserve the form ( , ) and by SO(V ) the
subgroup of O(V ) that contains all operators with the determinant +1. We have
so(V ) = Lie O(V ) = Lie SO(V ).

Definition 8. Two n-ary algebra structures µ, µ′ ∈ S∗V on V are called isomor-
phic if there exists ϕ ∈ SO(V ) such that

ϕ({v1, . . . , vn}µ) = {ϕ(v1), . . . , ϕ(vn)}µ′

for all vi ∈ V . Here we denote by {. . .}ν the multiplication on V corresponding to
the algebra structure ν.

Sometimes we will consider isomorphism of n-ary algebra structures up to
ϕ ∈ O(V ). We need the following two lemmas:

Lemma 1. Let us take ϕ ∈ O(V ) and w, v ∈ S∗V . Then, ϕ([w, v]) = [ϕ(w), ϕ(v)].
In other words, ϕ preserves the Poisson bracket.

Proof. It follows from the following two facts:

• (ϕ(w), ϕ(v)) = (w, v), if w, v ∈ V ;

• ϕ(w · v) = ϕ(w) · ϕ(v) for all w, v ∈ S∗V . �

Lemma 2. Two n-ary algebras (V, µ) and (V, µ′), where µ, µ′ ∈ S∗V , are isomor-
phic if and only if there exists ϕ ∈ SO(V ) such that ϕ(µ) = µ′. In other words,
two n-ary algebras are isomorphic if and only if the corresponding n-ary algebra
structures are in the same orbit of the action SO(V ) on Sn+1V .

Proof. From Lemma 1 it follows that

ϕ({v1, . . . , vn}µ) = {ϕ(v1), . . . , ϕ(vn)}ϕ(µ).

Furthermore, if (V, µ) and (V, µ′) are isomorphic and ϕ ∈ SO(V ) is an isomorphism
then from the definition it follows that:

ϕ({v1, . . . , vn}µ) = {ϕ(v1), . . . , ϕ(vn)}µ′
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for all vi ∈ V . Therefore, ϕ(µ) = µ′. The converse statement is obvious. �

Assume that dimV = m.

Theorem 2. Classes of isomorphic real or complex (m− 3)-ary algebras with the
invariant form ( , ) are in one-to-one correspondence with coadjoint orbits of the
Lie group SO(V ).

Proof. It follows from Proposition 7 and Lemma 2. Note that in the case of the
Lie group SO(V ) the adjoint and coadjoint action are equivalent.�

It is well-known that any real skew-symmetric matrix A can be written in the
following form:

A = QA′Q−1,

where
A′ = diag(Ja1 , . . . , Jak , 0, . . . , 0),

Jaj =

(
0 aj
−aj 0

)
, aj ∈ R,

and Q ∈ SO(V ). If we assume in addition that Q ∈ O(V ) and 0 < ak ≤ · · · ≤ a1,
then A′ is unique. (This follows from the uniqueness of the Jordan normal form
of a given matrix up to the order of the Jordan blocks and from the fact that A
has the following eigenvalues: ±iaj, where j = 1, . . . , k, and 0.) Furthermore, by
Proposition 6 we have an isomorphism so(V ) ' S2V . Let (ξi) be an orthogonal
basis of V such that the matrix A ∈ so(V ) has the form

A = diag(Ja1 , . . . , Jak , 0, . . . , 0).

Then the corresponding element in S2V is

vA = a1ξ1ξ2 + . . . , akξ2k−1ξ2k,

where 0 < ak ≤ · · · ≤ a1 and aj ∈ R.
We obtained the following theorem:

Theorem 3. [Classification of real (m − 3)-ary algebras up to O(V )-
isomorphism] Real (m− 3)-ary algebras with the invariant positive definite form
( , ) are parametrized by vectors

v = a1ξ1ξ2 + . . . , akξ2k−1ξ2k,

where ai ∈ R, 0 < ak ≤ · · · ≤ a1 and 0 ≤ k ≤ [m
2

]. Explicitly such algebras are
given by (V, µv), where

µv = ∗(v).
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5.2 Classification of real simple (m− 3)-ary algebras with
positive definite invariant forms

In this section we give a classification of simple (m−3)-ary algebras with invariant
forms up to orthogonal isomorphism.

Definition 9. A vector subspace W ⊂ V is called an ideal of a symmetric n-ary
algebra (V, µ) if µ(V, . . . , V,W ) ⊂ W .

In other words, the vector space W is an ideal if and only if it is invariant with
respect to the set of endomorphisms µv1,...,vn−1 : V → V , where vi ∈ V . Clearly,
the vector space W is an ideal if and only if it is invariant with respect to the Lie
algebra g that is generated by all µv1,...,vn−1 .

Definition 10. An n-ary Lie algebra is called simple if it is not 1-dimensional
and it does not have any proper ideals.

Example 2. The classification of simple complex and real Filippov n-ary algebras
was done in [Ling]: there is one series of complex Filippov n-ary algebras Ak, where
k is a natural number and several real forms for each Ak. All these algebras have
invariant forms and in our terminology they are given by the top form L and
formula (7).

Example 3. Let m = 5. By Theorem 3 we see that we have three types of 2-ary
algebras up to isomorphism:

• µ1 = 0;

• µ2 = b1ξ3ξ4ξ5, where b1 6= 0;

• µ3 = b1ξ3ξ4ξ5 + b2ξ1ξ2ξ5, where b1, b2 6= 0.

Obviously, the zero algebra µ1 = 0 is not simple. The second algebra structure
µ2 = b1ξ3ξ4ξ5 has a non-trivial center because

(µ2)ξ1 = (µ2)ξ2 = 0,

Therefore it is also not simple. We will see that the algebra µ3 is simple. It is not
a Lie algebra because [µ3, µ3] = −2b1b2ξ1ξ2ξ3ξ4 6= 0.

Theorem 4. [Classification of real simple (m − 3)-ary algebras with in-
variant forms] Assume that m > 4. All real (m− 3)-ary algebras from Theorem
3 are simple except of two cases:

• v = 0;

• v = a1ξ1ξ2, where a1 6= 0.
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Proof. Clearly, the trivial derived potential µ = 0 determines a non-simple algebra.
The algebra (V, µ), where µ = ∗(v) and v = a1ξ1ξ2, has a non-trivial center.
Indeed, we have ∗(v) = ±a1ξ3 · · · ξm. Therefore,

[x1, . . . , [ξ1, µ]] = 0 for all xi ∈ V

We see that lin{ξ1} is an ideal. Hence, this algebra is also not simple.
Let as show that the other algebras from Theorem 3 are simple. Consider the

Lie algebra g(µ) ⊂ S2V generated by linear operators µv1,...,vm−4 : V → V , where
vi ∈ V , and the linear space L(µ) = lin{µv1,...,vm−3} ⊂ V. The idea of the proof is
to show by induction that

1. g(µ) := Lie{µv1,...,vm−4,−} = S2V ' so(V );

2. L(µ) = lin{µv1,...,vm−3} = V .

From the first observation it follows that V is an irreducible module of g(µ) or
equivalently that (V, µ) does not contain any non-trivial ideals. The second obser-
vation is an auxiliary statement.

Base case. Consider the case dimV = 5 and k = 2. Then

µ = ∗(a1ξ1ξ2 + a2ξ3ξ4) = b1ξ3ξ4ξ5 + b2ξ1ξ2ξ5,

where bi = ±ai. A direct computation shows that:

[ξ1, µ] = b2ξ2ξ5, [ξ2, µ] = −b2ξ1ξ5, [ξ3, µ] = b1ξ4ξ5, [ξ4, µ] = −b1ξ3ξ5

Therefore, the Lie algebra g(µ) contains all endomorphisms of the form w · ξ5,
where w ∈ lin{ξ1, . . . , ξ4}. Further, let us take ξiξ5 and ξjξ5 in g(µ), where i 6= j
and i, j ∈ {1, . . . , 4}. Then

[ξiξ5, ξjξ5] = ±ξiξj ∈ g(µ).

Therefore, g(µ) = S2V and we prove the first statement. Again by direct compu-
tation we obtain:

[ξi, ξiξ5] = ξ5, [ξ5, ξiξ5] = −ξi.
Hence, L(µ) = V and the second statement in proven in this case.

Inductive step. Assume that dimV = m > 5 and µ = ∗(v), where

v = a1ξ1ξ2 + . . .+ akξ2k−1ξ2k, ai 6= 0, k > 1, m > 2k.

Explicitly the derived potential µ is given by

µ =
k∑
i=1

biξ1 · · · ξ̂2i−1ξ̂2i · · · ξm, bi = ±ai.
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Here ξ̂2i−1ξ̂2i are omitted. Consider first the cases m > 2k. Then, µ = µ′ξm,
where µ′ is an (m − 4)-ary algebra on the vector space V ′ = lin{ξ1, . . . , ξm−1} of
dimension m− 1. By induction, we have

g(µ′) ' so(V ′) and L(µ′) = V ′. (12)

Using [ξm, µ] = ±µ′ and (12), we see that g(µ) ⊃ so(V ′) and L(µ) ⊃ V ′. Again us-
ing (12), the second equality, we get that for any w ∈ V ′ there exist x1, . . . , xm−4 ∈
V ′ such that

[x1, . . . , [xm−4, µ
′]] = w.

Therefore,
[x1, . . . , [xm−4, µ]] = w · ξm.

In other words, g(µ) contains all endomorphisms of the form w · ξm, where w ∈ V ′.
Hence,

g(µ) ⊃ so(V ′)⊕ (V ′ · ξm) = so(V ).

Since, [ξi, ξiξm] = ξm, where i 6= m, we have L(µ) = V .
Now consider the case m = 2k. We can rewrite µ in the following form

µ = (µ′)ξm−1ξm + bkξ1ξ2 · · · ξ2k−2, bk 6= 0,

where µ′ is an (m−5)-ary algebra on the vector space lin{ξ1, . . . ξm−2} of dimension
m− 2. Since

[ξm, µ] = ±µ′ξm−1 and [ξm−1, µ] = ±µ′ξm,

we see as above that g(µ) ⊃ so(V ′) and g(µ) ⊃ so(V ′′), where V ′ = lin{ξ1, . . . ξm−1}
and V ′′ = lin{ξ1, . . . ξm−2, ξm}. Since,

[ξiξm, ξiξm−1] = ±ξm−1ξm

for any i ∈ {1, . . . ,m−2}, we get that g(µ) = so(V ). It is also clear that L(µ) ⊃ V ′

and L(µ) ⊃ V ′′, hence L(µ) = V . The proof is complete.�

5.3 Classification of real simple (m− 3)-ary algebras
satisfying Jacobi identity 1 and 2

In this Section we classify real simple n-ary algebras with a positive definite in-
variant form satisfying Jacobi identity 1 and 2.

Jacobi identity 1. In [Ling] it was proven that there exist only one complex
Filippov n-ary algebra for any n > 2. This algebra is (n+ 1)-dimensional. In our
notations it is given by ∗(1) = L. Another result in [Ling] is the following:
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A real simple Filippov n-ary algebra is isomorphic to the realification of a simple
complex Filippov n-ary algebra or to a real form of a simple complex Filippov n-ary
algebra.

In particular real simple Filippov n-ary algebras are of dimension n+1 or 2n+2.
It follows that simple n-ary algebras in Theorem 4 are not of Filippov type. For
n = m − 2 any derived potential has the form µ = ∗(v), where v ∈ V \ {0}. All
such algebras have non-trivial centers because [v, µ] = 0. Therefore, they are not
simple. Furthermore, such algebras are of Filippov type. Indeed, since L satisfy 1
by Proposition 3 we have [La1,...,am−1 , L] = 0 for any ai ∈ V . Hence,

[v, [La1,...,am−2,v, L]] = [La1,...,am−2,v, Lv] = [µa1,...,am−2 , µ] = 0.

By Proposition 3, we see that (V, µ) is a Filippov algebra. By the same argument
the derived potential [v, [w,L]] also corresponds to a Filippov algebra.

Theorem 5. Assume that m > 4. Real m-dimensional n-ary Filippov algebras
with a symmetric positive definite invariant form, where n = m − 1, m − 2 or
m− 3, are given up to isometry by the following derived potentials:

• µ = 0, the trivial algebra;

• µ = aξ1 · · · ξm, where a ∈ R \ {0};

• µ = aξ1 · · · ξm−1, where a ∈ R \ {0};

• µ = aξ1 · · · ξm−2, where a ∈ R \ {0};

Jacobi identity 2. Assume that m > 4 and ( , ) is a symmetric positive definite
form.
Theorem 6. All algebras in Theorem 3 satisfy Jacobi identity 2 with the exception
of the following cases:

• m = 5, the algebras with derived potential µ = ∗(a1ξ1ξ2 + a2ξ3ξ4), where
a1, a2 6= 0;

• m = 6, the algebras with derived potentials µ = ∗(a1ξ1ξ2 + a2ξ3ξ4) and µ =
∗(a1ξ1ξ2 + a2ξ3ξ4 + a3ξ5ξ6), where ai 6= 0;

Proof. Assume that m is odd. By Corollary of Proposition 2 in this case Jacobi
identity 2 is equivalent to [µ, µ] = 0. Assume that m > 5, then [µ, µ] ∈ S2m−6V =
{0}. In the case m = 5 the result follows from Example 3.

Assume that m is even. First of all consider the case m = 6. Let us take

µ = b1ξ3ξ4ξ5ξ6 + b2ξ1ξ2ξ5ξ6, b1, b2 6= 0.
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Deanote by LHS the left hand side of 2. Let us calculate LHS for ai = ξi,
i = 1 . . . , 5.

LHS = {{ξ1, ξ2, ξ5}, ξ3, ξ4}+ {{ξ3, ξ4, ξ5}, ξ1, ξ2} = −2b1b2ξ5 6= 0.

The main idea here to use the fact that {x, y, z} = 0 if x ∈ {ξ1, ξ2} and y ∈ {ξ3, ξ4}.
The proof for

µ = b1ξ3ξ4ξ5ξ6 + b2ξ1ξ2ξ5ξ6 + b3ξ1ξ2ξ3ξ4, bi 6= 0

is similar.
Consider the case m > 6. Without loss of generality we can assume that

between elements ai, where i = 1, . . . , 2m − 7, are at least two equal. Let as =
at = v. Clearly, {ai1 , . . . , v, . . . , v, . . . , ain} = 0. Therefore,

LHS =
∑
k,l

J
(k,l)
1 +

∑
k,l

J
(k,l)
2 ,

where J
(k,l)
1 and J

(k,l)
2 is the sum of all summands of the form

{{ai1 , . . . , as
k
, . . . , aim−3}, aj1 , . . . , at

l
, . . . , ajm−4},

{{ai1 , . . . , at
k
, . . . , aim−3}, aj1 , . . . , as

l
, . . . , ajm−4}

respectively. Further,

J
(k,l)
1 = ±

∑
(−1)(I,J){{ai1 , . . . , âs

k
, . . . , aim−3 , as}, aj1 , . . . , ât

l
, . . . , ajm−4 , at} =

±
∑

(−1)(I′,J ′){{ai1 , . . . , âs
k
, . . . , aim−3}v, aj1 , . . . , ât

l
, . . . , ajm−4}v,

where {. . .}v is the multiplication corresponding to the derived potential µv = [v, µ]
and (−1)(I′,J ′) is the sign of the permutation

(a1, . . . , âs, . . . , ât, . . . , a2m−7) 7−→ (ai1 , . . . , âs
k
, . . . , aim−3 , aj1 , . . . , ât

l
, . . . , ajm−4).

Since µv ∈ Sm−3W , where W = 〈v〉⊥, we see that [µv, µv] = 0. Therefore 2 holds

for {. . .}v and J
(k,l)
1 = 0. Similarly, J

(k,l)
2 = 0. The proof is complete.�

Corollary. All simple algebras in Theorem 4 satisfy Jacobi identity 2 for m > 6.

6 Quasi-Frobenius skew-symmetric n-ary algebras

Using ”derived bracket” construction it is possible to answer the question when
a skew-symmetric n-ary algebra is quasi-Frobenius. Let V be a pure odd vector
space and µ ∈ Sn(V ∗)⊗ V be an n-ary symmetric algebra structure on V .
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Definition 11. An n-ary algebra (V, µ) is called quasi-Frobenius if it is equipped
with a symmetric bilinear form ϕ such that∑

cycl

ϕ(a1, µ(a2, . . . , an+1)) = 0. (13)

If we forget about superlanguage this means that the algebra (V, µ) is skew-
symmetric and ϕ is a skew-symmetric bilinear form on V .

Example 4. Assume that n = 2 and (V, µ) is a Lie algebra. Then our definition
coincides with the definition of a quasi-Frobenius Lie algebra. Recall that a quasi-
Frobenius Lie algebra is a Lie algebra g equipped with a non-degenerate skew-
symmetric bilinear form β such that

β([x, y], z) + β([z, x], y) + β([y, z], x) = 0.

We may assign an n-ary algebra (V ⊕V ∗, µT ) to (V, µ), called the T ∗0 -extension
of (V, µ). (The notion of T ∗θ -extension for algebras was introduced and studied in
[Bord]. We will need this notion only for θ = 0.) The construction of (V ⊕V ∗, µT )
is very simple: the n-ary algebra structure µT is just the image of µ by the natural
inclusion Sn(V ∗) ⊗ V ↪→ S∗(V ∗ ⊕ V ). Furthermore, the pure odd vector space
V ⊕ V ∗ has a skew-symmetric (in supersense) pairing given by

(a, α) = (α, a) = α(a),

where α ∈ V ∗ and a ∈ V . This defines a Poisson bracket on S∗(V ⊕ V ∗). So
(V ⊕ V ∗, µT ) as a quadratic symmetric n-ary algebra, where the multiplication is
given by the derived bracket with the derived potential µT ∈ S∗(V ∗ ⊕ V ). More
precisely, the new multiplication µT in V ⊕ V ∗ is given by:

µT |Sn(V ) = µ, µT |Sn−k(V )·Sk(V ∗) = 0 if k > 1, µT (Sn−1(V ) · S1(V ∗)) ⊂ V ∗

and
µT (a1, . . . , an−1, b

∗)(c) := −b∗(µ(a1, . . . , an−1, c)).

The main observation here is:

Proposition 11. Let V be a pure odd vector space and n be even. Then an n-ary
algebra (V, µ) has a quasi-Frobenius structure with respect to a symmetric form ϕ
if and only if the maximal isotropic subspace Bϕ = {a + ϕ(a,−)} ⊂ V ⊕ V ∗ is a
subalgebra in (V ⊕ V ∗, µT ).

In other words, there is a one-to-one correspondence between quasi-Frobenius
structures on (V, µ) and maximal isotropic subalgebras in (V ⊕ V ∗, µT ) that are
transversal to V ∗.

23



Proof. First of all it is well-known that maximal isotropic subspaces in V ⊕V ∗ that
are transversal to V ∗ are in one-to-one correspondence with ϕ ∈ S2V . Let us show
that ϕ satisfies (13) if and only if Bϕ is a subalgebra. Denote a∗ := ϕ(a,−) ∈ V ∗.
Then we have:

(µT (a1 + a∗1, . . . , an + a∗n), c+ c∗) =
c∗(µ(a1, . . . , an)) +

∑
k

(µT (a1, . . . , a
∗
k, . . . , an), c) =

ϕ(c, µ(a1, . . . , an))−
∑
k

a∗k(µ(a1, . . . , ak−1, c, ak+1, . . . , an)) =

ϕ(c, µ(a1, . . . , an))−
∑
k

ϕ(ak, µ(a1, . . . , ak−1, c, ak+1 . . . , an)).

Furthermore,

ϕ(ak, µ(ak+1, . . . , an, c, a1 . . . , ak−1)) =
(−1)(k−1)(n−k−1)ϕ(ak, µ(a1, . . . , ak−1, ak+1 . . . , an, c)) =

(−1)k(n−k−1)+1ϕ(ak, µ(a1, . . . , ak−1, c, ak+1 . . . , an)).

If n is even, (−1)k(n−k−1)+1 = −1. Therefore, we have:

(µT (a1 + a∗1, . . . , an + a∗n), an+1 + a∗n+1) =
∑
cycl

ϕ(a1, µ(a2, . . . , an+1)).

This expression is equal to 0 if and only if the algebra (V, µ) is quasi-Frobenius
with respect to ϕ. On other side, (µT (a1 + a∗1, . . . , an + a∗n), an+1 + a∗n+1) is equal
to 0 if and only if Bϕ is a subalgebra in (V ⊕ V ∗, µT ). The proof is complete.�

Remark. The result of Proposition 11 is well-known for Lie algebras.
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