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Abstract

We study n-ary symmetric superalgebras and L.,-algebras that possess
skew-symmetric invariant forms, using the derived bracket formalism. This
class of superalgebras includes for instance Lie algebras and their n-ary
generalizations, commutative associative and Jordan algebras with invariant
forms. We give a classification of m-dimensional (m — 3)-ary algebras with
invariant form, and a classification of real simple m-dimensional Lie (m —3)-
algebras with positive definite invariant form up to isometry. We develop
the Hodge Theory for L.-algebras with symmetric invariant forms, and we
describe quasi-Frobenius structures on skew-symmetric n-ary algebras.

1 Introduction

Derived bracket formalism. The derived bracket approach was successfully
used in different areas of mathematics: in Poisson geometry, in the theory of
Lie algebroids and Courant algebroids, BRST formalism, in the theory of Loday
algebras and different types of Drinfeld Doubles. For detailed introduction we
recommend a beautiful survey of Y. Kosmann-Schwarzbach [KoSchl].

The idea of the formalism is the following. One fizes an algebra L, usually a
Lie superalgebra, and constructs another multiplication on the same vector space
(or some subspace) using derivations of L and the (iterated) multiplication in L.
We obtain a class of new algebras, which properties can be studied using original
algebra L. For example, using this formalism we can obtain all Poisson structures
on a manifold M from the canonical Poisson algebra on T*M as was shown by
Th. Voronov in [Vor3|. Voronov’s idea allows A. Cattaneo and M. Zambon [CZ]
to introduce a unified approach to the reduction of Poisson manifolds. Another
example was suggested in [Vorl] and [Vor2], where a series of strongly homotopy
algebras was obtained from a given Lie superalgebra.

We use this formalism to study n-ary symmetric superalgebras with invariant
skew-symmetric forms. More precisely, consider a vector superspace V with a

! Supported by AFR-grant, University of Luxembourg.



non-degenerate even skew-symmetric form (,). In this case there exists a natural
Lie superalgebra structure on S*(V'), where S*(V) is the symmetric power of V.
The main observation is that we get all symmetric n-ary and strongly homotopy
superalgebras on V with invariant skew-symmetric form (). In other words, the
property of these n-ary superalgebras having an invariant skew-symmetric form is
encoded by the Lie superalgebra S*(V'). The observation that using the superalge-
bra S*(V') we can obtain all Lie algebras with invariant symmetric forms was made
by B. Kostant and S. Sternberg in [KS|. The superalgebra S*(V') was also used in
Poisson Geometry to study for instance Lie bialgebras and Drinfeld Doubles, see
[KoSchll, [KoSch2], [LR] and others.

Multiple generalizations of Lie algebras. Using the derived bracket for-
malism we can study all n-ary symmetric superalgebras with skew-symmetric in-
variant forms. This class of superalgebras includes for instance different n-ary
generalizations of Lie algebras with symmetric invariant form. First of all let us
give a short review of such generalizations.

Multiple generalizations arise usually from different readings of the Jacobi iden-
tity. For example, the Jacobi identity for a Lie algebra is equivalent to the state-
ment that all adjoint operators are derivations of this Lie algebra. If we use this
point of view for the n-ary case we come to the notion of a Filippov n-algebra [Fil].
V.T. Filippov considered alternating n-ary algebras A satisfying the following Ja-
cobi identity:

{ar, a1, {0 b}y = by, biaf{an, o an b b (1)

where a;, b; € A. In other words, the operators {as, ..., a,_1, —} are derivations of
the n-ary bracket {bq,...,b,}. Such algebras appear naturally in Nambu mechan-
ics [Nam] in the contecst of Nambu-Poisson manifolds, in supersymmetric gravity
theory and in supersymmetric gauge theories, the Bagger-Lambert-Gustavsson
Theory, see [Al].

Another natural n-ary generalization of the Jacobi identity has the following

form:
Z(_l)(LJ){{aiw s 7ain}7 Ajys - 7ajn71} =0, (2)

where the sum is taken over all ordered unshuffle multi-indexes I = (i1, ..., 4,) and
J = (j1,...,Jn-1) such that (I, .J) is a permutation of (1,...,2n —1). We will call
such algebras Lie n-algebras. This type of n-ary algebras was considered for in-
stance by P. Michor and A. Vinogradov in [MV] and by P. Hanlon and M.L. Wachs
[HW]. The homotopy case was studied in [SS] in context of the Schlesinger-
Stasheff homotopy algebras and L.-algebras. Such algebras are related to the
Batalin-Fradkin-Vilkovisky theory and to the string field theory, see [LSt]. In
[VV1] A.M. Vinogradov and M.M. Vinogradov proposed a three-parameter family



of n-ary algebras such that for some n the above discussed structures appear as
particular cases.

The theory of Filippov n-ary algebras is relatively well-developed. For instance,
there is a classification of simple real and complex Filippov n-ary algebras and an
analog of the Levi decomposition [Ling]. W.X. Ling in [Ling| proved that there ex-
ists only one simple finite-dimensional n-ary Filippov algebra over an algebraically
closed field of characteristic 0 for any n > 2. The simple Filippov n-ary superalge-
bras in the finite and infinite dimensional case were studied in [CK]. It was shown
there that there are no simple linearly compact n-ary Filippov superalgebras which
are not n-ary Filippov algebras, if n > 2, and a classification of linearly compact
n-ary Filippov algebras was given.

In this paper we give a classification of (m — 3)-ary algebras with symmetric
invariant forms, where dim V' = m, satisfying the Jacobi identity over C and
R up to an isomorphism preserving the invariant form in terms of coadjoint orbits
of the Lie group SO(V). In the real case we give a classification of simple algebras
of this type. Our result can be formulated as follows: almost all real (m — 3)-ary
algebras with symmetric invariant forms are simple. The exceptional cases are:
the trivial (m — 3)-ary algebra and all (m — 3)-ary algebras that corresponds to
decomposible elements.

Hodge decomposition for real strongly homotopy algebras. A definition
of a strongly homotopy Lie algebras (or L..-algebras or sh-algebras) was given by
Lada and Stasheff in [LSt]. For more about strongly homotopy algebras see also
[LM], [Vorl], [Vor2]. Another result of our paper is a Hodge Decomposition for
real metric homogeneous strongly homotopy algebras. This result is expected, but
a remarkable fact is that we can obtain easily such kind of decomposition using
derived bracket formalism.

We can also use this formalism to define the Hodge operator on a Riemannian
compact oriented manifold M. Indeed, in this case there exists the metric on
cotangent space T*M that is induced by Riemannian metric on the tangent space
TM. Then we can define a Poisson bracket on A\ T*M, see [Roy], and repeat the
construction of the Hodge operator given in the present paper.

Quasi-Frobenius structures. We conclude our paper with a description of
quasi-Frobenius structures on skew-symmetric n-ary algebras. Our result is as fol-
lows. There is a one-to-one correspondence between quasi-Frobenius structures on
a skew-symmetric n-ary algebra and mazimal isotropic subalgebras in 1§ -extension
on this algebra.



2 Commutative n-ary superalgebras with an in-
variant skew-symmetric form

2.1 Main definitions

Let V = V5 ® V; be a finite dimensional Z,-graded vector space over the field K,
where K =R or C. If a € V' is a homogeneous element, we denote by a € Z, the
parity of a. As usual we assume that elements in K are even. Recall that a bilinear
form (,) on V is called even (or odd) if the corresponding linear map V@ V — K
is even (or odd). A bilinear form is called skew-symmetric if (a,b) = —(—1)%(b, a)
for any homogeneous elements a,b € V.

Definition 1. e An n-ary superalgebra structure on V is an n-linear map

Vx-ooxV —V,

(a1,...,a,) —{ay,...,ap}.
e An n-ary superalgebra structure is called commutative if
{0,1, B ¢ 7 T PN 7CLn} = (—1)@@*1{@1, ey g1, gy e e ,an} (3)

for any homogeneous a;,a;.1 € V.

e A commutative n-ary superalgebra structure is called invariant with respect
to the form () if the following holds:

(ap,{ai,...,a,}) = (=1)®"(ay, {ap, as,...,a,}) (4)
for any homogeneous a; € V.

We will write a commutative invariant n-ary superalgebra structure or a com-
mutative invariant n-ary superalgebra as a shorthand for a commutative n-ary
superalgebra structure on V' that is invariant with respect to the form ().

Example 1. The class of commutative invariant n-ary superalgebras includes for
instance the following algebras.

o Anti-commutative algebras on V = Vi with an invariant symmetric form.
Indeed, in this case the conditions and are equivalent to the following

conditions:
{av b} = _{b7 a}7 <{a7 b}7 C) = (a7 {b? C}) (5)
In particular, all Lie algebras with an invariant symmetric form are of this type.

o Commutative algebras on V. = Vg with an invariant skew-symmetric form.
In this case from and it follows:

{a,b} = {b,a}, ({a,0},¢) = —=(a,{b,c}). (6)
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In particular, commutative associative and Jordan algebras with an invariant skew-
symmetric form are of this type.

o Anti-commutative n-ary algebras on V. = Vi with an invariant symmetric
form. In this case the condition (4]) is equivalent to the following condition:

(ya {$1, sy Tp—1, Z}) = (_1)71({3/’ T1, ... 7mn—1}7 Z)

that is more familiar for physicists. In particular, anti-commutative n-ary algebras
satisfying with an invariant symmetric form are of this type. Such algebras are
used in the Bagger-Lambert-Gustavsson model (BLG-model), see [Al] for details.

Remark. For a commutative algebra usually one considers the following invari-
ance condition: ({a,b},c) = (a, {b,c}). If in addition we assume that the form (,)
is skew-symmetric and non-degenerate, we obtain 2(ab,c) = 0 for all a,b,c € V,
therefore ab = 0. In our case we do not have such additional restrictive relations.

2.2 Derived bracket and commutative invariant n-ary su-
peralgebras

Let V be as above. We denote by S™V the n-th symmetric power of V' and we
put S*V = @ S"V. The superspace S*V possesses a natural structure [,] of a

Poisson superalgebra. It is defined by the following formulas:

[z,y] = (z,y), z,yeV;

Vw1

[, w1 - we] := [V, w1] - wy + (—1)" wy - [v, Wy,

[0, w] = =(=1)""[w, v],

where v, w, w; are homogeneous elements in S*V. One can show that the multi-
plication [, ] satisfies the graded Jacobi identity:

[Uv [wlv wQH = [[U, wl]’ w2] + (_1)1”51 [wlv [Ua w2]]'

This Poisson superalgebra is well-defined. Indeed, we can repeat the argument
from [KS, Page 65] for vector superspaces. The idea is to show that this superal-
gebra is induced by the Clifford superalgebra corresponding to V" and ().

Let us take any element u € SV, Then we can define an n-ary superalgebra
structure on V' in the following way:

{ai,...,;an} = a1, [.. ., [an, 1] .. ]], a; € V. (7)

We will denote the corresponding superalgebra by (V, u) and we will call the ele-
ment p the derived potential of (V, ). The n-ary superalgebras of type (V, 1) have
the following two properties:



e The multiplication (7)) is commutative. (This was noticed in [Vorl].) Indeed,
using Jacobi identity for S*V we have:

a1, [ag, . lan, p] - J] =[lar, as], [ lan, p] - ]+
(=) %[az, [ar, .. [an, p] .. ] = (=1)"®[az, [ar, ..., [an, ] . ]]-
We used the fact that [[a1,as],[...,[an, u]...]] = 0, because [a;,as] € K.

Similarly we can prove the commutativity relation for other a;.
e The n-ary superalgebra structure is invariant. Indeed,

(ap, {a1,...,an}) = [ao,[a1, ag,. .., |an, p] .. ]]] =
(=)™ ay, [ag, [az, . . ., [an, ] .. ]]] = (=1) (ay, {ag, az, . .., an}).

We conclude this section with the following observation.

Proposition 1. Assume that V' is finite dimensional and (,) is non-degenerate.
Any commutative invariant n-ary superalgebra structures can be obtained by con-
struction (@

Proof. Denote by A, the vector space of commutative invariant n-ary superalgebra
structures on V' and by £,, 11 the vector space of symmetric (n+1)-linear maps from
V to K. Clearly, dim £,;; = dim S"™V. Since (,) is non-degenerate, Formula
defines an injective linear map S™™'V — A,,. We can also define an injective
linear map A,, — £,,1 in the following way:

An S W L# S £n+17 L#(al, . 7an+1) = (Cll, /L(CLQ, .. ,an+1)).

Note that L, is symmetric since p defines an invariant superalgebra structure.
Summing up, we have the following sequence of injective maps or isomorphisms:

ST ey A, s L ~ S"THY.

Since V is finite dimensional, we get S"™V ~ A, .0

3 Examples of commutative invariant n-ary su-
peralgebras

Usually one studies superalgebras with an invariant form in the following way.
One considers for example a Lie algebra or a Jordan algebra and assumes that
the multiplication in the algebra satisfies the following additional condition: it is
invariant with respect to a non-degenerate (skew)-symmetric form. The derived
bracket formalism permits to express for instance Jacobi, Filippov and Jordan
identities in terms of derived potentials and the Poisson bracket on S*V. In this
case the additional invariance condition is fulfilled automatically.
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3.1 Strongly homotopy Lie algebras with an invariant
skew-symmetric form

We follow Th. Voronov [Vorl] in conventions concerning L.-algebras. We set

I* = (iy,...,i) and J' :== (ji,...,5), where i; < --- < i and j; < -+ < jj.
We denote ar := (a;,...,a;), ap = (a;,...,a;) and a® := (a1, ...,as), where
a; € V. We put [age, p] := [ai,...[a;,p]] and [@®, p] = |a1,...|as, p]], where
weSV.

Definition 2. A vector superspace V' with a sequence of odd n-linear maps i,
where n > 0, is called an L. -algebra if

e the maps p, are commutative in the sense of Definition [I}

e the following generalized Jacobi identities hold:

Z Z (_1)(1k’ﬂ)m+1(all,Nk(aJk)) =0, n=0. (8)
)

k+l:n (Ik”]l

Here (I*,.J') is a unshuffle permutation of (1,...,n) and (—=1)U*7") is the
sign obtained using the sign rule for the permutation (7*, J') of homogeneous
elements aq,...,a, € V.

Definition 3. An L.-algebra structure (u,),>0 on V' is called invariant if all u,
are invariant in the sense of Definition [Il

The following statement follows from Theorem 1 in [Vorl] and Proposition [1]
For completeness we give here a proof in our notations and agreements.

Proposition 2. Invariant L..-algebra structures on V' are in one-to-one corre-
spondence with odd elements pn € S*(V') such that [p, p] = 0.

Proof. Our objective is to show that [u, u] = 0 is equivalent to together with

the invariance condition. Let us take any odd element p = >y € S*V, where
2

wr € S¥TLV . The equation [, u] = 0 is equivalent to the following equations

Dl ] = 0

k+l=n



for all n > 0 and all a; € V. Furthermore, we have:

[an_la [Ml) Mk” = Z (_1)(11,‘]’“_1)4—&ka1 Halla Ml]u [CLkal ) :U’k]]—’_
(Il”]lcfl)

-1 7k a
Z (_1)(I T Hlap-1, ], lage, ml] =
(Il—l,Jk)

I 7k— =
S (U uag), age )+
(Il“]kfl)

ST (=) ey (g (age) a1 ) =
(Ik’Jlfl)

ST (=) O (agor, mlan)+
(]k—lJl)

-1 7k
S (=) an mlag)).

(111, %)

Therefore, [a"™', > [, pux]] = 0 is equivalent to the generalized Jacobi identity
k+l=n
for k41 = n. In other words, the equation [, 4] = 0 is equivalent to the generalized

Jacobi identities together with the invariance conditions.[]

Corollary. Assume that V = Vi and n is even. Anti-commutative invariant n-
ary algebra structures on V' satisfying Jacobi (@ are in one-to-one correspondence
with elements p € S" (V') such that [u, u] = 0.

Proof. In this case the equation [9 has the form:

(@ ] = 2 (=) (e ().
(1.7)

Here I = (i1,...,in-1), J = (J1,---,Jn) are unshuffels and TUJ = {1,...,2n—1}.
Since n is even we have:

> (D) p(a’ ua”)) = Y (=) Du(u(a’), o).

(I,J) (I,J)

The proof is complete.[]

3.2 Filippov algebras with invariant symmetric forms

Definition 4. A skew-symmetric n-ary algebra is called a Filippov algebra if its
multiplication satisfies . We say that a Filippov algebra has an invariant form



(,) if its multiplication is invariant with respect to (,) in the sense of Definition

[

Filippov algebras with an invariant form are described in the following propo-
sition. The idea of the proof we borrow in [VV1].

Proposition 3. Assume that V = V; and p € S"V satisfies

[Han-1, 1] =0

n—1 __

for all a™ ' = (ay,...,a,_1). Then (V,u) is a Filippov (or Nambu-Poisson) n-ary
algebra with an invariant form.

Conversely, any Filippov n-ary algebra with an invariant form can be obtained
by this construction.

Proof. We need to show that [pgn-1,u] = 0 is equivalent to , where fign-1 =
lai,...,[an—1,p]] and a; € V. Let us take by ..., b, € V. We have:

n

[ar=, [b1s - bn, pl]] = 30001, lan—1, bil, - - bn, ] 4 b1, - - b, [ptan—1, ] ]]]

i=1
Further,
[,uanfl, [bl, ce [bn,,u]]] = —{{bl, ey bn}, a ... ,an_l} =
(—=D)™{ar,...,an-1,{b1,...,bn}};
[bl, Ce [[,uanfl, bl], A [bn, ,u]]] = —{bl e 7bi—17 {b“ aj ... ,an_l}, bi—i—la e 7bn} =

(-1)”{61 e 7bi—l> {al vy Qp_1, bz}, bi+17 ey bn}7

Hence, we have:

{CLl, e, Qp1, {bb Ce 7bn}} = Z{bl . ,bl',l, {CLl e, Qp1, bl}, bi+1, Ce 7bn}+
=1
(=1)"[bus - [Bus [t 1]
We see that (1) holds if and only if [by, ... [by, [ttan-1, ]]] = 0. By Proposition (1| all

such algebras are invariant with respect to (,). The proof is complete.[]

3.3 Jordan algebras with symplectic invariant forms

First of all let us recall the definition of a Jordan algebra.

Definition 5. A Jordan algebra is a commutative algebra over K such that the
multiplication satisfies the following axiom:

(zy)(vx) = x(y(az)).
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We call a Jordan algebra symplectic if it possesses a non-degenerate skew-
symmetric invariant form.

Proposition 4. Let V' be a pure even vector space with a non-degenerate skew-
symmetric form. Assume that A € S3V satisfies the following identity:

[A:m A[Az,x}] = 07

where A, = [x, A]. Then (V,A) is a symplectic Jordan algebra. Conversely, any
symplectic Jordan algebra can be obtained by this construction.

Proof. By Proposition |1 any commutative algebra V' with a non-degenerate skew-
symmetric form can be obtained by the derived bracket construction. Denote
by A the derived potential of a commutative algebra V with a non-degenerate
skew-symmetric form (,). In other words, the multiplication in V' is given by

zy = [z, [y, A]].
We have:
(y)(zx) = [ly, A, [[2, Au], All; - 2(y(zx)) = —[As, [y, [[2, Az], Al]]-
Further,
[Az, [y, [z, Azl All] = [[Az, 4l [[2, Aa], Al + [y, [As, [[2, Ad], Al]]-
We see that this equation is equivalent to
Hence, the algebra V' is Jordan if and only if
[y, [Az, [z, Ae], A]l] = 0

for all x,y € V. The last condition is equivalent to

[Az, [[2, A, Al = 0

for all z € V.[O

3.4 Associative algebras with symplectic invariant forms
Proposition 5. Assume that V = Vg and u € SV satisfies the following identity:
[Mav :ub] =0
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foralla,b € V. Here p, = [z, p]. Then (V,u) is a commutative associative algebra
with a non-degenerate skew-symmetric invariant form.

Conversely, any commutative associative algebra with a non-degenerate skew-
symmetric invariant form can be obtained by this construction.

Proof. Let us use the notation:

aob:=la,|b, ]

We have to show that the associativity relation for o is equivalent to [t t] = 0
for all a,b € V. Indeed,

o (boc)=la,[[b, [c, u]]p]] = —[a, [, [b, [e, p]]] =
_[Maa [b7 [Ca Mm = _[[Maa b]? [Ca :U'] [ [Na; ,uc]] = Hba :ua]v [Cu :u]] - [b> [,uaa Uc“ =
(boa)oc—I[b[pa; pe]l-

Therefore, the equality [t, te] = 0 for all a,c¢ € V and the associativity law are
equivalent. []

Remark. We see that the associativity law for commutative algebras is equivalent
to commutativity of all operators ., a € V, where p1,(b) = aob.

4 Hodge operator and its applications

4.1 x-operator and n-ary algebras

Let V be a pure odd vector space of dimension m with a non-degenerate skew-
symmetric even bilinear form (,). Recall that means that (a,b) = (b,a) for all
a,b € V. Let us choose a normalized orthogonal basis (e;) of V. Denote by
L = e;...e, the top form corresponding to the chosen basis. We define the
operator x : SPV — S™7PV by the following formula:

* (z1...2p) = [21, [ .. [2p, L]]]. (10)

In particular, we have:

Hen - we,) = e Lo leq LI = (<1)7ey, ey,

where o(1,...,m) = (ip,...,%1,j1,---,Jm—p). Clearly, this definition depends only
on orientation of V' and on the bilinear form (,). Note that % : SPV — S™7PV is
an isomorphism for all p. This follows for example from the following formula:

m(m—1)

*(eil...eip) = (—1 2 €i1"'e’ip'
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The following well-known result we can easily prove using derived bracket formal-
ism:

Proposition 6. The vector space so(V') of linear operators preserving the form
(,) is isomorphic to S*(V).

Proof. The isomorphism is given by the formula w — adw, where w € S*(V)
and ad w(v) := [w,v] for v € V. Indeed, for all vy,vy € V' we have:

0 = ad w([vy, va]) = [[w, v1], v2] + [v1, [w, va]] = ([w, v1], v2) + (v1, [w, v2]).

Obviously, this map is injective. We complete the proof observing that the dimen-
sions of s0(V) and S%(V) are equal.(J

We have seen in previous sections that elements from S™+DV corresponds to
n-ary algebras with an invariant form. The existence of the x-operator for V = V;
leads to the idea that n-ary and (m —n)-ary algebras can have some common prop-
erties. In particular such algebras have the same algebra of orthogonal derivations.

Definition 6. A derivation of an n-ary algebra (V, i) is a linear map D : V — V
such that
D({vr,--,va}) =Y {v1,-... D(v), ..., v}
J

We denote by IDer(u) the vector space of all derivations of the algebra (V, p)
preserving the form ().

Proposition 7. Let us take any w € S*(V) and p € S"(V).
a. We have:
IDer () ~ lin{w € S*(V) | adw(u) = 0}.
b. The isomorphism % : SP(V) — S™P(V) is equivariant with respect to the
natural action of so(V') on S*(V'). In particular,

IDer(p) = IDer(*pu).

Proof. a. First of all by the standard argument we obtain:

n

adw({vr,...,v}) = [w, [vr, .oy v, ] ] = Do, [Jw, ] o [on, p]] -]

(U1, [Un, [w, 1] -] :%:{vl,...,[w,vj],..%,vn}—l—[vl,...,[vn, [w, p]] .. .].

We see that ad w is a derivation if and only if [w, u| = 0.
b. Let L =e¢;...¢,, be as above and w € S?(V). We have,

*([w, e ... e]) = >l<(§:1 Ciy - (we ). e,) =
é}l[eil,-.-,[[w,eij]...,[eip,L]]...].
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On the other side,

[w, *(e;, ...€;,)] = [w, e, ... [e,, L] = i[eil, oo fwei] e, L))

J=1

We use here the fact that [w, L] = 0. Therefore, the x-operator is so(V')-equivariant.
Furthermore, assume that w € IDer(u) or equivalently that [w, u] = 0. There-
fore,

[w, %] = *([w, u]) = %(0) = 0.
Hence, w € IDer(*u). Conversely, if w € IDer(xu) then
*([w, p]) = [w, *xu] = 0.
This finishes the proof. [J

4.2 Hodge decomposition for real metric strongly homo-
topy algebras

4.2.1 Hodge decomposition for a vector space.

In this Subsection we follow Kostant’s approach [Kostl Page 332 - 333]. Let W
be a finite dimensional vector space with two linear operators d and ¢ such that
d* = 6% =0.

Definition 7. [Kostant] Linear maps d and 0 are called disjoint if the following
holds:

1. dod(z) = 0 implies §(x) = 0;
2. 6 od(x) = 0 implies d(x) = 0.
Denote £ =6 od +dod.

Proposition 8. [Kostant] Assume that d and § are disjoint. Then we have:
Ker(L) = Ker(d) N Ker(d)
and a direct sum (an analog of a Hodge Decomposition):
W =Im(d) & Im(6) & Ker(L).
In this case the restriction 7T|Ker(5) of the canonical mapping
7 : Ker(d) — Ker(d)/Im(d) =: H(W,d)
is a bijection. In other words Ker(L) ~ H(W,d).0d

We will use this Proposition to obtain a Hodge decomposition for metric L -
algebras.
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4.2.2 Hodge decomposition for real metric L. -algebras.

Let V be a pure odd real vector space with a non-degenerate skew-symmetric
positive defined form (,) and g € S*V be a homogeneous element such that
[, [, —]] = 0. If p is an odd element, the condition [u, [u, —]] = 0 is equivalent
to [p, ] = 0. Denote by d : V' — V the linear operator v — [u,v]. Obviously,
dod = 0. Using Hodge *-operator we can define the following operator

6 = xd .

Again we have § 0 § = 0. We can also define a bilinear product (,) in S*V by the
following formula:

p(p—1) .
—1)"2 vy - (%), if vy, vy € SPV;
V1, v L — ( 1 2) 1, U2 )
(or, v2) { 0, if v, € SPV, vy € SV and p # q.
This bilinear product has the following properties:
Proposition 9. We have

e ={ ¥ 4170

Here I = (iy,...,ip) and J = (j1,...,Jp) such thati; < --- <i, and j; < -+ < jp.
In particular, the pairing () is symmetric and positive definite.
Proof. A straightforward computation.[]

Proposition 10. Assume that € S*(V') is a homogeneous element and d and &
are as above. Then we have

m(m—1)

(d(v), w) = =(=1)"" > (v, 6(w))

forv,w € S*V | and the operators d and § are disjoint.

Proof. Step A. Let us take y;, € S¥2V, v € SP7*V and w € SPV. (We assume
that SV = {0} for r < 0 and r > m, where m = dim V'.) Then, v - xw € S™*V
and we have:

(11, v - ¥w] C [SFT2V, 8™k (V)] = 0.

Furthermore,

0= [pg, v - *w] = [pg, v] - *w + (=1)"*Y - [y, *w] =
[ v] 0 - (=LY g, ] =
di(v) - *xw + (—1)’”“%1} k0 (w),
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where dg(v) = [pg, v] and §(w) = *[u, *w]. Therefore,

m(m—1)

(di(v), w) = —(=1)"" (v, 0k (w))

for all v € SP7FV and w € SPV. Note that this equation holds trivially for v € SPV
and w € SV where ¢ — p # k. Therefore, we have

m(m—1)

(di(v), w) = —(=1)""" (v, 0 (w)) (11)
for all v,w € S*V, where v is homogeneous, and i, € S¥+2V.
Let us take any homogeneous p € S*(V). Then pu = > uy, where uy, € S*(V)
k

and k are all odd or all even. Therefore, d and § also possess corresponding
decomposition: d = Y d; and § = >, where dy, = [ug, —| and 0 = *dj *.

k k
Using [11], we get for homogeneous v, w € S*V:

m(m—1)

(d(v), w) = Z];(dk(v),w = - 2}{3(—1)”’”7+ 2 (v, 0p(w)) =
m(m—1) (m—1)

—(=1)FET (v, G (w)) = —(=1)FFTE (0, 8(w)).

k

The first statement is proven.
Step B. Let us show that dod(v) = 0 implies 6(v) = 0, i.e. the operators d
and ¢ are disjoint. (This argument we borrow from [Kost].) Indeed,

0 = {dod(v),0) = (=15 5(0), 6(v).
The pairing (, ) is positive definite, hence (v) = 0. Analogously we can show that
d od(v) = 0 implies d(v) = 0.00

Denote by H(V,u) the cohomology space of the L..-algebra (V,u), where
i € S*V is an odd element such that [u,p] = 0. By definition H(V,pu) =
Ker(d)/Im(d). The main result of this section is the following theorem.

Theorem 1. [Hodge decomposition for real metric L.-algebras] Let u €
S*(V') be a real metric Ly-algebra structure on V' and d and § be as above. Then
we have a direct sum decomposition:

V = Im(d) ® Tm(8) @ Ker(L),

where L =§od+dod, and Ker(L) ~ H(V, ).
Proof. The statement follows from Propositions [§] and [10] (.

15



5 m~dimensional Filippov and Lie (m—3)-algebras

5.1 (m — 3)-ary algebras with non-degenerate symmetric
forms and coadjoint orbits
Another application of the x-operator is the following: we can classify all (m — 3)-
ary symmetric algebras up to orthogonal isomorphism in terms of coadjoint orbits.
If we assume in addition that such (m — 3)-ary algebras are real and that the form
(,) is positive definite then we can classify all simple algebras. Let again V' be
a pure odd vector space with an even non-degenerate skew-symmetric form (),
i.e. (a,b) = (b,a) for all a,b € V. As usual we denote by O(V') the Lie group of
all invertible linear operators on V' that preserve the form (,) and by SO(V') the

subgroup of O(V') that contains all operators with the determinant +1. We have
s0(V) = LieO(V) = Lie SO(V).

Definition 8. Two n-ary algebra structures u, u’ € S*V on V are called isomor-
phic if there exists ¢ € SO(V') such that
e({vr, - svnte) = {ev1), - o) b

for all v; € V. Here we denote by {...}, the multiplication on V' corresponding to
the algebra structure v.

Sometimes we will consider isomorphism of n-ary algebra structures up to
v € O(V). We need the following two lemmas:

Lemma 1. Let us take ¢ € O(V) and w,v € S*V. Then, o([w,v]) = [p(w), ¢(v)].
In other words, ¢ preserves the Poisson bracket.

Proof. Tt follows from the following two facts:

* (p(w),p(v)) = (w,v), if w,veV;

e p(w-v)=p(w)- ¢) for all w,v e S*V. O
Lemma 2. Two n-ary algebras (V, 1) and (V, '), where p, i’ € S*V, are isomor-
phic if and only if there exists ¢ € SO(V) such that o(u) = p'. In other words,

two n-ary algebras are isomorphic if and only if the corresponding n-ary algebra
structures are in the same orbit of the action SO(V') on S" V.

Proof. From Lemma [1] it follows that

p{ve, s onbe) = o), - o(vn) b

Furthermore, if (V, ) and (V, i) are isomorphic and ¢ € SO(V') is an isomorphism
then from the definition it follows that:

@({Uh s 7U7L}u> = {go(vl), ce 7@(1)%)}#'
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for all v; € V. Therefore, ¢(u) = /. The converse statement is obvious. [J
Assume that dimV = m.

Theorem 2. Classes of isomorphic real or complex (m — 3)-ary algebras with the
invariant form (,) are in one-to-one correspondence with coadjoint orbits of the
Lie group SO(V).

Proof. Tt follows from Proposition [7] and Lemma [2] Note that in the case of the
Lie group SO(V') the adjoint and coadjoint action are equivalent.[]

It is well-known that any real skew-symmetric matrix A can be written in the
following form:

A=QAQ™,
where

A =diag(J,,, ..., Ju,,0,...,0),

(0 g
Ja].—(_aj O)’ a; € R,

and @ € SO(V). If we assume in addition that @ € O(V) and 0 < a < --- < ay,
then A’ is unique. (This follows from the uniqueness of the Jordan normal form
of a given matrix up to the order of the Jordan blocks and from the fact that A
has the following eigenvalues: +ia;, where j = 1,...,k, and 0.) Furthermore, by
Proposition [f| we have an isomorphism so(V) ~ S?V. Let (&) be an orthogonal
basis of V' such that the matrix A € so(V') has the form

A =diag(Jay,- -, Jay,0,...,0).
Then the corresponding element in S?V is

va = a&1é + - ., apéor—1&ak,

where 0 < a; <--- <a; and a; € R.
We obtained the following theorem:

Theorem 3. [Classification of real (m — 3)-ary algebras up to O(V)-
isomorphism| Real (m — 3)-ary algebras with the invariant positive definite form
(,) are parametrized by vectors

v =&+ .. apbor—15ok,

where a; € R, 0 < ap < --- < ay and 0 < k <[], Eaplicitly such algebras are
given by (V, u,), where

ty = *(v).

17



5.2 Classification of real simple (m — 3)-ary algebras with
positive definite invariant forms

In this section we give a classification of simple (m — 3)-ary algebras with invariant
forms up to orthogonal isomorphism.

Definition 9. A vector subspace W C V is called an ideal of a symmetric n-ary
algebra (V, u) if w(V,...,V,IWW) C W.

In other words, the vector space W is an ideal if and only if it is invariant with
respect to the set of endomorphisms fiy, . ., , : V — V, where v; € V. Clearly,
the vector space W is an ideal if and only if it is invariant with respect to the Lie
algebra g that is generated by all ji,, ., -

Definition 10. An n-ary Lie algebra is called simple if it is not 1-dimensional
and it does not have any proper ideals.

Example 2. The classification of simple complex and real Filippov n-ary algebras
was done in [Ling]: there is one series of complex Filippov n-ary algebras Ay, where
k is a natural number and several real forms for each Aj. All these algebras have
invariant forms and in our terminology they are given by the top form L and
formula (7).

Example 3. Let m = 5. By Theorem |3| we see that we have three types of 2-ary
algebras up to isomorphism:

oy =0;
o (g = b1&3848s5, where by # 0;
o ji3 = 01638485 + 2€1€2Es, where by, by # 0.

Obviously, the zero algebra p; = 0 is not simple. The second algebra structure
e = b1&3€4€5 has a non-trivial center because

(M2)£1 = (M2)£2 = 07

Therefore it is also not simple. We will see that the algebra ps is simple. It is not
a Lie algebra because [ug, 13] = —2b10961€26384 # 0.

Theorem 4. [Classification of real simple (m — 3)-ary algebras with in-
variant forms| Assume that m > 4. All real (m — 3)-ary algebras from Theorem
[3 are simple except of two cases:

o v=0;

o v =a&&, where a; # 0.

18



Proof. Clearly, the trivial derived potential 4 = 0 determines a non-simple algebra.
The algebra (V,pu), where p = x(v) and v = a1£,&, has a non-trivial center.
Indeed, we have x(v) = *a1&3 - - - &,,. Therefore,

[z1,...,[&,u]] =0 for all z; € V

We see that lin{&; } is an ideal. Hence, this algebra is also not simple.

Let as show that the other algebras from Theorem |3| are simple. Consider the
Lie algebra g(u) C S?V generated by linear operators fi,, : V. — V, where
v; € V, and the linear space L(p) = lin{u,,
to show by induction that

L. g(p) == Lie{p, .. v, 4} = S*V ~s0(V);

2. L(p) = lin{pte,,.. s} = V.

From the first observation it follows that V' is an irreducible module of g(u) or
equivalently that (V) u) does not contain any non-trivial ideals. The second obser-
vation is an auxiliary statement.

7777 Um—4

,,,,,

Base case. Consider the case dimV = 5 and k = 2. Then

po=x(a1§:1&2 + a2€38s) = 01€364&s + 02616265,

where b; = £a;. A direct computation shows that:

[0, 1] = 02&28s,  [Eo, 1] = —02&1&s, (€3, 1] = 01€a8s,  [Ea, 1] = —D1€3E5

Therefore, the Lie algebra g(u) contains all endomorphisms of the form w - &5,
where w € lin{¢y,...,&}. Further, let us take &£ and ;&5 in g(u), where ¢ # j
and i,j € {1,...,4}. Then

65, €565) = 1685 € g(p).

Therefore, g(1) = S?V and we prove the first statement. Again by direct compu-
tation we obtain:

€, 6:65) = &5, (655 &is] = =&

Hence, L(p) = V' and the second statement in proven in this case.
Inductive step. Assume that dimV =m > 5 and pu = *(v), where

v=a:&86 4 ..+ apbor1&ok, a; 0, k>1, m>2k.

Explicitly the derived potential p is given by
k
po= Z i1+ &ai18oi - &my b = Ta.
i=1
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Here égi_légi are omitted. Consider first the cases m > 2k. Then, u = &,
where i/ is an (m — 4)-ary algebra on the vector space V' = lin{¢;,...,&,_1} of
dimension m — 1. By induction, we have

g(p') 2s0(V") and L) =V". (12)

Using [&n, ] = £4/ and (12), we see that g(p) D so(V’) and L(p) D V'. Again us-
ing , the second equality, we get that for any w € V' there exist x1,..., 2, _4 €
V' such that

[T1, .. [Tmea, ()] = w.
Therefore,
[‘rlv ceey [xm—élalj“]] =w- gm

In other words, g(u) contains all endomorphisms of the form w-&,,, where w € V.
Hence,

g(p) D so(V) & (V' &) = s0(V).

Since, [&, &i&m] = &m, where @ # m, we have L(u) = V.
Now consider the case m = 2k. We can rewrite p in the following form

= ()em-1&m + p&a&a - - - o2, by #0,

where 4/ is an (m—>5)-ary algebra on the vector space lin{¢;, ... &, 2} of dimension
m — 2. Since

o] = £/ &y and [§n, p] = £4'6n,

we see as above that g(u) D so(V’) and g(p) D so(V”), where V' = lin{&y, ... {no1}
and V" =lin{&, ... &n 2, &n ). Since,

[figma figm—l] = j:fm—lgm

forany i € {1,...,m—2}, we get that g(u) = so(V). It is also clear that L(u) D V'
and L(p) D V", hence L() = V. The proof is complete.l]

5.3 Classification of real simple (m — 3)-ary algebras
satisfying Jacobi identity [1] and

In this Section we classify real simple n-ary algebras with a positive definite in-
variant form satisfying Jacobi identity [I] and [2|

Jacobi identity [I} In [Ling] it was proven that there exist only one complex
Filippov n-ary algebra for any n > 2. This algebra is (n + 1)-dimensional. In our
notations it is given by *(1) = L. Another result in [Ling] is the following:
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A real simple Filippov n-ary algebra is isomorphic to the realification of a simple
complex Filippov n-ary algebra or to a real form of a simple complex Filippov n-ary
algebra.

In particular real simple Filippov n-ary algebras are of dimension n+1 or 2n+2.
It follows that simple n-ary algebras in Theorem [4] are not of Filippov type. For
n = m — 2 any derived potential has the form pu = *(v), where v € V'\ {0}. All
such algebras have non-trivial centers because [v, u| = 0. Therefore, they are not
simple. Furthermore, such algebras are of Filippov type. Indeed, since L satisfy
by Proposition 3| we have [Lq, 4, ,, L] =0 for any a; € V. Hence,

[vv [Lah---,amfzwa L” = [Lah---,amfz,va Lv] = [Mah---,amfza /d = 0.

By Proposition 3| we see that (V, x) is a Filippov algebra. By the same argument
the derived potential [v, [w, L]] also corresponds to a Filippov algebra.

Theorem 5. Assume that m > 4. Real m-dimensional n-ary Filippov algebras
with a symmetric positive definite invariant form, where n = m — 1, m — 2 or
m — 3, are given up to isometry by the following derived potentials:

o 1 =0, the trivial algebra;

o u=a& &y, where a € R\ {0};

o u=al - &uo1, where a € R\ {0};
o u=ak - &uoo, where a € R\ {0};

Jacobi identity [2 Assume that m > 4 and (,) is a symmetric positive definite
form.

Theorem 6. All algebras in Theorem|[d satisfy Jacobi identity[3 with the exception
of the following cases:

e m = 5, the algebras with derived potential p = *(a1§1& + a2&3€s), where
ai, az 7é 0,’

e m = 6, the algebras with derived potentials p = *(a1£1& + a€38s) and p =
(16162 + a2838a + a3€s586), where a; # 0;

Proof. Assume that m is odd. By Corollary of Proposition [2| in this case Jacobi
identity [2|is equivalent to [u, u] = 0. Assume that m > 5, then [u, u] € S?™ %V =
{0}. In the case m = 5 the result follows from Example [3|

Assume that m is even. First of all consider the case m = 6. Let us take

p = 01€3848586 + 02£1628586, b1, b2 # 0.
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Deanote by LHS the left hand side of 2] Let us calculate LHS for a; = &,
1=1...,5.

LHS = {{&1,€2, 85}, 83, &} + {{&€3, 64,65}, 61, &2} = —2b1ba&5 # 0.

The main idea here to use the fact that {z,y, 2z} = 0if x € {£,&} and y € {3, &4}
The proof for

= 0183848586 + 0261828586 + 0361626384, b # 0

is similar.
Consider the case m > 6. Without loss of generality we can assume that
between elements a;, where ¢ = 1,...,2m — 7, are at least two equal. Let a, =

a; = v. Clearly, {a;,,...,v,...,v,...,a; } = 0. Therefore,

LHS ="+ 37 g,
k,l kil

where Jl(k’l) and Jék’l) is the sum of all summands of the form

{{ail,...,CZS,...,aim_g},ajl,...,cgt,...,ajm_4},

{Hai, - .. ,czt, NP N7 PR ,als, N
respectively. Further,

k,l ~ ~
Jl( ) = j:Z(—l)(l,J){{ail,...,czs,...,aim%,as},ajl,...,cgt,...,ajm%,at}:
:l: Z(—l)(ll"]/){{ail, e ,dks, Ce ,(Zim_3}v, ajn Ce ,dlt, Ce ,(Ijm_4}v,

where {. ..}, is the multiplication corresponding to the derived potential i, = [v, ]
and (—1)"+/) is the sign of the permutation

(@1, ..y Qgy ey gy ey Qomo7) — (ail,...,czs,...,aimis,ajl,...,cgt,...,a]-m%).

Since 1, € S™3W, where W = (v)*, we see that [p,, 1,] = 0. Therefore [2] holds
for {...}, and Jl(k’l) = (. Similarly, Jg(k’l) = 0. The proof is complete.[]

Corollary. All simple algebras in Theorem[]] satisfy Jacobi identity[q for m > 6.

6 Quasi-Frobenius skew-symmetric n-ary algebras

Using ”derived bracket” construction it is possible to answer the question when
a skew-symmetric n-ary algebra is quasi-Frobenius. Let V' be a pure odd vector
space and p € S™(V*) ® V' be an n-ary symmetric algebra structure on V.
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Definition 11. An n-ary algebra (V, 1) is called quasi-Frobenius if it is equipped
with a symmetric bilinear form ¢ such that

ng(al,u(ag,...,an+1)) = 0. (13)

cycl

If we forget about superlanguage this means that the algebra (V, u) is skew-
symmetric and ¢ is a skew-symmetric bilinear form on V.

Example 4. Assume that n =2 and (V, ) is a Lie algebra. Then our definition
coincides with the definition of a quasi-Frobenius Lie algebra. Recall that a quasi-
Frobenius Lie algebra is a Lie algebra g equipped with a non-degenerate skew-
symmetric bilinear form 3 such that

Blla,yl, 2) + B([z, 2], y) + B(ly, 2], ©) = 0.

We may assign an n-ary algebra (V& V*, u?) to (V, i), called the T;-extension
of (V, ). (The notion of T} -extension for algebras was introduced and studied in
[Bord]. We will need this notion only for § = 0.) The construction of (V & V*, u”)
is very simple: the n-ary algebra structure p” is just the image of u by the natural
inclusion S*"(V*) @ V. — S*(V* & V). Furthermore, the pure odd vector space
V @ V* has a skew-symmetric (in supersense) pairing given by

(a,0) = (@, a) = afa),

where @ € V* and a € V. This defines a Poisson bracket on S*(V & V*). So
(Vo V* ul) as a quadratic symmetric n-ary algebra, where the multiplication is
given by the derived bracket with the derived potential y” € S*(V* @ V). More
precisely, the new multiplication p? in V @ V* is given by:

1 lsnoy = 1, il lgnonprysnerey = 0if k> 1, pf(S"H(V) - SHV*)) c V*

and
pfay, ... an_1,b%)(c) == —b*(u(ay, ..., an_1,c)).
The main observation here is:

Proposition 11. Let V' be a pure odd vector space and n be even. Then an n-ary
algebra (V, 1) has a quasi-Frobenius structure with respect to a symmetric form ¢
if and only if the maximal isotropic subspace B, = {a+ ¢(a,—)} CV @& V* is a
subalgebra in (V & V*, ul).

In other words, there is a one-to-one correspondence between quasi-Frobenius
structures on (V,u) and mazximal isotropic subalgebras in (V @& V* uT) that are
transversal to V'*.
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Proof. First of all it is well-known that maximal isotropic subspaces in V& V* that
are transversal to V* are in one-to-one correspondence with ¢ € S?V. Let us show
that ¢ satisfies if and only if B, is a subalgebra. Denote a* := p(a, —) € V*.
Then we have:
(u"(ar +ai, ... an +ay),ct ) =
H(ulay, ... a,)) + ;(MT(al, e @y, Ay), C) =

Aty .oy p)) — o ap(plar, ... a-1,¢ kg1, ..,0,)) =

1(
k
ole,u(ar, ... an)) = > @lag, plar, ..., ak_1,¢ Qg1 ..., an)).
k

Furthermore,
QO(CLk, :u(ak—i-la ceey Gpy G an .. 7ak—1)) =
(_1)(]6_1)(”_]6_1)%0(6”% /“L(ala coey Qf—1, Q41 - - - 5 Ap,y C)) =
(—1)E=k=D+ o (ap, play, . .., Qp_1,C, Qpyr - .., an)).
If n is even, (—1)*=F=D+! — 1 Therefore, we have:

(luT(al + CLT, sy Qp T CLZ)7 n41 + a’;Jrl) = Z QO(CLl, :u(a’Qv s 7a’n+1))'

cycl

This expression is equal to 0 if and only if the algebra (V| u) is quasi-Frobenius
with respect to ¢. On other side, (' (a1 + af, ..., a, + ak), api1 + alyy) is equal
to 0 if and only if B, is a subalgebra in (V @ V*, u”). The proof is complete.(]

Remark. The result of Proposition [11|is well-known for Lie algebras.
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