The splitting problem for complex
homogeneous supermanifolds !

E.G. Vishnyakova

Abstract

It is a classical result that any complex analytic Lie supergroup G
is split [5], that is its structure sheaf is isomorphic to the structure
sheaf of a certain vector bundle. However, there do exist non-split
complex analytic homogeneous supermanifolds.

We study the question how to find out whether a complex analytic
homogeneous supermanifold is split or non-split. Our main result is a
description of left invariant gradings on a complex analytic homoge-
neous supermanifold G/# in the terms of H-invariants. As a corollary
to our investigations we get some simple sufficient conditions for a
complex analytic homogeneous supermanifold to be split in terms of
Lie algebras.

1 Introduction

A supermanifold is called split if its structure sheaf is isomorphic to the
exterior power of a certain vector bundle. By Batchelor’s Theorem any real
supermanifold is non-canonically split. However, this is false in the complex
analytic case. The property of a supermanifold to be split is very important
for several reasons. For instance, in [2] it was shown that the moduli space
of super Riemann surfaces is not projected (and in particular is not split)
for genus ¢ > 5. The physical meaning of this result is that [2]: ”certain
approaches to superstring perturbation theory that are very powerful in low
orders have no close analog in higher orders”. Another problem, when the
property of a supermanifold to be split is very important, is the calculation of
the cohomology group with values in a vector bundle over a supermanifold.
In the split case we may use the well understood tools of complex analytic
geometry. In the general case, several methods were suggested by Onishchik’s
school: spectral sequences, see e.g. [12]. All these methods connect the
cohomology group with values in a vector bundle with the cohomology group
with values in the corresponding split vector bundle.
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How do we determine whether a complex analytic supermanifold is split
or non-split? Let me describe here some results in this direction that were
obtained by Green, Koszul, Onishchik and Serov. In [3] Green described a
moduli space with a marked point such that any non-marked point corre-
sponds to a non-split supermanifold while the marked point corresponds to a
split one. His idea was used for instance in [2]. The calculation of the Green
moduli space is a difficult problem itself, and in many cases the method
is difficult to apply. Furthermore, Onishchik and Serov [9, 10, 11] consi-
dered grading derivations, which correspond to Z-gradings of the structure
sheaf of a supermanifold. For example, it was shown that almost all super-
grassmannians do not possess such derivations, i.e. their structure sheaves
do not possess any Z-gradings. Hence, in particular, they are non-split. The
idea of grading derivations was independently used by Koszul. In [4] the
following statement was proved: if the tangent bundle of a supermanifold M
possesses a (holomorphic) connection then M is split. (Koszul’s proof works
in real and complex analytic cases.) In fact, it was shown that we can assign
a grading derivation to any supermanifold with a connection and that this
grading derivation is induced by a Z-grading of a vector bundle.

Assume that a complex analytic supermanifold M = (Mg, Or) is split.
By definition this means that its structure sheaf Oy, is isomorphic to A €&,
where £ is a locally free sheaf on the complex analytic manifold M. The
sheaf A € is naturally Z-graded and the isomorphism Oy ~ A€ induces
the Z-grading in O,. We call such gradings split. The main result of our
paper is a description of those left invariant split gradings on a homogeneous
superspace G /H which are compatible with split gradings on G. We also give
sufficient conditions for pairs (g,h), where g = LieG and h = LieH, such
that G/H is split.

Acknowledgment. The author is grateful to A. Onishchik, V. Serganova,
P. Teichner and R. Donagi for their attention to this work and anonymous
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2 Complex analytic supermanifolds. Main
definitions.
We will use the word ”supermanifold” in the sense of Berezin and Leites, see

[1], [7] and [8] for details. Throughout, we will be interested in the complex
analytic version of the theory. Recall that a complex analytic superdomain



of dimension n|m is a Zs-graded ringed space

U= (U,Fs @ \m)).

where Fi; is the sheaf of holomorphic functions on an open set U C C™ and
/\(m) is the exterior (or Grassmann) algebra with m generators. A complez
analytic supermanifold of dimension n|m is a Zs-graded ringed space that is
locally isomorphic to a complex superdomain of dimension n|m.

Let M = (M, Op) be a complex analytic supermanifold and

Im = (Om)i + (Om)i

be the subsheaf of ideals generated by odd elements in Oy. We put Fu :=
Om/Im. Then (Mg, Fa) is a usual complex analytic manifold. It is
called the reduction or underlying space of M. We will write M, instead of
(Mo, Faq) for simplicity of notation. Morphisms of supermanifolds are just
morphisms of the corresponding Z,-graded ringed spaces. If f : M — N
is a morphism of supermanifolds, then we denote by f; the morphism of
the underlying spaces My — Ny and by f* the morphism of the structure
sheaves On — (f0)«(Opm). If x € My and m, is the maximal ideal of the
local superalgebra (Oa),, then the vector superspace T,(M) = (m,/m2)*
is the tangent space of M at z € M,.

Denote by Tx the tangent sheaf or the sheaf of vector fields of M. In
other words, Ty is the sheaf of derivations of the structure sheaf Q4. Since
the sheaf O\ is Zs-graded, the tangent sheaf Ty, is also Z,-graded, i.e. there
is the natural decomposition Ty = (Tm)g @ (Tam)1, where

(Ta)i = {v € Tat | 0((Oar)y) € (Or)ys |-

Let M be a complex analytic manifold and let £ be the sheaf of holomor-
phic sections of a vector bundle over M. Then the ringed space (My, A E)
is a supermanifold. In this case dim M = n|m, where n = dim M, and m is
the rank of the locally free sheaf £.

Definition 1. A supermanifold (Mg, Opy) is called split if Opg =~ A\ € for a
locally free sheaf £ on M. The grading of O, induces by an isomorphism

p
Onm =~ A\ € and the natural Z-grading of A\ € = @ A € is called split grading.
p

For example, all smooth supermanifolds are split by Batchelor’s Theorem.
In [4] it was shown that all complex analytic Lie supergroups are split too. In
this paper we study the splitting problem for complex analytic homogeneous
supermanifolds.



3 Lie supergroups and their homogeneous
spaces

3.1 Lie supergroups and super Harish-Chandra pairs.

A Lie supergroup is a group object in the category of supermanifolds, i.e. it
is a supermanifold G with three morphisms: the multiplication morphism,
the inversion morphism and the identity morphism, which satisfy the usual
conditions, modeling the group axioms. In this case the underlying space Gy
is a Lie group. The structure sheaf of a (complex analytic) Lie supergroup
can be explicitly described in terms of the corresponding Lie superalgebra
and underlying Lie group using super Harish-Chandra pairs (see [5] and [14]
for more details). Let us describe this construction briefly.

Definition 2. A super Harish-Chandra pair is a pair (Go, g) that consists
of a Lie group Gy and a Lie superalgebra g = gz @ g7 such that gz = Lie Gy
provided with a representation Ad : Gy — Aut g of Gy in g such that:

e Ad preserves the parity and induces the adjoint representation of Gy on
90;

e the differential (d Ad). at the identity e € Gy coincides with the adjoint
representation ad of gg on g.

If a super Harish-Chandra pair (Go, g) is given, it determines the Lie su-
pergroup G in the following way, see [5]. Let 4l(g) be the universal enveloping
superalgebra of g. It is clear that $(g) is a 4(gg)-module, where (gg) is the
universal enveloping algebra of gz. Recall that we denote by Fg, the struc-
ture sheaf of the manifold Gy. The natural action of gz on the sheaf Fg,
gives rise to a structure of 4l(gg)-module on Fg,(U) for any open set U C Go.
Putting

OQ(U) = Homu(g()) (Ll(g)7 ]:QO(U))

for every open U C Gy, we get a sheaf Og of Zs-graded vector spaces. (Here
we assume that the functions in Fg,(U) are even.) The enveloping superal-
gebra $(g) has a Hopf superalgebra structure. Using this structure we can
define the product of elements from Og such that Og becomes a sheaf of
superalgebras, see [5] and [14] for details. A supermanifold structure on Og
is determined by the isomorphism @, : Og — Hom ( A(g1), Fg,), f + f o
where

% N = Wg), XA AX, = S Z DX Xoy. (1)

" eSS,



The following formulas define the multiplication morphism, the inversion
morphism and the identity morphism respectively:

p (N (X@Y)(g,h) = f(AdT)X)-Y) (gh);
()X (9) = F(Ad(9)(S(X))) (971) ; (2)
e (f) = f(1)(e).

Here XY € 4(g), f € Og, g,h € Gy and S is the antipode map of the Hopf
superalgebra $(g). Here we identify the enveloping superalgebra (g @ g)
with the tensor product (g) ® U(g).

Sometimes we will identify the Lie superalgebra g of a Lie supergroup G
with the tangent space T,(G) at e € Gy. The corresponding to T' € T.(G) left
invariant vector field on G is given by

(id®T) o p*, (3)

where p is the multiplication morphism of G. (Recall that a vector field Y
on G is called left invariant if (id®Y) o u* = p* oY) Denote by [, and by
ry the left and right translations with respect to g € Gy, respectively. The
morphisms [, and r, are given by the following formulas:

LX) (R) = F(X)(gh): ry(H)(X)(h) = f(Ad(g™)X)(hg),  (4)
where f € Og, X € U(g) and g,h € Go.

3.2 Homogeneous supermanifolds.

An action of a Lie supergroup G on a supermanifold M is a morphism v :
G X M — M such that the usual conditions modeling group action axioms
hold. Any vector X € T.(G) defines the vector field on M by the following
formula:

X = (X®id)or". (5)

Definition 3. An action v is called transitive if vy is a transitive action of
the Lie group Gy on M and the vector fields (5) generates the tangent space
T.(M) at any point x € M,. In this case the supermanifold M is called
G-homogeneous. A supermanifold M is called homogeneous, if it possesses a
transitive action of a Lie supergroup.

If a supermanifold M is G-homogeneous and v : G x M — M is the
corresponding transitive action, then M is isomorphic to the supermanifold
G/H, where H is the isotropy subsupergroup of a certain point (see [16] for



details). Recall that the underlying space of G/H is the complex analytic
manifold Gy/H and the structure sheaf Og /mof G /H is given by

Ogp = { I € (70)-(Og) | Hgne ) = pr*() }. (6)

where 7y : Go — Go/Ho is the natural map, ugxy is the restriction of the
multiplication map on G X H and pr : G X ‘H — G is the natural projection.
Using (2) we can rewrite the condition ug, 4 (f) = pr*(f) in the following
way:

(@ or)an = { JO TEE 7)

where X € {U(g), Y € U(h), h = LieH, g € Gy and h € Hy.
Let Y € g and f € Og. Then the operator defined by the formula

Y()(X) = (-1 f(XY), (8)

where p(Y') is the parity of YV, is a left invariant vector field on G. From (4),
(7) and (8) it follows that

[ € Ogy if and only if f is Ho-right invariant, i.e. r;(f) = f for any
h € Hoy, and Y (f) =0 for all Y € b1, where h = by @ bs.

Sometimes we will consider also the left action H x G — G of a subsuper-
group H on a Lie supergroup G. The corresponding quotient supermanifold

we will denote by H\G.

3.3 More about split supermanifolds.

Recall that a supermanifold M is called split if its structure sheaf Oy, is
isomorphic to A &, where £ is a locally free sheaf on M. In this case, O

p
possesses the Z-grading induced by the natural Z-grading of AE = P AE
p

and by isomorphism Op ~ A €. Such gradings of O we call split.
Proposition 1. Any Lie supergroup G s split.

This statement follows from the fact that any Lie supergroup is deter-
mined by its super Harish-Chandra pair. A different proof of this result
(probably the first one) was given in [4]. For completeness we give here
another proof.

Proof. The underlying space G is a closed Lie subsupergroup of G. Hence,
there exists the homogeneous space G/Gy, which is isomorphic to the su-
permanifold N such that A is a point pt = Gy/Gy and Oy ~ A(m),
where m = dimg;. By definition, the structure sheaf O, consists of all
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re-invariant functions, g € Gy. We have the natural map ¢ : G — G/G,,
where ¢g : Gy — pt and ¢* : On — (¢0)«(Og) is the inclusion. It is known
that ¢ : G — G/Gy is a principal bundle (see [16]). Using the fact that the
underlying space of G/Gy is a point we get G ~ N x Gy. Note that this is an
isomorphism of supermanifolds but not of Lie supergroups.[]

Example 1. As an example of a homogeneous non-split supermanifold we
can cite the super-grassmannian Gr,,), s for 0 < r < m and 0 < 5 < n.
Super-grassmannians of other types are split (see Example 3).

Denote by SSM the category of split supermanifolds. Objects Ob SSM
in this category are all split supermanifolds M with fixed split gradings.
Further if X, Y € Ob SSM, we put

Hom(X,Y) = { morphisms from X to Y }

preserving the split gradings

As in the category of supermanifolds, we can define in SSM a group ob-
ject (split Lie supergroup), an action of a split Lie supergroup on a split
supermanifold (split action) and a split homogeneous supermanifold.

There is a functor gr from the category of supermanifolds to the category
of split supermanifolds. Let us briefly describe this construction. Let M be
a supermanifold. Denote by Jy C Oxq the subsheaf of ideals generated by
odd elements of Oy. Then by definition gr M = (M, gr On) is the split
supermanifold with the structure sheaf

& O = D Om)y, T = Onts (88 Ond)y = T/ THE

p>0

In this case (gr Oy )y is a locally free sheaf and there is a natural isomorphism
of grOn onto A(grOm)i. If 0 = (1, ¢*) : M — N is a morphism, then
gr(v) = (Yo, gr(v*)) : gr M — gr N is defined by

gr()(f+ T%) =" (f) + T4y for f € (Tn)P "

Recall that by definition every morphism of supermanifolds is even and as a
consequence sends J3 into Jy.

3.4 Split Lie supergroups.

Let G be a Lie supergroup with the supergroup morphisms p, ¢ and e: the
multiplication, the inversion and the identity morphism, respectively. In this
section we assign three split Lie supergroups G!, G? and G2 to G and we show
that these split Lie supergroups are pairwise isomorphic.

7



(1) The construction of G! is very simple: we just apply functor gr to G.
Clearly, G! := gr @ is a split Lie supergroup with the supergroup morphisms
gr(p), gr(c) and gr(e).

(2) Consider the super Harish-Chandra pair (Go, g%), where g is the
following Lie superalgebra: g? and g are isomorphic as vector superspaces
and the Lie bracket in g? is defined by the following formula:

_JIX)Y], XY eggor X € ggand Y € gg;
XY = { 0, if X,Y € gy. (9)

Denote by G? the Lie supergroup corresponding to (Go, g?).

(3) Consider the sheaf Ogs := Homc(/ g1, Fg,)- For the ringed space
G := (Go, Ogs) we can repeat the construction from Section 3.1. Indeed, this
ringed space is clearly a supermanifold. Futhermore, the exterior algebra A gi
is also a Hopf algebra. Therefore, we can define on G2 the multiplication, the
inversion and the identity morphisms respectively by the following formulas:

() ()X AY)(g,h) = fF(AALT)(X) AY)(gh);
() (f )( )( F(Ad(g)(S"(X))) (¢7"); (10)
( ) (e).

G), 9, h € Gy and S’ is the antipode

) =
Here X,Y € Agi, f € Hom(c(/\g
A gi. Hence, G* := (Gy, Ogs) is a Lie super-

map of the Hopf superalgebra
group. Since

15
1-

p
Hom@(/\ 01, Fg,) = @Hom@(/\ 01, Fg,)

p=>0

is Z-graded and the morphisms (10) preserve this Z-grading, we see that G3
is a split Lie supergroup.

Later on we will need the explicit expression of left and right translations
l’g and r; in G3:

L) (HX)(h) = f(X)(gh);  (rp)*(NH(X)(h) = f(Ad(g")X)(hg), (11)
where f € Home¢(A g1, Fg,), X € Agi and g, h € Gy.

In fact, all these split Lie supergroups are isomorphic. To show this we
need the following lemma:

Lemma 1. Let € be a Lie superalgebra and X;,Y; € ¢, 1 =1,...,r, j =
1,...,s be any elements. Assume that [X;,Y;] = 0 for any i,j. Then we
have

%(Xl/\.../\XT/\Yl/\.../\Y;):%(Xl/\.../\Xr).%(Yl/\.../\y;)’
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where Y is given by (1).
Proof. A direct calculation.[J
Proposition 2. We have G! ~ G% ~ G3 in the category of Lie supergroups.

Proof. (a) The statement G' ~ G2 was proven in [15], Theorem 3.

(b) Let us show that G? ~ G3. Applying Lemma 1 to g and to any
clements X;, Y; € g7, we see that in this case 42 is not only isomorphism of
super coalgebras but of Hopf superalgebras. In other words, the isomorphism

g2 : Homyga) (4U(g%), Fo,) — Home ( /\ g1, Fo,)

is an isomorphism of Lie supergroups.[]

4 Split grading operators

Let again M be a supermanifold, gr M be the corresponding split super-
manifold and J be the sheaf of ideals generated by odd elements of O,,. We
denote by T = DerOp and by grT = Der(Og a) the tangent sheaf of M
and of gr M, respectively. The sheaf 7 is naturally Z,-graded and the sheaf
gr T is naturally Z-graded: the gradings are induced by the Zs and Z-grading
of Oy and gr Oy, respectively. In other words, we have the decomposition:

T=ToT, &T=EPET)

p>—1

The sheaves T and gr T are related: this relation can be expressed by the
following exact sequence:

0— Toyg — To — (gr T)o — 0, (12)

where

Ty ={v e To | v(Om) C T?}

The morphism « in (12) is the composition of the natural morphism 75 —
T5/T(2)5 and the isomorphism Tg/ 725 — (gr 7)o that is given by

[w] — @, @(f+T") = w(f) + T,

where w € Ty, [w] is the image of w in T5/T (25 and f € JP.
Assume that the sheaf O is Z-graded, i.e. Oy = @(Onm)p. Then we

P
have the map w : O — O defined by w(f) = pf, where f € (Oa)p. Such
maps are called grading operators on M.
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Definition 4. We call a grading operator w on M a split grading operator
if it corresponds to a split grading of O 4, see Definition 1.

In fact any split grading operator w on M is an even vector field on M.
Indeed, w is linear, it preserves the parity in Ox and for f € (Op), and
g € (Om), we have:

w(fg) = (p+aq)fg= (pf)g+ flag) = w(f)g + fw(g).

Note that fg € (Opm)ptq-
By definition the sheaf gr O, is Z-graded. Denote by a the corresponding
split grading operator.

Lemma 2. 1. A supermanifold M 1is split if and only if the vector field a is
contained in Tm H°(), where

H(a) : H* (Mo, Tg) — H" (Mo, (g1 T)o)-

(We applied the functor H(Mg, —) to the sequence (12). We write H°(«)
instead of H*(My, ) for notational simplicity.)

2. If w is a split grading operator on M, then any other split grading
operator on M has the form w + x, where x € H°(M,, T20)-

Proof. 1. The statement of the lemma can be deduced from the following
observation made by Koszul in [4, Lemma 1.1 and Section 3]. Let A be a
commutative superalgebra over C and m be a nilpotent ideal in A. An even
derivation w of A is called adapted to the filtration

A>Dm>Om?. ..

if
(w —rid)(m") C m" ™ for any r > 0.

Denote by D the set of all derivations adapted to m. In [4, Lemma 1.1] it
was shown that D2 is not empty if and only if the filtration of A is splittable.
Moreover, if w € D% then the corresponding splitting of A is given by
eigenspaces of the derivation w: A = @, A;, where A; is the eigenspace of w
with the eigenvalue i, and m" = A, @ m"*! for all r > 0.

We apply Koszul’s observation to the sheaf of superalgebras O, and its
subsheaf of ideals 7. The set D“Jd is in this case the set of global derivations
of Op, adapted to the filtration

OuDIDI*D.... (13)

Clearly, D% is not empty if and only if a is contained in Im H°(«). (Ac-
tually, H°(a)(D%') = a.) Furthermore, if the supermanifold M is split, i.e.
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we have a split grading Oy = @,50(Om)p, then J7 = P,.,(Or), and
T = (Opm), ® T, Hence, the split grading determine the splitting of the
filtration (13) and the corresponding split grading operator belongs to Df}d.

Conversely, if there exists w € Df17d, then we can decompose the sheaf Oy,
into eigenspaces

(Om)g = A{f € Oplw(f) =af}
In this case the sheaves @(Onm), and gr O are isomorphic as Z-graded
p
sheaves of superalgebras since J¢ = (Op),6T ™. Hence, the supermanifold
is split.
2. Applying the left-exact functor H(M,, —) to (12), we get the following
exact sequence:

HO(«
0 — HO(Mo, Too) — HO(Mo, To) =8 HO(Mo, (2r T)o)-
If wy, wy are two split grading operators on M, then
H () (wr) = H (@) (ws) = a,

according to the part 1. Therefore, w; — wy € HO(MO,’RQ)()). The result
follows.]

Example 2. Consider the supermanifold Go\G. Its structure sheaf is iso-
morphic to A(g7) (compare with Example 1). Denote by (g;) the system of
odd (global) coordinates on Gy\G. An example of a split grading operator
on the Lie supergroup G is > &'X;. Here (X;) is a basis of odd left invariant
vector fields on G such that X;(e7)(e) = 7. We may produce other examples
if we use right invariant vector fields or odd (global) coordinates on G/Gy.

By Lemma 2, any split grading operator on a Lie supergroup G is given
by >°e'X; + x, where x € H%(Gy, T(2)5) is any vector field on G.

5 Compatible split gradings on G/H

5.1 Compatible gradings on G/H.

Let G be a Lie supergroup and M = G/H be a homogeneous supermanifold.
As above we denote by 7 : G — G/H the natural projection.

Definition 5. A split grading of the sheaf Og = @(Og), is called compatible

P
with the inclusion Oxq C (m0)«(Og) if the following holds:

f€O0Om = f, € Op forall p,

11



where f =) f, and f, € (7)+((Og),).

Let us take any split grading operator w on G. Clearly, the corresponding
split grading of Og is compatible with O if and only if w(Oxr ) C Opy. Tt
is not clear from Definition 5 that the compatible grading

(Om)p = O N (70)+((Og)y) (14)
of Oy, if it exists, is a split grading of O,. However, the following propo-
sition holds:

Proposition 3. Assume that we have the Z-grading:

OM = @(OM)IM

p=>0

where (Opnm), are as in (14). Then this grading is a split grading.

Proof. The idea of the proof is to apply Lemma 2 to the grading operator
w' :=wlp,, on M. Denote by Jr and by Jg the sheaves of ideals generated
by odd elements of O and Og, respectively. Our aim is to show that

W (f)+ T =pf+ TN

where f € Jy,. In other words, we want to show that H°(a)(w’) is a split
grading operator for the grading of gr Op. (We use notations of Lemma 2.)
We have:

(grm) (W' (f) + Ty") = w(f) + T&H = pf + TE
(erm)*(pf + T ) =pf + 5

Since the map (grm)* is injective, we get, w'(f) + jf\’jl =pf+ jf\’jl. OJ

5.2 H-invariant split grading operators.

First of all let us consider the situation when a split grading operator w on
G is invariant with respect to a Lie subsupergroup H. In terms of super
Harish-Chandra pairs this means:

rrow=wory, foral heHop;

[Yv w] = O, forall Y € bi- (15)

Here (Ho, h) is the super Harish-Chandra pair of H, 7, is the right translation
and Y is an odd left invariant vector field.

12



Proposition 4. Assume that w is an H-invariant split grading operator on
G, i.e. equations (15) hold. Then H is an ordinary Lie group.

Proof. The idea of the proof is to show that the Lie superalgebra b of H has
the trivial odd part: by = {0}.

In Example 2 we saw that any split grading operator on G is given by
w= > ¢eX,+ x. If Zis a vector field on G, denote by Z. € T.(G) the
corresponding tangent vector at the identity e € Gy. Consider the second
equation in (15). At the point e, we have

Y, wl. = (EY<5i)Xi — > Y oX; - Y X, oY +[Y, X])e =0
for any Y € bhi. Furthermore,

(Z 8iY @) Xz — Zngz o Y)e =0 and [Yv X]e = 07

because ¢’(e) = 0 and because x € H°(My, T(2)5). Therefore,
Vowle =) V(e)(e)(Xi)e =0

The tangent vectors (X;). form a basis in 7,.(G)1, hence Y (¢")(e) = 0 for all
1. The last statement is equivalent to Y., = 0. Since Y is a left invariant
vector field, we get Y = 0. The proof is complete.[]

Remark. It is well known that the supermanifold G/H, where H is an
ordinary Lie group, is split (see [5] or [14]). Therefore, the case of H-invariant
split grading operators does not lead to new examples of homogeneous split
supermanifolds.

5.3 Gp-left invariant split grading operators.

Consider now a more general situation, when a split grading operator w
leaves O invariant. Let f € Ox. Then w(f) € Oy if and only if

ra(w(f)) =w(f) and Y(w(f))=0

for h € Hg and Y € hy. These conditions are equivalent to the following
ones:

(rhowo () —w)loy =05 [Ywlloy =0. (16)

Recall that rgl =Trp-1.
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It seems to us that the system (16) is hard to solve in general. Consider
now a special type of split grading operators, called Gy-left invariant grading
operators.

Definition 6. A split grading of Og is called Gy-left invariant if it is invariant
with respect to left translations. In other words, from f € (Og), it follows
that [} (f) € (Og), for all g € Gy.

It is easy to see that a split grading of Qg is Gy-left invariant if and only
if the corresponding split grading operator w is invariant with respect to
left translations: [J ow = wol;, g € Go. For example, the split grading
operator Y ' X; constructed in Example 2 is a Go-left invariant split grading
operator, because £ are Gy-left invariant functions and X; are left invariant
vector fields. In this section we will describe all such operators.

In Section 3.4 we have seen that the supermanifold (Gy, Home (A 91, Fg,))
is a Lie supergroup isomorphic to grG. We need the following lemma:

Lemma 3. The map
CI>g : Og — Homc(/\gi,fgo),
f = fo
from Section 3.1 is invariant with respect to left and right translations.

Proof. For any h € Gy, denote by r} and [} the right and the left translation
in the Lie supergroup G* = (G, Homc(A g1, Fg,)), respectively. (See, (11))
Let us show that

(r,) 0 ®y = g0} (17)

Let us take Z € A g1 and g, h € Gy. Using (4) we have

[(r},)7 0 }( )(Z)(g ) ®4(f)(Ad(R1)(2))(gh) =
f Qe(Ad(h™1)(2))) (gh) = f(Ad(h™")(7(2)))(gh) =
(S )(g(Z))( ) (@ 0 13](S)(2)(9)-

Similarly, we get
(Ih)" 0 g = g o 1}

OJ

The following observation is known to experts, but we cannot find it in
the literature:

Lemma 4. The space of Go-left invariant vector fields H°(Gy, T)% on a Lie
supergroup G 1is isomorphic to H°(pt, Ogy\g) ® g. The isomorphism is given
by:

fezvls f7,
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where f € H°(pt, Og,\g) and Z € g.

Proof. Clearly, the map F is injective and its image is contained in the
vector space H°(Gy, T)9%. Let us show that any vector field v in H°(Gy, T )%
is contained in Im(F).

Let (X;) and (Z;) be a basis of odd and even left invariant (with respect
to the supergroup G) vector fields on G, respectively. Assume that

U:ZfiXmLZngj,

where f?, ¢/ € H°(Gy, Og), be the decomposition of v with respect to this
basis. We have:

lsov= Zl;(fi>l; oX;+ > l;(gj>lz 0Z; =
L) Xioly+ > 13(g°) Zj ol =voly.
Therefore, I;( f) = fand I’(¢7) = ¢’ for all g € Gy. In other words,
[t g7 € H°(pt, Ogy\g). The proof is complete.[]

The Lie supergroup G acts on the vector superspace H°(Gy, 7)%. This
action we can describe in terms of the corresponding super Harish-Chandra
pair (G, g) in the following way:

g—= (X =rioXo(r,l)), Y= (Xw—[VX]), (18)

where g € Gy, X € H°(Gy, T)% and Y € g. Note that this action is well-
defined because G-left and right actions on H%(Gy, T) commute. The Lie
supergroup G acts also on the vector superspace H°(pt, Og,\g) ® g. This
action is given by right translations r; on H O(pt, Ogy\g) and by the formulas
(18) on g if we assume that X € g. Clearly, the isomorphism F from Lemma 4
is equivariant. From now on we will identify H%(Gy, 7)% and H°(pt, Ogy\g)®
g via isomorphism F' from Lemma 4.

If H is a Lie subsupergroup of G and h = Lie H then g/b is an H-module.

Lemma 5. Let us take a Gy-left invariant split grading operator w. The
vector field w satisfies (16) if and only if

w e (H(pt, Ogpg) ® 9/h)™, (19)

where w is the image of w by the natural mapping
H°(pt, Ogy\g) ® g — H"(pt, Ogy\g) @ /b
Proof. Let w € (H%(pt, Og,\g) ® g/h)™. Tt follows that

rpowo (1) —w € HO(pt, Ogy\g) @ b, h € Ho,
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and
[Y,w] € H%(pt, Ogyg) @b, Y € b.

Hence, the conditions (16) are satisfied.

On the other hand, if the conditions (16) are satisfied, then the vector
fields 75 owo (r; ')* —w and [Y, w] are vertical with respect to the projection
™ : G — G/H. Therefore, 75 ow o (r,")* — w and [Y,w] belong to the
superspace HY(pt, Og,\g) ® h. It is equivalent to conditions (19).0]

Now our aim is to describe the space (H%(pt, Og,\g) ® g/f))HO. We have
seen in Proposition 1 that the superspace H°(pt, Og,\g) is isomorphic to
A g;. Actually this isomorphism can be chosen in Gy-equivariant way. More
precisely, we need the following lemma.

Proposition 5. a. We have

H°(pt, Ogpg) ®98 = A(g)) @9 as Go-modules,
i

Ho(pt, Ogo\g) ®g/b ~ A(g?) ®@g/b as Ho-modules,

where the action of Gy on \(g3) is standard.
b. There exists a Go-left and right invariant split grading operator on G.

Proof. a. We have to show that there exists an Gy-equivariant isomorphism

B %
H(pt, Ogy\g) — /\ o5.

Then the map  ® id will provide the required isomorphism of Gy-modules.
Consider the Lie supergroup

G = (Go, Home (/\ 91, Fa,))

from Section 3.4. It follows from (4) that

H(Go, Ogy\g+) = Home(\ g1, C) = (/\ 91)"-

Note that the action of Gy on (/A g7)* by right translations in G2, denoted
by (r3,)*, coincides with the standard action of Gy on (A g1)*. Indeed, let us
take

f € H%(Go, 0gs)® = (\ #7)"-
By (11), we have:



Here g,h € Gy, X € A\ g1 and e € G is the identity. It remains to note that
by Lemma 3, the map ®4 induces the equivariant isomorphism between the
superspaces of left invariants H°(pt, Og,\g) and (A g1)*.

b. We need to show that in the vector space

(A @9)® = (A 2 5)™ @ (A ©01)”

there exists points corresponding to split grading operators. This space al-
ways possesses a Go-invariant, precisely, the identity operator id € g7 ® g5.
The pre-image of 7! (id) € H%(pt, Og,\¢) ® g has the form )" &'X; for some
choice of local coordinates such that X;(e7)(e) = 67, see Example 2. We
have seen that such vector fields correspond to Gy-left invariant split grading
operators on G.[]

Denote by Tg the tangent sheaf of a Lie group G and by v is the image
of v by the natural mapping

Ho(pt> Ogo\g) QKg— Ho(pt> Ogo\g) ® g/h

The result of our study is:

Theorem 1. The following conditions are equivalent:

a. A homogeneous supermanifold M = G/H admits a Go-left invariant
split grading that is induced by a grading of Og and the inclusion Oy C

(m0)+(Og).
b. There exists a Go-left invariant vector field x € H°(Go, (Tg)(2)5) such
that

ve (A @om)” (20)

and such that for w = B71(id) + x, where 371(id) = Y_ &' X; is from the proof
of Proposition 5.b, we have

D/a U}] € Ho(pt7 Ogo\g) ® [)7 Y e bi' (21)

6 An application

As above let G be a Lie supergroup and H be a Lie subsupergroup, g and b
be the Lie superalgebras of G and H, respectively, and M := G/H. Consider
the map

p: 86 — HO(pt, Tge\g)
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induced by the action of Gy on M. (Here Tg, ¢ is the sheaf of vector fields
on Go\G.) Let us describe its kernel. For X € gg and f € H°(pt, Ogy\g), we
have:

X)) = Slimof (Ad(exp(—tX))Y) (exp(tX)) =
1Eli=o f (Ad(exp(—tX))Y) (e),

where Y =Y7---Y,, Y; € g and t is an even parameter. A vector field X is
in Ker p if and only if X(f)(Y)(e) =0 for all f and Y. Hence,

Ker p = Ker(ad |y, ),

where ad is the adjoint representation of gg in g.
Furthermore, denote

A= Ker(QOBgHZg:g/H%g/H);
a:= Ker (gSXHHO(go/%o,E/H))

Here [, is the automorphism of G/H induced by the left translation ,. The
pair (A, a) is a super Harish-Chandra pair. An action of G on M is called
effective if the corresponding to (A, a) Lie supergroup is trivial. Asin the case
of Lie groups any action of a Lie supergroup can be factored to be effective.

Theorem 2. Assume that the action of G on M is effective. If

91, b1] C hg N Ker(ad |y,),

then M 1is split.

Proof. Let us show that in this case the vector field w = " &' X;+0 = > ' X;
from Proposition 5.b is a (left invariant) split grading operator on M using
Theorem 1.

The condition (20) is satisfied trivially, because xy = 0. Let us check the
condition (21). We have:

Vo] =) V(X =) &Y X)),
Since [g1, b1] C bo, we get

Y 'Y, X;] € H(pt, Ogyg) @ b.

Hence, we have to show that

Y Y(e)X; € H(pt, Ogyrg) ® b.

18



Assume that X;,... X} is a basis of by, Xq,... Xp, Xgi1, ... X, is a ba-
sis of gi and (') is the system of global odd Gy-left invariant coordinates
corresponding to this basis such that > &'X; is as in Proposition 5.b. In
particular, £'(v4(X;)) = 0%, because (e’ 0 v4) ® X; is the identity operator
in g7 ® g1. A A

Let us take Z € Kerp. Clearly, Z(¢') = 0 and Xj;(¢’) is again a Go-left
invariant function on G. By (8), we also have:

(X Z--X;,) =0.
Furthermore, by definition of &', we get that &’ o v, € gi. Hence,
e'(1a(Xiy A A X)) =0,
if £ > 1. Summing up all these observations we see that
e(15(X) - Y) = ' (7(X AY)) +0,

where Y € h and X € A gi. Now we can conclude that

Y V()X =-Y € C H(pt, Og,\g) ® b.
The proof is complete.[]

Example 3. Consider the super-grassmannian Gr,, . It is a GLyyj,-
homogeneous space, see [9] for more details. Hence, Gy k1 ~ GLyyy)p /H for
a certain H. (See, for example, [15].) It the case k = 0 or k = m, the following
holds [(gl,,,)1, b1] = 0. Therefore, by Theorem 2, the super-grassmannian is
split.

In [9] it was shown that the super-grassmannian GLy,j, x; is not split if
and only if 0 < k£ <m and 0 < | < n. (This fact also follows from results in
[6] and [13] about non-projectivity of super-grassmannian.)

Finally, let us recall a result proved in [14]:

Theorem 3. If a complex homogeneous supermanifold M is split, then there
is a Lie supergroup G with |g1, g1] = 0, where g = g5 ® g1 = Lie G, such that
G acts on M transitively.
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