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Abstract. Judgment aggregation investigates the problem of how to
aggregate several individuals’ judgments on some logically connected
propositions into a consistent collective judgment. The majority of work
in judgment aggregation is devoted to studying impossibility results, but
the relationship between the (social) dependencies that may exist be-
tween voters and the outcome of the voting process is traditionally not
studied. In this paper, we use techniques from social network analysis
to characterize the relations between the individuals participating in a
judgment aggregation problem by analysing the similarity between their
judgments in terms of social networks. We obtain a correspondence be-
tween a voting rule in judgment aggregation and a centrality measure
from social network analysis and we motivate our claims by an empirical
analysis. We also show how large social networks can be simplified by
grouping individuals with the same voting behavior.

1 Introduction

Social choice theory studies the problem how to reach collective consent be-
tween a group of people in the area of economic theory. It includes among others
voting theory, preference aggregation and judgment aggregation. Judgment ag-
gregation is the most recent formal theory of social choice, which investigates
how to aggregate individual judgments on logically related propositions to a
group judgment on those propositions. Examples of groups that need to aggre-
gate individual judgments are expert panels, legal courts, boards, and councils.
The problem of aggregating judgments gained popularity in the last ten years,
since it has been shown to be general in the sense that both voting theory and
preference aggregation are subsumed by it [16]. The majority of work in judg-
ment aggregation is devoted to studying impossibility results similar to the work
in preference aggregation by Arrow [1, 15], leading to the development of a large
number of aggregation rules such as majority outcome, premise-based aggrega-
tion, and conclusion-based aggregation [16]. These rules are all concerned with
the general problem of selecting outputs that are consistent or compatible with
individual judgments [11]. However, the relation between the (social) dependen-
cies that may exist between the voters and the outcome of the voting scenario
is traditionally not studied.

Arguably, there may exist (social) relationships between the individuals that
can have an influence on their individual judgments, and consequently on the
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aggregated outcome. For instance, a subgroup of the individuals can be close
friends and therefore vote alike, or an individual in the group may be a dom-
inant person and thus may influence the voting behavior of other voters. A
representation of the social structure of a judgment aggregation problem makes
it possible to identify influential voters in the entire group or in a subgroup of
voters. This information can be useful for different purposes. Firstly, it can be
used to determine the outcome of the voting process, simply by looking at what
voters have a central position in the voting process and deriving the outcome
from these voters. Secondly, it can be used to detect cartels in voting scenarios.
A cartel is a formal, explicit agreement among competing firms. It is a formal
organization of producers and manufacturers that agree to fix prices, marketing,
and production. Finally, the social dependencies may allow one to simplify the
voting problem by reducing the number of voters to the most important ones.

It does not seem obvious to extract such information from a judgment ag-
gregation scenario, merely by relying on the tools that judgment aggregation
offers. However, we believe that a possible natural solution to this problem can
be provided by using techniques from social network analysis (SNA) to derive
dependencies between voters. SNA views social relationships in terms of graph
theory, consisting of nodes (representing individuals within the network) and ties
(which represent relationships between the individuals, such as friendship, kin-
ship, organisational position, sexual relationships, etc.) [21, 4]. These networks
are often depicted in a social network diagram, where nodes are represented as
points and ties are represented as lines. The centrality of vertices, or the identifi-
cation of which vertices are more ”central” than others, is a key issue in network
analysis.

In this paper, we explore the possibility to apply SNA to judgment aggrega-
tion by systematically translating a judgment aggregation problem to a social
network. This social network reflects the agreement between voters derived from
their judgments on the issues in the judgment aggregation problem. We analyse
this network using the degree centrality measure, which is arguably the most
well-known measure of node centrality from SNA. We formally prove an equiva-
lence between the “average voter” voting rule in judgment aggregation and the
degree centrality measure, showing that the social network can be used as an
instrument to decide on a consistent and compatible outcome in the voting pro-
cess. We motivate our claim with an experimental analysis, indicating that by
varying the parameters of the centrality measure, we are able to fine-tune the
outcome of the voting process. Finally, we show that large networks with many
voters and few issues can be simplified significantly by clustering individuals
that vote the same.

The paper is organised as follows: We start by discussing related work in
Section 2. In Section 3 we introduce the basic notions of judgment aggregation
and two voting rules, and we introduce basic terminology from social network
analysis in Section 4. In Section 5 we show how we can systematically obtain a
social network from a judgment aggregation problem using simple matrix opera-
tions. We use this method in Section 6, where we show a correspondence between
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a centrality measure on the graph and a voting rule in judgment aggregation.
Empirical results are discussed in Section 7 and we show how to simplify the
social networks in Section 8.

2 Related Work

There is substantial research in social science showing that social dependencies
exist between voters and that this can have an influence on the outcome of the
voting process. For instance, Gerber et al. [9] performed a large-scale field ex-
periment involving several hundred thousand registered voters, demonstrating
the profound importance of social pressure as an inducement to political par-
ticipation. Nickerson [19] performs two field experiments showing that within
households, 60% of the propensity to vote is passed onto the other member of
the household. This suggests a mechanism by which civic participation norms
are adopted and couples grow more similar over time. Kenny [12] uses survey
responses from the 1984 South Bend study to model the relationship between
political discussion partners. Again, the evidence indicates that certain types of
both individually based and socially based participation are affected by those in
the immediate social environment.

Possibly caused by the recent popularity of online social networks such as
Facebook, Twitter, LinkIn, Pinterest, and others, most recent research combin-
ing social choice theory with social network analysis pursues in the opposite
direction from ours. Social networks are taken as the starting point and one in-
vestigates to what extent fair and consistent voting can be implemented on such
networks. For instance, both Salehi-Abari and Boutilier [22] as well as Boldi
et al. [2] study how members of a social network derive utility based on both
their own preferences and the satisfaction of their neighbors. Here, users can
only express their preferences for one among the people they are explicitly con-
nected with, and this preferences can be propagated transitively. Both Lerman
and Galstyan [13] and Lerman and Ghosh [14] study the role of social networks
in promoting content on Digg, a social news aggregator that allows users to
submit links to and vote on news stories. Their results suggest that pattern of
the spread of interest in a story on the network is indicative of how popular the
story will become.

There is significantly less work trying to obtain social networks from social
choice problems. Endriss and Grandi [5] investigate the problem of graph aggre-
gation, where individuals do not give a judgment over alternatives, but instead
provide a directed graph over a common set of vertices. Judgment aggregation
reduces then to computing a single graph that best represents the information in-
herent in this profile of individual graphs. This is considerably different from our
work, since we obtain a graph from the dependencies between voters, assuming
that voters give a judgment over alternatives.



4

3 Judgment Aggregation

In this section we recall the framework of judgment aggregation [16, 24]. The
problem is formulated as binary aggregation with integrity constraints, which is
equivalent to judgment aggregation when the individual judgments are complete
and consistent [10]. We also define several voting rules that we use throughout
the paper.

3.1 Basic Definitions

A judgment aggregation problem consists of a set of individuals having to ag-
gregate their preferences over a set of issues. The preferences of each individual
are expressed by saying either yes or no for each of the issues proposed.

Let N = {1, 2, . . . , n} be a finite set of individuals, and let I = {1, 2, . . . ,m}
be a finite set of issues. We want to model collective decision making problems
where the group of individuals N have to jointly decide for which issues in I
to choose ”yes” and for which to choose ”no”. A ballot B ∈ {0, 1}m associates
either 0 (“no”) or 1 (“yes”) with each issue in I. We write Bj for the jth element
of B. Thus, Bj = 1 denotes that the individual has accepted the jth issue, and
Bj = 0 denotes that the individual has rejected it.

In general, not every possible ballot might be a feasible or rational choice.
For instance, if the issues are tasks that are to be executed by a group of people,
then a task constraint might mean that deciding to execute certain tasks makes
it impossible to execute other tasks.

Formally, let PS = {p1, . . . , pm} be a set of propositional symbols, one for
each issue I. An integrity constraint is a formula IC ∈ LPS , where Lps is
obtained from PS by closing under the standard propositional connectives. Let
Mod(IC) ⊆ {0, 1}m denote the set of models of IC, i.e. the set of rational ballots
satisfying IC.

A profile is a vector of rational ballots B = (B1, . . . , Bn) ∈Mod(IC)n, con-
taining one ballot for each individual. We write Bij to denote the ith individual’s
choice about the jth issue, i.e. the jth choice of ballot Bi. Since ballots are vec-
tors themselves, we can consider B as a matrix of size n×m. The support of a
profile B = (B1, . . . , Bn) is the set of all ballots that occur at least once within
B:

Supp(B) = {B1} ∪ . . . ∪ {Bn}.

A voting rule F : {0, 1}m×n → 2{0,1}
m

is a function that maps each profile B
to a set of ballots. This means that an aggregation rule can have one or multiple
outcomes, also called an irresolute voting rule. A voting rule is called collectively
rational when all outcomes satisfy the integrity constraints.

One of the most well-known voting rules is the (weak) majority rule, which
accepts an issue if a weak majority accepts it:

Maj(B)j = 1 iff |{i ∈ N | Bij = 1}| ≥
⌈n

2

⌉
.
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Example 1. Suppose the following judgment aggregation scenario consisting of
six individuals (a, b, c, d, e, f) voting on an agenda composed of four issues (p, q, r, z).
The agenda is subject to the following integrity constraint: IC = (p∧q∧r)⇔ z.
The majority outcome is depicted in the last row.

Issue: p q r z
a 0 1 1 0
b 1 0 0 0
c 1 1 1 1
d 1 0 0 0
e 1 0 1 0
f 0 0 1 0

Maj 1 0 1 0

The Hamming distance between two ballots B = (B1, . . . , Bm) and B′ =
(B′1, . . . , B

′
m) is defined as the sum of the amount of issues on which they differ:

H(B,B′) = |{j ∈ I | Bj 6= B′j}|

For example, H((1, 0, 0), (1, 1, 1)) = 2. The Hamming distance between a
ballot B and a profile B is the sum of the Hamming distances between B and
the ballots in B:

H(B,B) =
∑
i∈N

H(B,Bi)

3.2 The Average Voter Rule

Endriss and Grandi [6] recently proposed the average voter rule, which reduces
the space of the possible outcomes to the ballots proposed by the voters. In this
way, the consistency of the outcome of the voting process is guaranteed, given
that all voters vote consistently. It was later shown by Grandi and Pigozzi [11]
that this rule satisfies several desirable properties.

Definition 1 (AVR). The average voter rule (AVR) is the voting rule that
selects those individual ballots that minimise the Hamming distance to the profile:

AV R(B) = argmin
B∈Supp(B)

H(B,B)

4 Social Network Analysis

A social network usually is represented as a graph. The vertices are the individ-
uals, and the edges represent the social connections. In this paper, we consider
the symmetric case where social networks are represented by undirected graphs.
An edge which joins a vertex to itself is called a loop. The number of edges that
are incident to a vertex is called the degree of a vertex. The neighborhood of a
vertex v is the set of all vertices adjacent to v.
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We denote a weighted network (or weighted graph) with G = (V,E,W ) with
the vertex set V (G) = {v1, . . . , vn}, edge set E, and weight matrix W , where each
edge e = (vi, vj) is labeled with a weight wij . We assume that if two vertices are
not connected, then there exists an edge of weight 0 connecting them. Since we
only consider undirected networks, wij = wji. We define the sum-weight si of a
vertex vi with si =

∑n
j=1 wij =

∑
u∈N(vi)

wviu, where N(vi) is the neighborhood

of vi. We denote the degree ki of a vertex vi with ki = |N(vi)|, i.e. ki denotes
the number of neighbors of vi.

The centrality of vertices, identifying which vertices are more ”central” than
others, has been a key issue in network analysis. Freeman [8] originally formalized
three different measures of vertex centrality: degree, closeness, and betweenness.
In this paper, we will only consider the degree centrality. Degree is the number of
vertices that a focal vertex is connected to, and measures the local involvement of
the vertex in the network. This measure is originally formalised for binary graphs
[8], but we will consider recent proposal [20] that uses a tuning parameter α to
control the relative importance of number of edges compared to the weights on
the edges.

The degree centrality measure is defined as the product of the number of
vertices that a focal vertex is connected to, and the average weight to these
vertices adjusted by the tuning parameter. The degree centrality for a vertex i
is computed as follows:

CWα
D (i) = ki ×

(
si
ki

)α
= k

(1−α)
i × sαi (1)

where W is the weight matrix of graph, α is a positive tuning parameter, ki is
the size of the neighborhood of vertex i and si the sum of the weights of the
incident edges. If α is between 0 and 1, then having a high degree is favorable
over weights, whereas if it is set above 1, a low degree is favorable over weights.
In Section 6 we elaborate on different levels of α for degree centrality.

5 Towards a Social Network

In this section we will bridge the two problem domains that we introduced above
using a technique introduced in social theory by Breiger [3]. This technique is
originally used to analyse membership of people to groups, however we use it to
represent agreement between voters.

5.1 Matrix Translation

We use the following transformations to obtain a social network from a voting
profile.

Definition 2 (Similarity matrix). Given a profile matrix B. The similarity
matrix B is obtained from B as follows:

Bij =

{
1 if Bij = 1
−1 if Bij = 0
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Definition 3 (Voter-to-voter matrix). Given a similarity matrix B of size
n×m and V ∗ = B(BT ), where multiplication is ordinary (inner product) matrix
multiplication. The voter-to-voter matrix V of V ∗ is constructed as follows:

Vij =
V ∗ij +m

2

The following theorem states the main result of this section, showing that
the voter-to-voter matrix counts the equal elements between each two rows of
the original profile matrix.

Theorem 1. Let B be a profile matrix of size n×m, B the similarity matrix of
B, and V the corresponding voter-to-voter matrix of B. Vij contains the amount
of equal elements in row i and j of B, i.e.:

Vij = |{Bik | Bik = Bjk, 1 ≤ k ≤ m}|

Thus, Vij denotes the number of times that both voters i and j voted “yes”
or they both voted “no” for the same issue.

Example 2 (Continued). We can translate the matrix B of Example 1 that cor-
responds to this voting profile to a similarity matrix (Figure 1a). Next, we calcu-
late V ∗ and obtain the the voter-to-voter matrix V after normalising the result
(Figure 1b).

p q r z

a -1 1 1 -1
b 1 -1 -1 -1
c 1 1 1 1
d 1 -1 -1 -1
e 1 -1 1 -1
f -1 -1 1 -1

(a) Voting Profile B

a b c d e f

a 4 1 2 1 2 3
b 1 4 1 4 3 2
c 2 1 4 1 2 1
d 1 4 1 4 3 2
e 2 3 2 3 4 3
f 3 2 1 2 3 4

(b) Voter-to-voter matrix (V)

Fig. 1. Transforming the voting profile to a voter-to-voter matrix.

The voter-to-voter matrix is symmetric with respect to its main diagonal:
If some voter i agrees with a voter j on some issues, then j agrees with i on
the same issues as well. This implies reflexivity : a voter always agrees with itself
over every issue, and similarly for any issue. Therefore, the main diagonal of the
voter matrix is always equal to the number of issues.

5.2 Relational Graphs

The voter-to-voter matrix V can be represented as an undirected, weighted
graph. In such a graph, a voter is represented by a node, and an edge repre-
sents the agreement between two voters. Formally, an edge (i, j) connects two
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vertices i and j if the matrix entry Vij has a value larger than 0. We denote the
obtained graphs with GV = (VV , EV ,WV ). Notice that the matrix V is equiva-
lent to the weight matrix of the corresponding graph, i.e. V = WV . We call the
graph GV as the voter graph.

Example 3 (Continued). Figure 2 shows the voting graph resulting from the
voter-to-voter matrix depicted in Figure 1b. We can see that the strongest
connection is between the individuals b and d, representing the fact that their
ballots are equivalent. Differently, c can be considered an outlier due to its weak
connections with the other individuals. Note that for the sake of readability, the
edges with a weight of 1 have not been labeled in Figure 2 and reflexive edges
have been omitted.

2

3 4

3
2

2

3
3

3

b d

a c

f e

Fig. 2. Voter graph (GV )

The voter-to-voter graph expresses the agreement between the individuals
through the weighted edges. In the following section we show that the individ-
uals in the voter graph that are most central according to the degree centrality
measure corresponds to the voters that are selected by the average voter rule in
the judgment aggregation profile.

6 Theoretical Analysis

We start out with a straightforward equivalence between the Hamming distance
between two voters and the edge that connects the two voters in the correspond-
ing voting graph.

Lemma 1. The Hamming distance between two ballots Bi and Bj is equal to
m− wij in the corresponding voter graph GV , i.e. H(Bi, Bj) = m− wij.

We use this lemma to obtain an equivalence between the Hamming distance
to a profile and the total weight of the corresponding node in the voter graph.
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Lemma 2. The Hamming distance between a ballot Bi and a profile B is equal
to mn − si, where si is the sum of the weights of the incident edges of vertex i
in the voter graph constructed from B:

H(Bi,B) = mn− si

Example 4 (Continued). In Example 1, we have H(a, b) = 3 and H(a,B) = 11.
In the corresponding graph in Figure 2 we have that wab = 1 and thus m −
wab = 4− 1 = 3, which corresponds to the Hamming distance between a and b.
Moreover, sa = 13 (including the reflexive weight of 4), somn−sa = 24−13 = 11,
which corresponds to the Hamming distance between a and the profile B.

Since the average voter rule selects the voter that minimises the distance
with the profile, we can obtain the following equivalence:

Lemma 3. The average voter rule (AVR) (Definition 1) selects the voters cor-
responding to the maximum total weight vertices in the voter graph, i.e.:

AV R(B) = argmax
i∈VV

si.

Next, we obtain that the average voter rule corresponds to the node with the
highest degree centrality when the tuning parameter α = 1:

Theorem 2. The AVR selects those individual ballots that have the maximal
degree centrality value when α = 1. Suppose α = 1:

AV R(B) = argmax
i∈VV

CWα
D (i)

Proof. Follows directly from Eq.(1) and Lemma 3

Example 5. Consider the voting profile in Figure 3a, where a set of four voters
have to decide on five issues. We can see in the bottom part of the table that the
average voter rule corresponds to the set of individuals {a, c, d}. The voter graph
of this voting profile is shown in Figure 3b. Recall that the degree centrality score
for the nodes when α = 1 can be calculated by summing up the weights of all
incident edges. Thus, the value of node a, c, and d are all 6 while the value
of node b is 4. Therefore, the set of voters selected using the degree centrality
measure is {a, c, d} as well, which is in line with Theorem 2.

7 Empirical Analysis

In this section we analyse the effect of varying the tuning parameter α in the
degree centrality measure by comparing the outcomes with those of the average
voter rule, taking the majority voting rule as our base measure. We first provide
an intuitive discussion on the effect of varying the tuning parameter, followed
by an empirical analysis.
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1 2 3 4 5

a 0 1 1 1 1
b 1 0 0 0 0
c 0 1 1 0 0
d 0 0 0 1 1

AVR: 0 1 1 1 1
0 1 1 0 0
0 0 0 1 1

(a) Profile

2 2

1

3 3

b

a

c d

(b) Voter graph

Fig. 3. Example judgment aggregation profile with voter-to-voter graph

7.1 Varying the tuning parameter

Reconsider the voting scenario together with the majority outcomes and the
average voter outcomes of Figure 3. The outcome of the degree centrality for
varying α are depicted in Figure 4. As can be seen from the table, for α = 1,
the degree centrality measure corresponds to the si measure, which measures
the sum of the weights of the edges connected to that node. Therefore the nodes
a, c and d are all chosen as the average voter because of their greater degree
centrality measure. When α < 1 the amount of edges play are larger role and
only c and d are chosen as the most central because of their three connected
edges against the two of nodes a and b. Contrast this with α > 1, when the
weight of the edges play the prominent role in deciding the most central node.
In this case a is picked as the most central node by having the edges with the
largest weights connected to it. This analysis suggests that in some cases, by
using different values for the tuning parameter α to compute the most central
node in a graph, it is possible to obtain a more fine-grained voting rule than the
result of the average voter rule.

The outcomes obtained using the degree centrality measure can be compared
with the vector of “average votes” (1

4 ,
2
4 ,

2
4 ,

2
4 ,

2
4 ), showing for each issue the pro-

portion of voters who chose 1 rather than 0. We can see that only the first issue
is uncontroversial, while the no unique decision on the other issues is possible.
Having multiple available outcomes is not uncommon for voting rules such as
the majority rule and AVR. However, in these cases fine tuning the α parameter
may lead to more resolute outcomes by exploiting the structure of the voter
graph.

7.2 Experimental Setup

The setup of the empirical analysis performed1 consists of a judgment aggrega-
tion problem with 100 voters and 4 issues, with no integrity constraints. We have
chosen for relatively many voters because the degree centrality measure is based

1 The experiment has been coded in Java and can be found on the web:
http://icr.uni.lu/marc/code/socinfo2014/src.zip
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Vertex si CWα
D when α =

0 0.5 1 1.5

a 6 2 3.46 6 10.39

b 4 2 2.83 4 5.66

c 6 3 4.24 6 8.48

d 6 3 4.24 6 8.48

Fig. 4. Degree centrality scores when different values of α are used.

on graph theory whereby these measures are more effective on large graphs due
to the more dependencies and similarities between the individuals. We leave out
the integrity constraints since logical constraints on the issues are not the focus
of our work. The votes are generated pseudo-randomly such that all votes are
complete, meaning that each voters votes either “yes” or “no” for each issue.

In order to compare the different measures we use the majority rule as the
base measure. The majority rule is generally considered to be the most well-
known voting rule, and is most likely also one of the most used rules. We compare
the outcome of the average voter rule and the degree centrality measure for
different values of α with the base measure by computing the Hamming Distance.

The experiment is reiterated 5000 times for each value of the tuning parame-
ter α. If a measure produces multiple outcomes, we measure the distance to the
base measure for each result. All these distances are stored in a list LM for each
measure M . For each value of the tuning parameter we use LM to compute the
mean, the standard deviation σ and the average number of outcomes per bench-

mark Oavg, i.e. Oavg = |LM |
5000 for the measure M . The value Oavg can be seen as

a measure for resoluteness: The closer this number is to 1, the more resolute the
voting rule is, which means that the number of outcomes is effectively smaller.

7.3 Results and Analysis

Figure 5 shows the results of the experiment. From the figure it can be seen that,
as shown in Section 6, the average voter rule corresponds to the degree centrality
measure when the tuning parameter α = 1. When the value of α increases from 1
to 3, the average distance to the base measure slowly increases, meaning that the
result of the degree centrality measure is further away from the majority based
rule. On the other hand, the average number of outcomes also decreases, which
seems to suggest that while the voting rule becomes more resolute (i.e. results
in less outcomes) when α increases, it also becomes less precise. The results for
α = 0 are somewhat surprising, since the average distance to the base measure
is very high compared to the average distance of the average voter rule, and
the average number of outcomes is very large as well. A possible explanation
for this deviation may have to do with the density of the graph. When α is
0, the weights on the edges is completely disregarded and the degree centrality
value of a node is solely determined by the number of other nodes connected to
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it (see Equation 1). The networks that we obtain are usually rather dense, so
it seems that selecting an outcome merely based on the number of ties is not
precise enough, which might explain the large number of outcomes for α = 0.
For α values smaller than 0 or larger than 3, the results remained more or less
constant.

Voting rule α mean σ Oavg
MRV - 0.06 0.24 1.9

Degree 0.0 1.16 0.88 7.2
0.5 0.07 0.26 1.88
1.0 0.06 0.24 1.9
1.5 0.07 0.24 1.83
2.0 0.07 0.26 1.83
2.5 0.08 0.28 1.81
3.0 0.10 0.33 1.77

Fig. 5. Benchmarking results showing Hamming distances from majority based rule

8 Simplifying the Social Network

As we mentioned previously, it can be the case that a judgment aggregation
problem features a big set of voters having to decide over a small set of issues. In
this case it is inevitable that many of the voters involved in the voting process
will have identical votes. Consider for instance a group of 100 voters that has
to decide over 4 issues. The number of possible voting profiles (assuming no
integrity constraints) is 24 = 16, meaning that there will be at least 84 non-
identical voters, so at most 16% of the voting profiles are unique.

A group of individuals voting the same way is represented in the voter graph
as a strongly connected component of the graph where each of the connections
among the nodes in the component has weight equal to the amount of issues
in the voting scenario. In addition to the connections among the tightly con-
nected components, the nodes are also connected to other nodes using edges
with variable weights depending on the amount of agreement between the voters
represented by the nodes as it is shown in Figure 6.

By having a high number of nodes in the graph it is necessary to calculate
the degree centrality measure of each one of them in order to decide the most
central one(s). Moreover the representation of the voter graph would be cluttered
by all the edges being the graph almost completely connected. Additionally, when
considering the most central nodes in such graphs, all nodes belonging to the
same strongly connected component have the same degree centrality value, hence
if one of them is the most central, then each of them is.

Both problems, the cluttered graph and redundant calculations of the degree
centrality, can be solved by reducing the amount of node represented in the
graph itself. Because the nodes that belong to the same strongly connected
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1 2 3

a 0 0 1
b 1 1 0
c 1 1 0
d 0 0 0
e 0 0 0
f 1 1 0

(a) Profile

2

2

4

4

4

4

a

d

e

b

c

f

(b) Voter Graph

Fig. 6. Non-Simplified Translation

components have the same properties in term of centrality, we can represent
each strongly connected component as a single node in the graph and connect it
to the other strongly connected components (also represented by a single node)
using edges weighted according to the agreement. To keep track of the size of
the strongly connected components reduced to nodes, a weight equivalent to the
cardinality of the component is associated to the node. The simplified voting
graph of Figure 6b is shown in Figure 7.

2 1a (1) d,e (2) b,c,f (3)

Fig. 7. Simplified Voter Graph

The degree centrality on the simplified graph can be calculated for each of the
nodes using the following equations, which produces a result equivalent to the
one that would have been obtained by calculating it on a node belonging to the
strongly connected component in the non simplified graph. The two equations
allow to compute in the simplified graph the size of the neighbourhood ki and
the size of sum of the weights of the connected edges si.

sn = i · (cn − 1) +
∑

(n,m)∈E

wnm · cm (2)

kn = (cn − 1) +
∑

(n,m)∈E

cm (3)



14

Where ci is the size of the strongly connected component to which node i belongs,
i is the number of issues, and wnm is the weight of the edge between n and
another node m in the voter graph.

9 Conclusions and Future Work

In the present paper we show that deciding the average voter in a judgment
aggregation problem corresponds to selecting the most central voter in a social
network where the strength of the ties in the network follows from similar voting
behavior of two individuals in the judgment aggregation problem.

To the best of our knowledge, this is the first attempt to correlate the two
areas by showing that by remodelling the problems, classic techniques as the
centrality measure used by Breiger [3] to analyse people membership to groups,
is comparable to use the average voter rule, proposed by Grandi and Pigozzi
[11], to solve a judgment aggregation problem.

The connection between the two fields shown in this work hints that some of
the techniques used in one of the areas could be indeed adapted and reused in
the other to solve some of the problems. As we show in our empirical analysis,
by varying the tuning parameter α used to compute the centrality measure, the
results obtained change. As discussed the parameter α switches the emphasis
between the weights and the number of edges connecting the nodes, hence using
a different tuning parameter than α = 1 already corresponds in some sense to
a different voting rule, however whether these new rules can be useful is still to
be decided.

Additionally, we propose a way to simplify a tightly connected graph where
some strongly connected components are present. By collapsing the strongly
connected components in a single node, we avoid to represent a cluttered and
unreadable graph in addition to have to calculate the degree centrality measures
for the collapsed nodes instead for the whole strongly connected component. For
future work, we would like to compare this method against other graph sparsi-
fication methods such as [23, 7, 18, 17] to find out whether our approach can be
optimized or extended. For instance, a more general treatment of this network
simplification technique might refer to community detection, which is not re-
stricted to cliques with the same weight but can define groups of nodes in other
ways.2 Reducing the number of ties will also be useful because SNA methods are
often conceived with sparse graphs in mind, while our approach often produces
very dense graphs. In addition, the impact of the tuning parameter α seems to
be related to these missing edges only and requires future study.

Lastly, consistency is one of the main objects of study in judgment aggrega-
tion. The fact that the proposed framework does not consider constraints seems
to represent a significant limitation. In particular it does not seem obvious how
the connection between traditional social network analysis (SNA) measures and
voting rules can be maintained. We leave this to future studies.

2 This was suggested by an anonymous reviewer
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A Appendix: Proofs

Theorem 1. Let B be a profile matrix of size n×m, B the similarity matrix of
B, and O the corresponding normalised matrix of B. Oij contains the amount
of equal elements in row i and j of B, i.e.:

Oij = |{Bik | Bik = Bjk, 1 ≤ k ≤ m}|

Proof. We prove this theorem directly.

1. Suppose arbitrary rows Bi,Bj of some profile matrix B, where y = |{Bik |
Bik = Bjk, 1 ≤ k ≤ m}| and x = m− y.

2. From 1., it follows that y is the amount of equal elements between rows i
and j in B, and x is the amount of elements that are unequal.

3. Let B the similarity matrix of B and O the normalized matrix of A = B(BT )
according to Definition 3.

4. From 3. and the definition of inner product multiplication, it follows that
each cell of the matrix A is calculated as follows: Aij =

∑m
k=1 BikBjk.

5. From Definition 2 it follows that if Bik = Bjk, then BikBjk = 1, and other-
wise BikBjk = −1.

6. From 4. and 5., it follows that
∑m
k=1 BikBjk = y−x. Therefore Aij = y−x.

7. From 6. and Definition 3, it follows thatOij =
Aij+m

2 = y−x+m
2 = y−x+x+y

2 =
y.

8. From 2. and 7., it follows that Oij is the amount of equal elements between
rows i and j in B.
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Lemma 1. The Hamming distance between two ballots Bi and Bj is equal to
m− wij in the corresponding voter graph GV , i.e. H(Bi, Bj) = m− wij.

Proof. We prove this lemma directly.

1. Suppose two ballots Bi and Bj containing m issues, and y to be the amount
of issues on which the voters i and j agree.

2. From 1. and Theorem 1 it follows that the voter-to-voter normalised matrix
V , constructed from a profile B containing Bi and Bj , has Vij = y.

3. From 2. and the construction of the voter-to-voter matrix, it follows that GV
is the voter graph constructed from V and the weight of the edge between
the vertices i and j in GV , written wij , is y.

4. From 3. and Hamming distance definition, it follows that the Hamming dis-
tance H(Bi, Bj) = m− y,

5. From 4. and 2., it follows that H(Bi, Bj) = m− wij .

Lemma 2. The Hamming distance between a ballot Bi and a profile B is equal
to mn − si, where si is the sum of the weights of the incident edges of vertex i
in the voter graph constructed from B:

H(Bi,B) = mn− si

Proof. Suppose some profile B, a ballot Bi ∈ B and a voter graph GV con-
structed from B. The Hamming distance between Bi and B is∑

j∈N
H(Bi, Bj)

=
∑
j∈N

m− wij (Lemma 1)

= mn−
∑
j∈N

wij

= mn− si

Lemma 3. The average voter rule AVR (Definition 1) selects the voters corre-
sponding to the maximum total weight vertices in the voter graph, i.e.:

AV R(B) = argmax
i∈VV

si.

Proof.

AV R(B) = argmin
B∈Supp(B)

H(B,B) (Definition 1)

= argmin
i∈VV

(mn− si) (Lemma 2)

= argmax
i∈VV

si


