
Modelling the usage of partial functions and
undefined terms using presupposition theory

Marcos Cramer

University of Luxembourg, Luxembourg,
marcos.cramer@uni.lu,

Web page: http://icr.uni.lu/mcramer

Abstract. We describe how the linguistic theory of presuppositions can
be used to analyse and model the usage of partial functions and unde-
fined terms in mathematical texts. We compare our account to other
accounts of partial functions and undefined terms, showing how our ac-
count models the actual usage of partial functions and undefined terms
more faithfully than existing accounts. The model described in this pa-
per has been developed for the Naproche system, a computer system
for proof-checking mathematical texts written in controlled natural lan-
guage, and has largely been implemented in this system.

Keywords: partial functions, undefined terms, presuppositions, domain
conditions, accommodation, Naproche

1 Introduction

Partial functions are ubiquitous in mathematical practice. For example, the di-
vision function / over the complex numbers (or any other field) is partial, since
z1/z2 is only defined if z2 6= 0. Another prominent example is the square root
function over the real numbers, which is only defined for non-negative arguments.
Partial functions appear in very basic mathematics, for example the subtraction
function over the natural numbers, as well as in more advanced mathematics,
for example the Lebesgue integral function

∫
over real functions, which maps

Lebesgue integrable functions to their Lebesgue integrals but is undefined on
other real functions. As can be seen from these examples, partial functions can
be either unary or of higher arity; for simplifying the exposition, we will concen-
trate on unary partial functions for the rest of this introduction.

The usual notion of the domain of a function separates into two distinct
notions in the case of partial functions: The domain of application of a partial
function consists of the values to which it may be applied, and the domain of
definition of a partial function consists of the values at which it is defined. For
example, the square root function over the reals mentioned above has R as its
domain of application; its domain of definition is the set R+

0 of non-negative
reals. The domain of definition is always a subset of the domain of application.
A partial function is called a total function if its domain of definition is identical
to its domain of application.



2

When a mathematical expression denoting a partial function is applied to a
term denoting an element outside its domain of definition, the resulting term is
an undefined term. Thus, if

√
denotes the square root function over the reals,√

−1 is an undefined term. An undefined term does not refer to any mathematical
object.

The common formal systems like first-order logic and simple type theory do
not have any means to formalize partial functions and undefined terms in them.
Standard one-sorted first-order logic allows for function symbols, but these nec-
essarily denote total functions. Both the domain of application and the domain
of definition of a function denoted by a function symbol must coincide with the
domain of discourse, i.e. with the domain specified by the structure used for in-
terpreting all terms and formulae in the formalism, which is also the domain of
quantification over which the quantifiers range. In multi-sorted first-order logic
as well as in simple type theory, one can have functions with different domains of
application, but the domain of definition of any given function always coincides
with its domain of application.

A number of formal systems have been proposed to account for the com-
mon usage of partial functions and undefined terms. Prominent examples in-
clude Michael Beeson’s Logic of Partial Terms [1] and William Farmer’s closely
related Partial First-Order Logic (PFOL) [5], which we sketch below. A more
recent approach by Freek Wiedijk and Jan Zwanenburg [13], the usage of domain
conditions on top of standard first-order logic, comes very close to our approach;
but the authors did not notice, or at least did not explicitly mention, the close
relation of their approach to the linguistic theory of presuppositions, which helps
clarifying some further points, as we will show in this paper.

This paper is partially based on [4], where we discussed the phenomenon of
presuppositions in mathematical texts to a linguistic readership, and thereby
already explained our approach to partial functions and undefined terms. In
contrast to [4], this paper aims at a readership from the Formal Mathematics
community, and for the first time compares our approach to approaches origi-
nating from this community.

Before explaining our own approach, we sketch William Farmer’s Partial
First-Order Logic in section 2.1 In section 3 we explain the context in which we
developed our approach, the proof checking algorithm of the Naproche system.
In section 4 we sketch the linguistic theory of presuppositions and introduce the
terminology from this theory that we will need in this paper. Section 5 contains
those part of our account of how to use presupposition theory to model the
usage partial functions and undefined terms that have been implemented in the
Naproche system. In section 6 we sketch Freek Wiedijk’s and Jan Zwanenburg’s
approach to use domain conditions to account for partial functions and undefined
terms and compare it to our approach. In section 7, we show how our account
from section 5 can be extended by making use of a detail of presupposition theory

1 The main reason for introducing Farmer’s approach before our own is that we will
make use of the syntax of Partial First-Order Logic for presenting our own approach
in the following sections.



3

that we ignored in section 5, the possibility to accommodate presuppositions. We
then compare this extended account with Farmer’s Partial First-Order Logic.

2 Partial First-Order Logic

In [5], William Farmer defined Partial First-Order Logic (PFOL). It allows for
partial functions and undefined terms, and is based on the following three tenets:

1. Variables and constants are defined terms.
2. The application of a function to an undefined argument is undefined.
3. Formulas are always true or false. The application of a predicate is false if

any of its arguments is undefined.

We now turn to the formal definition of PFOL. We will use the nowadays more
usual symbols→,↔ and ι where Farmer used ⊃, ≡ and I. The first two are the
well known connectives from standard first-order logic; ι is used for formalizing
definite description: ιx ϕ(x) corresponds to the natural language expression “the
x such that ϕ(x)”. Additionally to the already mentioned connectives→ and↔,
PFOL has the standard connectives ¬, ∧ and ∨, the quantifiers ∀ and ∃ and the
identity relation symbol =.

Further symbols are used for abbreviating PFOL formulae:

– t ↓ (read “t is defined”) abbreviates t = t.
– t ↑ (read “t is undefined”) abbreviates ¬t = t.
– t1 ' t2 (read “t1 and t2 are quasi-equal”) abbreviates t1 ↓ ∨ t2 ↓ → t1 = t2.

Farmer defines the semantics of PFOL in a way very analogous to the stan-
dard definition of the semantics of first-order logic. Terms and formulae are
interpreted in a model, which consists of a domain D and interpretations for the
constants, function symbols and relation symbols. While the interpretations of
constants and n-ary relation symbols are as in first-order logic, namely elements
of D and total functions from Dn to {T, F} respectively, the interpretations of
n-ary function symbols now do no longer have to be total function from Dn

to D, but may be partial functions from Dn to D (i.e. with Dn as domain of
application, but any subset of Dn as domain of definition). It is straightforward
to define the semantics of formulae in such a model according to the three tenets
listed above.

3 Proof checking mathematical texts in the Naproche
system

Before we can go on to explain our approach to partial functions and undefined
terms, we first need to clarify the context in which it was developed, namely the
proof checking of mathematical texts in the Naproche system.

The Naproche system (see [3] and [2]) is a computer program that can check
the correctness of mathematical texts written in a controlled natural language,



4

the Naproche CNL. A controlled natural language is a subset of a natural lan-
guage defined through a formal grammar. By “checking the correctness” we mean
that it tries to establish all proof steps found in the text based on the information
gathered from previous parts of the text, in a similar way as a mathematician
reads a (foundational) mathematical text if asked not to use his mathemati-
cal knowledge originating from other sources. For checking single proof steps,
the Naproche system makes use of state-of-the-art automated theorem provers
(ATPs). Given a set of premises2 and a conjecture, an ATP tries to find either a
proof that the premises logically imply the conjecture, or build a model for the
premises and the negation of the conjecture, which shows that that they do not
imply it. A conjecture together with a set of axioms handed to an ATP is called
a proof obligation.

The Naproche system first translates an input text into a semantic repre-
sentation format called Proof Representation Structure (PRS), an adaptation of
Discourse Representation Structures [9], a common representation format in for-
mal linguistics. The actual proof checking is performed on PRSs. For the sake of
simplicity, we will in this paper assume that the Naproche CNL input is trans-
lated into a formal language that is syntactically identical with the language
of PFOL, i.e. standard first-order syntax with an additional term construction
principle for terms of the form ιx ϕ(x) for representing definite descriptions.

Since first-order and PFOL formulae are usually used to formally express
single statements and not complete texts, we need to say some words about how
complete texts are translated into this formal language. In the simplified exposi-
tion for this paper, we will leave out a number of constructs used for structuring
mathematical texts, e.g. theorem-proof blocks, and concentrate on simple texts
consisting of axioms, local assumptions and assertions. The concatenation of
sentences is usually rendered by conjoining their respective translations with ∧.
A special case are axioms and local assumptions: When an axiom appears in a
text, the part of the text starting at the axiom is translated by a formula of the
form ϕ → ϑ, where ϕ is the translation of the axiom and ϑ is the translation
of the text following the axiom. The translation of local assumptions, which are
marked by one of the keywords “assume”, “suppose” and “let” in the Naproche
CNL, is similar, only that one has to take into account the scope of the assump-
tion: In mathematical texts, an assumption always has a scope, which starts at
the assumption and contains all assertions made under that assumptions. The
end of the scope of an assumption is usually not marked in a special way in the
natural language of mathematics, but in the Naproche CNL it is usually marked
with a sentence starting with the keyword “thus”.3 The scope of an assumption

2 In the ATP community, the term “axiom” is usually used for what we call “premise”
here; the reason for our deviation from the standard terminology is that in the
context of our work the word “axiom” means a completely different thing, namely
an axiom stated inside a mathematical text that is to be checked by the Naproche
system. The premises that we are considering here can originate either from axioms,
from definitions or from previously proved results.

3 The scope of an assumption also ends when the proof inside which the assumption
was introduced is ended with a “Qed”. But since the simplified fragment of the



5

is translated as ϕ → ϑ, where ϕ is the translation of the assumption and ϑ is
the translation of the rest of the scope of the assumption. The translation of the
scope of an assumption is embedded into the translation of a complete text as
if the whole scope of the assumption were a single sentence.

Before explaining the treatment of partial functions and undefined terms in
the proof checking, we will now first explain the basic functioning of the proof
checking algorithm with total functions and without undefined terms. The proof
checking algorithm keeps track of a list of first-order formulae considered to
be true, called premises, which gets continuously updated during the checking
process. Each assertion is checked by an ATP based on the currently active
premises.

Below we list how the algorithm proceeds on an input formula ϕ depending
on the form of ϕ. We use Γ to denote the list of premises considered true be-
fore encountering the formula in question, and Γ ′ to denote the list of premises
considered true after encountering the formula in question. A proof obligation
checking that ϕ follows from Γ will be denoted by Γ `? ϕ. For any given formula
ϕ, we denote by FI(ϕ) the formula image of ϕ, which is a list of first-order for-
mulae representing the content of ϕ; the definitions of FI(ϕ) and of the checking
algorithm are mutually recursive, as specified below. (In the case of this proof
checking algorithm with total functions and without undefined terms, the con-
junction of the formulae in FI(ϕ) is always logically equivalent to ϕ; this will,
however, no longer be the case once we consider the extension of the proof check-
ing algorithm to partial functions and undefined terms.)

– If ϕ is atomic, check Γ `? ϕ and set Γ ′ to be Γ, ϕ.
– If ϕ is of the form ϕ1 ∧ ϕ2, check ϕ1 with premise list Γ and ϕ2 with the

premise list that is active after checking ϕ1; set Γ ′ to be the premise list
that is active after checking ϕ2.

– If ϕ is of the form ϕ1 → ϕ2, check ϕ2 with premise list Γ ∪ FI(ϕ1) and set
Γ ′ to be Γ ∪ {

∧
FI(ϕ1)→ ψ | ψ ∈ FI(ϕ2)}.

– If ϕ is of the form ¬ψ, check Γ `? ¬
∧
FI(ψ) and set Γ ′ to be Γ,¬

∧
FI(ψ).

– If ϕ is of the form ϕ1 ∨ ϕ2 or ϕ1 ↔ ϕ2, check Γ `?
∧
FI(ϕ1) ∨

∧
FI(ϕ2)

or Γ `?
∧
FI(ϕ1) ↔

∧
FI(ϕ2) respectively; set Γ ′ to be Γ,

∧
FI(ϕ1) ∨∧

FI(ϕ2) or Γ,
∧
FI(ϕ1)↔

∧
FI(ϕ2) respectively.

– If ϕ is of the form ∃x ψ or ∀x ψ, check Γ `? ∃x
∧
FI(ψ) or Γ `? ∀x

∧
FI(ψ)

respectively; set Γ ′ to be Γ,∃x
∧
FI(ψ) or Γ,∀x FI(ψ) respectively.

For computing FI(ϕ), the algorithm proceeds analogously to the checking
of ϕ, only that no proof obligations are sent to the ATP: The updated premise
lists are still computed, and FI(ϕ) is defined to be Γ ′−Γ , where Γ is the active
premise list before processing ϕ and Γ ′ is the active premise list after processing
ϕ. This is implemented by allowing the algorithm to process a formula ϕ in two

Naproche CNL that we are currently considering does not contain theorem-proof
blocks, we can ignore this special case as well as similar cases relating to other
structural constructs of mathematical texts that we are now ignoring (e.g. case dis-
tinctions).



6

different modes: The Check-Mode described above for checking the content of
ϕ, and the No-Check-Mode, which refrains from sending proof obligations to the
ATP, but still expands the premise list in order to compute FI(ϕ).

4 Presuppositions

Loosely speaking, a presupposition of some utterance is an implicit assumption
that is taken for granted when making the utterance. In the linguistic literature
on presupposition theory, presuppositions are generally accepted to be triggered
by certain lexical items called presupposition triggers. Here are some common
examples of presupposition triggers:

– Definite descriptions: In English, definite descriptions are marked by the
definite article “the”, possessive pronouns or genitives. The presupposition
of a definite description of the form “the F” is that there is a unique object
with property F.

– Factive verbs, e.g. “regret”, “realize” and “know”. For example, the presup-
position of “A knows φ” is that φ holds true.

– Change of state verbs, e.g. “stop” and “begin”. For example, the presuppo-
sition of “A stops doing x” is that A did x before.

In mathematical texts, most of the presupposition triggers discussed in the
linguistic literature, e.g. factive verbs and change of state verbs, are not very
common or even completely absent. Definite descriptions, however, do appear in
mathematical texts as presupposition triggers (e.g. “the smallest natural number
n such that n2−1 is prime”). The presupposition of a definite description “the F”
can be divided into two separate presuppositions: One existential presupposition,
claiming that there is at least one F, and one uniqueness presupposition, claiming
that there is at most one F.

Furthermore, there is a kind of presupposition trigger which does not exist
outside mathematical texts: Expressions denoting partial functions. For example,
the division symbol “/” triggers the presupposition that its second argument is
non-zero; and the square root function over the reals triggers the presupposition
that its argument is non-negative.4

Presupposition projection is the way in which presuppositions triggered by
expressions within the scope of some operator have to be evaluated outside this
scope. Consider for example the following three sentences:

1
x+1 ∈ A and x 6= 0. (1)

4 In Naproche, the division function / with its usual presupposition triggering features
can be introduced in a proof text by a sentence of the following form: “For all real
numbers x, y such that y 6= 0, there exists a real number x

y
such that y · x

y
= x.” This

paper is not concerned with the issue of how such partial functions are introduced,
but with how they are used once they have been introduced. For more details on
how partial functions are introduced, the interested reader should consult [2].



7

1

x+ 1
<

1

x
. (2)

If 1
x+1 ∈ A and x 6= 0, then 1

x ∈ A. (3)

We see that (1) and (3) presuppose that x + 1 6= 0 and (2) presupposes that
x + 1 6= 0 and x 6= 0. So (3) inherits the presupposition of (1), but does not
inherit the additional presupposition of (2). The precise way in which presuppo-
sitions project under various operators has been discussed at great length in the
literature (see for example [11] and [8] for overviews of this dispute). Our formal
treatment of presuppositions in mathematical texts turns out to have equivalent
predictions (see [4]) about presupposition projection to Irene Heim’s approach
to presuppositions (see [7]).

Presupposition accommodation is what we do if we find ourselves faced with
a presupposition the truth of which we cannot establish in the given context:
We add the presupposition to the context, in order to be able to process the
sentence that presupposes it. For example, if I say “John’s wife is a philosopher”
to someone who does not know that John has a wife, they will accommodate
the fact that John has a wife, i.e. add this presupposition to the context in
which they interpret the sentence. Note that presupposition accommodation is
not always possible: If someone knows that John does not have a wife, they will
not be able to accommodate the presuppositions of the example sentence. This
is called presupposition failure and results in an inability to make sense of the
sentence.

5 Proof checking with presuppositions

In this section we will describe how presuppositions can be handled in the proof
checking algorithm of the Naproche system if we do not take care of the possibil-
ity of presupposition accommodation. The proof checking algorithm described
in this section is called PPC (Presuppositional Proof-Checking). In section 7
we will describe how this proof checking algorithm can be adapted to allow for
presupposition accommodation.

Most accounts of presupposition make reference to the context in which an
utterance is uttered, and claim that presuppositions have to be satisfied in the
context in which they are made. There are different formalizations of how a
context should be conceptualized. For enabling the Naproche proof checking
algorithm described in the previous section to handle presuppositions, it is an
obvious approach to use the list of active premises as the context in which our
presuppositions have to be satisfied.

In ordinary non-mathematical discourse, assertion usually are expected to
provide new information, i.e. not to be logically implied by the available knowl-
edge. In mathematical texts, on the other hand, assertions are expected to be
logically implied by the available knowledge rather than adding something logi-
cally new to it. Because of this peculiarity of mathematical texts, both presup-
positions and assertions in proof texts have to follow logically from the context.



8

For a sentence like “ 1
x+1 is negative” to be legitimately used in a mathematical

text, both the fact that x + 1 6= 0 and the negativity of 1
x+1 must be inferable

from the context.
This parallel treatment of presuppositions and assertions, however, does not

necessarily hold for presupposition triggers that are subordinated by a logical
operation like negation or implication. For example, in the sentence “A does
not contain 1

x”, the presupposition that x 6= 0 does not get negated, whereas
the containment assertion does. This is explained in the following way: In order
to make sense of the negated sentence, we first need to make sense of what is
inside the scope of the negation. In order to make sense of some expression, all
presuppositions of that expression have to follow from the current context. The
presuppositions triggered by 1

x are inside the scope of the negation, so they have
to follow from the current context. The containment assertion, however, does
not have to follow from the current context, since it is not a presupposition, and
since it is negated rather than being asserted affirmatively.

In our implementation, making sense of a something corresponds to process-
ing it with the proof checking algorithm, whether in the Check-Mode or in the
No-Check-Mode. So according to the above explanation, presuppositions, unlike
assertions, also have to be checked when encountered in the No-Check-Mode.

For example, the formula representing the sentence (4) is (5).

A does not contain 1
x . (4)

¬contains(A,
1

x
) (5)

When the checking algorithm encounters the negated formula, it needs to find
the formula image of the formula in the scope of the negation, for which it will
process this formula in No-Check-Mode. Now 1

x triggers the presupposition that
x 6= 0, which has to be checked despite being in No-Check-Mode. So we send the
proof obligation (6) to the ATP.

Γ `? x 6= 0 (6)

Finally, the proof obligation that we want for the assertion of sentence (4) is (7):

Γ, x 6= 0 `? ¬contain(A,
1

x
) (7)

In order to get this, we need to use the non-presuppositional formula image
{contain(A, 1x )} of the formula in the scope of the negation: The non-presuppo-
sitional formula image is defined to be the subset of formulae of the formula image
that do not originate from presuppositions. When extending the above proof
checking algorithm to an algorithm capable of handling presuppositions, we have
to use this non-presuppositional formula image wherever we used the formula
image in the original proof checking algorithm. The presupposition premises
which get pulled out of the formula image have to be added to the list of premises
that were active before starting to calculate the formula image (see the treatment
of the presupposition premise x 6= 0 in (7)).



9

When proof checking ι terms, a new constant symbol is used in the premises
that make reference to the unique object presupposed by the ι term. Consider
for example sentence (8), whose translation is (9). When proof checking (9),
the presuppositions triggered by the ι term trigger the proof obligations (10)
and (11), and the assertion of the sentence is checked by proof obligation (12);
here c is the newly introduced constant symbol that refers to the unique object
presupposed by the ι term.

A does not contain the empty set. (8)

¬contain(A, ιx empty(x) ∧ set(x)) (9)

Γ ` ∃x(empty(x) ∧ set(x)) (10)

Γ ∪ {empty(c) ∧ set(c)} ` ∀y(empty(y) ∧ set(y)→ y = c) (11)

Γ ∪ {empty(c) ∧ set(c),∀y(empty(y) ∧ set(y)→ y = c)} ` ¬contain(A, c) (12)

When presuppositions are triggered inside the scope of a quantifier, a some-
what more sophisticated approach is needed; see [4] or [2].

6 First-order logic with domain conditions

In [13], Wiedijk and Zwanenburg introduced an approach to partial functions
and undefined terms which they termed first-order logic with domain conditions.
Their approach turns out to be equivalent to PPC, only that their approach does
not admit terms representing definite descriptions.5 However, in the next sec-
tion we will discuss how the possibility to accommodate presuppositions affects
our approach: It will turn out that granted this possibility, our approach be-
comes practically much more similar to Farmer’s approach than to Wiedijk’s
and Zwanenburg’s.

In Wiedijk’s and Zwanenburg’s approach, one can use standard first-order
syntax for formalizing talk about partial functions. In order to avoid potential
problems caused by undefined terms, they define a set DC(ϕ) of domain condi-
tions for every first-order formula ϕ. Domain conditions are judgements of the
form Γ ` ψ. The idea is that if one wants to prove a statement about partial
functions formalized by a first-order formula ϕ, one should not only prove ϕ but
also establish the judgements in DC(ϕ).

There is an almost perfect correspondence between the domain conditions
of a formula ϕ and the proof obligations triggered by presuppositions in our
account. In simple examples, they coincide completely. For example, (13) has
domain condition (14), and its presupposition triggers the proof obligation (15)
in our account:

x > 0→ 1

x
> 0 (13)

5 We ignore the if-then-else construct that Wiedijk and Zwanenburg added to first-
order logic for their approach, as they at any rate consider this addition not essential.



10

x > 0 ` x 6= 0 (14)

x > 0 `? x 6= 0 (15)

This is no surprise if one looks at the formal definition of domain conditions:
Domain conditions are defined relative to a context, which is a list of first-order
formulae.6 So Wiedijk and Zwanenburg actually define DCΓ (ϕ) for a context
Γ and a formula ϕ, and the set DC(ϕ) of absolute domain conditions can be
identified with DC∅(ϕ). The contexts in their account are updated in a similar
way as the premise lists in our account. For example, DCΓ (ϕ→ ψ) is defined to
be DCΓ (ϕ)∪DCΓ,ϕ(ψ). Here, the context Γ gets updated to Γ, ϕ for calculating
the domain conditions triggered inside ψ, in a similar way as in our account the
premise list Γ gets updated to Γ, ϕ when proof-checking the ψ inside ϕ→ ψ.

However, there is one difference between the ways their contexts and our
premise lists get updated, which we illustrate through an example. The set of
domain conditions of (16) is (17), and the set of proof obligations triggered by
presuppositions in (16) is (18):7

1

x
> 0→ 1

x+ 1
> 0 (16)

{` x 6= 0;
1

x
> 0 ` x+ 1 6= 0} (17)

{` x 6= 0;x 6= 0,
1

x
> 0 `? x+ 1 6= 0} (18)

As the proof checking algorithm processes 1
x > 0, the premise list gets updated

not only by 1
x > 0, but also by its presupposition x 6= 0. Hence this presupposi-

tion additionally appears among the premises of the second proof obligation in
(18), whereas it does not appear on the left hand side of the second domain con-
dition in (17) according to the above cited definition of the domain conditions
of an implication. But x 6= 0 must at any rate be provable because of the first
domain condition and first proof obligation in (17) and (18) respectively, so that
this syntactic difference is semantically irrelevant.

Since the domain conditions of a formula are thus semantically equivalent
to the proof obligations triggered by presuppositions in our account, Wiedijk’s
and Zwanenburg’s account is essentially equivalent to our account as described
so far.

6 Actually, Wiedijk and Zwanenburg define a context to be a list of variables and
first-order formulae which satisfies the condition that all free variables in a formula
in the context are previously listed as variables in the context. However, dropping
the variables from their contexts does not alter their account in relevant way.

7 We use semicolons to separate the elements in these sets, since commas are already
used for separating the formulae in contexts or premise lists.



11

7 Accommodation of presuppositions8

Recall that accommodating a presupposition means adding it to the context
of the utterance in case we cannot establish it in this context. One commonly
distinguishes between global and local accommodation of presuppositions. Global
accommodation is the process of altering the global context in such a way that
the presupposition in question can be justified; local accommodation on the
other hand involves only altering some local context, leaving the global context
untouched. It is a generally accepted principle of presupposition theory that
in usual discourse, global accommodation is ceteris paribus preferred over local
accommodation.

In the introduction, we mentioned the peculiarity of mathematical texts that
new assertions do not add new information (in the sense of logically not infer-
able information) to the context. Here “context” does not refer to our formal
definition of context as a list of formulae. Instead, the context of a sentence
in a mathematical texts should now be understood to be the set of models in
which the axioms, definitions and assumptions in whose scope the sentence is
made hold. This definition of context is analogous to the definition of context in
various linguistic theories (e.g. Heim’s theory of presupposition [7]) as a set of
possible worlds that are under consideration when an utterance is made. When
mathematicians state axioms, they limit the context, i.e. the set of models they
consider, to the set where the axioms hold. Similarly, when they make local
assumptions, they temporarily limit the context. But when making assertions,
these assertions are thought be logically implied by what has been assumed and
proved so far, so they do not further limit the context.

The modification of the context in the case of local assumptions is certainly
a modification of the local context. For the sake of giving a unified treatment, it
is useful to view the modification of the context in the case of axioms also as a
modification of the local context, only that the mathemtician is planning to stay
in this locally modified context for the rest of the text. With this understading
of local as opposed to global contexts, one may succinctly state the pragmatic
principle mentioned above in terms of contexts as follows: In a mathematical
text, the global context may not be altered.

This pragmatic principle implies that global accommodation is not possible
in mathematical texts, since global accommodation implies adding something
new to the global context. Local accommodation, on the other hand, is allowed,
and does occur in real mathematical texts:

Suppose that f has n derivatives at x0 and n is the smallest positive
integer such that f (n)(x0) 6= 0.
[12]

This is a local assumption. The projected existential presupposition of the
definite description “the smallest positive integer such that f (n)(x0) 6= 0” is that

8 Unlike our approach as discussed in section 5, the adaptations to our approach
presented in this section have not yet been implemented in the Naproche system.



12

for any function f with some derivatives at some point x0, there is a smallest
positive integer n such that f (n)(x0) 6= 0. Now this is not valid in real analysis,
and we cannot just assume that it holds using global accommodation. Instead,
we make use of local accommodation, thus adding the accommodated fact that
there is a smallest such integer for f to the assumptions that we make about f
with this sentence.

When we accommodate a presupposition locally in this way, it no longer
triggers a proof obligation. Instead, the content of the presupposition is added
to the formula image of the atomic formula that triggered the presupposition.

7.1 Two ways to handle accommodation in presuppositional proof
checking

We now consider two possible ways of handling accommodation of presupposi-
tions in a proof checking algorithm:

– According to the linguistic theory of presuppositions, accommodation should
only be performed if necessary. In the case of our proof checking algorithm,
this means that we should always first try to establish the proof obligation
triggered by the presupposition. If that fails, we accommodate the presup-
position on the most local level possible (i.e. in the scope of the atomic
formula inside which the presupposition was triggered). We call the proof
checking algorithm that handles accommodation in this way PPC+FlexAcc
(Presuppositional Proof-Checking with Flexible Accommodation).

– In order to compare presuppositional proof checking with Farmer’s PFOL, we
will additionally consider a proof checking algorithm called PPC+ImmAcc
(Presuppositional Proof-Checking with Immediate Accommodation), which
works as follows: PPC+ImmAcc does not produce any proof obligations
from presuppositions, but always directly accommodates presuppositions on
the most local level possible.

First we want to point out that PPC+ImmAcc has the same implications
as Farmer’s account:9 In the case of an atomic formula R(t1, . . . , tn), the pre-
suppositions triggered by the arguments t1, . . . , tn would become part of the
the formula image of R(t1, . . . , tn), so that this formula image has precisely the
semantics that Farmer gives to atomic formulae: It can only be true if all the
presuppositions triggered by the arguments t1, . . . , tn hold, i.e. only if t1, . . . , tn
are all defined terms.

Unlike PPC+ImmAcc, PPC+FlexAcc treats accommodation in the same way
as does the linguistic theory of presuppositions. As we will illustrate through an
example from a real mathematical text, we believe that the linguistically moti-
vated proof checking algorithm PPC+FlexAcc gives rise to a better account of

9 Since Farmer does not actually define a proof checking algorithm, we need to make
precise what we mean by this: We mean that if one were to define a proof checking
algorithm on PFOL in a canonical way, i.e. in a way completely analogous to the
way we defined the non-presuppositional proof checking algorithm over standard
first-order logic in section 3.



13

how mathematicians actually use potentially undefined terms arising from partial
functions and definite descriptions than does Farmer’s PFOL or PPC+ImmAcc.

7.2 PPC+FlexAcc and PPC+ImmAcc compared on an example

As an example to compare PPC+FlexAcc and PPC+ImmAcc, we use the proof
of Theorem 2 of Edmund Landau’s Foundations of Analysis [10]:

Theorem 2: x′ 6= x.
Proof: Let M be the set of all x for which this holds true.
I) By Axiom 1 and Axiom 3, 1′ 6= 1; therefore 1 belongs to M.
II) If x belongs to M, then x′ 6= x, and hence by Theorem 1, (x′)′ 6= x′,
so that x′ belongs to M.
By Axiom 5, M therefore contains all the natural numbers, i.e. we have
for each x that x′ 6= x.

The first sentence of the proof is an assumption, which is marked by the
keyword “Let”. It introduces a new symbol M to the discourse and at the same
time assumes that this symbol refers to the same object as the definite description
“the set of all x for which this [x′ 6= x] holds true”.10 The newly introduced
symbol has a scope, which is the part of the text in which it may be used.
The scope of a symbol introduced in an assumption generally coincides with the
scope of the assumption. Since M is still used in the last sentence of the proof,
this sentence still belongs to the scope of the assumption. Since the proof inside
which the assumption was made ends at that sentence, this must be the last
sentence in the scope of the assumption.

According to the explanations we gave for translating texts with assumptions
into the formal representation language on which the proof checking algorithm
is defined, the proof of this theorem gets translated into a formula φ of the form

M = ιs (set(s)∧∀x(x ∈ s↔ x′ 6= x))→ θ ∧ (∀n (n ∈ N→ n ∈M)∧∀x x′ 6= x),

where θ is the translation of the text between the assumption and the last
sentence of the proof. The ι term in this formula triggers the presupposition
that there is a unique s satisfying set(s) ∧ ∀x(x ∈ s↔ x′ 6= x).

We want to compare how PPC+FlexAcc and PPC+ImmAcc check the cited
theorem-proof block. So far, we have not said anything about proof-checking
theorem-proof blocks. For the sake of the current exposition, we can translate
the whole theorem-proof block by φ ∧ ∀x x′ 6= x (here φ is the formula repre-
senting the proof as spelled out above, and ∀x x′ 6= x is the translation of the

10 The introduction of new symbols in assumptions can be accounted for using lin-
guistic theories of dynamic quantifiers, e.g. Discourse Representation Theory (see
[9]) or Dynamic Predicate Logic (see [6]). See [2] for details about how to use Dy-
namic Predicate Logic to account for this phenomenon prevalent in the language of
mathematics. As pointed out in footnote 11 below, we will have to make use of one
detail of this account; we nevertheless refrain from explaining this account in detail,
as this would go beyond the scope of this paper.



14

theorem statement, which is implicitly quantified universally). This means that
the proof checking algorithm will first check the translation of the proof, and
then check the translation of the theorem statement using the premise list that
is active at the end of checking the translation of the proof. Furthermore, we
will assume that the premise list that is active before checking the theorem-proof
block contains premises that encode the basic set theory that is needed for un-
derstanding the proof. This basic set theory has to be strong enough for proving
the presupposition triggered by the ι term.

In both PPC+FlexAcc and PPC+ImmAcc, M = ιs (set(s)∧∀x(x ∈ s↔ x′ 6=
x)) will be processed in No-Check-Mode. In PPC+FlexAcc, the presupposition
triggered by the ι term will be checked immediately after the ι term has been
parsed. By our assumption about basic set theory being encoded in the premise
list, the presupposition will be successfully checked. Let us assume that the
rest of the proof is checked successfully. The premise list that is active right
after checking the last sentence in the proof contains the formula ∀x x′ 6= x. One
might be tempted to think that this premise is therefore contained in the premise
list that is active when checking the theorem assertion ∀x x′ 6= x, in which case
checking the theorem assertion would become trivial. However, note that after
checking the (translation of the) last sentence of the proof, the scope of the
assumption closes. After closing this assumption, the active premise list no longer
contains the premise ∀x x′ 6= x, but instead contains ∀M (M = c→ ∀x x′ 6= x),
where c is the constant symbol newly introduced due to the ι term.11 This
premise trivially implies ∀x x′ 6= x, so the theorem assertion still follows trivially
from the premise list that is active after checking the proof.

When reading “for every x, x′ 6= x” at the end of the proof, a mathematical
reader would have the feeling that the proof is finished, since this is what had
to be established. The reason why we intuitively feel that the proof is already
finished when Landau writes “for every x, x′ 6= x” is that we do not really
feel the assumption at the beginning of the proof as an assumption, but just as
an introduction of the temporary constant M with a defined meaning. We can
account for this intuition in the framework of the theory developed in this paper
as follows:

The non-presuppositional content of the assumption, represented by the
premise M = c, is trivial. After retracting the assumption, we have the premise
∀M (M = c→ ∀x x′ 6= x) in the active premise list. Since the non-presuppositional
content of the assumption is trivial and leads to this premise trivially equivalent
to the desired result, we do not feel the assumption to have any content at all,
and hence do not feel it to be an assumption in the first place.

Let us now consider how PPC+ImmAcc processes the theorem-proof block
under consideration. In PPC+ImmAcc, the presupposition ψ of the ι term will
not be checked when processing the assumption, but will be added to the premise

11 According to the rules for proof checking an implication, the premise list that is
active after closing the assumption would have to contain a formula of the form
M = c → ∀x x′ 6= x. The additional quantifier ∀M comes from the account of
introducing new symbols that was mentioned in footnote 10 above.



15

list together with the premise M = c that expresses the non-presuppositional
content of the assumption. At the end of the proof, we then have ∀M (ψ ∧M =
c → ∀x x′ 6= x) instead of ∀M (M = c → ∀x x′ 6= x) in the active premise list.
Now using the fact that ψ follows from the basic set theory being encoded in the
initial premise list, we will still be able to deduce ∀x x′ 6= x from the premise
list that is active when processing the theorem assertion. But now the usage of
the assumed basic set theory to establish ψ is at a point in the proof where a
mathematical reader would not feel that anything needs to be proved. So on this
account, we get a wrong prediction as to where in a proof certain facts should
be established.

Besides being theoretically unappealing, such wrong predictions can also
make the proof checking less feasible: It may happen that the position of the
proof where the second account wrongly requires a presupposition to be estab-
lished is not a trivial deduction step as in the above example, but requires some
reasoning. In PPC+ImmAcc, this would mean that the presupposition has to
be established together with this additional reasoning needed at that step, in
a single proof obligation. This might make the proof obligation too hard to be
established by the ATP used by the system. At the assumptions where presup-
positions have to be established in PPC+-FlexAcc, on the other hand, one never
needs to establish something else at the same time.

8 Conclusion

We have shown how the linguistic theory of presuppositions can be used to
analyse and model the usage of partial functions and undefined terms in math-
ematical texts. We have considered three possible proof checking algorithms
taking care of presuppositions, PPC, PPC+ImmAcc and PPC+FlexAcc, which
differ in the way they treat the phenomenon of presupposition accommodation.
Wiedijk’s and Zwanenburg’s account involving domain conditions is essentially
equivalent to PPC, i.e. to not allowing presuppositions to be accommodated.
Farmer’s Partial First-Order Logic is equivalent to PPC+ImmAcc, i.e. to locally
accommodating all presuppositions, without checking first whether they could
be discharged. PPC+FlexAcc treats accommodation in the same way as linguis-
tic presupposition theory, i.e. accommodates presuppositions only if they cannot
be discharged. We have argued that PPC+FlexAcc provides an account of the
usage of partial functions and undefined terms that models the intuitions and
actual usage by mathematicians more faithfully than Farmer’s or Wiedijk’s and
Zwanenburg’s account.

References

1. Beeson, M.: Foundations of Constructive Mathematics. Springer, Berlin (1985)

2. Cramer, M.: Proof-checking mathematical texts in controlled natural language.
PhD thesis, University of Bonn (2013)



16

3. Cramer, M., Fisseni, B., Koepke, P., Kühlwein, D., Schröder, B., Veldman, J.: The
Naproche Project – Controlled Natural Language Proof Checking of Mathematical
Texts. In: Fuchs, N. (ed.) Controlled Natural Language, LNCS, vol. 5972, pp. 170-
186. Springer, Berlin (2010).

4. Cramer, M., Kühlwein, D., Schröder, B.: Presupposition Projection and Accom-
modation in Mathematical Texts. In: Pinkal, M., Rehbein, I., Schulte im Walde,
S., Storrer, A. (eds.) Semantic Approaches in Natural Language Processing: Pro-
ceedings of the Conference on Natural Language Processing 2010 (KONVENS),pp.
29-36. Universaar, Saarbrcken (2010).

5. Farmer, W.: Reasoning about partial functions with the aid of a computer. Er-
kenntnis 43, 279-294 (1995)

6. Groenendijk J., Stokhof, M.: Dynamic Predicate Logic. Linguistics and Philosophy
14(1), 39-100 (1991)

7. Heim, I.: On the projection problem for presuppositions. In: Barlow, M., Flickinger
D., Westcoat, M. (eds.) Proceedings of the Second West Coast Conference on
Formal Linguistics, pp. 114-125 (1983)

8. Kadmon, N.: Formal Pragmatics. Wiley-Blackwell, Oxford, UK (2001)
9. Kamp, H., Reyle, U.: From Discourse to Logic: Introduction to Model-theoretic Se-

mantics of Natural Languge. Kluwer Academic Publishers, Dordrecht, Netherlands
(1993)

10. Landau, E.: Foundations of Analysis. Trans. F. Steinhardt. Chealsea Publishing
Company, Bronx, NY, USA (1930, trans. 1951)

11. Levinson, S. C.: Pragmatics. Cambridge University Press, Cambridge, UK (1983)
12. Trench, W. F.: Introduction to Real Analysis. Pearson Education, Upper Saddle

River, NJ, USA (2003)
13. Wiedijk, F., Zwanenburg, J.: First order logic with domain conditions. In: Basin D.,

Wolff, B. (eds.) Theorem Proving in Higher Order Logics, TPHOLs 2003. LNCS,
vol. 2758, pp. 221-237. Springer, Berlin (2003)


