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ABSTRACT. Let K be a number field. For any system of semisim-

ple mod ¢ Galois representations {¢, : Gal(Q/K) — GLn(F,)}e

arising from étale cohomology (Definition , there exists a finite
normal extension L of K such that if we denote ¢;(Gal(Q/K)) and

#¢(Gal(Q/L)) by respectively [y, and 7, for all £, and let S, be the

FF,-semisimple subgroup of GLy f, associated to 4, (or I'y) by Nori

for all sufficiently large ¢, then the following statements hold

for all sufficiently large ¢:

A(i) The formal character of Sy < GLxr, (Definition [3)) is inde-
pendent of £ and is equal to the formal character of (G)d4°r <
GLn.qg,, where (G9)4°r is the derived group of the identity
component of Gy, the monodromy group of the corresponding
semi-simplified f-adic Galois representation ®3°.

A(ii) The non-cyclic composition factors of 4, and Sy(FF;) are iden-
tical. Therefore, the composition factors of 4, are finite sim-
ple groups of Lie type of characteristic £ and cyclic groups.

B(i) The total ¢-rank rk, I, of T, (Definition is equal to the
rank of Sy and is therefore independent of /.

B(ii) The A,-type ¢-rank rkf" Ty of Ty (Definition [14)) for n €
N\{1,2,3,4,5,7,8} and the parity of (rk;'* T)/4 are inde-
pendent of /4.
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1. INTRODUCTION

Let K be a number field, & C N the set of prime numbers, and
X a complete non-singular variety defined over K. For any integer @
belonging to [0, 2dimX], the absolute Galois group Galy := Gal(Q/K)
acts on the ith f-adic étale cohomology group H. (X, Q) for each
prime number ¢ € &. The dimension of H} (X, Q) as a Q-vector
space is independent of ¢ and we denote it by N. We therefore obtain
a system of continuous, f-adic Galois representations indexed by &7:

{q)g : GalK — GLN(QZ)}gey

which satisfies strict compatibility (Deligne [De74]) in the sense of Serre
[Se98, Chapter 1]. There is a conjectural ¢-independence on the
images of {®,} which has been studied by many people. When X is an
elliptic curve without complex multiplication, Serre has proved that the
Galois action on the f-adic Tate module T;(X) is the whole GL(7;(X))
when ¢ is sufficiently large by showing that the Galois action ¢, on
(-torsion points X [¢] = T,(X)/lTy(X):

¢ : Galg — GL(X[(]) 2 GLo(F,)

is surjective for £ > 1 [Se72]. This paper is motivated by the idea that
the largeness of the f-adic Galois image I'y := ®,(Galg) can be studied
via taking mod ¢ reduction. More precisely, given any continuous, f-adic
representation @, : Galg — GLy(Qy), one can find a Galois stable Z-
lattice of Q) so that up to some change of coordinates, we may assume
®y(Galg) C GLy(Zy) since Galg is compact. Then by taking mod ¢
reduction GLy(Z;) — GLy(F,) and semi-simplification, we obtain a
continuous, semisimple, mod ¢ Galois representation

¢g : GalK — GLN(Fg)

which is independent of the choice of the Z,-lattice by Brauer-Nesbitt
[CR8S, Theorem 30.16]. Denote the mod ¢ Galois image ¢¢(Galg) by
Iy
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Definition 1. A system of mod ¢ Galois representations

{¢¢: Galg — GLn(F()}een

is said to be arising from étale cohomology if it is the semi-simplification
of a mod /¢ reduction of the f-adic system or its dual system:

{(I)g : GalK — GL(Hgt(X[(, Qg))}gep;},
{®,: Galg — GL(Hgt(XKaQZ)v)}Ze@

for a complete non-singular variety X defined over K and some ¢, where
Hét(Xf_(? Qe)\/ = Hosz (Hét(XI_{a @5)7 Q@)

Let p* denote the semi-simplification for any finite dimensional rep-
resentation p over a perfect field (well defined by Brauer-Nesbitt [CRSS|,
Theorem 30.16]). Let {®,} be a compatible system of ¢-adic represen-
tations of Galg in Definition [1} the algebraic monodromy group at ¢
of the semi-simplified system {®%°}, denoted by Gy, is the Zariski clo-
sure of ®3°(Galk) in GLyg,. Then Gy is reductive. Denote the set of
non-Archimedean valuations of K and K by respectively Y and Y.
The strict compatibility of {®,} implies {¢,} is strictly compatible in
the following sense.

Definition 2. A system of mod ¢ Galois representations

{¢¢ : Galx — GLN(FF¢) }ocn

is said to be strictly compatible if {¢,} is continuous, semisimple, and
satisfies the following conditions:

(i) There is a finite subset S C X such that ¢, is unramified
outside Sy := S U {v € Xk : v|l} for all £,

(ii)) For any ¢1,0; € & and any v € X extending some v €
Y\ (Se, USp,), the characteristic polynomials of ¢y, (Frob;) and
¢, (Froby) are the reductions mod ¢; and mod ¢ of some poly-
nomial P,(z) € Q[z] depending only on v.

Let p : G — GLy r be a faithful representation of a rank r reductive
algebraic group G defined over field /. We define in the beginning of §2
the formal character of p as an element of quotient set GL,(Z)\Z[Z"].
Here Z[Z"] is the free abelian group generated by Z" and GL,(Z) acts
naturally on Z[Z"]. This allows us to define what is meant by two
representations having the same formal character (see Definition [3])
and the formal character is bounded by a constant C' > 0 (see Definition
[IP). Let {¢¢} be a strictly compatible system of mod ¢ representations
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arising from étale cohomology (Definition , this paper studies /(-
independence of mod ¢ Galois images I'; for all sufficiently large ¢. Let
g be a Lie type. We define total (-rank tk, " and g-type (-rank vk " of
a finite group I in §3.3 Definition . The main results are as follows.

Theorem A. (Main theorem) Let K be a number field and {¢, :
Galg — GLy(Fo)}eew a strictly compatible system of mod { Galois
representations arising from étale cohomology (Definition . There
exists a finite normal extension L of K such that if we denote ¢y(Galg)
and ¢¢(Galy) by respectively Ty and 4, for all ¢, and let S; C GLyp, be
the connected Fy-semisimple subgroup associated to 7, (or T'y) by Nori’s
theory for £ > 1, then the following hold for £ > 1 :

(i) The formal character of S¢ = GLx, is independent of { (Def-
inition [4) and is equal to the formal character of (G§) —
GLyg,, where (G2)% is the derived group of the identity com-
ponent of Gy, the algebraic monodromy group of the semi-simplified
representation .

(ii) The composition factors of 4, and S,(F,) are identical modulo
cyclic groups. Therefore, the composition factors of 4, are finite
simple groups of Lie type of characteristic £ and cyclic groups.

Corollary B. Let S, be defined as above, then the following hold for
> 1:

(i) The total (-rank vk, T of Ty (Definition[14)) is equal to the rank
of S; and is therefore independent of (.

(i) The A,-type (-rank vk Ty of Ty (Deﬁmtz'on forn € N\{1,2,3,4,5,7,8}
and the parity of (1"1{24‘1 ['y)/4 are independent of .

Remark 1.1. As an application of the main results, we prove in [HL14]
that ®,(Galg), the f-adic Galois image arising from étale cohomology
has certain maximality inside the algebraic monodromy group Gy if ¢
is sufficiently large and Gy is of type A. This generalizes Serre’s open
image theorem on non-CM elliptic curves [SeT2].

Remark 1.2. For any field F', define ¢ to be the involution of GLy
that sends A to (AY)~'. If T is a subgroup of GLy(F), then T is
semisimple on FV if and only if +(I') is semisimple on FV. If ¢, is
the mod ¢ Galois representation arising from the dual representation

H: (Xg, Q)Y (Definition[]), then the mod ¢ representation arising from

H} (X, Qy) is tog, under suitable basis by Brauer-Nesbitt [CR88, The-
orem 30.16]. Since ¢ is an automorphism of GLy, it suffices to prove
Theorem [A] by considering only the dual mod ¢ system {¢} and Galois
images {I'y}. Let ¢; be the restriction of ¢, to inertia subgroup I such
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that v € Xz divides £. The reason for choosing the dual system is that
the characters of ¢3’ have bounded exponents in the sense of Definition
for £ > 1 by Serre’s tame inertia conjecture proved by Caruso [Ca0§]
(see Theorem [2.3.1). Such boundedness makes our arguments simpler.

This paper can be considered as “mod ¢” version of [Hul3| in which
we studied /-independence of monodromy groups of any compatible
system of f-adic representations by the theory of abelian ¢-adic repre-
sentation [Se98] and the representation theory of complex semisimple
Lie algebra. The main difference between [Hul3] and this paper is
that you get nothing new for considering monodromy groups of mod
¢ Galois images because they are just finite groups. The strategy in
this paper is to first construct for each ¢ > 1 a connected Fj-reductive
subgroup G; C GLyF, with bounded formal characters (Definition
M) such that [Ty : Ty N Gy(Fy)] and [Gy(Fy) : Ty N Gy(Fy)] are both
uniformly bounded (Theorem . The idea to construct such Gy
was due to Serre [Se86] where he considered the Galois action on the
(-torsion points of abelian varieties A without complex multiplication.
In Serre’s case, the semisimple part S; of G, is constructed by Nori’s
theory [No87] and the center C, of G, is the mod ¢ reduction of some
(QQ-diagonalizable group Cg which is a subgroup of the centralizer of
monodromy Gy in GLyg,. Hence, {G;, C GLygp,}¢ has bounded for-
mal characters. The construction of Cg uses the abelian theory of
(-adic representations [Se98] and the Tate conjecture for abelian vari-
ety (proved by Faltings [Fa83]) which relates the endomorphism ring of
A and the commutant of Galois image I'y in Endyn(Qy). Although we
don’t have the luxury of the Tate conjecture for étale cohomology in
general, it is still possible to construct reductive G, C GL ~F, With the
above conditions for ¢ > 1 by Nori’s theory, tame inertia tori [Se86],
and Serre’s tame inertia conjecture (proved by Caruso [Ca08]). The
constructions of these algebraic envelopes G, of T (see Definition [5 '
are accomplished in §2. Once these nice envelopes are ready, we can
use the techniques in [Hul3, §3] to prove that the formal character
(Definition |3|) of the semisimple part S, — GLy F, is independent of
¢ > 1 (Theorem [A)). The number of A, factors of S, for large n are
then independent of ¢ for all £ > 1 by [Hul3l Theorem 2.19]. Since
the group of F-rational points of G, is commensurate to the Galois
image I'y, one deduces (-independence results on the number of Lie
type composition factors of characteristic ¢ of T'y for £ > 1 (Corollary
. Section 3 is devoted to the proofs of Theorem |A| and Corollary .

The following summarizes the symbols that are frequently used within
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the text. Groups inside GLy p with charF" > 0 have their symbols
over-lined and should not be confused with base change to an algebraic
closure.

Galp the absolute Galois group of field F'

K, L number fields

v a valuation of K that divides prime ¢

I; the inertia subgroup of Galy at valuation v
Us, Vo, Wy (Uy, Vi, W), ... vector spaces defined over F, (over Fy)

Lo, e, Q0 Qs ... finite subgroups of GLy(FFy)

Gy, Ty, ... algebraic subgroups of GLy g,

G, S, N, I, I, ... algebraic subgroups of GLyF,

Dy, Uy, Oy, ... representations over QQ,

e, Ve, e, te, pu, fo, W5, ... representations over Fy

p* the semi-simplification of representation p
pY the dual representation of representation p

2. ALGEBRAIC ENVELOPE Gy

We define formal character and prove some related propositions
before stating the main result (Theorem of this section. Let
p: G — GLy r be a faithful representation of a rank r reductive alge-
braic group G defined over field F'. Choose a maximal torus T of G
and denote the character group of T by X. Let {wy,ws,...,wy} C X
be the multiset of weights of p|r over F' and choose an isomorphism
X = Z". Then the image of wy +wy + -+ + wy € Z[X]| = Z[Z"] in
the quotient set GL(X)\Z[X] = GL,(Z)\Z|Z"] is independent of the
choices of maximal torus T and isomorphism X =2 Z".

Definition 3. Let p be as above. The formal character of p is defined
to be the image of wy + wy + - -- +wy € Z[Z"] in GL,(Z)\Z[Z"].

This definition of formal character is more general than the one in
[Hul3, §2.1]. It allows us to compare formal characters of two N-
dimensional faithful representations p; : G; — GLxy g and py : Go —
GLn,p, over different fields whenever G; and Go have the same rank.
Let GY be the diagonal subgroup of GLy. Every character x of G
can be expressed uniquely as z"zy"? - - zy", a product of powers of
standard characters {x1,xs, ..., vy}, where x; maps (ay,...,ay) € GY
to a; for all 7. The following proposition (definition) is particularly
useful.

Proposition 2.0.1. (Definition [§)) Let pi and ps be as above. If
T, C Gy and Ty C Gy are maximal tori. The following conditions
are equivalent:
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(i) Representations p; and ps have the same formal character.

(ii) Tori pi(T1) and py(T2) are respectively conjugate (in GLy g
and GLy g,) to some subtori Dy and Dy of the diagonal sub-
group GY C GLy such that Dy and Dy are annihilated by the
same set of characters of GY.

Hence, formal characters of N-dimensional faithful representations are
in bijective correspondence with subtori in GY up to natural action of
permutation group Perm(N) of N letters on G\

Proof. Assume T; = G, . and p;(T;) C GT]XE
on by base change to algebraic closure of F; and diagonalizations for
j = 1,2. Suppose (i) holds, then by taking an automorphism of the
character group of T; and a permutation of coordinates of G\ we
obtain

C GLy 5, from now

Ly © pP1 = Ti© P2

for all standard character z; of GY if we identify the character groups of
G, 7, and G} 5 naturally. This implies the set of characters of GY that
annihilate D, := p;(T;) for j = 1,2 are equal which is (ii). Suppose
(ii) holds, it suffices to consider the case that p; and p, are standard
representations (inclusions) since p : G — GLy r and p(G) C GLy
always have the same formal character. Condition (ii) implies that
there exists an automorphism of GY such that

Dj:{(al,...,aN) GG% a1:a2:...:aN_T:1}

for j = 1,2 because Dy and Dy are connected. Then (i) follows easily.

Let p: T — GLy r be a representation of a torus T. Since the set
of weights of p is obtained by diagonalizing p(T) and is independent of
diagonalizations, subtori of GY that are conjugate to p(T) only differ
by a permutation of N coordinates. Therefore, the map from formal
characters of N-dimensional faithful representations to subtori of G
modulo action of Perm(V) is well defined. Since the equivalence of
(i) and (ii) implies injectivity and any subtorus of G is the formal
character of the standard representation of the subtorus, the map is a
bijective correspondence. U

Examples: Denote standard representation and faithful representa-
tion by respectively Std and p. Below are some pair of representations
that have the same formal character:
(1) (GLQ,QZ, Std) and (GL2,F£, Std);
(i) (G, p) and (H, p|g) if H is a reductive subgroup of G of same
rank;

(iii) (G, p) and (G, p");
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(iv) (G, p) and (p(G), Std).

Definition 4. The formal character of p is said to be bounded by a
constant C° > 0 if there exists an isomorphism X = 7Z" such that
the coefficients of the images of weights wq, ws, ...,wy € X in Z" have
absolute values bounded by C'.

Let N be a fixed integer and {p; : G; — GLy, F, }ier a family of faithful
representations of reductive groups such that N; < N for all i € I. The
family is said to have bounded formal characters if the formal character
of p; is bounded by some constant C' > 0 for all i € I.

Remark 2.0.2. Let {p; };c; be a family of representations in Definition
having bounded formal characters. Then the number of distinct
formal characters arising from the family is finite.

Let x = "2l - - 24" be a character of G expressed as products

of standard characters. We call multiset {m,...,mx} the exponents
of x and say the exponents are bounded by C' > 0 if |m;| < C for all
1 <4 < N. The following characterization of Definition [4]is very useful
in this paper.

Proposition 2.0.3. (Definition[4]’) Let {p;}icr be a family of faithful
representations of reductive G; such that p; is N;-dimensional and N; <
N for alli € I. Choose a mazimal torus 'T; of G; for each i € I. The
following conditions are equivalent:

(i) The family has bounded formal characters.

(ii) For any i € I and any subtorus D; of the diagonal subgroup
GXi C GLy, that is conjugate (in GLy, 5. ) to pi(T;), one can
choose a set R; of characters of GYi such that the common
kernel of R; is D; and the exponents of characters in R; are
bounded by a constant independent of 1 € I.

Proof. Tt follows easily from Definition [d] the bijective correspondence

in Proposition [2.0.1], and Remark [2.0.2] U]

Proposition 2.0.4. Let {p;}icr and {¢;}icr be two families of faith-
ful representations of reductive G; and H; over field F; with bounded
formal characters such that the target of p; and ¢; are both equal to
GLy, i and p;(G;) commutes with ¢;(H;) for all i € I. Then the

family of standard representations
{0i(Gi) - ¢i(H;) C GL, 1 }ier

also has bounded formal characters.
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Proof. 1t follows easily from Remark [2.0.2] Proposition [2.0.3] and the
fact (by the commutativity hypothesis) that any maximal torus of
pi(G;) - ¢;(H;) is generated by some maximal torus of p;(G;) and some
maximal torus of ¢;(H;). O

Let {¢/} be the strictly compatible system of mod ¢ Galois repre-
sentations arising from (Definition the dual system of /-adic repre-
sentations {®,}. Denote the image of ¢, by I'; and the ambient space
of the representation by V, = FY for each ¢. Each 'y := ¢y(Galy) is
a subgroup of GLy(F,) for a fixed N. Suppose K’ is a finite normal
extension of K. Since [¢p(Galk) : ¢po(Galg/)] < [K' : K] for all £ and
the restriction of {¢,;} to Galgs is semisimple [CR88, Theorem 49.2]
and satisfies the compatibility conditions (Definition , we are free to
replace K by K’ in the course of proving the main theorem. The main
result of this section states that for £ > 1, Iy can be approximated
by some connected, reductive subgroup G, C GLyp, with bounded
formal characters (Definition [4]).

Theorem 2.0.5. Let {¢s}icr be a system of mod ¢ Galois represen-
tations as above. There exist a finite normal extension L of K and a
connected, Fo-reductive subgroup Gy of GLn, for each £ > 1 such that
(1) ¥ = ¢e(Galy) is a subgroup of G¢(Fy) of uniformly bounded
mder,
(ii) the action of Gy on V, :=V, ® F, is semisimple,
(iii) the representations {G; < GLnF,}rs1 have bounded formal
characters in the sense of Definition[{]’.

Definition 5. A system of connected reductive groups {Gy}¢s. satis-
fying the conditions in the above theorem is called a system of algebraic
envelopes of {Ty}ss1. We say Gy is the algebraic envelope of T'y when
a system of algebraic envelopes is given.

We first establish in §2.1 — 2.4 essential ingredients of the proof of
Theorem [2.0.5] Then the proof is presented in §2.5.

2.1. Nori’s theory. The material in this subsection is due to Nori
[No8T7]. Suppose £ > N — 1. Given a subgroup I' of GLy/(F,), Nori’s
theory gives us a connected algebraic group S, that captures all the
order ¢ elements of T if ¢ is bigger than a constant that only depends
on N.
Let I'[¢(] = {x € T'| 2 = 1}. The normal subgroup of I generated
by ['[¢] is denoted by I'*. Define exp(x) and log(z) by
Clo -1 (1— 1)
exp(z) = Z ) and log(x) = — Z —.

- . - 7
=0 i=1
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Denote by S the (connected) algebraic subgroup of GLy r,, defined over
[y, generated by the one-parameter subgroups

t 2" = exp(t - log(x))

for all x € T'[¢]. Algebraic subgroups with the above property are said
to be exponentially generated. The theorem we need is stated below.

Theorem 2.1.1. [No87, Theorem B(1), 3.6(v)] There is a constant
co = co(N) such that if £ > co and T is a subgroup of GLy(F,), then
(i) I = S(F)*,
(ii) S(F,)/S(F,)* is a commutative group of order < 2N-1.

Proposition 2.1.2. Let S, be the algebraic group associated to 'y by
Nori’s theory for all ¢ > N —1. There is a constant c¢; = ¢,(N) > co(N)
that depends only on N such that if £ > cy, then the following hold:

(i) S, is a connected, exponentially generated, semisimple Fo-subgroup
gf GLN,]F@ . B B
(ii) S¢ acts semi-simply on the ambient space Vi = FY.
(111) [Sg(F@) : Sg(Fe) N F@] < N-1,

Proof. Since I'; acts semi-simply on Vj, so does f‘j [CR88, Theorem
49.2]. Part (ii) then follows from [EHKI2, Theorem 24| for some suffi-
ciently large constant ¢ (V) (> ¢o(N)) depending only on N, see also
[Se86]. Since ¢ > ¢y(N), S¢(F,)* =T} (Theorem also acts semi-
simply on V,. This implies S;(IF;)* cannot have normal ¢-subgroup. If
S, has a non-trivial unipotent radical Uy, then U, is defined over F,
[Sp08, Proposition 14.4.5(v)] and U,(FF,) is then a non-trivial normal /-
group of S,(F,)* which is a contradiction. Therefore S; is reductive. Sy
is actually semisimple since it is generated by unipotent elements I';.
This proves (i). Since £ > ¢o(N), (iii) is proved by Theorem O

Definition 6. Define the semisimple envelope of T, for all sufficiently
large ¢ as the connected, semisimple F-algebraic group S, in Proposi-
tion [2.1.20

Remark 2.1.3. If K’ is a finite extension of K, then the semisimple
envelopes of ¢,(Galg/) and ¢,(Galg) are identical for ¢ > 1 because
the order ¢ elements of the two finite groups are the same when /¢ is
large.

2.2. Characters of tame inertia group. Let p, : Galy — GLx(F))
be a continuous representation and I the inertia subgroup of Galg at
v € Y that divides ¢. Let I} be the wild inertia (normal) subgroup
of I; and py’ the semi-simplification of the restriction of p; to ;. Since
pF(IY) is an f-group and semisimple on FY, pS(I¥) = {1} and p

v
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factors through a representation of the tame inertia group It := I /I¥
(still denoted by p):

P I — GLy(TFy).

The tame inertia group It is a projective limit of cyclic groups of order
prime to ¢ [Se72 Proposition 2]

0 : Iy — lim Fy,
k

where the projective system is given by norm maps of finite fields of
characteristic /. The isomorphism is unique up to action of Galy, on
the target.

Definition 7. The fundamental characters of It of level d [SeT2, §1.7]
are defined as ‘
07, j=0,1,....d—1

where 6y : It N I&sz F — Fry — ;.

Any continuous character x : It — F} of p$* factors through a power
of some 6. Character theory says that Hom(F},, F;) =~ Hom(F},, C*)
is cyclic generated by 6, of order /* — 1. Therefore, y can always be
expressed as a product of fundamental characters of level d

x = (0a)™ - (8™ -+ (67 )"

Definition 8. Let y : I! — [} be a character of p¥ and express y as
a product of fundamental characters of level d as above.

(i) The product is said to be l-restricted if 0 < m; < ¢ —1 for all ¢
and not all m; equal to £ — 1. It is easy to see that (-restricted
expression of y is unique.

(ii) The ezponents of x are defined to be the multiset of powers
{mg,m1,...,mg_1} in the l-restricted product. Note that the
multiset is independent of the action of Galg, on the target.

Lemma 2.2.1. Let V = F} be a continuous, irreducible subrepresen-
tation of pg, then the characters of the representation can be written as
a product of fundamental characters of level n.

Proof. For simplicity, assume p; is irreducible. The image of I% in
GL(V) is a cyclic group of order prime to ¢, therefore V' is a Fy[x]/(f(z))-
module where z corresponds to a generator of the cyclic image and the
minimal polynomial f(x) is separable. Irreducibility of V' implies f(z)
is irreducible over Fy,. Thus p;(I%) is contained in a maximal subfield
F of End(V) and p; : It — F* C GL(V) can be written as a product
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of fundamental characters of level n as above. On the other hand, V
has a structure of F-vector space of dimension 1 such that the action
of ps(It) C F* is through field multiplication. By tensoring F' with F'
(on the right) over F,, we obtain an F-isomorphism

FOQF >FoF®---pF
TRy > (a:y,xgy,...,xen_ly)
Z €7L

where z, ¢, ..., 2" are just conjugate of z over Fy. If 2 € ps(It) C F*,
then we see the action of It on V ®p, F' is a direct sum of products of
fundamental characters of level n. O

2.3. Exponents of characters arising from étale cohomology.
Every character x of p : It — GLy(F,) can be written as

X = (070 - (05)™ - (8T,

a product of fundamental characters of level n < N by Lemma [2.2.1]
One would like to study the exponents my, ..., m,_; (Definition [§) and
in the case of étale cohomology we have the following theorem proved
by Caruso [Ca0§].

Theorem 2.3.1. (Serre’s tame inertia conjecture) Let X be a proper
and smooth variety over a local field K (a finite extension of Q) with
semi-stable reduction over O, the ring of integers of K and i an in-
teger. The Galois group Galg acts on H.(Xg,Z/(Z)Y, the Fy-dual
of the ith cohomology group with Z/VZ coefficients. If we restrict the
representation to the inertia group of Galg, then the exponents of the
characters of the tame inertia group on any Jordan-Holder quotient of
H (Xg,Z/lZ)" are between 0 and ei where e is the ramification index

OfK/Q€~

We now relate our mod ¢ Galois representation ¢, to representation
H (Xk,Z/{Z)" in Theorem [2.3.1, Cohomology group Hi (X, Zy) is
a finitely generated, free Z,-module [Ga83] for ¢ > 1:

H. (X, ) 2T - DLy
Reduction mod ¢ gives
H, (Xg,Z))QF, =ZNHL D - © LT

and the semi-simplification of HY (X, Zs) ® Fy is then isomorphic to
the semi-simplification of a mod ¢ reduction of ¢-adic representation
H} (Xk,Q) by Brauer-Nesbitt [CR88, Theorem 30.16]. Since the se-
quence

i L orri i
Hét(XR'7 Zﬁ) — Hét(XK'a Zﬁ) — Hét(XR'7 Z’/KZ)
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is exact [Mil3, Theorem 19.2], HY (X, Z¢)®F, is isomorphic to H (X g, Z/(Z).
Recall V} is the semi-simplification of a mod ¢ reduction of H (Xz, Qq)".
Thus, we conclude that

Proposition 2.3.2. For all sufficiently large {, H, (X g, Z¢) @F is iso-
morphic to H (X, Z/lZ) and the semi-simplification of H. (X g, Z/(Z)
is V.

The following theorem is the main result of this subsection.

Theorem 2.3.3. Let K be a number field. Let ¢ : Galg — GL(V;) =
GLn(F,) be the mod ¢ Galois representation arising from étale coho-
mology group H: (X, Q)Y for sufficiently large €. If we restrict ¢y to
the inertia group Iy of a valuation v|¢ of K and semi-simplify the rep-
resentation, then every character x of the representation can be written

as
glel

X = (On)™ - (O3)™ -~ (O )™

a product of fundamental characters of level N! with exponents (Defi-
nition [§) mo, ..., my1—1 (depending on ) belonging to [0, ei] where e is
the ramification index of K,/Qy, v = 0|k, and K, is the completion of
K with respect to v.

Proof. Proposition implies that if ¢ is sufficiently large, then Ga-
lois representations V; = (V,Y)V and (H (X, Z/(Z)")* are isomor-
phic. Let x be a character of It given by the semi-simplification of the
restriction of V; to inertia subgroup I;. By Theorem [2.3.1] x can be
written as

X = (0a)™ - (65)™ - (95" ymat,

a product of fundamental characters of level d (< N by Lemma
with exponents my, ..., my_1 belonging to [0, ei] where e is the rami-
fication index of K,/Q,. Since d divides N!, 0y, factors through .
Consider the norm map Nm : Fjy, — F,

d 2d (N1—d)
QJ|—>$'SL’Z‘$£ "‘I‘e .

Then we obtain a product of fundamental characters of level N!

d—1
Y = (Nm o QN!)mo—irmlf—i- +mg_14

= (On)* - (95\/!)81 T (9%!71)81\”_1

with exponents sg, ..., sy1—1 belonging to [0, ei]. O
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2.4. Tame inertia tori and rigidity. Tame inertia tori were con-
sidered by Serre when he studied Galois action on ¢-torsion points of
abelian varieties without complex multiplication [Se86]. He observed
that these tori have certain rigidity which will be explained in this
subsection.

Assume £ > N —1 asin §2.1. Since every non-trivial element of every
(-Sylow subgroup of 'y is of order ¢ and T’} is contained in S,(F,) by
Theorem 2.1.1] - index [['y : T'y N Sy(IFy)] is prime to £. Let N, be the
normalizer of Sy in GLy ,; clearly I, C Ny.

Theorem 2.4.1. [Se86, §1 Theorem]| There are constants c; = ca(N)
and cg = c3(N) such that if £ > co, S¢ C GLn g, is an exponentially
generated semisimple algebraic group defined over Wy, and the action
on Vy 2 FY is semisimple. If Wy is the Fy-subspace of

3

U = P(@'V)

i=1
Jized by Sy, then t; Ng/Sg — GLyw, is an Fy-embedding. Moreover, if
x ¢Sy, then there is an element of Wy that is not fived by x.

By Theorem[2.4.1], Ty /(T',NS(F,)) embeds in GL(W,) with dim(WW,) <
cqs = c4(N) umformly for some integer ¢4. Theorem below is the
main result of this subsection.

Definition 9. Define p, : Galx — GL(W),) to be the composition t,0¢,
for each ¢ and €, to be the image 1y, where t, is defined in Theorem

241l

Theorem 2.4.2. Let I, be the algebraic group generated by a set of
tame inertia tori L, (Definition @) for £ > 1. There exist constant
cg = cg(N) and a finite normal field extension L/K such that if { > 1,
then 1, is a torus, called the inertia torus at ¢, and pu,(Galy) C Q isa
subgroup of 1,(F,) such that

(i) {I; — GLw,}es1 have bounded formal characters (Definition

iy

(ii) [Le(Fy) : pe(Galy)] is bounded by cs.

Theorem 2.4.3. [Jo78, Jordan’s theorem on finite linear groups| For
every n there ezists a constant J(n) such that any finite subgroup of
GL,, over a field of characteristic zero possesses an abelian normal
subgroup of index < J(n).

The order of €, is prime to £. Q, can thus be lifted to a subgroup
of GLy/(C) such that N’ only depends on N. Theorem (Jordan)
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then says that 2, has a abelian normal subgroup J; of index less than
a constant ¢ = ¢5(N) := J(N’') depends on N’. Since N’ depends
on N, we have [, : Jy| < c5. If 0 divides ¢, then the action of the
inertia group Iy on W, is semisimple because || is prime to £. Since
dim(W,)|cs! We obtain

90 !
pg : I8 = Ty — GL(W)).

By Theorem and Wy in Theorem [2.4.1] there exist cg = ¢s(N) > 0
such that if x is a character, then y can be written as a product of
fundamental characters of level ¢!

X = (Beg)™ - (0L, - (057 e

cy!

with exponents my, ..., me,1—1 belonging to [0, ¢s] for all £ > 1. There-
fore, we make the following definition.

Definition 10. Denote field F,,: by E, for all ¢. This gives a homo-
morphism

fo B — GL(Wy)

if £ > c6(N)+ 1. Let E, denote Resg,r,(G,,) (Weil restriction of
scalars) for all £. We have E¢(F,) = E;. Then f, extends uniquely
[Halll §3] to an (-restricted F,-morphism below:

wy : By = Resg, /5, (Gp) — GLyy,.

Denote the image of wy by L for o|¢ > 1. It is called the tame inertia
torus at v € Y.

Lemma 2.4.4. There exists a constant c¢; = c7(N) such that for any
0|0 > cg(N) + 1, we have

(i) {_i@ — GLyw, }s have bounded formal characters (Definition ’);
(ii) [Ip(Fy) : fH(E)] < 7.

Proof. Since dim(W;) and dim(E,) are bounded by a constant inde-
pendent of ¢ and the exponents of the characters of w; in terms of the
fundamental characters [Halll §3] belong to [0, cg], we find by Propo-
sition [2.0.3] a set of characters R of uniformly bounded exponents of
the diagonal subgroup of GLyy, by diagonalizing I, and then obtain
assertion (i). For assertion (ii), uniform boundedness of exponents of
characters and dim(E;) = ¢,! (for all £) imply the number of connected
components of Ker(w;) is uniformly bounded by ¢;. On the other
hand, the number of F,-rational points of any [F,-torus of dimension
k is between (¢ — 1)* and (¢ + 1)¥ by [No87, Lemma 3.5]. Therefore,
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we(It) = f5(E;) has at least
E; 1

C7(€+ 1>dim(Ker(w5)) o C7(€+ 1)dim(Ker(w@))
points and [I;(F,) : u¢(1%)] is bounded by
1 dim(Ker(ws))+dim(Im(wg)) /41 ca!
(t+1) et

€C4! — 1 €C4! _ 1
when /¢ is big. This proves (ii). O

Lemma 2.4.5. (Rigidity) [Halll §3],[Se86l, §3] Let s € GL(W,) be a
semisimple element and f; : E; — GL(W,) a representation such that
the exponents of characters of f; belong to [0,c|] for some ¢ > 0. If
H C E; is a subgroup such that f;(H) commutes with s in GL(W})
and c - [Ey : H] < £ —1, then I; commutes with s, and hence so does

fo(B).

Recall from Definition [2] that there is a finite subset S C X such
that ¢, is unramified outside Sy := S U {v € X : v|[¢} for all /.

Proof of Theorem [2.4.2. The following arguments are influenced
by the arguments Serre gave for [Se86, Theorem 1].

Proof. Denote the image of ju,(It) under the map T'y/(Ty N S¢(Fy)) —
GL(W;) by Qy whenever 9]¢. Let J, be a maximal abelian normal
subgroup of Qy := ug(GalK) We first prove that ; commutes with .J;
if ¢ is large. Since 2; and J, are abelian and
[Qf, . Q@ N jg] S Cx

by Theorem (Jordan), the tame inertia torus I; at o (Definition
and hence fv (E;) = Qy commute with J if £ > ¢5c6 + 1 by rigidity
(Lemma . For any 0y, 05|/, since Qv1 N J, commutes with Qg, N J,
which are of bounded index in Q, and €, respectlvely, we obtain I,
commutes with I, if £ > 1 by rigidity (Lemma [2.4.5). The subgroup
H, of Q, generated by the inertia subgroups € for all | is abelian
and normal for £ >> 1. As J; is maximal normal abelian in Q,, H, C J,
for all £ > 1. Therefore, Qy/.J; corresponds to a field extension of K of
degree bounded by c5 that only ramifies in S (Definition [2|) for ¢ > 1.
By Hermite’s Theorem [La94, p.122], the composite of these fields is
still a finite field extension K’ of K. Therefore, u,(Galg:) C J, for
0> 1.

Since the representations {¢,} come from étale cohomology and I; N
Galg- is the inertia subgroup of Galy: at v [Ne99, Proposition 9.5], they
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are potentially semi-stable which means there exists a finite extension
K" of K’ such that ¢(I; N Galgn) is unipotent for any v not dividing ¢
[deJ96, §1]. Therefore, for each £ > 1 we have a finite abelian extension
of K" with Galois group p(Galgr) contained in J, that only ramifies
at v € Yg» dividing ¢. Since p,(Galgr) is an abelian Galois group
over K", each ramified prime v € X g~ dividing large ¢ corresponds to
an inertia subgroup I” C py(Galgr) and there are at most [K” : Q]
of them. For each inertia subgroup I”, choose a tame inertia torus I,
such that I” C I(F,). Since these tame inertia tori commute with
each other, the algebraic group I, generated by them is an F,-torus,
called the inertia torus at . Since {I; — GLw, }sj¢>1 have bounded
formal characters (Lemma[2.4.4(i)) and each I is generated by at most
[K” : Q] tame inertia tori, {I, < GLy, }ss1 have bounded formal
characters by Proposition [2.0.4] This proves (i).

Let I be the subgroup of ju,(Galgr) generated by I for all vl.
Then, for ¢ > 1 we have

pe(Galger) /7

is the Galois group of a finite abelian extension of K" that is unramified
at every non-Archimedean valuation. By abelian class field theory,
these fields generate a finite extension K" of K”. Choose L normal
over K such that K" C L. Then, we obtain

(*) : ILL@(G&IL) C I_él C i@(F@)

It remains to prove (ii). Suppose I, is generated by tame inertia tori
I;, for 1 <i <k for some fixed k < [K" : Q]. We have

[i@(F@) : ,ug(GalL)] = [ig(Fg) : ig(]Fg) N Qg] : [i@(F@) N Qg : ,ug(GalL)]
< [L(Fe) : fo,(B) -+ fo (BD)] - [L 2 K.
It suffices to show [I,(Fy) : fo, (EF) -+ fo, (E})] is bounded independent

of £. The proof is identical to Lemma [2.4.4(ii) since fz, (E})--- f5, (E))
is the image of

fo, X - % fo + (EDF — GL(W,),
I, is the image of
Wg, X+ X Wy, - (Eg)k — GLWZ,

k (depending on /) is always less than [K” : Q], and the exponents of
characters ((-restricted of wy, X -+ X wg, are uniformly bounded.
Therefore, there exists cg = cg(IN) such that [I,(F,) : ue(Galy)] < cs
for £ > 1. O
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2.5. Construction of Gy. An F,-torus I, C GLw, is constructed in
§2.4 for £ > 1 and we have the following map defined in Theorem [2.4.1

ty: Ng — Ng/gg — GLWZ-

One has to show that I, C t,(N;) so that ¢,'(I,) is connected. It
suffices to consider tame inertia tori I;. Recall vector space U, from

Theorem 2.4.1]

Lemma 2.5.1. Let H, be an algebraic subgroup of GLy,. Then H,
acts on Uy. If Hy is invariant on the subspace

W[ C U[
fized by Sy, then Hy is contained in N.

Proof. Let x € I:IANZ. Then there exists s € S, such that zsz ™! ¢ S,.
There exists w € W, such that

rszw # w
by the last statement of Theorem [2.4.1] Therefore,
sxtw # 7w
implies 771w ¢ Wy, a contradiction. Hence, Hy is contained in N,. O
Proposition 2.5.2. The Fy-torus 1, in GLy, is a subgroup of the image

of
te: Ny — NZ/Sg — GLW[

defined in Theorem |2.4. 1|

Proof. Let v|¢ be a valuation of K and I the inertia subgroup of Galg
at v. The restriction ¢y : I; — GL(V}) factors through a finite quotient
7y @ Iy — Jy such that |J| = ¢ - (£' —1). Recall vector spaces
Wy C U, from Theorem and f; : E} — GL(W;) from Definition
[10] Consider the following diagram so that

7¢O ¢poiy = fi

and the actions of Ej on W, via f, and f; are the same. Here 7, is
the obvious map and 5 is a splitting of ;. This is possible because Ej
defined in §2.4 is cyclic of order (¢4 — 1) prime to .

/_\ .
Jrl_; o Ee

T

GLy, —= GLy,
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If ¢ is sufficiently large, then the exponents of the characters (¢-
restricted) of representations ¢, o iz and 1y o ¢y o iz belong to [0, 1]
and [0, ic3) respectively by Theorem and the construction of U,.
Recall E; from definition By WEeil restriction of scalars, we obtain
two [Fy-morphisms

Qyp . Eg — GLW

6( : Eg — GLUK-
Since ryoay and fy are both (-restricted [Halll §3] and equal to ry0¢,0i;
when restricting to E;, by uniqueness [Halll §3] we have

Ty OOy = ﬁg.

The image r,0¢¢0i3(E;) = f4(E;) maps Wy and hence W to itself, so
Be(E;) also maps W, to itself. Since 74 0 ay(E;) = B,(Ey), we conclude
that ay(E;) C N, by Lemmaf2.5.1} One also observes that the following
morphism ) -

to: Nz — Nz/Sz — GLWZ
maps ar(Ey) to I := U)j(Eg). Therefore, tame inertia torus I; and thus
I, is a subgroup of ,(INy). O

Definition 11. Let L be the normal extension of K in Theorem R4l
Denote ¢,(Galy) by 4, for all £. Then [T : 7,] < [L : K] for all .

Proof of Theorem [2.0.5(3), (ii).

Proof. Since S, is a connected normal subgroup of Ny, I, is a torus, and
ty is an Fy-morphism, Proposition implies t[l(ig), the preimage
of the Fy-torus I, is a connected Fj-reductive group G,. Moreover,
Yo C Gg(ﬂ?g) by construction of G, for £ > 1. We obtain an exact
sequences of [, algebraic groups for £ > 1

1S, -G, —»I,— 1.
and hence B ) B
1— Sg(IFg) — Gg(F@) — Ig(Fg).
Recall pe(Galy) = t,(7) from Theorem [2.4.2, Since the semisimple
envelopes (Definition @ of I'y and 7, are identical for ¢ > 1 by Remark
the above exact sequence implies
[Ge(Fe) = 7] < [SeFe) = 7 N Se(Fo)][Le(Fe) + pre(Galp)] < 2V ey

by Proposition[2.1.2(iii) and Theorem[2.4.2|for £ >> 1. Since the derived
group of Gy is Sy, the action of G, on the ambient space is semisimple
if £ > 1 by Proposition M(n) Therefore, we have proved Theorem
2.0.5 (i) and (ii). O
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Proof of Theorem [2.0.5|(iii).

Proof. Let Si¢ — S, be the simply connected cover of S,. The represen-
tation (S5 — Sy < GLy,) x Fy is semisimple and has a Z-form which
belongs to a finite set of Z-representations of simply-connected Cheval-
ley schemes [EHK12, Theorem 24] if £ > 1. Thus, {S; — GLyF, }esa
have bounded formal characters (Definition |4 ). Let C; be the center of
G,. Since S; acts semi-simply on V; by Proposition (ii) for > 1,
we decompose the representation S, — GL(V;) into a sum of absolutely
irreducible representations M;

Ve= (P M) e (@)@ o (P M)

such that M; 2 ]\7[j if i # j. If ¢ € Cy, then M; and c(M;) are
isomorphic representations of S, for all i. Hence, ¢ is invariant on
@ M; and @' M; is a subrepresentation of G, on V; for all i. Let n;
be the dimension of M;. Denote the representation of S, on M; under
some coordinates by

u; : Sy — GLy, (Fy).

Then, the representation of G, on e M, is given by:
¢ : Gy — GLy,, (Fy)

so that when restricting to S, the action is “diagonal”

gi : So % GLy, (Fy) = @D GLn, (Fr) C GLy,, (F)
1

= ui(x) = (u(x), ..., ui(x)).

Since w; is a irreducible representation and ¢;(c) commutes with ¢;(S,),
¢;(c) is contained in the subgroup

]:311 ]:312 ]:Dlmi
o D21 DQQ ngi
Dmil Dmﬂ e Dmlml

where ]_Djk is the subgroup of scalars of GLy, (F,) for all 1 <5<
mi, 1 < k < m;. We see that H; is isomorphic to GL,,,(F,). Since

4:(Cy) is a diagonalizable group which commutes with ¢;(S,) and ¢ls,
is “diagonal”, we may assume ¢;(Cy) is contained in the following torus
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D, for all ~
Dy, 0 .. 0
o[ 0
0 0 ... Dum,

after a change of coordinates by some element in H; = GL,,,(F,).
Therefore, we may assume that C, is a subgroup of

Bg = ]:_)1 X :[_)2 X oo X Dkz C GLNG_Fg)

in suitable coordinates. Torus By centralizes S, implies B, ¢ N,.
Denote the restriction tg|]-3£ by s,. Since N, acts on W,, we have

Sy - Bg — GLWZ.

We obtain (s, '(I,))° = C§ because Ker(s,) is discrete. Consider the
construction of U, from Theorem [2.4.1] This implies the exponents of
characters of s, on D; = I IF}‘ are between 0 and c3 for all . By
Theorem M(l) and above, the diagonalizable groups {s;'(Ir)}ss1
satisfies the bounded exponents condition in Definition []. Hence,
{CS = (s;'(1;))° — B; = GLy,}¢s1 have bounded formal charac-
ters. Since {Cg — GLN,IFZ}£>>1 and {Sg — GLN,IFZ}€>>1 both have
bounded formal characters and C) commutes with S, for ¢ > 1,
{G,; = C;-S; — GLy, }¢s1 have bounded formal characters by Propo-
sition [2.0.4] This prove Theorem [2.0.5((iii). O

3. (-INDEPENDENCE OF [,

3.1. Formal character of G, C GLyp,. A system of algebraic en-
velopes {Gy}ys1 of {T'¢}es1 (Definition [5) are constructed in §2.5. Let
G/ be the algebraic monodromy group of ®7° for all £. The compatibil-
ity (Definition [2) of the system {¢} implies that the formal characters
of {Gy — GLyF, }es1 U{G; = GLyg, }rs1 are the same in the sense
of Definition BJ:

Theorem 3.1.1. Let {Gles1 be a system of algebraic envelopes of
{T¢}es1 (Definition @
(i) The formal characters of Gy — GLyy, and G, — GLyq, are
the same for £ > 1.
(ii) The formal characters of {G¢ — GLyF,}es1 are the same.

Proof. The mod ¢ system {¢; : Galy — GLx(F;)} comes from the
(-adic system {@§ : Galgy — GLn(Qy)} (Definition [I)). The algebraic
monodromy group Gy is reductive for all £. By taking a finite extension
K™ of K [Se81], we may assume Gy is connected for all £. This does
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not change the formal character of G, — GLy g,. It is well known that
these algebraic monodromy groups have same reductive rank r. Define

Char: GLy — ny’l x G,,

that maps a matrix to the coefficients of its characteristic polynomial.
We know that Char(Gy) is a Q-variety of dimension r that is inde-
pendent of ¢ (by the compatibility conditions) and can be defined over
Z[%] for some positive integer N’ that is sufficiently divisible. Let
PZ[$] be the Zariski closure of Char(Gy) in the projective IP’ZZV[%]. Since
¢¢ is continuous, every element of I'; is the image of a Frobenius el-
ement. Therefore, C’har(f‘g) is a subset of the F,-rational points of
P]Fé = PZ[#] X7 ]Fg for £ > 1.

Generic flatness [DG65, Theorem 6.9.1] implies Py is flat over

Z|+] for sufficiently divisible N, so the dimension of every irreducible
component of Pz[ﬁ] is r + 1 [Ha77, Chapter 3 Proposition 9.5] and

hence the dimension of every irreducible component of Py, is r [HaT77,
Chapter 3 Corollary 9.6] for £ > 1. Also, the Hilbert polynomial of P,
and in particular the degree (let it be d) of Py, C IED{F\; is independent of
¢ for £ > 1 [Ha77, Chapter 3 Theorem 9.9]. Since d is a positive integer,
we conclude that the number and degrees of irreducible components of
Py, are bounded by d |[Ha77, Chapter 1 Proposition 7.6(a),(b)]. By
[LW54, Theorem 1] and above, we have

|Pr,(Fy)| <3d-¢"

for £ > 1. Let T, be a [F,-maximal torus of G/. |[No87, Lemma 3.5]
implies T, has at least (¢ — 1)#™(T9) F,-rational points. By Theorem
2.0.5| (i), there is an integer n > 0 such that the nth power of T,(F,) is
contained in 7, for £ > 1. One sees by diagonalizing T, in GLy 7, that
the order of the kernel of this nth power homomorphism is less than or
equal to n?. Hence, we obtain

_ - ¢ — 1)dim(Ty)

Te(Fe) N el = %
Also, morphism Char restricted to any maximal torus of GLy is finite
morphism of degree N!. Therefore, there is a constant ¢ > 0 such that

¢ (T < | Char(To(Fe) N 7e)| < | Char(7e)| < |Pg, (Fe)| < 3d - €7
for £>> 1. This implies dim(T,) < r for £>> 1.

On the other hand, we find for each ¢ > 1 a set R, of characters

of GN of exponents bounded by C' > 0 such that T, is conjugate in
GLy f, to the kernel of R, by Theorem W(iii) and Definition ’. Let
% be an infinite subset of prime numbers &2 such that for all ¢/, /' € £,
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we have equality Ry = Ry. Denote this common set of characters by
R and define Y¢ = {y € G%’C :x(y) =1 ¥x € R} so that dimcY¢ =
dimFéTZ forall ¢ € Z. If v divides v € Xk \S, (Sp in Deﬁnition, then
the characteristic polynomial of ¢,(Frobg) is just the mod ¢ reduction
of the characteristic polynomial of ®¥(Frob;) = P,(x) € Q[z] which
depends only on v (Definition [2). Therefore, for each v ¢ S (Definition
2)), we can put the roots of P,(z) in some order ay, v, ..., an such that

the following congruence equation holds:

aftag?cayt =1 (mod ')

for any character 7" x5 --- 2y € R and

e Z,=L\{{"e P €Sy st.v|0"}

if v|€. Since a"™ay? - - - oy is an algebraic number and %, consists of

infinitely many primes, we obtain equality

N

mi . m2 mN _
Oél a2 "'OéN —1

for any character x"x5? - - - 2’y € R. Therefore,

(Charlgy) " ({Pu(x) v e Z\SH € | 9(Yo),

g€Perm(N)

where Perm(V) is the group of permutations of NV letters permuting the
coordinates. Since {P,(x) : v € Xg\S} is Zariski dense in Char(Gy)
of dimension 7 and Char|gy is a finite morphism of degree N!, the
Zariski closure of (Charlgy )™ ({Py(z) : v € ¥g\S}) in G) ¢ denoted
by Dc¢ is also of dimension r. Since we have obtained dim(T,) < r
at the end of the second paragraph and any maximal torus of the
algebraic monodromy group Gy is conjugate in GLy ¢ to an irreducible
component of D¢ [Se81], the inclusion

Dcc ) g(Yo)

g€Perm(N)

implies the formal characters of Gy — GLyp, and G; — GLy g,
are the same in the sense of Definition [ for all £ € Z. There are
only finitely many possibilities for R, by Remark and Proposition
2.0.3l By excluding the primes ¢ such that R, appears finitely many
times, we conclude that the formal characters of G, — GLyp, and
G; — GLy g, are the same for £ > 1. This proves (i) and hence (ii)
since formal character of Gy — GLy g, is independent of ¢ [Se81]. O
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3.2. Formal character of S, C GLyF,. We make the following as-
sumptions for this subsection.
Assumptions: By taking a field extension of K, we may assume

(i) Gy, the algebraic monodromy group of ®3° is connected for all
¢ (see [Se81]),

(ii) € := pe(T'y) corresponds to an abelian extension of K that is
unramified at all primes not dividing ¢ for all ¢ (see the first
paragraph of the proof of Theorem .

Theorem [3.2.1] below is the main result in this subsection. Denote
a finite extension of K by K’. Since S, is independent of K’ over K
for £ > 1 by Remark the assumptions above remain valid for
K', and {G/};s1 constructed in §2.5 are still algebraic envelopes of
{de(Galg)}ps1, we are free to replace K by K’ in this subsection.

Theorem 3.2.1. Let S, C GLyg, be the semisimple envelope of T
(Definition [6]) for all € > 1.

(i) The formal character of Sy — GLyp, is equal to the formal
character of G — GLygq, for £ > 1, where GI is the de-
rived group of the algebraic monodromy group Gy, of ®F.

(i) The formal character of S¢ — GLy, is independent of € if
0> 1.

In [Hul3, §3], we used mainly abelian ¢-adic representations to prove
that the formal character of G{ < GLy g, is independent of ¢. To
prove Theorem [3.2.1] we adopt this strategy in a mod ¢ fashion. The
key point is to prove that the inertia characters of yu, (Definition E[) for
¢ > 1 are in some sense the mod ¢ reduction of inertia characters of
some Serre group Sy, [Se98, Chapter 2] (Proposition [3.2.4).

Definition 12. For each prime ¢ € &, choose a valuation v, of Q that
extends the f-adic valuation of Q. This valuation on Q is equal to the
restriction of the unique non-Archimedean valuation on Q, (extend-
ing the f-adic valuation on Q) to Q with respect to some embedding
Q < Qy. Denote also this valuation on Q; by v,. Define the following
notation.

e Gal?’: the Galois group of the maximal abelian extension of K,
e [: the group of idéles of K,

® (x,)yex,: a representation of a finite idéle,

e K,: the completion of K with respect to v € X,

e U,: the unit group of K,

e k,: the residue field of K,

e my: the modulus of empty support,
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b Umo = Hv Uv’

[ ] Kg = Hv\f Kv = K ®Qg,

e 7, the valuation ring of @,

e py: the maximal ideal of vy,

e ky: the residue field of vy,

o Ty = (Ty)u)e-
Let 0 : K — Q be an embedding of K in Q. The composition of o
with Q < Q, extends to a Q-algebra homomorphism oy : K; — Q.

Remark 3.2.2. The field £, is an algebraic closure of F, and homomor-
phism oy is trivial on the components K, of K, when v is not equivalent
to vpo 0.

Recall representation pup : Galg — GL(W;) (abelian by Assump-
tion (ii)) from Definition (9 Thus, p, induces p, below for each ¢ by
composing with Ix — Galy’:

J [K — GL(WE)

Proposition 3.2.3. If x, : Ix — F} is a character of p; for £ > 1,
then for all finite idéle x € Uy, we have the congruence

@)= [ ola;)™?  (mod py)

o€Hom(K,Q)
such that 0 < m(o, ) < cg.

Proof. Since |Q| is prime to ¢, the following homomorphism
U, = K — I 2% GL(W))

factors through «, : kj — GL(W,) for all v|¢. On the other hand,
let v € ¥ divide £. Since €2, is abelian and of order prime to ¢, the
restriction of py : Galg — GL(W;) to I; factors through

I = I} = I Fj, — k]

and induces f, : k) — GL(WW;) that depends on v = v|z. By [Se72
Proposition 3], «, and f, are inverse of each other. Since f; (Defini-
tion factors through (3, and the exponents of any character of f;
when expressed as a (-restricted (Definition |8) product of fundamental
characters of level ¢! are bounded by ¢g for £ > 1 (§2.4), the expo-
nents of x, when expressed as a f-restricted product of fundamental
characters of level [k, : Fy] are also bounded by ¢g for £ > 1. Since p,
is unramified at all v not dividing ¢, p, is trivial on subgroup HW U, of

Unm, =[], Uy. Therefore, we conclude the congruence for £ > 1. O
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Definition 13. Let S, be the Serre group of K with modulus m [Se98|
Chapter 2] and © : S;, — G g, a character of Sy, over Q. Since the
image of the abelian representation O, attached to © [Se98, Chapter
2]
O : Gali® — Sn(Qy) > Q;
is contained in Zj, define
04 : IK — k‘; = I_FZ

as the mod p, reduction of the composition of Ix — Gal‘}‘}3 with ©,.

Proposition 3.2.4. Let x, be a character of py as above. If { is suffi-
ciently large, then there is a character © of Sy, such that

Xe(z) = Oo(x)
for all v € Uy,, where 0, is defined in Definition[13

Proof. Since 0 < m(0,f) < ¢ for all 0 € Hom(K,Q) and £ > 1
by Proposition [3.2.3, the proposition follows by the proof of [Se72)
Proposition 20]. O

Let ¥ : Sy, = GL,, o be a Q-morphism of the Serre group Sy, with
finite kernel. Then ¥ induces a strictly compatible system {W,}sc 5 of
abelian (-adic representations of Galy [Se98, Chapter 2] with S = ()
(Definition [2):

T, : Galg — Gal?? — GL,(Qy).

We may assume {¥,} is integral [Se98, Chapter 2 §3.4] by twisting
{U,} with suitable big power of the system of cyclotomic characters.

Proposition 3.2.5. Given ¥ and {Vs}cn as above.

(i) The subgroup generated by the characters of V is of finite index
in the character group of Swm,. Denote this index by k.

(ii) For any ¢ and character 0, of I induced from a character ©
of Sm, in Definition[15, we obtain the following congruence for
all v € Uy, C Ik

)= [ ey (mod po)
o€Hom(K,Q)

such that m(o) > 0 for all 0.

Proof. Part (i) follows by W is an isogeny from S, onto W(S,). Part
(ii) follows by the integrality of the system {W¥,} and the theory of
abelian (-adic representations [Se98, Chapter 2,3]. O
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Denote the semi-simplification of some mod ¢ reduction of ¥, by 1),
for all £. Consider the following strictly compatible system of f-adic
representations

{CI)[ X Wy Galg — GLN(QK> X GLn(QZ)}EGW'

The semi-simplification of some mod ¢ reduction of {®y x V;} e »:
{6e X b : Galg — GLy(F¢) X GL,(F¢) pres

is then a strictly compatible system of mod ¢ representations (Definition
. Denote the image of ¢y x 1y by I'}. Let v € ¥ divide £. When we
restrict ¢, X 1, to inertia subgroup [; of Galx and then semi-simplify,

the exponents of characters of tame inertia quotient I for some level
are bounded independent of ¢ by §2.3, Proposition [3.2.5(ii), and [Se72,

Proposition 3|. Therefore, we can construct as in §2 semisimple en-

velopes {S)}rs1 (Definition [6), inertia tori {I,};s1 (Theorem [2.4.2)),
and algebraic envelopes {G/}}¢s1 (Definition [5)) of {T")}rs1.

Since vy is semisimple and abelian, we see that Nori’s construction
gives S) = Sy x {1} C GLyF, X GLyF,. The normalizer of S, x {1} in
GLN,]Fg X GLn’Fé is Ng X GLn,]Fg- We have

ty X id : Ng X GLn,]Fg — GLWZ X GL?’Z,F[
with kernel S, x {1}. Therefore, we obtain a map
pre X g Gal?? — GL(W,) x GL,(F,)

with image denoted by €2). As (2} is abelian, denote the composition of

we and 1, with I — Galf}? by fie and 1), for all £. By (x) in the proof
of Theorem and [Ne99, Proposition 9.5], we assume by taking a
finite extension of K that

(ox) o (e x ) (J[U) = Ve 1.
v|l

Proposition 3.2.6. Let py : GLw, X GL, 5, be the projection to the
second factor. Then po is an isogeny from I, onto ps(I}) for £ > 1.

Proof. Let (z,1) € GLy, x GL, r, be an element of (2, NKer(p,), where
(z,1) = (fie x 1¢)(z¢) for some z, € [1.;,Uv (Definition by ()
above. Since ¥ : S;,, — GL,, g has finite kernel and 7, x @Zg is abelian
and semisimple, we have 2¥ =1 for £ > 1 by 1 = ’l:;g(ﬂfg), Proposition
and Proposition [3.2.5(i). Since @} is abelian of order prime to
¢, ¥ = 1 implies z has at most k3™W) possibilities (by diagonalizing
the image of fiy) which implies

1, N Ker(py)| < kAmVe),
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Therefore, the F,-diagonalizable group Ke_r(pg)_ﬂi’e cannot have positive
dimension for £ > 1 because [I}(F,) : ©, N I)(IF,)] is also uniformly
bounded by Theorem M(n) Thus, py is an isogeny from I, onto

Proof of Theorem |3.2.1|.

Proof. The mod ¢ system
{¢g X wg : GalK — GLN(Fg) X GLn(Fg)}

comes from the (-adic system (i.e., the semi-simplification of a mod ¢
reduction)

{(I)zs X \I/g : GalK — GLN(QZ) X GLTL(Q[>}

Let G be the algebraic monodromy group of semisimple representation
OF x W, for all /. Thus, Gj is reductive and we may assume G,
is connected for all ¢ by taking a finite extension of K. Denote the
projection to the first and second factor of GLy x GL,, by respectively
p1 and po. Consider the map

Char, x Chary : GLy x GL, — (GY ' x G,,) x (G" ! x G,,)

where Char; = Charop;, i@ = 1,2. Note that the restriction of Char; x
Chary to GY x G, is a finite morphism. Let T be a maximal torus
of monodromy group G/ and T/ a maximal torus of G/, the algebraic
envelope of the mod /¢ representation ¢, x ¢,. Up to conjugation by
GLy x GL,, (over algebraically closed fields), we may assume T and T
are diagonal (i.e., inside GY™™). We claim that up to permutation of
coordinates by Perm(N) x Perm(n), T/, and T/ are annihilated by the
same set of characters of GY ™™ for all sufficiently large £. The proof of
the claim goes exactly the same as the proof of Theorem [3.1.1](i) with
the following replacements:

° GLN — GLN X GLn

e Morphism Char — morphism Char; x Char,

o Q-variety Char(Gy) — Q-variety Chary x Chary(GY)
e Perm(N) — Perm(N) x Perm(n)

Therefore, T/ := Ker(py : T} — p2(T}))° and T/ := Ker(py : T} —
p2(T)))° as subtori of G are annihilated by the same set of characters
for £ > 1. Torus T} is the formal character of G — GLy g, [Hul3]
proof of Theorem 3.19]. It suffices to show T/ is a maximal torus of
S, for £ >> 1. Since the dimension of torus I} is equal to the dimension
of the center of algebraic envelope G for £ > 1 (see §2.5) and p, is an



¢-INDEPENDENCE FOR COMPATIBLE SYSTEMS OF (MOD ¢) REPRESENTATIONS

isogeny from Ij onto py(I}) by Proposition for ¢ > 1, the identity
component of the kernel of
P2+ Gy = pa(GY) = pa(T))

is S} (the semisimple part of G}) for £ > 1. Since ps(T}) = p2(G)) =
p2(Iy) for £>> 1, TY by construction is a maximal torus of S, = S, x {1}
for £ > 1. Hence, the formal character of S; < GLyp, and G —
GLn,g, are the same for ¢ > 1. This proves (i). Since the formal
character of G§ — GLy g, is independent of ¢ [Hul3, Theorem 3.19],
we obtain (ii) by (i). O

3.3. Proofs of Theorem [A] and Corollary [Bl The following purely
representation theoretic result is crucial to the study of Galois images
Iy for /> 1.

Theorem 3.3.1. [Hul3| Theorem 2.19] Let V' be a finite dimensional
C-vector space and p; : g — End(V) and ps : h — End(V) are two
faithful representations of complex semisimple Lie algebras. If the for-
mal characters of p1 and ps are equal, then the number of A, factors
forn € N\{1,2,3,4,5,7,8} and the parity of Ay factors of g and b are
equal.

Theorem 3.3.2. The number of A,, = sl,41 factors forn € N\{1,2,3,4,5,7,8}
and the parity of Ay factors of Sy X, Fy are independent of £ if £ > 1.

Proof. Let Si¢ — S, be the simply connected cover of the semisimple
S, for £>> 1. Then the representation (S;° — S, — GLyp,) x F; can
be lifted to a representation of a simply connected Chevalley scheme
H, 7 defined over Z for ¢ > 1 [EHKI12, Theorem 24|

Tz HE,Z — GLN,Z

which is also a Z-form of a representation of simply connected C-
semisimple group Hy ¢ [St68al

TeC : H&(C — GLN7c.

Hence, S; C GLy, and myc(Hyc) C GLy ¢ have the same formal char-
acter for £ > 1. This and Theorem imply the formal character of
mec(Hec) C GLy ¢ is independent of £ when ¢ is sufficiently large. This
in turn implies the formal character of Lie(m,c(Hyc)) < End(CV) (see
[Hul3, §2.1]) is independent of ¢ when ¢ is sufficiently large. There-
fore, the number of A, factors for n € N\{1,2,3,4,5,7,8} and the
parity of Ay factors of 7, c(Hsc) and hence Hy ¢ (the homomorphism
H/c — mc(Hyc) is an isogeny since S§¢ — Sy is an isogeny) are inde-
pendent of ¢ for £ > 1 by Theorem [3.3.1] Since the number of simple
factors of each type of S5¢ x F, and Hy ¢ are equal, we are done. O
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Let g be a simple Lie type (e.g., A, Bn,Cy, Dy, ...) and T a finite
group. Suppose ¢ > 5. We measure the number of g-type simple
factors of characteristic ¢ and the total number of Lie type simple
factors of characteristic ¢ in the set of composition factors of I' in
the following sense: Let F, be a finite field of characteristic ¢, o the
Frobenius automorphism of F ¢/Fq, and G a connected F,-group which
is almost simple over F,. The identification of G, G(IF ) is related
to g, the simple type of G xp, F, [St68D)] 11.6]:

Type of G Composition factors of G(F,)
Ay Ay (q) = PSLy(q) + cyclic groups
A, (n>2) A, (q) or 2A,(¢%) + cyclic groups
B, (n>2) B,.(q) + cyclic groups
C, (n>3) Cn(q) + cyclic groups
D, D, (q) or 2Dy q ) or Dy (¢*) + cyclic groups
D,, (n>5) D, (q) or ?D,,(¢*) + cyclic groups
Eg Es(q ) Fs(q?) + cyclic groups
E; ( ) cyclic groups
Es Es(q) + cyclic groups
F, Fi(q) + cyclic groups
Go Gi2(q) + cyclic groups

G(FF,) has only one non-cyclic composition factor which is either a
Chevalley group or a Steinberg group of type g. For example, the non-
cyclic composition factor is A,(q) or ?A,(¢*) if g = A, and n > 2.
For any semisimple algebraic group H/F and complex semisimple Lie
algebra b, denote by rk H and rk b respectively the rank of H/F and
the rank of b.

Definition 14. Suppose ¢ > 5 is a prime number and ¢ = ¢/. Let T
be a finite simple group of Lie type (of characteristic ¢) in the above
table and g the simple Lie type of the corresponding G. We define the
g-type (-rank of T to be

e f-rkg if T is associated with g in the above table,
I'kgr — .
0 otherwise.

For finite simple group [ not in the table, rk{I" is defined to be 0 for
any g. We extend this definition to arbitrary finite groups by defining
the g-type f-rank of any finite group to be the sum of the g-type (-
ranks of its composition factors. The total {-rank of a finite group I is

defined to be
rk, [ = Z rkIT.

g



¢-INDEPENDENCE FOR COMPATIBLE SYSTEMS OF (MOD ¢) REPRESENTATIONS

Remark 3.3.3. The definition of g-type ¢-rank is equivalent to the
following. For any finite simple group I' of Lie type of characteristic ¢,
we have -
= G(Fﬂ/)der

for some adjoint simple group G JF s so that

G XIFM, F, = HH7
where H is an I_Fg—adjgint simple group of some Lie type . We then set
the g-type f-rank of I' to be

/ — .
on . ) forkG if g=b.
iy I':= { 0 otherwise.

We extend this definition to arbitrary finite groups by defining the g-

type f-rank of any finite group to be the sum of the g-type f-ranks of
its composition factors.

Let G be a connected semisimple algebraic group over F, and 7 :
G* — G the simply-connected cover of G. Simply-connected G
and isogeny 7 are defined over F, [St68b], 9.16]. Group G*¢ is a direct
product of F,-simple, simply-connected semisimple groups G [CF65,
Chapter 10 §1.3]:

_ _ _ F, >~ —
G X GY x - x G = G™.
For each G¢, there exist an integer m; and an algebraic group HE

defined over Fym; such that I:I§C XF m; [F, is almost simple and

G xp, Fymi = [ [ H.
We have [CE65, Chapter 10 §1.3]
G?C = ReSqui /Fq (I:Ifc)

so that - B
G, —HFEm).
The following proposition relates rkj G(F,) and rk, G(F,) to G xg, F,.

Proposition 3.3.4. Let ¢ > 5 be a prime and G a connected semisim-
ple algebraic group over F,, where ¢ = ¢f. The composition factors of
G(F,) are cyclic groups and finite simple groups of Lie type of charac-
teristic £. Moreover, let m be the number of almost simple factors of
G Xp, F, of simple type g. Then,

k) G(F,) =mf-rkg and 1k, G(F,) = f rkG.
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Proof. Since the kernel and the cokernel of 7 : G*(F,) — G(F,)
are both abelian [St68D 12.6], the composition factors of G(F,) and
Hle H¢(Fm, ) defined above are identical modulo cyclic groups. Hence,
the composition factors of G(F,) are cyclic groups and finite simple
groups of Lie type of characteristic £ by the table. Let

{(HSS H, ... I_{jc}
be the subset of {HS, ..., H{} of type g. The equation
my+mo—+---+m;=m

follows immediately from the fact that each G is a direct product of
m; copies of H¥ over F,. Since HS is almost 81mple over F,, we obtain
by Definition (14 . that the g-type ﬁ—rank

k
1k G(F,) = Y rk{ H(F, Zmzf rkg =mf -rkg.

=1
and therefore the total /-rank

rk, G(F,) = [ -1k G.

We can now prove our main results.

Theorem A. (Main Theorem) Let K be a number field and {¢; :
Galxy — GLy(Fy)}iew a strictly compatible system of mod ¢ Galois
representations arising from étale cohomology (Definition . There
exists a finite normal extension L of K such that if we denote ¢o(Galy)
and ¢¢(Galy) by respectively Ty and 7, for all ¢, and let Sy C GLyF, be
the connected Fy-semisimple subgroup associated to 7, (or T'y) by Nori’s
theory for £ > 1, then the following hold for £ > 1:

(i) The formal character of S; = GLx, is independent of { (Def-
inition [4) and is equal to the formal character of (G§) —
GLyg,, where (G2)% is the derived group of the identity com-
ponent of Gy, the algebraic monodromy group of the semi-simplified
representation .

(ii) The composition factors of 4, and S,(F,) are identical modulo
cyclic groups. Therefore, the composition factors of 4, are finite
simple groups of Lie type of characteristic £ and cyclic groups.

Proof. By Proposition M(l), S, C GLy, is a connected Fy-semisimple
subgroup for ¢ > 1. Part (i) is proved by Theorem [3.2.1] Since there is
a finite normal extension L/K such that 7, := qbg(GalL) is a subgroup
of G¢(F;) of uniform bounded index by Theorem and Sy is the
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derived group of Gy, the composition factors of 4, and 7y, N S(F,) are
identical modulo cyclic groups. Together with S,(IF,)/S,(F,)™ abelian
and normal series

Sg(Fg)+ = ’72_ < ’7@ N Sg(]Fg) < Sg(]Fg)

for £ > 1 by Theorem and Remark we conclude that the
composition factors of 4, and Sy(FF,) are identical modulo cyclic groups.
Since Proposition [3.3.4] implies the non-cyclic composition factors of
S,(IF,) are finite simple groups of Lie type of characteristic £, we obtain
(ii). O
Corollary B. Let S, be defined as above, then the following hold for
> 1:
(i) The total L-rank vk, Ty of Ty (Definition[14)) is equal to the rank
of S; and is therefore independent of £.
(ii) The A, -type (-rank rkf" Ly of Ty (Deﬁm’tz’on forn € N\{1,2,3,4,5,7,8}
and the parity of (tk;* Ty)/4 are independent of L.

Proof. Since 7, is a normal subgroup of I'; of index bounded by [L : K7,
they have equal total f-rank and g-type ¢-rank for all sufficiently large /.
It suffices to prove (i) and (ii) for 7,. Since (i) is a direct consequence of
Proposition and Theorem [A] and (ii) follows easily from Theorem
3.3.2 Proposition [3.3.4] and Theorem [A] we are done. O
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