BIVIC Genomics

( BioMied Central

The Open Access Publisher

This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted
PDF and full text (HTML) versions will be made available soon.

Systems genomics evaluation of the SH-SY5Y neuroblastoma cell line as a
model for Parkinson's disease

BMC Genomics 2014, 15:1154  doi:10.1186/1471-2164-15-1154

Abhimanyu Krishna (abhimanyu.krishna@uni.lu)
Maria Biryukov (maria.biryukov@uni.lu)
Christophe Trefois (christophe.trefois@uni.lu)
Paul MA Antony (Paul.Antony@uni.lu)
Rene Hussong (rene.hussong@yahoo.de)
Jake Lin (jake.lin@uni.lu)

Merja Heindniemi (merja.heinaniemi@uef.fi)
Gustavo Glusman (gustavo@systemsbiology.org)
Sandra Koeglsberger (sandra.koeglsberger@uni.lu)
Olga Boyd (olga.boyd@uni.lu)

Bart HJ van den Berg (bhjvdberg@gmail.com)
Dennis Linke (linke.dennis@outlook.com)
David Huang (dhuang@pnri.org)

Kai Wang (Kai.Wang@systemsbiology.org)
Leroy Hood (Ihood@systemsbiology.org)
Andreas Tholey (a.tholey@iem.uni-kiel.de)
Reinhard Schneider (reinhard.schneider@uni.lu)
David J Galas (dgalas@pnri.org)

Rudi Balling (Rudi.Balling@uni.lu)

Patrick May (patrick.may@uni.lu)

ISSN 1471-2164
Article type Research article
Submission date 3 April 2014
Acceptance date 12 December 2014
Publication date 20 December 2014

Article URL http://www.biomedcentral.com/1471-2164/15/1154

Like all articles in BMC journals, this peer-reviewed article can be downloaded, printed and
distributed freely for any purposes (see copyright notice below).

© 2014 Krishna et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


mailto:abhimanyu.krishna@uni.lu
mailto:maria.biryukov@uni.lu
mailto:christophe.trefois@uni.lu
mailto:Paul.Antony@uni.lu
mailto:rene.hussong@yahoo.de
mailto:jake.lin@uni.lu
mailto:merja.heinaniemi@uef.fi
mailto:gustavo@systemsbiology.org
mailto:sandra.koeglsberger@uni.lu
mailto:olga.boyd@uni.lu
mailto:bhjvdberg@gmail.com
mailto:linke.dennis@outlook.com
mailto:dhuang@pnri.org
mailto:Kai.Wang@systemsbiology.org
mailto:lhood@systemsbiology.org
mailto:a.tholey@iem.uni-kiel.de
mailto:reinhard.schneider@uni.lu
mailto:dgalas@pnri.org
mailto:Rudi.Balling@uni.lu
mailto:patrick.may@uni.lu
http://www.biomedcentral.com/1471-2164/15/1154

( BioMied Central

BIVIC Genomics The Open Access Publisher

Articles in BMC journals are listed in PubMed and archived at PubMed Central.
For information about publishing your research in BMC journals or any BioMed Central journal, go to

http://www.biomedcentral.com/info/authors/

© 2014 Krishna et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://www.biomedcentral.com/info/authors/

Systems genomics evaluation of the SH-SY5Y
neuroblastoma cell line as a model for Parkinson’s
disease

Abhimanyu Krishna''
Corresponding author
Email: abhimanyu.krishna@uni.lu

Maria Biryuko"
Email: maria.biryukov@uni.lu

Christophe Trefois
Email: christophe.trefois@uni.lu

Paul MA Antony
Email: Paul.Antony@uni.lu

Rene Hussorly
Email: rene.hussong@yahoo.de

Jake Lirt
Email: jake.lin@uni.lu

Merja Heinénienfi
Email: merja.heinaniemi@uef.fi

Gustavo Glusmah
Email: gustavo@systemsbiology.org

Sandra Koeglsberger
Email: sandra.koeglsberger@uni.lu

Olga Boyd
Email: olga.boyd@uni.lu

Bart HJ van den Befg
Email: bhjvdberg@gmail.com

Dennis Linké
Email: linke.dennis@outlook.com

David Huan§”®
Email: dhuang@pnri.org

Kai Wang
Email: Kai.Wang@systemsbiology.org



Leroy Hood
Email: Inood@systemsbiology.org

Andreas Tholel/
Email: a.tholey@iem.uni-kiel.de

Reinhard Schneidér
Email: reinhard.schneider@uni.lu

David J Galas®
Email: dgalas@pnri.org

Rudi Balling
Email: Rudi.Balling@uni.lu

Patrick May"
Email: patrick.may@uni.lu

! Luxembourg Centre for Systems Biomedicine, University of Luxembourg,
Campus Belval, 7, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette,
Luxembourg

2 Institute of Biomedicine, School of Medicine, University of Eastern Finland,
Kuopio, Finland

% Institute for Systems Biology, Seattle, Washington, USA

* Systematic Proteomics, Institute for Experimental Medicine, Uniyesi,
Kiel, Germany

® Pacific Northwest Diabetes Research, Seattle, Washington, USA

" Equal contributors.

Abstract

Background

The human neuroblastoma cell line, SH-SY5Y, is a commonly usedireelin studies
related to neurotoxicity, oxidative stress, and neurodegenerate@sds Although this cell
line is often used as a cellular model for Parkinson’s dise¢hserelevance of this cellulgr
model in the context of Parkinson’s disease (PD) and other neurodatgendiseases has
not yet been systematically evaluated.




Results

We have used a systems genomics approach to characterize -®é58Hcell line using
whole-genome sequencing to determine the genetic content of thdineeland use
transcriptomics and proteomics data to determine molecular latoyns. Further, w
integrated genomic variants using a network analysis approacfalicate the suitability g
the SH-SY5Y cell line for perturbation experiments in the contéxheurodegeneratiy
diseases, including PD.

D —~ D =

Conclusions

The systems genomics approach showed consistency across differegichldevels (DNA
RNA and protein concentrations). Most of the genes belonging to #jer larkinson’s
disease pathways and modules were intact in the SH-SY5Y genonmficgjhg each
analysed gene related to PD has at least one intact copy-8YSW. The disease-specific
network analysis approach ranked the genetic integrity of SH-S¢3¥gher for PD than for
Alzheimer’'s disease but lower than for Huntington’s disease ando#kaphic Latera
Sclerosis for loss of function perturbation experiments.
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Background

Cell lines are widely used for perturbation experiments that @ understand disease
mechanisms at a cellular level. Cells used in such expetsnae only rarely an inherent
biological model for the disease of interest. Most commonly, gemet environmental
perturbations are required to create cellular responses, which hean serve as an
experimental disease model. It is known that many cell liney o@ajor genetic variations,
which would be lethal for humans at the stage of prenatal develophmentmain advantage
of highly proliferative cell lines relative to primary cediad induced pluripotent stem cells is
a significantly greater capacity for experiments that regairge amounts of clonal cells with
identical genetic background, such as needed in state-of-theghrthinoughput screening,
especially in proteomics or metabolomics. The availability ahal cells allows the
possibility for comparative perturbation experiments aiming to coenphenotypic outputs
derived from a set of single node perturbations [1]. In addition, ustdirtes avoids the
ethical concerns arising out of human primary neuronal cell cultlite human
neuroblastoma cell line SH-SY5Y first described in [2], is a momly used cell line in
studies related to neuroblastoma and neurodegenerative diseasell Tine is a sub-clone
of the parent cell line SK-N-SH which was originally estsiiid from a bone marrow biopsy
of a neuroblastoma patient [3]. The three human diseases most fhequentioned in
literature for SH-SY5Y were neuroblastoma, Alzheimer's dise@), and Parkinson’s
disease (PD) (Additional file 1). A complete genomic charaagon of SH-SY5Y would
thus elucidate the applicability and possible limits for modellings¢ disease-specific
processes in the context of this cell line.



Undifferentiated SH-SY5Y cells have been extensively used aswno model for research
in neuroscience [4]. The cell line shows biochemical properties rmmature
catecholaminergic neurons [2]. Studies have found that undifferen&iteSY5Y express
only immature neuronal markers and lack mature neuronal markers. [Blkjs,
undifferentiated SH-SY5Y cell line might not represent an apprepraidel for diseases
such as PD, which primarily affect differentiated dopaminengigrons [6]. Further, Xie et
al. [4] reviewed 60 articles on SH-SY5Y celliasitro model for PD research and found that
differentiation of SH-SY5Y under a certain treatment resultsaimore dopaminergic
neuronal phenotype, which could be extremely useful for modellingtseledopaminergic
cell death in PD. However, they point out that an optimally diffeated SH-SY5Y
dopaminergic cell model requires further research. A systeznengcs analysis could
thoroughly assess the genetic mutations in all neuronal marketkeaptbre place limits on
how closely differentiation can model a dopaminergic cell.

Furthermore, treatment with differentiation-inducing agents enabl83¥ cells to become
morphologically similar to mature primary neurons [7], and theeidfit treatment agents
(e.g. retinoic acid, phorbol esters, dibutryl cyclic adenosine monophospbkatd) in a
variety of neuronal phenotypes (e.g. cholinergic, dopaminergic, noeadren[8]. Genomic
mutations may, however, impose limitations on the possible phenotypdsadh SH-SY5Y
can differentiate. Therefore, a complete genomic characterigatithe SH-SY5Y cell line
can inform the limitations on the possible phenotypes imposed by the genome.

Systems genomics aims to integrate genomic variation, copy numieatractural variation
with high-throughput gene expression, metabolomics and proteomic datepltoeethe
genetic architecture of complex traits and multi-factatiabases. For characterizing the SH-
SY5Y cell line we integrated information from whole genome sequentriagscriptomics,
and proteomics experiments (Figure 1). Firstly, whole-genome eiggeis used to
determine the genetic background of the cell line. Secondly, tramsorgst and proteomics
data is used to study correlation across biological levels. Ifinae integrate genomic
variants using a network analysis approach to evaluate the btyitabithe SH-SY5Y cell
line as ann vitro model to study various neurodegenerative diseases, including PD.

Figure 1 Systems genomics approach to assess SH-SY5Y as a disease model.

Results

Whole genome sequencing

The whole genome of SH-SY5Y cell line was re-sequenced usinglifieoent sequencing
platforms, those from Complete Genomics (CG) and lllumina (1I9elgR000, to generate a
high-quality list of variants. An earlier study has shown thetyitf combining information
from both platforms and although they show high concordance, each plalforenfailed to
detect a significant number of exonic variants spread over 1,676 genes [9].

For the SH-SY5Y cell line, DNA sequencing by CG [10] and IL [fidduced a genome-
wide coverage of 57x and 49x respectively. (Additional file 2: &&#) More than 90% of
the genome was covered by a minimum read depth of 20 (Additioa&:fiFigure S1 and
S2). Further, more than 95% of the exome was called with minimunredqronfidence set
by each of the proprietary genotype-calling procedures of theréspective sequencing



platforms. The two genome-sequencing platforms — CG and IL — producéa anion of
3,896,055 single nucleotide variations (SNVs) with 84% concordance betwebn bot
platforms. Filtering them based on criteria defined in Reumeral.ef12] resulted in
2,314,627 SNVs with 99% concordance between both platforms. Out of these High qua
variants 96% were previously reported by dbSNP build 137 [13] and 98.4%0®y
Genomes Project [14,15]. 4,336 SNVs and small indels were earliertegpby the
Catalogue of Somatic Mutations in Cancer (COSMIC) [16] version Bé.tdtal number of
SNVs and the percentage of SNVs found in 1000 Genomes Project dee singontrols
(mean number of SNVs = 4,178,701 and 87.7% of them were found in 1000 Genomes
Project, see Additional file 2: Table S7) in another study [17]nt&ken the Human Genome
Diversity Project [18]. Among the high confidence set of mutationSH-SY5Y, 23 were
confirmed as somatic in the COSMIC database and were atsinrdre general population
(see Table 1).



Table 1High-confidence mutations in SH-SY5Y that were rare in the popultion and also confirmed as somatic in the COSMIC

database

Chromosome:begin-end

COSMIC ID (tissue type)

Genes (or adjacent genes)

2:174118525-174118526
3:3965330-3965331
3:97631173-97631174
3:97680355-97680356
3:195017896-195017897
4:62000660-62000661
5:40086690-40086691
6:35837057-35837058
6:152632032-152632033
6:168431497-168431498
7:127075991-127075992
8:27913552-27913553
8:38006195-38006196
9:6254465-6254466
11:57734912-57734913
12:7585976-7585977
12:11905442-11905443
12:88344608-88344609
14:72128130-72128131
16:12798881-12798882
19:11134250-11134251
X:47039372-47039373
X:104440586-104440587

140009 (skin)

146267 (haematopoietic_and_lyidplissue)
166940 (large_intestine)

166941 (large_intestine)

212624 (breast)

200267 (large_intestine)

145684 (haematopoietic_and Hpidptissue)
167752 (large_intestine)

167911 (large_intestine)

85018 (pancreas)

200565 (large_intestine)

1098826, 1098827 (endometrium)
187133 (large_intestine)

1109518 (endometrium)

146001 (haematopoietic_andgHpid_tissue, large_intestine)
179792 (large_intestine)

180918 (large_intestine)

433706 (breast)

195414 (large_intestine)

1202185 (large_intestine)

1161250, 1161251 (haematipaed lymphoid_tissue)
1121715 (endometrium)

487453 (kidney)

MLK7-AS1

LRRN1(dist = 75944), SETMAR(dist = 37955
ARLG6(dist = 113801), MINA(dist = 29487)
MINA
ACAP2
LOC255130 (dist = 3929195), LPHN3(dist = 362178)

DAB2(dist = 6613569, TGER4(dist = 593341)
SRPK1
SYNE1
KIF25
ZNF800(dist = 43225), GCC1(dist = 144690)
C8orf80
STAR
IL33

TMX2-CTNND1(dist 48261), OR9Q1(dist = 56440)

CD163L1
ETV6
MKRN9P(dist = 166121), C120rf50(dist = 29207)
SIPA1L1
CPPED1

SMARCA4
RBM10
ILARAPL2

Rare mutations are SNVs and small indels that were found ithi@s$% of the samples in 1000 Genomes Project, Exome Sequerajaw Pr
and Complete Genomics baseline genomes. In the genes column, whetedist& given, the mutations are found in intergenic regions and the
first gene precedes the mutation whereas the second gene succeedstite. muta



The number of private protein-altering (PPA) SNVs and indelspiatein-altering variants
not found in 1000 Genome Project or the Exome Sequencing Project [1®][/&veand 34
respectively (1,598 SNVs and 305 indels before filtering), whereascdhesponding
numbers for controls were 390.9 and 17.5. The set of control genomedoeférgenomes
used in another study [17] taken from the Human Genome DiversitycPfp$}. The reason
for the discrepancy between the number of PPA SNVs betwee®YSM and the control
genomes is mainly due to our strict filtering strategy &l as the different sequencing
platforms that were used (See Additional file 2 — section S@uftver details). The overlap
between PPA variants and the variants in the Catalogue of $oMatations in Cancer
(COSMIC) was 36 and 8.7 for SH-SY5Y and control genomes respectiMaty.overlap
between genes containing PPA SNVs and indels and the Sanger GarmeerCensus
(SCGC) [16] was 7, similar to controls (mean 5).

We also performed a Gene Ontology (GO) enrichment analysis di?ihgenes containing
filtered PPA SNVs and indels and also on the 1,365 genes usingredfiR®A SNVs and
indels. However, no GO term was significantly enriched (see Addition&)file

We judged the overall quality of the variant calls and also coedpidnem between the two
genome sequencing platforms - CG and IL. Then, we integratechiveaids from both these
platforms by using the filtering criteria provided by anieatudy [12] that compared these
two platforms (See section S2 for an overview of the comparison éet@& and IL
sequencing platforms).

Validation of SNVs and small indels

Validation was performed using the lllumina Omni-1 Quad microanaych assays loci

from HapMap Phase 1-3 [20] and 1000 Genomes Project. Out of 248,538 heterogeneous
SNVs that were queried by genotyping, 99.0% were concordant, whicased to 99.5%

for the filtered variants (Additional file 2: Table S11).

Functional prediction of SNVs and small indels

The functional effect of SNVs and small indels were predictedgueNNOVAR [21] by
annotation with labels for genomic regions (intergenic, exonic, intronietranslated
regions, upstream and downstream close to a gene) and coding (§f¢ts - synonymous,
missense, stop-gain, stop-loss - and indels - frameshift and noesfidth The annotation

was performed by taking a consensus across four databases(Refifene release 55 [22],
UCSC knowngene [23], Ensembl ensgene v65 [24] and GENCODE V4 [25]) based on
choosing the most damaging effect predicted in order to aimrieitisgty (Additional file 2:
Figures S4-S9). In general, the association of SNVs to genonwasdgr platform-specific

and concordant SNVs did not show any significant differences. Theatssoof SNVs with
exonic, intronic and intergenic regions was 1%, 26—-36% and 46-50% respyesiivdiar to

the results in Lam et al. [9] (Additional file 2: Figure S4 ai). Ihe functional prediction
found 366 genes with rare non-synonymous SNVSs, indels or substitutions @§dericy in

1000 Genome Project, 6500 Exome Sequencing Project and CG Baseline Genome Dataset).

Neuroblastoma-relevant genes

The genome sequencing of SH-SY5Y found 27 genes with rare non-synongNMss
indels or substitutions that overlapped with the list of 586 genes containing somiaions



in the complete genome sequence of 87 untreated primary neuroblasitomas [26] (See
Additional file 2: Table S12). Using the hyper-geometric tesineg with rare non-
synonymous SNVs and indels were found to be significantly enrichedgthe genes with
somatic mutations in primary neuroblastoma tumours (p-value = 6.80™%. 10ut of these
27 genes, only mutations in 15 genes were predicted as damagionging $itolerant From
Tolerant (SIFT) [27].

Furthermore, only 3 genes with rare non-synonymous SNVs, indels andtusioost
overlapped with the 118 genes associated with neuroblastoma in thritéeisee Methods
section) and therefore were not significantly enriched (p-value = 0.072). Howewnes with
non-synonymous SNVSs, indels and substitutions, copy number variatiothsstiaictural
variations (¢ = 3611) were significantly enriched among the 118 genes tedrdor
neuroblastoma from literature with an overlap of 28 genes (p-value = 1.59)x 10

We also compared genomic mutations in SH-SY5Y to other genompeseing studies of
primary neuroblastoma from patients. Among the seven genes muaiatedsignificant
frequency in a study of 240 matched tumour -normal samples [28],afidhe genes carried
a rare amino-acid changing mutation. Among the rare germ-linanta predisposing to
neuroblastoma identified by the TARGET stuBM\LB2 contained two rare non-synonymous
mutations in SH-SY5Y. Among the 5,291 coding somatic mutations found in aega¢gof
240 matched tumour/normal samples, we found 26 overlapping variants ¢Adbfile 3) in
SH-SY5Y inside 24 genes among which 9 were rare amino-acid iolgamgtations inside 7
genes ALK, FOXD4L1, HLA-DRB1, NBPF10, NBPF14, PABPC3, TEKTA4).

The Pediatric Cancer Genome Project (PCGP) conducted a stud® gfatients with
metastatic neuroblastoma and found mutation&TRX and ALK in 22% and 14% of the
patients correspondingly [29However, SH-SY5Y contained no rare amino-acid-changing
mutations in these genes.

Structural Variations (SV) and Mobile Element Insertions (MEI)

Structural variation events consist of large deletions (>200is®), duplications (distal or
tandem), inversions, translocations and complex variations - other cdimbsnaf such
chromosomal rearrangements. The majority of SV events in theYSM-8ell line found by
CG were deletions (Additional file 2: Table S12 and S13).

Around 2-3% of cancers show chromothripsis [30], where tens to hundreds of genomi
rearrangements occur in a cellular crisis event. In aiseggion, a high density of genomic
rearrangements (or breakpoints) combined with frequent oscillabetwseen two copy
number states [30] and frequent occurrences of runs of homozygosityudertsie hallmark

of chromothripsis. Cytogenetic methods confirm a high density nbrge breakpoints in
single cells and indicate that these breakpoints are not a oégqadtallel rearrangements in
different sub-clones [30].

However, for SH-SY5Y, DNA sequencing found little to no evidence obrabthripsis.
Most notably, no oscillations between copy number states of 100-kb bieaediepth were
observed except for some on chromosomes 9, 10, 16 and X (Additional fireadl) of these
four chromosomes, the regions with oscillating copy number weretimeaentromeres (9,
10, 16) or the telomere (16, X). Even though all of these regions hagasaslx junctions,



these regions consist of highly repetitive DNA [31] and are tbexeprone to mapping
errors.

We filtered the SVs based on their frequency in the CG basetinente set [32] and
extracted high-confidence calls with a frequency of less 1i#84 in the baseline. The CG
baseline set comprises of 52 genomes of healthy, diseasadieeluals, which could be

used to filter technical artifacts and variations common in the ptpal After filtering, the
high-confidence deletions overlapped with 26 genes including the follovaeingecrelated
genes -PTEN (phosphatase and tensin homolog), which is a key tumour suppressor gene
[33], CTNNAS (catenin alpha 3), which is a cell contact inhibition gene whose ioutzdn
promote cancer development and formatiddCC (mutated in colorectal cancers) and
MTUSL (microtubule associated tumour suppressor 1).

Mobile element insertions (MEI) refer to insertion of sequetitaiscan change their position
within the genome. 3,271 MEI events were detected in the CG Aldditional file 2: Table
S14) and the majority of those were Alu evemts=(2,057) and L1 retro-transposoms=
2,057).

Copy number variation (CNV)

CG identifies discrete coverage levels corresponding to pleidld using the distribution of
observed normalized coverage values and then uses a hidden Markov anagibn copy
number levels (Complete Genomics Data File Formats Stangzetine 2.4 [34]). Since CG
essentially uses the relative coverage as a proxy for copy nuing@nnot directly infer the
absolute copy number levels. However, M-FISH (multiplexed fluorgsc@-situ
hybridization) experiments have demonstrated that diploidy domirreepy number level
in the SH-SY5Y genome [35]. Therefore, we calculated the absoluie reopber levels
assuming that the most commonly found copy number level is 2.

We compared the copy number levels found by CG with an earliesumegaent using
comparative genomic hybridization (CGH) arrays [36]. The CGidyarused had a lower
limit one million base pairs to their resolution, a drawback not fonngsecond-generation
sequencing technologies such as CG and IL. To achieve even heghkitions and reduce
false positive and false negative copy number determinations, wealimgdthe coverage
levels to those observed in a reference set of 590 in-house genomssgalsoced by CG. A
visual illustration of the copy number levels (Figure 2, Additiofil@ 2: Figure S21)
confirms key features of the cell line described previously swuclpatial trisomy of
chromosome 1, gain of chromosome 7, 2p, 17q, and loss of 1p, 14g and 22qg. Among the
large-scale copy number features identified in the PCGP prtjecgain of 17q (90%) was
common with SH-SY5Y. The remaining CNVs that were reported wiower frequency in
PCGP - loss of 1p (43%) or loss of 11q (43%) were not found in SH-SY5Y.

Figure 2 CNVs detected by whole genome sequencing and array-based CGH by Do et

al. [36]. The results from whole genome sequencing were from Complete Genomics and are
given in the left half of the chromosomes. The results from the array-badé¢@@®n the

right half of the chromosomes. Regions are highlighted for copy number gaiarfcelt)ss

(blue). The major events partial trisomy of chromosome 1 and 2, complete trisomy of
chromosome 7, gain in 179 and loss in 22g were confirmed. (Generated using
http://db.systemsbiology.net/gestalt/cgi-pub/genomeMapBlocks.pl).




Interestingly, the strongest clinical marker of neuroblastdivt also determines the
aggressiveness of neuroblastoma [36] - gain of the §EreN (myelocytomatosis viral-
related) — actually had a relative coverage of only 3. Howewvere recently, [35] confirmed
the finding that theV'YCN gene is not strongly amplified in SH-SY5Y. Also, among the 104
patients sequenced in the PCGP project, only 23% carried an aatifiof MYCN, which
was defined as >10 copies detect by quantitative-PCR.

Transcriptome analysis

To characterize the SH-SY5Y cell line gene expression, we seepi@oly-adenylated RNA
from undifferentiated SH-SY5Y cells using a stranded RNA-segopodt We used the
GRCh37 human genome version together with the Ensembl release @@h24dnnotation.
We generated about 100 million paired-end reads of lengths 50 nt. Theeadw are
available in the European Nucleotide Archive (ENA) database [37} tiheetudy accession
PRJEB7313. In total, 94 million paired-end reads and 4.6 million singletmsrcould be
mapped after quality control (QC) filtering and trimming to eitllee genome or the
transcriptome annotation. This yields in 95% mappable reads to geheme or cDNA
sequences.

For RNA-seq, we called SNVs and small indels using both SAMT88lsand the Genome
Analysis Toolkit (GATK) [39]. We retained the intersection bé ttwo outputs and those
caller-specific variants supported with a read depth greaterahaqual to 10. As a recent
study has shown low concordance between multiple variant-callingin@pe[40], we
decided to increase the level of confidence by using two \as#@ing pipelines.
Consequently for RNA-seq, out of 95,173 SNVs and small indels detected, @&
concordant with unfiltered variants from at least one DNA segaogrptatform, either CG or
IL (Additional file 2: Table S17). The RNA-seq also showed high sgitgias 95.1% of the
3,500 filtered exonic variants found through DNA sequencing in gertksFRKM > 5 were
also detected by RNA-seq. FPKM refers to Fragments Peb#&Ske of exon per Million
fragments mapped, which is a measure of gene expression. ThisvgerditRNA-seq for
variant detection was higher than that achieved by a recent appi@maSNV calling in
RNA-seq data [41] but the absolute number of detected exonic vaffarts3,300) was
slightly lower than theirsn(= 4,000), which might be due to our strict quality filteringod
DNA sequencing data. As for neuroblastoma-relevant genes from87theeuroblastoma
primary tumours, out of the 30 rare, amino-acid changing mutatio23 @enes), 10 of them
were detected by RNA-seq with the same zygosity. The rengai20 were likely not
detected because of low gene expression as all mutations ddigd®&A-seq were in genes
with FPKM > 3.1 and all mutations not found by RNA-seq were in genes with FPKM < 0.57.

Genetic copy nhumber vs. gene expression

We compared genes that were always expressed in SH-SY&¥&%#7 different conditions
(Additional file 5) from the GEO (Gene Expression Omnibus) datapteto those that
were never expressed, whenever the corresponding probe was presentthe threshold
used to determine whether genes were always expressed @GEthedataset was that the
expression values of the corresponding transcripts were always greatéetinaedian for all
the transcripts in each microarray experiment. Similarly, ttireshold for genes never
expressed in the GEO dataset was that the expression valuesaweys less than the
median for all the transcripts in each microarray experimérg.fiequency of mutations per
100 kilo-base-pair region in genes that were never expressetb&a6, which decreased to



131.31 for genes, which were always expressed. Similarly, thageveopy number for
genes always expressed was 2.18, which was lowered to 2.09 &8 gewer expressed
(Additional file 2: Table S22). The distribution of expression of geniés eopy number

greater than 2 was significantly greater (Welch'’s tpegalue = 2.2 x 13° than expression
of genes with copy number lower than or equal to 2 (Additional file 2 — section S27).

Further, we compared the genetic copy number and the RNA-Seqf datasame SH-SY5Y
sample. The copy number and the logarithm of Fragments per kilosbassnscripts per
million mapped reads (FPKM) showed a positive correlation (Additional file 2r&i§24).

Proteome analysis

In order to confirm and correlate the biological expression ofideetified genes, the
analysis of genomic data was integrated with the analyfisoteomics data analysis of SH-
SY5Y cell lysates (see Methods section for complete det&itsteins isolated from whole
SH-SY5Y cell lysates were fractionated by SDS-PAGE, indggetsted using trypsin, and the
recovered peptides analysed by LC-ESI MS/MS. The spectra avalysed by MaxQuant
against a combinatorial human protein database. This database cotttaihedhan genome
reference hgl9 protein entries combined with the sequence vdoants from the DNA
sequencing done here. Specifically, the coding sequences of Enserablvgere modified
using all the homozygous exonic variants (unfiltered).

In total, out of 334,065 acquired MS/MS spectra, 165,494 were matched to depbpti
could be mapped to a total of 1,410 protein identifiers (AdditionalZilTable S21). From
these, 1,944 protein groups corresponding to 1,355 proteins were identifieel rurhan
genome reference hgl9 protein annotation. Further, 45 proteins werdiegdensing

sequence variants found from the DNA sequencing done here. See Addite6afor the

abundances of proteins detected.

To increase peptide spectrum matches, we extended the human gefen@eceehgl9
protein database by inserting reference sequences containifgrtiezygous SNVs and
indels in the exonic regions identified in this study. The peptideswbee additionally
mapped to the extended protein database were then used for validagjenett variants
(Additional file 2 — section S24). This approach validated 104 SNVs, 4 iadelsl block
substitution.

Gene expression Vvs. protein expression

Gene expression levels from RNA-seq and the corresponding prdiemdance were
compared to detect correlation. We plotted the logarithm of FPgahat the logarithm of
intensity—based absolute quantification (iBAQ) [43] score of 1,307 dé&uebtional file 2:
Figure S25 and Table S25), which were detected in both RNA-seq atebrmpics, which
equals 93% of 1,410 proteins detected by proteomics. As expected, thiatmmr was
weakly positive (correlation coefficient = 0.2784, p =“0see Additional file 2: Figure
S26).

Network-based analysis of suitability of SH-SY5Y deline asin vitro model

In order to evaluate the suitability of SH-SY5Y iasvitro model we adopted a framework
described in [44] that integrated genetic sequence information, @otbdy analysis of



either disease or process-specific networks. We applied betvesecerarality ratio (BC-
ratio), a metric that allowed us to quantitatively assessrpact of genes mutated in the cell
line on the disease or process network. BC-ratio is normalized between 0.0 and 1.0. It
indicates how much the information flow in the network might beedtdy changes in the
cell line: the higher BC-ratio, the greater the impact ofrtlugations, the lower the genetic
integrity (or suitability) of the cell line in the context afspecific network. (See Methods
section for a detailed discussion of the approach). The BC-ragtocmapplied to four
neurodegenerative diseases (Table 2) ranked Alzheimer’s (Aylasst BC-ratio = 0.246 ,
psc-value = 0.04), followed by Parkinson’s disease (BC-ratio = 0.186vaue 0.168),
Huntington disease (BC-ratio = 0.146gcpvalue = 0.472), and Amyothrophic Lateral
Sclerosis (BC-ratio = 0.084ggvalue = 0.922 ). To investigate the appropriateness of the
cell line for perturbation experiments in the context of PD,al® scored the different
processes corresponding to the hallmarks of PD (Table 3). Saee Bidor a protein-protein
interaction network resulting in the cell line suitability scores for neustdt@a and ALS and
Figure 4 for the network for glycolysis and reactive oxygen sgg€0OS) metabolism in PD.
Additional file 7 contains network visualizations for each diseaseeactl module in PD.
The role of the visualization is to give an idea of how damagedsgare distributed in the
network, to which genes they are connected and how they could alter procestaesit

Table 2Network statistics and cell line scoring of the neurodegenrative diases and
neuroblastoma

Disease Nodes Edges Network Cell Line Suitability based on Pec-
Name Centralization Centrality Metrics value
Total Damagedintact (Betweenness)  Degree Closeness BC-  Flow

ratio BC
NB 63 15 48 192 .650 .362 248 591 430 .010
AD 248 40 208 929 405 .208 161 .246 .215* .040
PD 358 55 33 1862 .246 .156 153  .186 .176* .168
HD 63 10 53 153 .624 .183 163 146 .162 472
ALS 178 22 156 371 .399 116 171 .084 .126* 922

Flow BC stands for flow betweenness centrality. The-\Rlue refers to the network
randomization test described in the Methods section. Flow Betwensiedsfined for

connected networks. If the entire network is not connected, Flowebetvwess is computed
for connected components. In the table the flow betweenness cgnotflithe largest

connected component is given and marked by *. NB — Neuroblastoma; ARheimler’s

disease; PD — Parkinson’s disease; HD — Huntington’s diseaSe:-AAmyotrophic Lateral

Sclerosis.



Table 3Network statistics and cell line scoring of the Parkinson’s diseaseodules

Module Name Nodes Edges Network centra-  Cell Line Suitability based on  pgc-
lization (Bet- Centrality Metrics value

Total Damagedintact weeness) Degree Closeness BC- Flow

ratio BC
Glycolysis 23 6 17 59 321 .262 256 .310 .253 .330
Mitochondria 259 32 227 4752 127 135 137 155 .128* .297
Calcium Signalling 125 17 108 561 .160 .163 132 .149 .095* .296
Apoptosis 122 15 107 250 334 .080 117 146 .098*  .279
Dopamine 54 8 46 175 .030 174 A79 115 .224* 448
Ubiquitin Protease System 55 7 48 809 .070 .150 153 .044 .133* .340
ROS metabolism 58 3 55 121 .922 .012 .051 .000 .000 .375

Flow BC stands for flow betweenness centrdling Rc-value refers to the network
randomization test described in the Methods section. Flow Betwenmnsiedsfined for
connected networks. If the entire network is not connected, Flowebatwess is computed
for connected components. In the table the flow betweenness dgntedlie of the largest
connected component is given and marked by *.

Figure 3 Protein-protein interaction network for two diseases — neuroblastoma (Aand

for ALS (B). Red nodes refer to OMIM-derived genes mutated in the cell line. Orange nodes
refer to the OMIM-derived genes which are intact in the cell line. Dark grees neglesent
genes coming from the network expansion, which are mutated in the cell ghegkeen

nodes represent genes coming from the network expansion, which are intact Ihlithe ce
Nodes are scaled to the magnitude of their betweenness centralitiesd@#seskow

connections between pairs of nodes in which at least one was damaged in the cell line. For
neuroblastoma, mutations in the central genes — NME1 and ALK contribute to the high BC-
ratio. For the ALS network, mutations occur in genes with lower betweennmgssite

which results in the lower BC-ratio.

Figure 4 Protein-protein interaction network for two PD map modules - glycolysisA)

and ROS metabolism (B)Red nodes refer to genes mutated in the cell line. Orange nodes
refer to genes which are intact in the cell line. Nodes are scaled to theudagpfitheir
betweenness centralities. Blue edges show connections between pairs oh ndueb at

least one was damaged in the cell line. For glycolysis, mutations in thal gamtes lead to

the high BC-ratio. Mutated genes lie on the periphery of the ROS metabolismknetwor
resulting in a low BC-ratio.

Discussion

The complete system-wide omics analysis of the undifferedti&e-SY5Y cell line
provided many opportunities for studying concordance across bioldgveds (DNA, RNA,
protein). Firstly, protein-altering variants, copy number variatiang structural variations
show consistency with the expression level of genes in the §&gAdata. For instance,
variant calling from RNA-seq data showed 95.1% sensitivity for3{B@0 filtered variants
detected from DNA-seq in genes with an FPKM > 5. Secondly, seaqgehoth the DNA
and the RNA showed a high degree of concordant SNVs and indels (95.tf#n&s with
FPKM > 5 were detected by RNA-seq) and served as furthieiatian of DNA sequencing
results and our filtering procedure for genomic variants. Finallyktiogvledge of genomic
variants enhanced protein identification in proteomics experimehggewit increased the
number of proteins detected from 1,365 to 1,410.



A comparison of the two whole genome sequencing platforms — Contpetemics (CG)
and lllumina (IL) — confirmed a significant number of variants tate discordant, either
due to regions, which were not called by one of the platforms orap&atform-specific
errors. Considering that 1% (n = 4,321) of these platform-specifiantarresiding in 2,348
genes were associated with exonic regions, using both platformd imotgase the detection
of potentially functionally important SNVs. Also only 75-80% of platfespecific variants
were found in the known list of variants (in doSNP, 1000 Genomes Proj6600rExome
Sequencing Project), indicating that a significant number of rontatire somatic mutations
or sequencing errors that need further investigation. Further,atger|platform-specific
biases for small indels and structural variations also strergdhtee argument for using both
platforms for greater sequencing accuracy.

Neuroblastoma-relevant genetic variations

Without the genome sequence of the healthy cells from the patrentdifficulty of
identifying somatic mutations in SH-SY5Y precludes any direchmarison to the somatic
mutations in primary neuroblastoma tumours. Thus, we compared rardomatsn SH-
SY5Y with the somatic mutations found in 87 primary neuroblastomautsnThe union of
genes from 87 different patient samples resulted in a list o§BB6s, which we considered
as relevant to neuroblastoma. The result that only 15 genes witamame-acid changing
mutations predicted as damaging in SH-SY5Y overlapped with thefliS86 genes with
somatic amino-acid changing mutations in primary neuroblastcsaewpected as there was
considerable heterogeneity among the different tumour samplasdhes. Specifically, the
sequencing of 87 neuroblastoma primary tumours found few recurrezd ggth amino-acid
changing mutations - only 24 genes contained amino-acid changiagons in more than 1
tumour sample and only three genes in more than two tumour samples tortext, an
overlap of 15 genes with rare amino-acid changing mutations ssgtiedt SH-SY5Y
includes elements of the genetic architecture of a varietyhenfroblastoma tumours.
Therefore, it might offer opportunities to investigate traitsig from amino-acid changing
mutations found in different kinds of neuroblastoma tumours.

As for structural variations, recurrently occurring strudtatgerations in the neuroblastoma
primary tumours irPTPRD, ODZ3 andCSVID1 were not found among high-confidence rare
structural alterations in SH-SY5Y. Finally, chromothripsis, whichsvearlier identified in
18% of primary neuroblastoma, was not detected in SH-SY5Y. There3ét-SY5Y would
not serve as an appropriate model for neuroblastoma tumours suffering from chrasreothri

Suitability of SH-SY5Y as anin vitro model for neurodegenerative diseases

The BC-ratio relies on the network betweennness centrality to fugatietic changes in the
cell line. It is important to consider that the BC-ratio does motta interpret the functional
effects of these mutations. Indeed, mutations could cause a loss hgaige ©r no change in
the function. However, such interpretations require assumptions. In the afas
neuroblastoma, we know that the SH-SY5Y cell line was derived &oneuroblastoma
patient. Hence, it can be assumed that many genetic mutationg, wrie observed in the
neuroblastoma network (BC-ratio = 0.59}¢{value 0.01), are indeed typical neuroblastoma
mutations. Specifically, copy number variations in the central newwtobta geneSMEL
and ALK (Figure 3A), both of which are found to be mutated in neuroblasesnaell
support this reasoning. Briefly, it can be assumed that SH-S¥8¥ are a good model for
neuroblastoma cells and a high BC-ratio (Table 2) was expected.



However, this case where a neuroblastoma cell line is expectaddel neuroblastoma is a
special case. This interpretation is similar to the approafoofcke et al. [45] of choosing
the ‘most suitable models’ for ovarian tumour among ovarian cancefired based on
genomic and mRNA expression profiles. Typically, in contrast, exeralists use cell
culture models to study processes lacking such ideal identitichmg. Routinely,
perturbation experiments are used to cause controllable genetatsdaf networks, which
are overall assumed to be intact [46]. However, potential gestetitges, which are ignored,
can introduce errors into the interpretation of results. The majpesaf the BC-ratio is to
provide distances between networks of interest in a cell line lagid ideal reference
networks. A BC-ratio of 0.0 indicates an unchanged network repregentirdeal reference
for perturbation experiments. Thegwvalue evaluates if a BC-ratio > 0.0 was due to chance
or it resulted from strong correlation between the nodes with higiebahess centrality and
genes mutated in the cell line. Note that a non-significggtvplue does not exclude any
functional effects of network changes and it is strongly recomndetadeollect additional
information for evaluating potential functional effects. While our auas not to predict
functional effects related to RNA or protein abundance, we @reircced that the provided
data will support case-specific interpretations of functional network ityegri

A central question of our investigation was whether context (i.easkésor process)-specific
networks are overall changed in SH-SY5Y. The absence of networkeshewag considered
as ideal case for controllable perturbation experiments. In trewialy paragraphs, we first
discuss the integrity of disease-specific networks in SH-SaB&Y secondly, focus on PD in
more detail.

The cell line suitability (BC-ratio) metric applied to fourunedegenerative diseases ranked
them from those with the largest to the smallest changes in therkeAlzheimer’s disease
(AD) was ranked as the highest, followed by Parkinson’s dis@d3g Huntington’s disease
(HD) and, finally, Amyotrophic Lateral Sclerosis (ALS). BGioa in combination with the
pec-values tell us that genes mutated in the cell line are niely ko be involved in the
information flow control in AD (pc < 0.05) network than the same type of genes is in the
networks of other diseases . Overall, except for the neuroblast@ratiBs were rather low
(max BC-ratio = 0.246), andsg-values were not significant for all but neuroblastoma and
Alzheimer’s disease. These results indicate that the netweldted to PD, HD and ALS are
largely intact in the SH-SY5Y cell line and the latter carctesidered a suitable model for
perturbation experiments targeting these diseases, while i§bt nequire a special caution.

It is also important to bear in mind that none of these diseas#ispaetworks were
perfectly intact. Indeed, the BC-ratio for each network was caedpas greater than 0.0,
which indicates that changes in these networks were detectedediction of potential
functional effects of these network changes, including a clessific in gain or loss of
function goes beyond the scope of the BC-ratio but the provided data oraRiNpArotein
abundances can support such interpretations.

Genes from which the networks for the neurodegenerative diseasaswnbfilastoma have
been grown, were derived from the OMIM databse where they have laseriietl as having

disease causative effect (See Methods for the details). &Wealculated the BC-ratios of the
respective networks assuming that only these seed genes labedmadamaged in the cell
line. In all cases the number of mutated genes decreasealtivniBC-ratios of the cell lines
increased for all but neuroblastoma (Table 4). Note that in the @aneuroblastoma, the
main actors which contributed to the high BC-ratio computed on thela&al already were

OMIM genes, damaged in the cell line. Therefore a lower BiO-fat neuroblastoma was



expected in the absence of any other damaged genes. The BGfréti® Huntington’s
disease increased considerably. This is mostly due to theHJanmllowed byPRNP, which
have the highest betweenness centrality in the HD network. Alenasi disease scores next
with APP gene making the main contribution to the magnitude of the BC-ratiay tree first

on the list of all genes. It is immediately followed by 6 en@MIM-derived genes while
their betweenness centrality is more than two times smaiiailar effect can be observed in
the case of Amyotrophic Lateral Scleros®8D1 has the highest betweenness centrality,
followed by VCP and DCTN1 with almost twice as much lower betweenness. In this
experiment, Parkinson’s disease had the lowest BC-ratio although thedidowénated by 5
OMIM-derived genes. The explanation might lie in the low betweercesgsalization of the
network (Table 2). Network centralization [47] reflects how muchatian is there in the
centrality scores (in our case, betweenness centrality) guthennodes. The value of 0.246
indicates that the scores are rather equally distributed among the nodes aatkthereodes
with apparent brokering role. Therefore changing the node labelsirfitast to damaged in
such network produces smaller effect than in the remaining diseases.

Table 4BC-ratios of the neurodegenerative diseases and neurobalstoma computed
under assumption, that only OMIM-derived seed genes have been mutated.

Disease Name NodesMutated (OMIM genes) Intact BC-ratio pgc-value
Huntington’s Disease 63 2 61 0.536 <0.001
Alzheimer’s Disease 248 13 235 0.495 <0.001

Neuroblastoma 63 3 60 0.480 0.002

Amyotrophic Lateral Sclerosis178 17 161 0.409 <0.001
Parkinsons’s Disease 358 15 343 0.379 <0.001

The increase in the BC-ratios of all neurodegenerative dseesie the causative OMIM
genes being considered as damaged, suggests that the genes whatlanadeetated in the
cell line have smaller positional advantages than OMIM genes icotinesponding networks
and therefore might less be involved in the information flow control.b&leve that this
observation supports our conclusion about the overall SH-SY5Y cell ditebgity for the
experimental studies of the neurodegenerative diseases.

To further analyse the suitability of the cell line asmamitro model for PD, we studied the
integrity of disease related sub-networks including mitochondrigfudgtion, reactive

oxygen species (ROS) accumulation and calcium homeostasis [4i8}. &t al. [48] recently
provided a comprehensive PD map, which integrates metabolic reactions, gjdatme and

signalling processes in this complex network. The network consistslmshetworks (also
referred to as modules), which correspond to pathways and procesdessdmetworks,
nodes represent genes, proteins or small molecules, and edgesentepredecular

interactions.

We selected seven modules corresponding to hallmarks of POrp48]the PD map and
scored them according to the BC-ratio metric. The idea wasgeegate PD-related modules
as more suitable for studying gain or loss of function of a module. In descendin@bBLC-
ratio, the modules were glycolysis, mitochondria, calcium sigmgllapoptosis, dopamine
metabolism, ubiquitin proteasome system and reactive oxygen sgBE) metabolism
(Table 3). The B values indicated no significant changes in these networks. Howege
found that the glycolysis module (Figure 4A) is the most impa@e€dratio = 0.31), which
suggests that information flow through this module could be significattered by the



genetic background of SH-SY5Y. One explanation for glycolysisgbeighly impacted
could come from the fact that SH-SY5Y is a cancer cell lihehas been shown that
glycolytic rates are higher in cancer cells than healtlesd60,51], known as the Warburg
effect [51], which has been suggested to confer a proliferative advantage to tunsour cell

Conversely, the ROS metabolism module (Figure 4B) was theitapsatted (BC-ratio =
0.0), which would indicate that the genes, mutated in the cell line doongbromise the
information flow in this network.

For the functional interpretation beyond the BC-ratio, it is impottaebnsider that most of
the genetic variations found in the PD modules do not carry mutations, but akelastvely
copy number gains. Indeed, this gain of copy numbers is expectedsbeafathe partial
trisomy of chromosomes 1, 2, and 17 and the full trisomy of chromosome 3veEQw
variations that alter the protein sequence occur in very few génasng all the damaged
genes found in the seven modules from the PD-map, only four containesymammymous
SNVs. The Sorting Intolerant From Tolerant (SIFT) [52] tool prediconly 3 MYOS,
HADH andGZMB) as damaging (SIFT score < 0.05). The gerv®©6, found in the calcium
signalling module and involved in intracellular vesicle transport, con&ihgeterozygous
non-synonymous mutation with a SIFT score of 0.01. It also plays partamt role in
trafficking and activity-dependent recruitment of AMPA receptorsynapses [53]. The gene
HADH, found in the mitochondria module and which catalyses several reattidreta-
oxidation, also contains a heterozygous non-synonymous mutation with ss&F of 0.
The genesZMB, found in the apoptosis module and which codes for a serine protease that |
used by activated cytotoxic T lymphocytes to induce cell apod®$jscontains a rare non-
synonymous SNV with a SIFT score of 0.01. However, in each of thesegenes, only one
copy of the gene contains such rare non-synonymous mutations. Furthergefoes
(NDUFA6, TOMM22, ATP5L2) in the mitochondria module and one geX&EC6) in the
apoptosis module had a copy number of one, leaving only a single wodpggNDUFAG
has been shown to have a high degree of nitration and be asbomitiiethe oxidative
damage to mitochondrial complex | [5JOMM22 plays an important role in mitochondrial
clearance controlled b§INK1 -PARK2 pathways [56]ATP5L2 is involved in hydrogen ion
trans-membrane transport activity [5HRCC6 codes for the Ku70 protein, which repairs
double bond breakage of DNA through the non-homologous end-joining pathveagfdre,
one should consider the damage to these genes when designing losgiohfperturbation
experiments. Indeed, it is important to test if the mutationsg@enuse a loss of function and
to keep in mind that a function which is already lost cannot bealsstond time. Except for
the 7 genes discussed above, all the genes in the modules of theygPWere free of
translated mutations in SH-SY5Y.

Genes related to dopamine metabolism in SH-SY5Y

In summary, all the genes involved in the dopamine metabolism patligayd 5) except
CYP2D6, ADH1B andUGT1A10 were expressed with or without specific treatments. Further,
CYP2D6, which contributes to dopamine biosynthesis through an alternatieehcgime
P450-mediated pathway shown to exist in rats [58,59], has a copy nundres, evhich may
contribute to the lower expression. Among the genes in the dopaminkeofisstapathway
that were expressed with or without specific treatments, ADK1C andDBH contained a
rare protein-altering mutation af@DC and AKR1B1 had a copy number of three. Only the
mutation iNADH1C was predicted as damaging by SIFT. Therefore, the lagjerity of



genes involved in dopamine metabolism contains no genetic damage abe eapressed
under certain treatments.

Figure 5 Dopamine biosynthesis and degradation and the genes coding key enzymes.
This metabolic pathway is a modified version of a figure from Meiser et al.lf6@tdition

to the enzymes involved, the genes coding for those enzymes have been added using the
HumanCyc [61]. The mutations in SH-SY5Y affecting enzyme-encoding genes lewve be
annotated only if they were rare protein-altering SNVs or indels, CNVs, ar SVs

Conclusions

In summary, we provide here the first whole genome analysis oB#h8Y5Y cell line,
which is widely used as a model for various neurological dise&gescharacterise the
different types of biological information of SH-SY5Y — genomicsndiptomics and
proteomics - and compare the relationships between them in terexpression levels and
variants. The data related to the genome sequencing, RNA sequandipgoteomics can be
found at the following URL - http://systemsbiology.uni.lu/shsy5y. Additignave also
compare the SH-SY5Y genome using two widely used whole genome siguplatforms
and show that using the two platform-specific coverages and sdiestitad different indel
sizes supplements each other. Finally, our analysis based on peeiic network
integrity ranked the integrity of SH-SY5Y for Parkinson’s diseasehigher than for
Alzheimer’s disease but lower than for Amyotrophic Lateral r8sle and Huntington’s
disease. In the context of different PD related sub-systérasame approach ranked ROS
metabolism as the most intact followed by the ubiquitin proteasgysgem, dopamine
metabolism, calcium signalling, mitochondria and glycolysis. Ovenadist of the genes
belonging to the major Parkinson’s disease pathways and modulesmeamtein the SH-
SY5Y genome. Particularly, each analysed gene related to P&t hest one intact copy in
SH-SY5Y. Therefore, somatic mutations do not significantly @@rrelated pathways in
SH-SY5Y. Importantly, the systems genomics analysis was performed ondifierentiated
cell line although differentiated cell lines are considerdtebsuited asn vitro models for
PD. Our novel BC-ratio method for cell line scoring integratger@omic characterisation of
the cell line, core set of disease or process-related gedea protein-protein interaction
network. This method is not restricted to a specific cell lindisease and can be broadly
applied. Furthermore, if multiple sequenced cell lines are availdi#eBC-ratio scores can
also be used as a guide to select the cell line best suited for studying@galisease.

Methods

SH-SY5Y cell culture

SH-SY5Y cells were cultured from a passage 23 (P23) vial, purckasetly from ATCC
(CRL-2266) (Figure 3). In the first step the cells were d#mepl during 4 passages for
preparing passage 27 (P27) freezing stocks. The cells were huotieeamplified during 5
passages for preparing passage 33 (P33) samples for omicssari2aNA was extracted with
the High Pure PCR Template Preparation Kit (Cat. #11796828001, Roche)amp&es
sequenced by Complete Genomics and lllumina platforms were dfgagsage and derived
from the same frozen cell stock. For RNA analysis the cadl® Wwsed in Qiazol buffer and
were frozen at —80°C. RNA extraction was performed using thdNeaRy Kit (Qiagen). For



protein analysis the cells were washed two times with D&&Efor inhibition of proteases
the cells were covered with complete (Roche) solution in@dkhd were frozen at —80°C.

DNA-Seq library preparation

Identical passage samples were derived from the samenfyestock and have been
sequenced by Complete Genomics and lllumina platforms. DNA é&rttawas performed
on P33 cells using the High Pure PCR Template Preparation Kit ¢11796828001,
Roche). 1ug of input DNA was sheared using the Covaris to an insert si2@@f900 bp.
Sheared DNA was end-repaired by adding End Repair Mix (lllunand)incubated at 30°C
for 30 min. Following end-repair, AMPure XP Beads (Agencourt) vadiged with water
and mixed with the DNA samples. The samples were incubated attemoperature for 15
min then placed on a magnetic stand for 15 min. The supernatant was removed andidiscarde
The beads were washed with 80% ethanol twice, then allowed tibyaior 15 min. The
dried pellet was resuspended in Resuspension Buffer to elute the TH¢A3 ends were
Adenylated by adding A-Tailing Mix (lllumina) and incubated at 376€30 min. Ligation
Mix and a barcoded DNA Adapter was added to each sample and tedw@e80°C for 10
min. The reaction was stopped by adding Stop Ligation Buffer. The ligated DNAle#med
up twice using undiluted AMPure XP Beads and eluted in Resuspension. B\@ie Primer
Cocktail and PCR Master Mix were added to the ligated DNARCR was performed with
the following settings: 98°C for 30 s incubation followed by 10 cyclé386€ for 10 s, 60°C
for 30 s, 72°C for 30 s, final incubation at 72°C for 5 min, hold at 10°C. TherB&i®on
was cleaned up with AMPure XP Beads and the library was resiesgpen Resuspension
Buffer.

The genomic DNA was sequenced by lllumina using the Illlumirsd Hack Services (FTS)
methodology:

1. gDNA Quantitation.

Genomic DNA is quantified prior to library construction using Pic@BréQuant-iT™
PicoGreen dsDNA Reagent, Invitrogen, Catalog #: P11496). Quantsreack with
Spectromax Gemini XPS (Molecular Devices).

2. Library Construction—PCR-Free.

Paired-end libraries are manually generated from 500 ng—1ug oA gidig the Illumina
TruSeq DNA Sample Preparation Kit (Catalog #: FC-121-2001), bas#t grotocol in the
TruSeq DNA PCR-Free Sample Preparation Guide. Pre-fragnuantgDNA cleanup is
performed using paramagnetic sample purification beads (Agem&MPure XP reagents,
Beckman Coulter). Samples are fragmented and libraries aee seiected following
fragmentation and end-repair using paramagnetic sample purifitegaats, targeting 300 bp
inserts. Final libraries are quality controlled for size usingel electrophoretic separation
system and are quantified.

3. Clustering and Sequencing—v3 Chemistry.

Following library quantitation, DNA libraries are denatured, dilutea] clustered onto v3
flow cells using the Illumina cBot™ system. cBot runs are peréol based on the cBot User



Guide, using the reagents provided in lllumina TruSeq Cluster Kit v&té€kd v3 flow cells

are loaded onto HiSeq 2000 instruments and sequenced on 100 bp paired-end, non-indexed
runs. All samples are sequenced on independent lanes. Sequenciagerpedormed based

on the HiSeq 2000 User Guide, using lllumina TruSeq SBS v3 Reagé&msnd HiSeq

Control Software (HCS) and Real-Time Analysis (RTA) used ddef 2000 sequencing

runs for real-time image analysis and base calling.

RNA extraction

P33 cells were detached using Trypsin (Cat. #25300, Gibco) and exftefugation, the cell
pellet was lysed in QIAzol buffer and frozen at —80°C. Thepdlet in QIAzol was thawed.
Chloroform was added and the sample was centrifuged at 120001§ foin at 4°C. The
upper aqueous layer was removed and 1.5 times the volume of the agyeows &thanol
was added. RNA in the aqueous layer was bound to an RNeasy Mini cojulbading the
agueous layer + ethanol to the top of the column and spinning at 8000 g daoaitI'dom
temperature. The column was washed once with Buffer RWT, thea twib Buffer RPE.
RNA was eluted from the column with 2 washes ofiB®f water.

Strand-specific RNA-Seq library preparation

PolyA RNA was isolated from 500 ng of input RNA using oligo(dT)25 Dyadbe
(Invitrogen) by binding the RNA to the Dynabeads, collecting tred®enith a magnetic
rack, and removing the supernatant containing non-polyA RNA. The Dynalveamds
washed in washing buffer then the mRNA was eluted in TE bufferbiftiaéng and washing
steps were repeated to remove remaining non-polyA RNA. Aftebititing and washing,
the Dynabeads were resuspended in 2x Superscript Ill first-strafed taith 10 mM DTT
and incubated at 94°C for 6 min to fragment the mRNA then immegiateled on ice. The
Dynabeads were collected on a magnetic stand and the fragrR&#A was moved to a new
tube.

Fragmented mRNA in 2x RT buffer, random hexamers, and RNasin Biibeated at 50°C
for 1 min to denature the RNA then placed immediately on ice. Tpwhi®r, Actinomycin
D, DTT, dNTPs, and SuperScript Il (Invitrogen) were added and reveasscription was
performed by incubating the mixture at 25°C for 10 min then at 50°C foriBORNACIean
XP beads (Agencourt) were added to the mixture and incubated fam Ice min. The beads
were collected on a magnetic stand, washed twice with 75% ethanditkdried for 5 min.
The RNA/cDNA hybrid was eluted in water.

A second strand reaction master mix including either 10x BlueeBoff NEBuffer 2, dNTP
(with dATP, dCTP, dGTP, and dUTP), RNase H, DNA polymerase | (Batigs), and
water was added to each sample and incubated at 16°C for 2.5 h. DouldeesdNA was
purified using 1.8 volumes of AMPure XP beads (Agencourt) and eluted in water.

The DNA was dA-tailed by adding either 10x Blue Buffer or NiE8r 2, dATP, water, and
Klenow 3-5 exo (Enzymatics) and incubated at 37°C for 30 min. The dsDNA wagegdur
using AMPure XP beads, and eluted in water. To each sample, acsparbde adapter was
added, along with Rapid Ligation Buffer and T4 DNA Ligase HC (Eratjcs). The Y-shape
adapter ligation was performed by incubating at room temperature for 15 min.



DNA was purified and size selected by cleaning up with AMPurebg®ds 3 consecutive
times and eluting in TE buffer. The first cleanup was performigd ivvolume of AMPure

XP beads, the second with 1.4 volumes, and the last with 1 volume incubai@oiha

temperature for 5 min without washing to perform size selection. stipernatant was
transferred to a tube with half of the new volume of AMPure XP beads and incubadetha
temperature for 15 min. The beads were collected on a magetitasd washed twice with
75% ethanol. The DNA was eluted in water.

The second strand of DNA was digested with Uracil DNA Glyasyl(Enzymatics) at 37°C
for 15 min. The PCR reaction was set up containing UDG-digested, PNi&er A and B,
Phusion HF Buffer, dNTP, water, and Phusion Il (New England Bioldlt® reaction was
incubated at 94°C for 2 min, followed by 10-12 cycles of amplification (980 s, 65°C
for 30 s, 72°C for 30 s). The DNA libraries were purified with 1.4 vasraf AMPure XP
beads and eluted in TE buffer.

Proteomics library preparation

P33 cells were washed twice with DBPS and covered with adwlete protease inhibitor
cocktail diluted in ddBEO and frozen at —80°C. Refer to Additional file 8 for completeildeta
on the proteomic sample preparation and liquid chromatography — masemsesct (LC-
MS/MS) analysis.

Whole genome sequencing

SH-SY5Y paired-end whole genome sequencing was done at lllumina and eBmmpl
Genomics (CG), Inc (Mountain View, CA) (CG). Whole-genome sequeneasgperformed
(CG) using their proprietary sequencing-by-ligation technold@y. [CG performed primary
data analysis using CGAtools v2.0.2.10 including image analysis, aifisg,calignment and
variant calling. lllumina primary data analysis was performeédguSASAVA pipeline v1.8.
For both sequencings reads were mapped against the human eefgganme (hg19, NCBI
build 37).

For CG data, coverage statistics were derived from coverageoartageRefScore files for
each chromosome. Coverage at every base was assessdyl ficaecthese files. The depth
of coverage roughly follows a normal distribution with significanw land high tails, and has
very high sequence-specific local fluctuation. This fluctuation mainateelto G + C content
and is consistent among genomes analyzed with similar versiorSAtb6ls. We corrected
the sequencing coverage observed in CG data by comparing to gragmwbserved in 590
genomes available internally at the Institute for Syster®8y, produced with comparable
versions of the same technology. To do this, we computed the averagagmlevel in each
1 kb bin in the 590 reference genomes, after scaling each genomeyémthetric average of
total autosomal coverage, stratified by G + C content. We then heethdhe coverage
levels in each 1 kb window of SH-SY5Y to the corresponding mediae wdbserved in the
reference genome set. For lllumina, coverage information waactedr directly from BAM
(binary sequence alignment format) files. To compare CNVs t@etewith results in
literature, CNV measurements of SH-SY5Y using CGH arr@@ fvere converted from
hgl17 to hgl9 coordinates (Additional file 3) using the LiftOver tool [62].

For CG, SNVs were derived from the var file. For lllumina, SNWere extracted from
CASAVA output files. SNVs from both platforms were combined into t€&variant format



and compared using custom perl/python scripts. ANNOVAR [21] was tesadnotate the
SNVs with gene annotations downloaded from the UCSC browser [23]
(http://www.genome.ucsc.edu/).

Small insertions and deletions were derived for CG from the ¥R Indels for lllumina
were obtained from CASAVA output files. Copy number variation (CE¥nts were taken
from cnvSegmentsNondiploidBeta-* file and high-confidence structuradtami (SV) events
were taken from /highConfidenceSvEventsBeta-* file. The mobile elemsertion (MEI)
regions were found from mobileElementinsertionsBeta-* file.

Transcriptome analysis

RNA-Seq FASTQ files were quality trimmed using the novoalign
(http://www.novocraft.com) tool with the —a parameter. Sequencirtts neare aligned to the
UCSC Homo sapiens reference genome hgl9 using TopHat v2.0.8 [63,64], which is
integrated with Bowtie v2.0.5 [65] as mapping tool. TopHat removesadl somber of reads
based on read quality and then maps the reads to a provideticefgemome sequence. The
pre-built UCSC H. sapiens hgl9 bowtie2 index as well as the EngBRGIg37 were
downloaded from the TopHat lllumina iGenomes site
(http:/tophat.cbcb.umd.edu/igenomes.html). TopHat were run with defétutigse maximal
40 alignments per read were allowed, with up to 2 mismatchesigemaht. Additionally,
the flags ‘no-novel-juncs’ with library-type ‘fr-firststrandvere used to suppress the
prediction of new junction sites and to ensure stranded alignments, respectiealgsiiting
aligned reads in BAM format were analysed further by @l v2.0.2 [64] in several ways.
Cufflinks assembled the aligned reads into transcripts using tlegnbhgene annotation and
reported the expression of those transcripts in Fragmentsilbage of exon per Million
fragments mapped (FPKM). FPKM is an expression of the velathundance of transcripts.
Small variants (SNPs and indels) were called using SAM{B88lsand BEDtools [66]. Using
the BAM file generated with TopHat samtools mpileup (-u —q10), b&tGoew —g) and
vcfutils.pl (varFilter) from the SAMtools software suite aslvas awk (‘($6 > = 50)") is used
to produce a VCF (Variant Call Format) file filtered for mmim quality score of 50. The
resulting VCF file is further filtered for falsely calle8NPs near splice sites using the
BEDtools package to filter out SNPs within a 5 nt window around knowrmteslite
junctions.

Proteomics analysis

A FASTA protein sequence database was created by combiningA®®A databases — (i)
protein sequences from the human genome reference hgl9 and (iin @etgriences
modified by genomic variants - SNVs, short indels and block substituionsierge the two

FASTA files, both have been concatenated and redundance has been redwteditb

(parameters: -c 1 -10-G 1 -p 1 -16 —-d 200 —S 0 —M 16000). If a proteimsedezurred

repeatedly, their names were grouped and assigned with a “#okyas separator. This
approach allowed to track if an identified protein by MaxQuéii [s solely based on the
additional genomic information.

Secondly, the acquired LC-ESI MS/MS data were searched witkQNMent (v. 1.3.0.5)
against the combined FASTA protein database. Default parametefdan@Quant for
unlabelled data were used. Oxidation (M) and N-acetylating hese tonsidered as variable
modifications as well as carbamidomethylation on cysteine fised modification. Two



missed cleavage sites (Trypsin/P) were allowed and a masancé of 20 ppm of HCD
spectra as well as 0.5 Da for CID spectra has been allowed.pk8ursor mass tolerance
was also left at 20 ppm for the first search and 6 ppm for the main search.

The IBAQ [43] method has been used to roughly estimate the absolutgtigeaof the
identified proteins. Since we did not use any spike-in, iBAQ waswitlout the “log fit”
option and the resulting values will just reflect the ordering ef dimounts of (and the
relative difference between two different proteins in the samg nather than the absolute
guantities in an analytical meaning.

Diseases related to SH-SY5Y using text mining

The goal of literature analysis was to identify diseasdashidnee been studied using the cell
line and or its derivatives. For the purpose of corpus construction steséarched the
PubMed collection of abstracts from MEDLINE (http://www.ncbi.nlm.nih.gabmed),
PubMed Central (PMC), which is a free full-text archive of ledinal and life sciences
journals (http://www.ncbi.nim.nih.gov/pmc/), and Elsevier repository foiclast that
mentioned SH-SY5Y cell line (case and dash insensitive) opeltireg variations (e.g., “sh-
sy5y cells”) Next, we selected the publications that mentiohedcell line in the title,
abstract, list of keywords, section headings, or table/figysgares. These are cues that help
to identify principle aspects of article’s content [68,69]. Wecated the above searches with
Biopython tools [70] which allowed accessing and querying of PulEleakitory, and PMC
online facilities to search through the PMC collection. In additienimplemented a full text
parser of the Elsevier articles using the Ixml.etree library [71].

After removal of duplicates, items without either title or audhand items with less than six
full sentences (an approximate length of title and abstractpbteened a collection of 5,353
abstracts and full text articles that dealt with SH-SY5V Ioee. We used Reflect annotation
software [72] to identify disease names in the text. Applyingisic rules described above,
we labelled articles with the corresponding disease name, anddrahg&eases by their
collection frequency.

Generation of disease networks

Our approach to the cell line evaluationiasvitro model relies on the understanding of
diseases as genetic network perturbations [73,74], which requirederamg not only single
genes of interest but also their role in a complex pathogenicgstoEer this reason, we
represent diseases and process of interest as networks innebieh are genes (or proteins)
and edges are protein-protein interactions. Note that when welssBF&SY5Y with regard
to the Parkinson’s disease modules, we extracted relevant subksetirectly from the PD
map. Alternatively, disease-related networks were built usingh®Mendelian Inheritance
in Man (OMIM) [75]- a catalogue of human genes and geneticd#issirand STRING — a
state-of-the-art database of known and predicted protein-proteiadtitss [76] version 9.0,
from which we extracted human-related undirected network with 18600 aodes640707
edges. In the experiments described here we considered interaxdtialhgypes, provided
their confidence score was > = 0.7, classified as “high” byl#tt@base authors. (See [44] for
more details about interactions in STRING.) This reduced the nesizekio 14688 nodes
and 170570 edges. The procedure of disease-related network construsigistsc of
selecting genes described in OMIM as having mutations with causaticeaiféhe disorder;
mapping them on the human network, derived from STRING; forming therfetarork by



expanding the core genes with their neighbours at distance one. The chthe expansion
radius is explained by the high average node degree (23.22) of dgrdiand STRING—

derived network. See Additional file 9 for the list of geneshie network constructed for
each disease and module and the list of genes taken as damaged in SH-SY5Y.

Description of the cell line suitability scoring: BC-ratio

Perturbations applied to the networks affected by the genemtadun the cell line may
produce different phenotypic outputs than the same perturbations appliée totact
networks. Therefore we evaluated the adequacy of the cell linstinyaing the impact of
the mutated genes on the network that represented the process tudgeiTkis analysis
aims to first evaluate the node’s importance in the network, arntdextend the node-wise
information to the entire cell line.

Node’s importance is related to positional advantage it has in tivenkeand is expressed in
terms of “centrality”. Different centrality types refledifferent positional properties of a
node. Node degree is associated with the node’s visibility ancbitgy to directly
communicate with the other nodes [47]. It does not consider indirect ctameeof a node
and therefore can be considered as the measure of its local angmoriCloseness is the
reciprocal of mean shortest-path distance between a node and alhotles that can be
reached from it. It is interpreted in terms of how fast a natecommunicate with the others
[77]. Betweenness centrality measures the extent to whichexves on the paths between
the others and, as a consequence, the extent to which the node e¥ltiemanformation
flow in the network [78]. In yet another view, node’s centralityaifunction of centrality of
its neighbours [79] so called power centrality. It is close tersigctor centrality, which is
seen as an attempt to identify important nodes with regard to thallareglobal structure of
the network. Among this wide variety of centrality metricsalieose betweenness centrality
for its emphasis of the nodes ability to alter the information flow in a network.

Betweenness centrality of a node expresses how much informiaties) through that node.
Betweenness centralityof nodev in the networkG is given by Equation 1,

T (V)

9(v)=2 1)

SEVEL Jst

whereoy is the total number of shortest paths betweemtuess, t € G, andog(V) is the
number of shortest path that go throwgh

In order to quantitatively assess the cell lineteduiity, we extended the metric from
individual node characteristic to the characterisfi node types. First of all we mapped the
genes mutated in the cell line onto the networkeurstudy and labelled all the nodes as
“Damaged” or “Intact”. A gene was labelled as “damaged” if it contairedare non-
synonymous or splice-site SNV, indel or block sitbsbn or if it was found inside a region
affected by a CNV or a rare SV. A rare SNV, indebtock substitution occurred with less
than 5% frequency in 1000 Genomes Project, 6500nex8equencing Project and Complete
Genomics 69 Baseline Genomes dataset. A rare SVomaghat was never found in the
Complete Genomics Baseline Genome dataset. Nextriack to assess the impact of the
damaged nodes on the network. We achieved thisobyparing the overall betweenness



centrality scores of the damaged and intact nodkscalled this metri@C-ratio x, which
was formally defined as follows:

ZvDDamagedg (V)

2
ViDamaged J (V) +z\,g,maag(v) 2)

/,J(N[,isease|cellIine):z

The value ofu is in range [0:1]. The higher is the BC-ratio \&line more is the impact of
nodes corresponding to the genes mutated in thdielon the information flow in the
network. The Bc values indicate the probability that the calcudaBC-ratio resulted from a
random distribution of mutated genes in the network

To test the metric we generated, for each diseadercess, 1000 alternative networks for
which we preserved the original topology and counfs damaged/intact nodes but
randomized label assignments. We scored each rapedmetwork and calculateggvalue

— the probability of obtaining higher BC-ratio witie randomized networks than the one we
have obtained with the actual datasc®alue > 0.05 indicates that nodes with high
betweenness-centrality in the disease/process netdeonot significantly correlate with the
genes mutated in the cell line —null hypothesis.t@ncontrary, gc--value < 0.05 indicates
that nodes with high betweenness-centrality indisease network do significantly correlate
with the genes mutated in the cell line — altex@ahiypothesis. Validity of the null hypothesis
gives us more ground to assume that from the germispective the cell line is an
acceptable candidate for modelling of the diseaspracess. Based on thgcpvalues for
various diseases and processes (Table 2, Tablee3zannot confidently reject the null
hypotheses for all but two diseases, which areaidastoma and Alzheimer’s disease.

In addition to the BC-ratio which is based on tleweenness centrality of the nodes, we
calculated the SH-SY5Y integrity with the diseas@sl process in question using degree,
closeness and flow (also known as “random walk'jveenness centralities [78,80]. The
difference between the latter and the betweenrergsadity we have been using so far is that
it considers contributions from all paths in théwak, not only the shortest, although the
latter still counts for more. It has been showrt fr@tein-protein interaction networks can
efficiently be modelled with the random walk betweess centrality [81] so we were
interested to compare the two measures in our empetal setting. Alternative cell line
scoring implied substitution of the shortest pattweenness centrality of the nodes with one
of the selected centrality types. Otherwise thecg@dare remained the same as specified in
Equation 2.

Results of the cell line suitability computatiorsing various centrality metrics are given in
Tables 2 and 3. Instead of comparing the cell Boering values directly we compare
centrality values of the individual nodes giventhg various metrics. We believe that this
information lets us get more insight into the agrert between the centrality types. Table 5
shows correlation between the centrality metriceraged across diseases and processes.
Betweenness only moderately correlated with theede@0.593) and less so with closeness
centrality (0.463) while flow betweenness showddtieely high agreement with the degree
(0.7). Degree and closeness showed higher intetation than with the betweenness
(0.622). Among all metrics, betweenness and flowwbenness centralities showed the
highest correlation (0.955). It suggests that in@periments either metric could have been
used for the cell line suitability evaluation. Howge the absolute values of the cell line
suitability would have not been identical (see €al# and 3, columns “BC-ratio” and “Flow



BC”) due to the ability of the flow betweennessteality to highlight nodes which, although
not lying on the shortest paths or occurring onertban one of them (hence, having shortest
path betweenness centrality equal or close to 8tdl),contribute to the information flow.
Table 6 shows gene ranking in the Mitochondria nedd the Parkinson’s disease map in
various centrality measures. It can be seen thad’geank in both betweenness metrics are
very close or even identical while much less schwéspect to the degree and closeness
centrality. Ranking oPARK2 andPINK1 tells us that nodes which do not have high degree
or closeness may still play an important role ifoimation flow in the network.
Alternatively, positions oPDHAL and to some less extent thatRifD suggest that having
high degree and closeness does not necessarilytméama broker. Yet, in some other cases
all centrality metrics may agree on the node’s irtggce as can be seen $4CA andCYCS
Overall we would conclude that various metrics #thonot be regarded as mutually
exchangeable. Rather one could choose the metkingtanto account the positional
advantage it emphasizes. Our approach to the ital dcoring was motivated by the
assumption that changes in one gene may affectritiee disease or process network. To
model this phenomenon, we were looking for a meashat would reflect node’s role in
information transmission over the network. Thighie reason why we choose betweenness
centrality.

Table 5Correlation between various centrality metrics

Centrality
Degree Closeness Betweenness Flow betweenness
Degree 0.622 0.593 0.700
Closeness 0.463 0.592
Betweenness 0.969

Flow betweenness

The correlation between the different measuresoafencentrality was calculated for each
network. The correlation scores were then averayed all the networks corresponding to
the different diseases and PD modules.

Table 6 Gene scoring agreement across various centrality metrics

Gene name Rank according to a centrality metric
Degree  Closeness Betweenness Flow betweenness
PARK2 24 17 1 1
SNCA 4 4 2 3
PINK1 25 32 3 2
CYCS 3 3 4 4
DLD 1 1 5 5
VDAC1 32 12 6 6
PDHAL 2 2 7 8
SLC25A4 18 5 8 7
BCL2 43 50 9 9
BECN1 42 64 10 13

We show top ten genes from the Mitochondria modtitke Parkinson'’s.
Disease map, ordered according to the Betweeneesslity rank.
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Additional_file_1 as XLSX

Additional file 1 Co-occurrences of disease terms with the SH-SY&Mine in literature.
The first column contains the Human Disease Onio{btPO) code of the disease, the
second column has the disease name and the thimthcdnvas the number of articles where
the disease was mentioned along with the SH-SY HiYice.

Additional_file_2 as DOCX
Additional file 2 Supplementary information.

Additional_file_3 as XLSX

Additional file 3 Gene ontology enrichment analysis for privategimtltering SNVs and
indels using Biocompendium [82]; somatic coding atiohs in the TARGET study [28]
overlapping with mutations in SH-SY5Y.

Additional_file_4 as PDF

Additional file 4 Circos plots for each chromosome of the SH-SY5Nogee. For each
chromosome, tracks represent (from outside to @)didryotype for each chromosome, copy
number variation (red > 2, green = 2, black < 2psity of small variants (bin size = 1 Mb),
homozygous small variant percentage (bin size =b). Mrcs represent chromosomal
breakpoints (red = rare breakpoints not found im@lete Genomics Baseline dataset [32]).

Additional_file 5 as XLSX
Additional file 5 Description of 247 different conditions of SH-SY%ém the GEO
database [42] for gene expression measurements.

Additional_file_6 as XLSX

Additional file 6 Abundance of proteins found in the undifferentia®H-SY5Y cell line.

The first column contains the protein identifidosth UCSC and Ensembl formats) identified
by MaxQuant using the modified reference databaddlae second column, the iBAQ score,
gives protein abundance as a mean of three diffeepticates.

Additional_file_7 as PDF

Additional file 7 Network visualization of mutated genes in pathwayated to Parkinson’s
disease. Each node is a gene and each edge isditate¢here is an interaction between them
(gene regulatory, protein-protein, metabolic, aigda transduction interactions). Genes
annotated with a dark red colour have an exoni@timt, copy number variation or



structural variation whereas genes annotated wlitihared colour do not have such
mutations.

Additional_file_8 as DOCX
Additional file 8 Materials and methods for proteome analysis.

Additional_file_9 as XLSX

Additional file 9 List of genes with rare non-synonymous SNVs, isdalibstitutions, copy
number variations or structural variations in SH5SYand lists of genes used to construct the
networks for cell line suitability scoring.



? F .
——=g ——
Protsins lumina
Metabolites
SH-SYSY Freezing Omics
(ATCC) stocks

Biomolecular measure ments of the cell line

at multiple levels (DNA, RNA and proteins)
Figure 1

Systems genomics characterisation of
SH-SYS5Y cell line

Mapping genetic variants on
protein-protein interaction networks
of processes modelled by the cell line



chri

\\

chr2

N

chr3

chr4

1]

chr

chré

chr7

chrg

chr9

chr10

A\

chril

chri2

chr13

chri4

chr1s

chrié

chr17

chr18

chr19

chr20

chr21

chr22




i ) A. Neuroblastoma. B. ALS. -
' BC-ratio=0.591 BC-ratio=0.084 "




A. Glycolysis. BC-ratio=0.31 B. ROS. BC-ratio=0.0

Figure 4



Dopamine Metabolism and Genetic Mutations

HO
Phenylalanine
hydroxylase l
(PAH)

Tyrosinase (TYR),
Tyrosine hydroxylase
(TH)

AADC (DDC) i

Copy number = 3 Ho

(DBH)

1 non-synonymous SN

DA-B-hydroxylase l

N-methyltransferase
(PNMT)

/Q/I\:pmephrme

Phenylethanolamine OH

NH,
AADC (DDC)

or Copy number = 3

NH,

L-Phenylalanine i Phenylethylamin

AADC (DDC) NH,
OH  Copy number =3 /©/V
NH, HO Tyramine
L-Tyrosine Cyp2D (CYP2D6)
Copy number = 1 MAO
(MAOA, |

L-Dihydroxyphenylalanine

\
O:@/\/NHQ MAOB) o:@/\/

HO
3-Methoxytyramine 3-Methoxy-4-hydroxy-
acetaldehyde

ALDH (ALDH3A2) l

Bogg

Homovanlhc acid HVA
CcomMT (COMT) o

O Ve T
ALDH
HO °

(ALDH3A2) HO

Dopamme COMT (COMT)

MAO (MAOA, MAOB)

3,4-Dihydroxyphenylacetaldehyde  3,4-Dihydroxyphenylacetic acid

HO
Epinephrine DOPAL DOPAC
AR (AKR1B1)
ADH Copy number =3
OH
PST (SULT1A3) HO.
UGT
(UGT1A10) HO
3,4-Dihydroxyphenylethanol
DOPET
HO
OH._. 0 mH HO O
>0 2
)
Dopamine-4-O-sulfate Dopamine-3-O-sulfate
OH OH
Legend (6]
AADC - Enzyme
(DDC) - Genes coding s
the enzyme CH NH,
Dopgmlne - Metat.)ollte Dopamine-4-0-glucuronide Dopamine-3- NH,
Coply iquindep = 1- Mutations 0-glucuronide




Additional files provided with this submission:

Additional file 1: 1698265489127161 _add1.xIsx, 32K
http://www.biomedcentral.com/imedia/1490396117154313/supp1.xlsx
Additional file 2: 1698265489127161 _add2.docx, 1424K
http://www.biomedcentral.com/imedia/1117391898154313/supp2.docx
Additional file 3: 1698265489127161_add3.xIsx, 238K
http://www.biomedcentral.com/imedia/2811100971543139/supp3.xlsx
Additional file 4: 1698265489127161_add4.pdf, 9263K
http://www.biomedcentral.com/imedia/1069402088154313/supp4.pdf
Additional file 5: 1698265489127161 _add5.xIsx, 66K
http://www.biomedcentral.com/imedia/1322531731543139/supp5.xlsx
Additional file 6: 1698265489127161 _add6.xIsx, 165K
http://www.biomedcentral.com/imedia/5199752315431398/suppb.xIsx
Additional file 7: 1698265489127161_add7.pdf, 18770K
http://www.biomedcentral.com/imedia/6728101441543139/supp?.pdf
Additional file 8: 1698265489127161 _add8.docx, 693K
http://www.biomedcentral.com/imedia/1161739591154313/supp8.docx
Additional file 9: 1698265489127161 add9.xIsx, 258K
http://www.biomedcentral.com/imedia/1847666312154313/supp9.xlsx



http://www.biomedcentral.com/imedia/1490396117154313/supp1.xlsx
http://www.biomedcentral.com/imedia/1117391898154313/supp2.docx
http://www.biomedcentral.com/imedia/2811100971543139/supp3.xlsx
http://www.biomedcentral.com/imedia/1322531731543139/supp5.xlsx
http://www.biomedcentral.com/imedia/5199752315431398/supp6.xlsx
http://www.biomedcentral.com/imedia/1161739591154313/supp8.docx
http://www.biomedcentral.com/imedia/1847666312154313/supp9.xlsx

	Start of article
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Additional files

