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ABSTRACT. Let X be a centered random variable with unit variance,
zero third moment, and such that IE[X*] > 3. Let {F, : n > 1} de-
note a normalized sequence of homogeneous sums of fixed degree d > 2,
built from independent copies of X. Under these minimal conditions, we
prove that F,, converges in distribution to a standard Gaussian random
variable if and only if the corresponding sequence of fourth moments
converges to 3. The statement is then extended (mutatis mutandis) to
the free probability setting. We shall also discuss the optimality of our
conditions in terms of explicit thresholds, as well as establish several
connections with the so-called universality phenomenon of probability
theory. Both in the classical and free probability frameworks, our re-
sults extend and unify previous Fourth Moment Theorems for Gaussian
and semicircular approximations. Our techniques are based on a fine

combinatorial analysis of higher moments for homogeneous sums.

1. INTRODUCTION

1.1. Overview. The Fourth Moment Phenomenon is a collection of mathe-
matical statements, yielding that for many sequences of non-linear function-
als of random fields (both in a commutative and non-commutative setting),
a Central Limit Theorem is simply implied by the convergence of the cor-
responding sequence of fourth moments towards a prescribed target. State-
ments of this type represent a drastic simplification of the classical method
of moments and cumulants, and are customarily called Fourth Moment The-
orems. As witnessed by the web resource [35], fourth moment results have
recently gained enormous momentum within the probabilistic literature, in
particular in view of their many applications, e.g. to Gaussian analysis,
stochastic geometry and free probability (see [18, Chapter 5], [13] and [12]
for some seminal references on the subject, as well as Section 1.3 for a more

detailed discussion of the existing literature).

The aim of the present paper is to fully explore the Fourth Moment Phe-
nomenon in the framework of homogeneous sums in independent or freely
independent random variables, by accomplishing the following tasks: (i) to
provide general simple sufficient conditions for Fourth Moment Theorems to
hold, and (ii) to link such Fourth Moment Theorems to universality state-

ments, in the same spirit as the recent references [7, 21, 30].
1



2 CLASSICAL AND FREE FOURTH MOMENT THEOREMS

1.2. Goals. We will now provide an informal presentation of our principal
objectives: the reader is referred to Section 2 for definitions and precise
assumptions. In what follows, we shall denote by N and S, respectively,
a random variable having a standard normal .47(0,1) distribution, and a
free random variable having the standard semicircular S(0,1) distribution.
According to the usual convention, any statement implying convergence in
law to N or S is called a ‘Central Limit Theorem’ (CLT). As anticipated,
the main focus of our paper is on sequences of homogeneous sums of the
form
n
Qx(fa) = > fulitseoovia)Xiy - Xiyy 21,
i1 yeeyig=1

where: (a) d > 2, (b) each mapping f, : [n]? — IR is symmetric and vanishes
on diagonals (see Definition 2.1), and (c) X = {X; : i > 1} is either a collec-
tion of independent copies of a classical centered real-valued random variable
with finite fourth moment (defined on some probability space (€2, F,IP)), or
a family of freely independent copies of a non-commutative centered ran-
dom variable (defined on a suitable free probability space (A, ¢)). In both
instances at Point (¢), @x(fn) is a centered random variable.

Our principal aim is to tackle the following questions (I)—(III):

(I) Assume that X is defined on a classical probability space, and that
the kernels f,, are normalized in such a way that Qx(f,) has unit
variance. Under which conditions on the law of X; (remember that
the X;’s are identically distributed), the asymptotic condition (as
n — 00)

E[Qx(fn)"] — 3 (= E[NY), (L.1)
is systematically equivalent to the convergence

Qx(fa) = N 7 (1.2)

(IT) Assume that X is defined on a free probability space, and that the
kernels f,, are chosen in such a way that the variance of each Qx(fn)
equals one. Under which conditions on the law of X; (again, the X;’s
are identically distributed) the asymptotic condition (as n — oo)

P(Qx(fa)") — 2(= @(5Y), (1.3)
is systematically equivalent to the convergence
Qx(fa) 25 5 7 (1.4)

(ITI) Are the convergence results at Points (I) and (II) universal? That
is, assume that either (1.2) or (1.4) is verified: is it true that X can

be replaced by any other sequence of (freely) independent variables



CLASSICAL AND FREE FOURTH MOMENT THEOREMS 3

Y = {Y; :i > 1}, and still obtain that the sequence Qvy(fn), n > 1,
verifies a CLT?

Our main achievements are stated in Theorem 2.3 and Theorem 2.6, where
we provide surprisingly simple answers to questions (I)—(III). Indeed, in
Theorem 2.3, dealing with the classical case, it is proved that the conditions
[E[X?}] = 0 and IE[X}] > 3 imply a positive answer both to Questions (I) and
(III). The free counterpart of this finding appears in Theorem 2.6, where
it is proved that Questions (I) and (IIT) admit a positive answer whenever
p(X]) > 2.

Our proofs rely on a novel combinatorial representation for the fourth cu-
mulant of @x(f,), both in the classical and free case — see, respectively,
Proposition 3.1 and Proposition 3.4. We believe that these results are of
independent interest: in particular, they provide a new powerful represen-
tation of the fourth cumulant of a homogeneous sum in terms of ‘nested’
cumulants of sums of lower orders, that perfectly complements the usual mo-
ments/cumulants relations for non-linear functionals of random fields (see
e.g. [15, 26]).

As indicated by the title, the last section of the present paper partially
addresses the problem of thresholds, studying in particular the optimality
of the conditions provided in Theorems 2.3 and 2.6.

1.3. Some history. We now list some references that are relevant for the

present paper.

— In the classical probability setting, the first study of Fourth Moment
Theorems for homogeneous sums (or, more generally, for degener-
ate U-statistics) appears in the landmark papers by de Jong [9, 10],
where it is proved that, if the kernels {f,} verify a Lindeberg-type
condition and X has finite fourth moment, then condition (1.1) is
sufficient for having the CLT (1.2). Our results will show, in partic-
ular, that such Lindeberg type condition can be dropped whenever
X1 has a fourth moment that is greater than 3. Recent developments
around the theorems by de Jong appear in [11, 27].

— A crucial reference for our analysis is [25], where the authors proved
that the implication (1.1) — (1.2) holds systematically (without any
restriction on the kernels {f,}) whenever X is composed of inde-
pendent and identically distributed .4#7(0,1) random variables. It is
important to notice that the result continues to hold when one re-
places homogeneous sums with a sequence living in a fixed Wiener
chaos of a general Gaussian field. Reference [25] has strongly moti-
vated the introduction of the so-called Malliavin-Stein method (first
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developed in [17]), that is by now one of the staples of the asymp-
totic analysis of functionals of Gaussian fields. See [35], as well as
the monograph [18] for an introduction to this subject, see [22, 28]
for multidimensional generalisations, and [24] for extensions to an
information-theoretical setting. The reader can consult [2] for an
alternative simple proof of the results of [25] and [3] for an extension
of the Fourth Moment Theorem to higher moments.

— Reference [29] shows that the implication (1.1) — (1.2) also holds
when X is composed of independent Poisson random variables. See
also [11, 13, 30, 32] for some partial results involving sequence of ran-
dom variables living inside a fixed Poisson chaos. Fourth moment-
type statements for infinitely divisible laws can be found in [1].

— In the free probability setting, the analysis of the Fourth Moment
Phenomenon for non-linear functionals of a free Brownian motion
was started in [12], where the authors proved a non-commutative
counterpart to the findings of [25]. Extensions are provided in [6] for
multiple integrals with respect to the g-Brownian motion and in [4]
for the free Poisson Chaos. See moreover [23] for a discussion about
the multidimensional case.

— As anticipated, one major feature of fourth moment results is that
they are often associated with universality statements. In the classi-
cal case, the most relevant reference is arguably [20], where the au-
thors proved that homogeneous sums involving independent Gauss-
ian random variables are universal in the sense detailed in Question
(III) of the previous section. This was accomplished by exploiting
the invariance principle established in [14]. Similar results in the
Poisson case are discussed in [29, 30].

— The non-commutative version of [14] can be found in [7], yielding in
turn the universality of the semicircular law for symmetric homoge-
neous sums. These results have been recently extended in [33] to the

multidimensional setting.

1.4. Plan. The rest of the paper is organized as follows. Section 2 contains
the formal statement of our main results. Section 3 contains the statements
and proofs of the announced new formulae for fourth moments of homoge-
neous sums. Section 4 is devoted to proofs, whereas Section 5 deals with

partial thresholds characterizations.

2. FRAMEWORK AND MAIN RESULTS

2.1. Admissible kernels. For every n € IN, we shall use the notation
[n] :={1,...,n}. The following terminology is used throughout the paper.



CLASSICAL AND FREE FOURTH MOMENT THEOREMS 5

Definition 2.1. For a given degree d > 2 and some integer n > 1, a map-
ping f : [n]¢ — IR is said to be an admissible kernel if the following three
properties are satisfied:
(o) f(i1,--- ,iq) = 0 if the vector (i1,--- ,iq) has at least one repetition,
that is, if ¢; = 7}, for some k # j;
(B) fi1,--yia) = f(ig1)s- - - »i0(q)) for any permutation o of {1,...,d}
and any (iy,...,iq) € [n]%
(7) the normalization

d! En: flir, ... ig)% =1

i1yeig=1

holds.

For instance, in the case d = 2, the kernel f(i,j5) = 1{¢¢j}/\/m is
admissible. Note that, given a mapping f : [n]¢ — IR verifying (c), it is
always possible to generate an admissible kernel f by first symmetrizing f
(in order to meet requirement (f3)), and then by properly renormalizing it

(in order to meet requirement (7)).

2.2. Main results in the commutative case. Every random object con-
sidered in the present section lives on a suitable common probability space
(Q, F,1P). In what follows, we consider a random variable X satisfying the
following Assumption (A):

(A) X has finite fourth moment, and moreover IE[X] = 0, IE[X?] = 1,
and IE[X?] = 0.
We will denote by X = {X; : ¢ > 1} a sequence composed of independent

copies of X. For any admissible kernel f : [n]® — IR, we define Qx(f) to be
the random variable

n

Qx(f) = D> flin,..ig) Xy - Xiy. (2.1)
i1 yeyig=1

In view of our assumption on X and f, it is straightforward to check that

E[Qx(f)] = 0 and E[Qx(f)*] = 1.

Finally, we write .4#7(0,1) to indicate the standard Gaussian distribution,

that is, .#7(0,1) is the probability distribution on (IR, #(IR)) with density

T \/%e_xz/ 2. In agreement with the above conventions, given N ~

A(0,1), we shall denote by N = {N; : i > 1} a sequence of independent

copies of N.

The following definition plays a pivotal role in our work.

Definition 2.2. Fix d > 2, let X satisfy Assumption (A) and let N ~
A4(0,1); define the sequences X and N as above. Consider a sequence fy, :
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[n]d — IR, n > 1, of admissible kernels, as well as the following asymptotic
relations, for n — oo:

() Qx(fu) 2™ A(0,1);

(i) @n(fa) 25 40, 1)

(iii) TB[Qx(fa)!] = 3.
Then:
1. We say that X satisfies the Commutative Fourth Moment Theorem of
order d (in short: CFMT) if, for any sequence f,, : [n]? — IR of admissible
kernels, (iii) implies (i) as n — oo.
2. We say that X is Universal at the order d (in short: Uy) if, for any
sequence f, : [n]? — IR of admissible kernels, (i) implies (ii).

The use of the term ‘universal’ adopted in the previous definition may seem
slightly obscure. To justify our terminology (and for future reference) we
recall the following invariance principle from [20], implying in particular
that, if a sequence of admissible kernels verifies (ii), then (i) is automatically
satisfied for every sequence X of i.i.d. centered normalized random variables.

Theorem 2.1 (See [20]). Fizd > 2, let f, : [n]* = IR (n > 1) be a sequence

Law

of admissible kernels and let N ~ A°(0,1). Assume that Qn(fn) —
Law

A(0,1), as n — oo. Then, Qx(fn) — A(0,1) for each random variable
X satisfying IE[X] = 0 and IE[X?] = 1. Moreover, as n — oo,

n
.. )
max Z 1,19, ...,1 — 0.
max ) Jn(iyiz, ..., iq)
’LQ,...,’Ldil

The following result is a direct consequence of the main results of [25].

Theorem 2.2 (See [25]). For any d > 2, the random variable N ~ 4(0,1)
satisfies the CFMT.

The subsequent Theorem 2.3 is one of the main achievements of the present
paper. It provides a strikingly simple sufficient condition under which X is
both Uy and satisfies a CFMT,. The proof (that is detailed in Section 4)
relies on Theorem 2.2, as well as on the combinatorial formula for the fourth
moment of Qx(f) provided in Section 3 (see formula (3.1)).

Theorem 2.3. Fix a degree d > 2 and assume that X satisfies Assumption
(A) and IE[X?] > 3. Then, X is Uy and satisfies the CFMT,.

In the next subsection, we shall present a non-commutative counterpart to
Theorem 2.3.
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2.3. Main results in the non-commutative case. We shortly recall few
basic facts about non-commutative (or free) probability theory that will be
useful for our discussion: we refer the reader to the monograph [15] for
any unexplained definition or result in this domain. Let (A, ¢) be a non-
commutative (or free) probability space (namely, A is a unital x-algebra,
and ¢ is a faithful positive state, customarily called a trace). As usual,
self-adjoint bounded elements in A will be referred to as random variables.
Let p(Y') € [0,00) denote the spectral radius of a given random variable Y,
namely p(Y) = klggo cp(YQk)i. The existence of a real measure py with

compact support contained in [—p(Y'), p(Y)] such that:

p(YF) = /Ry’“uy(dy),

is established e.g. in [34, Theorem 2.5.8] and [15, Proposition 3.13]. Such
a measure py is called the law, or the distribution of Y. Being compactly
supported, puy is completely determined by the sequence of its moments
{o(Y™) : m € N}. Given free probability spaces (An,¢n), (A,p), and
a sequence of random variables a,, € A, and a € A, we say that {a,}

converges in distribution (or in law) towards a if:

li111n on(ak) = p(a®) Yk > 1.
If the above asymptotic relations are verified for every k, we write a,, Lav, .
In the non-commutative setting, the role of independence is played by the
notion of freeness: the unital subalgebras Aq,..., A4, of A are said to be
freely independent if, for every k > 1, for every choice of integers i1, ...,
with 4; # i;,1, and random variables a;; € Aj, we have ¢(a;,a:, - - - a;,) = 0.
The random variables ay,...,a, are said to be freely independent if the
(unital) subalgebras they generate are freely independent.
Let us consider a random variable Y in (A, ¢) satisfying the following As-
sumption (B):

(B) ¢(Y) =0 and p(Y?) = 1.
Note that, in the non-commutative setting, Y has all moments by definition;
moreover, in contrast to Assumption (A) used in the commutative case, here
we will not need the vanishing of the third moment ¢(Y3).
Similarly to the conventions of the previous subsection, we will denote by
Y = {Y; : ¢ > 1} a sequence composed of freely independent copies of Y,
that we can assume defined on (A, ). When f : [n]? — IR is an admissible
kernel, we define Qy (f) as the random variable

Qv(f) = D fli,..o ia)Viy Y, (2:2)

i1,eig=1
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In view of our assumptions on Y and f, it is straightforward to check that
0(Qy(f)) = 0 and ¢(Qy(f)?) = d'"'. We shall also use the following
consequence of [12, formula (2.3)]: for every d > 2 and every admissible

kernel f : [n] — IR:

2
n d—1 n n
so(Qs<f)4)=2( > f(jl,-.-,jdf) 3> )
Jiseda=1 S=1j1,0emrjas=1 k1, kg s=1

.....

Finally, S(0,1) will denote the standard semicircular distribution, namely
the distribution on (IR, #(IR)) with density z — 5-v/4 — 22 and support
given by the interval [—2,2]. It is easily checked that, if S ~ S§(0,1), then
0(S) =0, p(S?) =1, p(S3) = 0, and p(S*) = 2. Given S ~ §(0,1) and
following the previous conventions, the bold letter S will stand for a sequence
of freely independent copies of S.

The following definition is the non-commutative counterpart of Definition
2.2. Note the additional factor d! appearing in many of the relations below:
this is due to the fact that, in the non-commutative setting, the variance of
a homogeneous sum based on an admissible kernel equals d!~!, whereas the
variance of the standard semicircular distribution is 1.

Definition 2.3. Fix d > 2, let Y satisfy Assumption (B) and let S ~
S(0,1); define Y and S as above. Let f, : [n]* = IR, n > 1, be a sequence
of admissible kernels, and consider the following asymptotic relations (as
n — 00):

(1) Vl Qy (fa) = S(0, 1)

(i)’ VdlQs(fn) =™ S(0,1);

(i) dPp(Qv(fn)*) — 2.
Then:
1. We say that Y satisfies the Non-Commutative Fourth Moment Theorem
of order d (in short: NCFMTy) if, for any sequence f, : [n]? — IR of
admissible kernels, (iii)’” implies (i)’ as n — oo.
2. We say that X is Freely Universal at the order d (in short: FUy) if, for
any sequence f, : [n]? — IR of admissible kernels, (i)’ implies (ii)’.

The next statement is a free analogue of Theorem 2.1 (see [7]).

Theorem 2.4 (See [7]). Let f, : [n]? — IR be a sequence of admissible
kernels and let S ~ S(0,1). Assume that /d'\Qs(fn) Law, S(0,1) asn — oo.
Then, Vd'Qvy (f») Law, S8(0,1) for each random variable Y satisfying (B).
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According to the following result from [12], an example of distribution sat-
isfying the NCFMTy for any d > 2 is the §(0, 1) distribution itself.

Theorem 2.5 (See [12]). For any d > 2, the standard semicircular random
variable S ~ §(0,1) satisfies the NCFMTy.

The subsequent Theorem 2.6 is our main achievement in the non-commutative
case. It yields a sufficient condition under which Y is both F'U; and satisfies
a NCFMT,. The proof (see Section 4) relies on Theorem 2.5 and on the
non-commutative combinatorial relation (3.4), whose proof is detailed in the
forthcoming Section 3.

Theorem 2.6. Fiz a degree d > 2 and, in addition to Assumption (B),
assume that p(Y*) > 2. Then, Y is FUy and satisfies the NCFMT,.

The next section provides the combinatorial formulae that are needed in the
proofs of Theorem 2.3 and Theorem 2.6.

3. COMBINATORIAL FORMULAE FOR FOURTH MOMENTS

3.1. Preliminaries. Our main aim in this section is to prove formulae (3.1)
and (3.4), yielding new combinatorial expressions for the fourth moment of
homogeneous sums, respectively in the classical and free cases. Although
our main motivation for deriving these relations comes from the fact that
they are crucial elements in the proofs of Theorem 2.3 and Theorem 2.6,
we believe that these relations have an intrinsic interest, as they provide
a new approach to cumulant computations for non-linear functionals of a
given sequence of independent or freely independent random variables. We
refer the reader e.g. to [15, 26] for any unexplained combinatorial definition
or result (respectively, in the non-commutative and commutative cases).

We denote by P([n]) and NC([n]), respectively, the lattice of all partitions
and the lattice of all non-crossing partitions of the set [n]. Also, Pa([n])
and NCa([n]) will stand, respectively, for the set of all pairings and all non-
crossing pairings of [n]. The definitions of P(A) and P2(A) for a generic
finite set A are analogous. Recall that a partition 7 of the set [n] is said to
be non-crossing if, whenever there exist integers ¢ < j < k < I, with ¢ ~ k,
J ~x L, then j ~; k (here, i ~, j means that ¢ and j belong to the same
block of ).

In this section, the following interval partition in P([4d]) (d > 2) will play a

crucial role:
o ={{1,---,d},{d+1,---,2d},{2d + 1,--- ,3d},{3d + 1,--- ,4d}},

that is: 7* is the partition of [4d] composed of consecutive intervals of exact
length d. Given a partition ¢ of [4d], and according to the usual lattice
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notation, we will write & A 7% = 0 to indicate that, in each block of o,
there is at most one element from every block of 7* (this property is usually
referred to by saying that “o respects 7).

Finally, we will use the symbol P35 ,([4d]) (resp. NC3 4([4d])) to denote the
set of those partitions (resp. non-crossing partitions) of [4d] that respect
7* and that contain only blocks of sizes 2 and 4. Analogously, the symbol
P5([4d]) (resp. NC5([4d])) is used to denote the set of those pairings (resp.
non-crossing pairings) belonging to P3 ,([4d]) (resp. NC3 4([4d])).

3.2. Fourth moment formulae in the commutative case. For a generic
random variable X with moments of all orders, we shall denote by x;(X),
j=1,2,... the (classical) jth cumulant of X (see [26, Chapter 3]).

For m € P([n]), the generalized cumulant xr(X) of a random variable X is
defined as the multiplicative mapping X + Xx(X) = [[pcr Xjp/(X). Such a
mapping satisfies the formula:

E[X"] = Z X (X)),

weP([n])

which is equivalent to

W)= 3 ule D) [TEX,
~eP([n)) ber

with p(7,1) denoting the Mobius function on the interval [r,1]. We have
therefore that y1(X) = IE[X], x2(X) = IE[X?] — IE[X]? (the variance of X);
if X is centered, then y4(X) = IE[X*] — 3IE[X?]2.

Given a vector of random variables of the type (Xj,, ..., X;, ), (with possible
repetitions), for every partition o = {by,....,bx} € P([n]), we define the
generalized joint cumulant

k
XU(XZ'D ,in) = HX(X’La ca & bj),
j=1

where x(Xj, : a € b;) is the joint cumulant of the random variables compos-

ing the vector (Xj, : a € bj), as defined e.g. in [26, Chapter 3], satisfying

la
ceP([n])

If the X;’s are independent,

Xjp;|(Xi)  if ig =i for every a € b;

X(Xi, 1a €bj) = .
0 otherwise.

The next statement contains the announced combinatorial representation of
the fourth cumulant of a homogeneous sum in the classical case.
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Proposition 3.1. Let d > 2 and let f : [n]? — IR be an admissible kernel.

Form =1,...,d and for fized j1, ..., jm € [n], denote by Qn(f(J1,- -1 Im,*))
the homogeneous sum of order d — m based on a sequence of i.i.d. standard

Gaussian random variables N = {N; : i > 1} and on the kernel

(il, . ,id_m) — f(jl, e ,jm,il, . ,id_m),

namely,

n

QN(f(]l??]TrL?)): Z f(jla"-7jm77:17-"7id7m)Ni ”'Nid_m'

11 yeeeybd—m=1

If X satisfies Assumption (A), then

x4(@x(f)) = xa(@n(f)) (3.1)
d d 4 n
+> <m> M ()™ > BN G- i)Y
m=1 J1yeesim=1

Proof. Throughout the proof, one may and will identify each partition o €
P35 4([4d]) with the triplet (m,u, ) (and we will write o(m, u, 7) instead of
o accordingly), where:

(a) m € {0,1,...,d} indicates the number of 4-blocks of o,
(b) the collection of four ordered m-tuples with no repetitions

2

u= {(u%v "'7u'}n)7 ey (uzlla 7u;1n)

is such that, for every j = 1,...,m and every ¢ = 1,2, 3, 4, the symbol
u; stands for the element of the ith block of 7* that is contained in
the jth 4-block of o,

(¢c) 7 € Py(A(u)) is a uniquely defined pairing respecting the restriction
of 7 to A(u) := [dd]\{ul,...,ul ..., ui, ..., ut}.

coy Uy

In order to simplify the forthcoming exposition, in what follows we stip-
ulate that the 2d — 2m blocks by, ..., bag_9,m, of T are ordered according to
the increasing size of the smallest element. For instance, ifd =3, m = 1, and
o = {{1,4,7,10},{2,12},{6,8},{5,9},{3,11}}, then one has that
A(u) ={2,3,5,6,8,9,11,12}, and

T ={b1,b2,b3,bs} = {{2,12},{3, 11}, {5,9}, {6, 8} }.

The following formula is a consequence of the classical moment-cumulant re-
lations (see e.g. [26, Proposition 3.2.1]) together with condition («) satisfied
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by the admissible kernel f:

n

EQx(/)']= > flir,-ria) - flizar,- - isa) B[X, - Xi,]
i1yeeigg=1
= Z f(il,...,id>...f(i3d+1,...,i4d) Z XU(Xi1a---aXi4d)
’il,...,i4d:1 UGP([4dD
oAT*=0
d
=0 T Jlyendm=141,0. 924 2m=1
f®4 []17 ceey iy ULy ey ZQd—Zm] Xo(m,u,T) (Xiw RRE Xl'4d)' (32)

n (3.2), the following conventions are in order: (i) the second sum runs over
all collections of four ordered m-tuples with no repetitions

u= {(u%, ...,u,ln), e (u‘ll, :in)}

such that {ujl, ,uﬁn} c{(j—-1d+1,...,5d}, j = 1,2,3,4, (ii) the third
sum runs over all 7 € Pa(A(u)) respecting the restriction of 7* to A(u), and
(iii) the factor

f®4[j17 "'7jm7 ila ceey Z.2d727n]
is obtained along the four steps described below:

(iii-a) pick an arbitrary enumeration ay, ..., a,, of the m 4-blocks of o(m,u, 7)
(by symmetry, the choice of the enumeration of the 4-blocks is im-
material), and let by, ..., bag_2,, be the enumeration of the 2-blocks
of o(m,u, 7) obtained by ordering such blocks according to the size
of the smallest element (as described above).

(iii-b) Consider the mapping in 4d variables given by

I

(T1, ey Taq) f®4($17 , T4d) H iU(g 1 d+1a---a33jd)'

(iii-c) For [ = 1,...m, set z3 = j; into the argument of f®* if and only if
k € ay.
(iii-d) For p = 1,...,2d — 2m, set ¥, = i, into the argument of f®* if and
only if ¢ € b,.
For instance, for d = 3 and (m,u,7) associated with the partition
o=1{{1,4,7,10},{2,12},{6,8},{5,9},{3,11}} considered in the above ex-
ample, one has that

f®4[j7i17i2a7;37i4] - f(.]a i17i2)f<j7i377;4)f(j7 7;47’5.3).]0(].7 Z.Quil)'
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Now, an immediate consequence of the symmetry of f is that, for fixed m,
the value of the triple sum

n n
Z Z Z f®4[jla"’ajm)ila'"aiQd—Qm] Xa'(m,u,T)(Xi17"'7Xi4d)

T JiyeeJm=111,i2g—2m=1

in (3.2) does not depend on the choice of u, and also
Xa'(m,u,T) (Xila cee 7Xi4d) = X4(X)m7

4
due to Assumption (A). Since, for every m, there are exactly m!* (i) differ-
ent ways to build a collection u of four ordered m-tuples with no repetitions
such that

{ul, .. ul} c{(j—1)d+1,...,jd}

(j =1,2,3,4), we immediately infer the relation

d 4 n n
pox()] = X (1) mucorY Y% (33

m=0 T Jiyeesdm=111,...,i0g—om=1
YL, ooy G i1y oos T2d—20m)-
Due to
I Lii=ij) if 0 € P2([4d)])

Xo(Niyy. ..y Niy,) =  {biteo
0 otherwise ,

the summand for m = 0 equals to IE[Qn(f)?*], and hence we can rewrite
(3.3) as the right-hand side of (3.1), leading to the desired conclusion. [

3.3. Fourth moment formulae in the non-commutative case. We
now switch to the non-commutative setting considered in Section 2.3.
For a generic non-commutative random variable Y, we write x;(Y), j =
1,2, ..., to indicate the jth free cumulant of Y (see [15, Lecture 11]).
For m € NC([n]), the generalized free cumulant k.(Y) is the mapping Y —
ke (Y) = ] wpp(Y), verifying the formula

ber

P = Y ka(Y),

reNC([n))

or equivalently

)= S ) [,
reNC([n) ber
with u(m, 1) denoting the Mobius function on the interval [r,1] (see [15,
Chapter 11] for more details). We have therefore that x1(Y) = ¢(Y),
ka(Y) = o(Y?) — o(Y)?; if Y is centered, then x4(Y) = ¢(Y*) — 2p(Y?)2.
Yi,) (with possible

in

Given a vector of random variables of the type (Y;,, ...,
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repetitions), for every partition o = {b1,...,bx} € NC([n]), we define the
generalized free joint cumulant

k
ko (Yiyy o Yi,) = H/i(Y;a ta € bj),
j=1

where £(Y;, : a € b;) is the free joint cumulant of the random variables
composing the vector (Y, : a € b;), (see [15, Proposition 11.4]), satisfying
the moment-cumulant formula:

o(Yi, - Yi) = > he(Yi, . Yi)
cENC([n])

If the Yj’s are freely independent,

Kip (Y if 4, = i for every a € b;
w(Yi, 0 € b)) = b, (Y2) a very j
0 otherwise.

The following statement contains the non-commutative version of Proposi-
tion 3.1.

Proposition 3.2. Fiz d > 2 and let f : [n]* = IR be an admissible kernel.
Then, if Y satisfies Assumption (B),

n

Qv ()Y = 0(@Qs(HY) +ra(V) D 0(Qs(f(k, )Y, (3.4)

k=1
where, for every k =1,...,n, we have set:

n

Qs(f(k,) = > flkkioo o ka1)Sk - Skyys

E1yekgo1=1

with S = {S; : i > 1} a sequence of freely independent standard semicircular

random variable defined on (A, ).

Proof. Tt is a classic fact that, if S = {S; : ¢ > 1} is the collection of freely
independent semicircular random variables appearing in the statement, then
Ko (Siys vy Siy,) = 0 whenever o contains a block b such that |b| # 2; also,
when all blocks of ¢ have size 2,

KU(SiI,...,Si4d) = H 1{%:”}
{k,l}eo
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From the free moment-cumulant formula, we deduce that

e(Qv(H)*) (3.5)
= > flrvda) o flisar, o iaa) oV - Yiy,)
i1yeenyiag=1
= Y flria) o flisarn-oisa) Y, Re(Yis .o Yi,).
i1,.tad=1 oceNC([4d])
oAT*=0

In the previous sum, a partition o € NC([4d]) such that o A 7 = 0 gives a
non-zero contribution only if its blocks have cardinality either 2 or 4. Indeed,
since Y is centered, o cannot have any singleton. Similarly, o cannot have
any block of cardinality 3: otherwise, the non-crossing nature of ¢ would
imply the existence of at least one singleton and the corresponding cumulant
would vanish. Therefore, the only non-vanishing terms in the sum appearing
in the last line of (3.5) are those corresponding to non-crossing partitions
that respect 7*, and whose blocks have cardinality either 2 or 4. Recall that
this class of partitions is denoted by NC3 ,4([4d]), in such a way that we can

write
p(Qv ()Y (3.6)
= Y flresia) .o flisarn-oisa) Y Re(Yi, .o Yiy,).
U15ee58gg=1 oceNC3 ,([4d])

In view of the non-crossing nature of the involved partitions, one can in-
deed give a very precise description of the class N'C3 4([4d]) as the following

disjoint union:
NC; 4([4d]) = NC5([4d]) U{pr, ..., pa}

where, for h = 1, ..., d, the partition p; contains exactly one block of size 4,
given by
{h,2d —h+1,2d+ h,4d — h + 1}

and the remaining blocks of size 2 are completely determined by the non-
crossing nature of pp:

(1) j~2d—j+1,for j=h+2,...,d;

(2) j~dd—j+1,forj=1,... b

(3) 2d+j~2d—j+1,forj=1,... h

(4) 2d+j~4d—j+1,forj=h+2,...,d.
Now, if 0 € NC5([4d]), the freely independence of the Y;’s yields that

K/U(}/ji17"'7}/i4d) = H 1{ik=il} :K’O'(S’il)"'75i4d))
{k,l}eo
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in such a way that

S flnyevia) o flisarts - ovisa) Y Fo(Yin. o, Yig,)

11 yens84d=1 oeNC5([4d])

= Y flrevia) . flisacts-ovisa) D> Ke(Sie s Sin)
il,...,i4d:1 UGNC§,4([4dD

= p(Qs(H)YH

(it is indeed an easy exercise to show that the last equality is exactly equiv-
alent to (2.3)). On the other hand, for h =1, ..., d, one has that

Kpp, (Yiw s ’Yi4d) = K4(Y)1{ih:izd—h+1:i2d+h:i4d—h+1} H l{ik:iz}'
{k,l}e€o

The symmetry of f yields the following identities:

n
Z f(/ilw")id)"'f(/i3d+17"‘7i4d)’€p1(Y;;17-"7}/1'4(1)

21,...,044=1
n
= Z f(ila'"7id)"'f(i.?)d-i-l;"'7i4d)ﬁpd(m17"'7Yvi4d)
01 4eeeyigg=1
2
n n

:,@4(Y)Z Z Fkogn, s ja1)® |

k=1 \J1,---,ja—1=1

and, for h = 2,...,d — 1, writing s = d — h,

n
Z f(i17' "7id) - 'f(i3d+17-"7Z‘4d>’l€ph(}/;17-" 7}/;‘4d)

0150e84d=1

n

Y Y Y

k=1j1,Jjd-1-s=1 k1, . kg_1_s=1
2

Z f(kajlv "'7jd—s—17 Ay, ..., as)f(ka kl; ey kd—l—s; A1y ...y as)

at,...,as=1

Summing up the previous expression for all s =1, ...,d — 2, and for h = 1,d,
a straightforward application of formula (2.3) in the case m = d — 1 and
g = f(k,-) therefore implies that

d n
ST flria) . fisars - iad)kp, (Y, Vi)

from which the desired conclusion follows. O
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4. PROOFS

4.1. Proof of Theorem 2.3. We shall show that, for a given sequence of
kernels {f, : n > 1}, the implications (iii)— (ii)— (i)—(iii) are in order, with
(i), (ii) and (iii) as given in Definition 2.2.

Proof of (ili)—(ii). Consider the formula (3.1), and bear in mind that
X4(X) > 0 due to our hypothesis. Let N ~ A (0,1) and let N = {N;};>; be
the corresponding sequence of independent copies. Moreover, x4(@n(fn)) =
E[QN ()Y — 3 is positive (see indeed [18, Lemma 5.2.4]). On the other
hand, formula (3.1) entails that

X4(Qx(fn)) = E[@x(f2)'] — 3 > E[QN(fn)"] — 3,

from which one deduces that, if (iii) holds, then IE[@Qn(f,)*] — 3. Since N
satisfies the CFMT; (Theorem 2.2), it follows that (i7) takes place.

Proof of (ii)—(i). It is the conclusion of Theorem 2.1.

Proof of (i)—(iii). Due to [21, Lemma 4.2], the sequence Qx(f,)?* is uni-
formly integrable. Therefore, the conclusion follows as for the proof of [18,
Theorem 11.3.1]. O

Remark 4.1. We have chosen to deal with the i.i.d. case just to ease the no-

tation and the discussion. We could have considered a sequence X = {X;}i>1

of independent centered random variables, with unit variance, possibly not

identically distributed, but starting from an inequality instead of an equality.
m

Indeed, for every m = 1,...,d and every n, set ’yém) = min xa(X5,),
1

il»n-yime[n} =

and A4, = min 7,({“). Assume further that there exists A > 0 such that

m=1,...,

11;f1 A, > A (which is clearly satisfied if x4(X;) > 0 for all ¢). Then, from
the inequality
EQx(H)'] = ElQn(f)]+

d 4 "
A Zl (i) EDIIEDD > s Gty e i2d-2m)

T Jiyesim=li1,..,02d—2m=1
it is possible to handle the case when the X;’s are independent centered r.v.’s,
with unit variance, but not necessarily identically distributed, yielding that

Law

E[Qx(f.)* — 3 is a sufficient condition for the convergence Qx(f,) =
N(0,1).

Remark 4.2. An extension of Theorem 2.3 in the setting of Gamma ap-
proximation of homogeneous sums of even degree d > 2 can be achieved in
the following way. If v > 0, let G(%) denote a random variable with Gamma
distribution of parameter ¢, and set F'(v) faw 2G(%)—v. HIEQN(fr)?] — 2v
and IE[QN(fn)3] — 8v, from identity (3.7) in [16] it follows that

E[Qn(f2)'] — 12IE[QN(f1)%] — (1207 — 48v) > 0,
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for sufficiently large n. Then, under the assumption IE[X?3] = 0, IE[Qx (f»)?] =
IE[QN(fn)?], one has that:

E[Qx(f.)"] - 12E[Qx(f2)*] — (12v* — 48v) =
E[Qn(fa)'] - 12E[Qn(f,)*] — (120 — 48v)

n

d 4
+ Z (ZL> m!4X4(X)m Z ]E[QN(fn(jlﬁ""jm"))Zl]’
m=1 j

By exploiting [16, Theorem 1.2] and with the same strategy as in the proof
of Theorem 2.3, it is possible to provide a Fourth Moment statement for
Qx(fn) when the target is the the Gamma distribution (note that the uni-
versality of Gaussian homogeneous sums w.r.t. Gamma approximation has
been established in [21, Theorem 1.12] both for homogeneous sums with

ii.d. entries and with only independent entries).

4.2. Proof of Theorem 2.6. We shall show the series of implications
(iii) = (ii)'— (1)’ — (iii)’, with (i)’, (i)’ and (iii)’ as given in Definition 2.3.
Proof of (iii)’—(ii)’. Consider the formula (3.4) and bear in mind that
k4(Y) > 0 due to our hypothesis. Let S ~ §(0,1) and let S = {S;};>1 be
the corresponding sequence of freely independent copies. We then have that
k4(Qs(frn)) = (Qs(fn)*) — 2 is positive, see indeed [12, Corollary 1.7]. On
the other hand, formula (3.4) entails that

d?k4(Qy (fn)) = dP(Qy (fn)*) —2 > dp(Qs(fn)*) —2 > ©(Qs(fn)*) —2

from which one deduces that, if (iii)’ holds true, then p(Qs(f,)*) — 2. Since
S ~ §(0,1) satisfies the NCFMT, (Theorem 2.5), one has that (ii)’ takes
place.

Proof of (ii))’—(i)’. It is the conclusion of Theorem 2.4.

Proof of (i)’—(iii)’. It comes from the very definition of the convergence in
law in the free case (that is, the convergence of all the moments). O

Remark 4.3. As in the commutative case, we have chosen to deal with
the i.i.d. case just to ease the notation and the discussion. We could have
considered a sequence Y = {Y;};>; of freely independent centered random
variables, with unit variance, possibly not identically distributed, but start-
ing from an inequality other than an equality. Indeed, for every n > 1, set
Brn = min k4(Y;), and assume that there exists 4 > 0 such that Tllr;fl Bn > B.

i=1,...,n
In particular, lim 5, = inf 5, > 5. Then,
n—o00 n>1

n

P(Qv (') = e(Qs(H') + B> w(@s(f(k,))"),

k=1
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entailing that the sequence of freely independent random variables Y =
{Y;}i>1 satisfies the Fourth Moment Theorem for homogeneous sums in di-
mension d for semicircular approximation: that is, d!?x4(Qvy (f)) — 0 is a
necessary and sufficient condition for the convergence in law of Qy(f,) to

the semicircle law.

Remark 4.4. Assume that d > 2 is even. Then, (p(QY(f)3) = cp(Qs(f)3)
(indeed, if NC+( denotes the set of partitions with no singleton, [N C%([3d])| =
INC3([3d])|) and so, if further we assume that ¢(Qy(f)?) = SO(QS f)?) =

A > 0, from (3.4) it follows that:

P(Qy () = 20(Qv (f)?) = (222 = X) = (2(@s(£)") = 20(Qs(f)*) — (2X% = X))

n

+ra(Y) ) o(Qs(k,)?).

k=1
From this formula, considering the Fourth Moment Theorem for free Poisson
approximation of Wigner chaos established in [19], the analogous of the
Theorem 2.6 with respect to the Free Poisson limit can be achieved.

5. ON THE EXISTENCE OF THRESHOLDS FOR THE FOURTH MOMENT
CRITERION

In Section 2, we have shown that the condition (A) together with IE[X*] > 3
(resp. (B) together with p(Y#) > 2) is sufficient to ensure that X is Uy and
satisfies the CFMTy (resp. Y is FU, and satisfies the NCFMTy).

It is a natural question to determine whether this condition is necessary.
In other words, for a given degree d > 2, what is the smallest real number
rq € (1,3] (resp. sq € (1,2]) such that, if IE[X*] (resp. ¢(Y*)) is greater
than rg (resp. sq), then X is Uy and satisfies the CFMTy (resp. Y is FUy
and satisfies the NCFMTy)?

5.1. Existence of a threshold in the classical case. So far, in the clas-
sical case we are able to determine the existence of the threshold only under
the extra assumption that X is U;. Before stating our results, we need some
preliminary results.

Proposition 5.1. Let X satisfy (A), Uy and CFMTy, for d > 2. Then

either x4(Qx(f)) < 0 for every admissible kernel f, or x4(Qx(f)) > 0 for
every admissible kernel f.

Proof. Step 1: First, we prove that if X is CFMT; and Uy, then
x4(@x(f)) # 0 for every admissible kernel f. Indeed, if there exists f such
that x4(@x(f)) = 0, then the constant sequence Qx (f) will be normal, and
then, being X Uy, we would have Qn(f) = 2 (0,1), which is absurd.
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Step 2: Assume now that there exist two admissible kernels fo and f; such
that IE[Qx (fo)*] > 3 and IE[Qx(f1)%] < 3. Consider, for every t € [0, 1], the
admissible kernel

fe =

th+@-t)fo
VE[Qx (f1) + (1 — )Qx (f0))?]
Since X4(Qx(f1)) < 0 and X4(Qx(f0)) > 0, there exists t* € (0,1) such
that x4 (QX( ft*)) = 0, which is impossible due to the conclusion of the first
step. O

Remark 5.1. It is always possible to construct a homogeneous sum with
positive fourth cumulant. Indeed, for n large enough, consider the homoge-
neous polynomial (with admissible kernel g,,)
Xél) .. .X(gl) 4ot Xé"fl) .. .X(gnfl)

vn—1 ’

where X j@ is a sequence of independent copies of X. A direct computation

Qx(gn) = X1 ¥

provides

E[X*4! -3

BQx (o)’ = L] (34 20 =0 o sl > s

Proposition 5.2. Let X satisfy (A), CEMTy and Uy. Then necessarily
E[X?] > /3.

Proof. As a consequence of the previous proposition, if X is CFMT,; and
Uy, then IE[X?] # /3 (otherwise, for Qx(f) = X1 --- X4 we would have
x4(Q@x(f)) = 0). Now we will proceed by contradiction: assume that
E[XY] € (1,¥/3). Then, for Qx(f) = X1 --- X4, E[Qx(f)*] < 3, and
hence we expect IE[Qx(g)?] < 3 for any other admissible kernel g, which
contradicts the previous remark. Hence if IE[X?*] < /3, X cannot satisfy
the CFMTj. O

The main result of this section is stated in the next theorem.

Theorem 5.1. Letd > 2. Then, there exists a real number rq € (¥/3, 3] such
that, for any random variable X satisfying (A) and being Uy, the following

are equivalent:

(1) X satisfies the CFMTy;
(2) E[X*] > ry.

Proof. Let X satisfy the CFMT,; and Ug. Then, as a result of the above
discussion, IE[Qx(f)*] > 3 for every admissible kernel f. Let Z be a
centered random variable, with IE[Z3] = 0 and unit variance, such that
IE[Z%] > IE[X*]. To obtain the existence of the desired threshold rg, it is
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enough to show that Z satisfies the CFMT, as well. We will proceed in sev-

eral steps, considering mixtures between X and a suitable random variable
T.

Step 1. Set 6 = IE[Z4]/IE[X*] — 1, let ¢ € N, and set a = /(14 6)1/9 — 1.
Since (1 + «9)1/‘1 — 1 as ¢ — 0o, one may and will choose g large enough so
that « € [0,1). Now, let Vi,...,V, be independent copies with distribution
%(61_(1 + 614q). Assume further that Vi,...,V, and X are independent.
Then, the random variable T' = \/Vl—Vq is independent of X, takes its
values in [z,00[ with = (1 — a)¥? > 0, and satisfies IE[T?] = 1 and
E[T*) = (1 + a2)7 = B[2*]/IE[X"].

Let X1, Xo,... (resp. T1,Ts,... and Z1, Zs,...) be a sequence of indepen-
dent copies of X (resp. T and 7).

Step 2. Set Qrx(fa) = 5 fuliv, i) (Tu Xs,) - - (T, Xi,). We de-

i1y ig=1
duce from Step 1 that IE[Qrx(f.)?] = 1 and E[QTx(f»)*] = E[Qz(fn)*].
Separating the expectation according to the sequences {7;} and {X;} (set-
ting IEr[-] = [E[-|X] and Ex[-] = I[E[:|T]), we can write:

IE[QZ(fn)4] -3=
= Er [Ex [Qrx(fa)!] — 3]
= Er [Ex [Qrx(fn)*] — 6Ex [QTx(f2)?] + 3]

— Ep [(IEX [Qrx(fn)Y] — 3TEx [QTX(fn)2]2) +3 (Ex [Qrx(f2)?] - 1)2} .

Since IE[X?4] > /3 and X is Uy and satisfies the CF MTy, almost surely in
{T}}i>1 one has, according to Proposition 5.1, that:

Xa(Ex[Qrx (f2)]) = Ex [Qrx (fa)'] — 3Ex [Qrx(f)?] > 0.

Assume now that IE[Qz(f,)* — 3 as n — oo, that is,

(5.1)

]ET |:(IEX [QTX(fn)4] — 3IEX [QTX(fn)2] 2) + 3 (IEX [QTX(fn)Q] - 1)2} — 0;

see indeed (5.1). Up to extracting a subsequence and due to the positivity
of summands, we deduce that, almost surely in {T;};>1,

Ex [Qrx(f.)?] — 1,
Ex [QTX(fn>4] — 3. (5.2)

Step 3. Since X satisfies the CFMTy, we deduce from (5.2) that, almost
surely in {T;},

Qrx(fn) == N(0,1).
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But X is assumed to be Uy so, by Theorem 2.1, it follows that, almost surely
in {T}}i>1,

n
max E fn(ilaiQ,"' 7id)2(ﬂl “'j—‘id)Q 0.
1<i1<n . Y
12, 50d=

Using that 7; > x > 0 for all ¢, we finally deduce that

n
. . \2
s, D nlin i)t om0 0
S Gy ia=1
This condition and de Jong’s criterion (see [20, Theorem 1.9] for a modern
proof), ensure that Z satisfies the CF M T, as well. Besides, the law of Z is

U,.

Step 4 (Conclusion). The desired threshold 74 is thus given as being the
smallest real number ¢ € (+/3,3] such that there exists X satisfying (A),
the CFMTy, being Uy and with IE[X?] = ¢. O

Remark 5.2. In [21, Proposition 4.6, the authors provided the CFMT,
when IE[X?] = 1, that is, when we are dealing with the Rademacher chaos of
order 2. The case d > 3 is still open to the best of our knowledge. Neverth-
less, the reader should bear in mind that Rademacher chaos is not Uy (see,
for instance, [21]), and hence such result is not in contrast with our approach.

5.2. Existence of a threshold in the free case. In order to generalize in
the free probability setting the technique of the mixtures used in Section 5.1,
one should consider a sequence {Z;} of freely independent random variables,
freely independent of {S;} in such a way that the Z;’s and the S;’s com-
mute. But this is possible only if Z; has vanishing variance (see [15, Lecture
5]). Hence we will adopt a different approach to reach the free counterpart
of Theorem 2.3, which, in the meantime, will highlight the simplicity and
usefulness of formula (3.4), that avoid us to assume that Y is FUy. Let us
remark that since formula (3.1) is not linear in x4(X), the following strat-
egy cannot be adapted for the determination of the threshold in the classical

case.

Remark 5.3. It is always possible to construct a sequence of homoge-
neous sum Qy(g,) converging in distribution towards an element of the
d-th Wigner chaos, and hence having positive fourth cumulant. Indeed, if
Y = {Y;}i>1 is a sequence of freely independent and identically distributed
random variables, centered, and with unit variance, for every n € N and
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every ¢ = 1,...,n, set:
1 n
ZV = — Y 1yarn
n \/ﬁjzl (j—1)d+i

Then, consider the homogeneous sum Qvy(g,) =d'=! Y Z,(f(l)) e ZT(LU(d)).
gEYy

First, the free CLT states that {ZT(Li)}n By ) S5(0,1) for every i =

1,...,d, with the S()’s freely independent. Then, the multidimensional

CLT (see [15, Theorem 8.17]) assures that Qy(g,) converges to an element

in the d-th chaos of Wigner. Since any element of the d-th Wigner chaos

has a stricly positive fourth cumulant (see [12, Corollary 1.7]), we get that

k4(Qv (gn)) > 0 for all n large enough.

Theorem 5.2. Let d > 2. There exists a real number sq € (1,2] such that,
for any random variable Y satisfying (B),

(i) If p(Y?) > sq4, then Y satisfies the NCFMTy;
(i) If 1 < p(Y*) < 54, then Y does not satisfy the NCFMT,.

Proof. The proof is divided into three steps.
Step 1. Let ¢ €]1,2] be a real number such that, for all Y € A centered
with unit variance, we have the following implication:

(4p(Y4) = t) = Y satisfies the NCFMT,. (5.3)

We will show that, under this assumption, k4(Qy(f)) > 0 for every f
or k4(Qy(f)) < 0 for every f. By contradiction, assume that there ex-
ist two admissible kernels f,g : [n]Y — IR such that k4(Qv(f)) < 0 and
k1(Qv(g)) > 0. By taking an appropriate linear combination of f and g,
we can construct an admissible kernel h such that k4(Qv(h)) = 0. Using
Proposition 3.2, for any free random variable Z centered with unit-variance
such that p(Z%) = p(Y?) = t, we also have k4(Qz(h)) = 0. But Z satis-
fies the NCFMT, by (5.3), so the constant sequence Qz(h) is semicircular.
Summarizing, under the assumption (5.3), we have that Qz(h) is semicir-
cular (implying that k,(Qz(h)) = 0 for any p > 3) for all centered Z with
unit variance such that ¢(Z*) = t. On the other hand, let E denote the set

{(A(2%),0(2%),0(2°) € | Z € A, (2) = 0,0(2%) = 1,0(2") = t}.

From above, by expanding ke(Qz(h)) = 0 as a multivariate polynomial
P, in p(Z3),0(Z°),0(Z%), it turns out that E C {(a,b,c)|P(a,b,c) = 0}.
In particular, F has zero Lebesgue measure. On the other hand, since
the criterion of solvability of the Hamburger moment problem is a nec-
essary condition for the solvability of the Hausdorff moment problem, if
(a,b,c) € E, then in particular the Hankel matrix M; = (o(Z77))o<; j<3 is
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positive definite (see [5, Theorem 6.1]). However, the set of triplets (a, b, c)
such that M; is positive is a non-empty open subset of IR® and has then a
positive Lebesgue measure. By contradiction, we deduce that the existence
of the admissible kernel h is impossible, meaning that either k4(Qy (f)) >0
for all admissible f : [n]? — IR, or x4(Qy(f)) < 0 for all admissible
f : [n]¢ = IR. By virtue of the previous remark, if Y satisfies the NCFMTy,
then k4(Qy (f)) > 0 for every admissible kernel f.

Step 2: Let Z be a centered random variable with unit variance such that
©(Z*) > t (with t such as (5.3)). We shall prove that Z satisfies the
NCFMT,. So, assume that xk4(Qz(fn)) — 0 as n — oo for a given se-

quence of admissible kernels f,,. By applying the formula (3.4) to Y and Z
and by taking the difference, we obtain:

d?k4(Qz(fn)) = dka(Qy (fo))+(0(Z") =1)d* >~ o(Qs(fulk,))"), (5.4)

k=1

from which it follows that Y ¢(Qs(fn(k,))*) — 0. Therefore, considering
k=1

in the limit the formula (3.4) for Z, we infer that
k4(Qs(fn)) — 0 as n — oo. Theorem 2.5 combined with Theorem 2.4
allows to conclude that vd'Qz(f,) oy S§(0,1) as n — oo. That is, Z satis-
fies the NCFMT,.

Step 3 (Conclusion). The desired threshold sy is thus given as being the
smallest real number ¢ €]1,2] such that there exists Y satisfying (B), the
NCFMTy and with p(Y4) = ¢. a
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