DG AFFINITY OF DQ-MODULES
FRANCOIS PETIT

ABSTRACT. In this paper, we prove the dg affinity of formal defor-
mation algebroid stacks over complex smooth algebraic varieties.
For that purpose, we introduce the triangulated category of for-
mal deformation modules which are cohomologically complete and
whose associated graded module is quasi-coherent.

1. INTRODUCTION

Many classical results of complex algebraic or analytic geometry have
a counterpart in the framework of Deformation Quantization modules
(see [8]). Let us mention a few of them, Serre duality, convolution of
coherent kernels, the construction of Hochschild classes for coherent
DQ-modules in [8], a GAGA type theorem in [7] and Fourrier-Mukai
transforms in [1] etc.

In this paper, we give a non-commutative analogous of a famous re-
sult of Bondal-Van den Bergh asserting the dg affinity of quasi-compact
quasi-separate schemes (see [4, Corollary 3.1.8]). In the framework of
formal deformation algebroid stacks, the notion of quasi-coherent ob-
ject is no more suited for this purpose. Thus, we introduce the notion
of cohomologically complete and graded quasi-coherent objects (qcc for
short). The qcc objects of the derived category D(Ax), where Ax is a
formal deformation algebroid stacks, form a full triangulated subcate-
gory of D(Ax) denoted Dyc.(Ax). This category can be thought as the
deformation of Dyeon(Ox) while deforming Ox into Ax (see Theorem
4.2.1). We prove that the image of a compact generator of Dgeon(Ox)
is a compact generator of Dyc.(Ax). The existence of a compact gener-
ator in Dyeon(Ox) is granted by a result of Bondal-Van den Bergh (see
loc. cit.). Hence, the category Dgc.(Ax) is dg affine.

The study of generators in derived categories of geometric origin has
been initiated by Beilinson in [2]. The results of [4] have been refined
by Rouquier in [19] where he introduced a notion of dimension for tri-
angulated categories. Recently, in [20] Toen generalized the results of
Bondal and Van den Bergh and reinterpreted them in the framework
of homotopical algebraic geometry.
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This paper is organised as follows. In the first part, we recall some
classical material concerning generators in triangulated category. We
review, following [8], the notion of cohomological completeness and its
link with the functor of h-graduation. We finally state some results
specific to deformation algebroid stacks on smooth algebraic varieties.

In the second part of the paper, we introduce the triangulated cat-
egory of qcc objects, that is to say elements of D(Ax) that are co-
homologically complete and whose associated graded module is quasi-
coherent. We prove that the category Dg..(Ax) admits arbitrary co-
products. The coproduct is given by the cohomological completion of
the usual direct sum (Proposition 3.2.10) then we prove that Dge.(Ax)
is compactly generated (see Proposition 3.3.3 and Lemma 3.3.4). Rely-
ing on a theorem of Ravenel and Neeman (see [18] and [15]) we describe
completely the compact objects of Dyec(Ax) (see Theorem 3.3.8). They
are elements of D%, (Ax) satisfying certain torsion conditions. Finally,
we conclude this section by proving that Dy (Ax) is equivalent as a
triangulated category to the derived category of a suitable dg algebra
with bounded cohomology (see Theorem 3.4.1).

In the last section, we study qcc sheaves on an affine variety and
prove that the equivalence of triangulated categories between Dgcoh(O X)

and D*(Ox (X)) lifts to an equivalence between D?.(Ax) and the tri-
angulated category D’ (Ax (X)) of cohomologically complete Ay (X)-
modules (see Theorem 4.2.1).

Acknowledgement. I would like to express my gratitude to my ad-
visor P. Schapira for his patience and enthusiasm in sharing his math-
ematical knowledge. I would also like to thank Masaki Kashiwara for

enlightening discussions and Grégory Ginot for his constant support.

2. REVIEW

2.1. Generators and Compactness in triangulated categories:
a review. We start with some classical definitions. See [16], [4].

Definition 2.1.1. Let T be a triangulated category. Let & = (G;)ier
be a set of objects of T. One says that & generates T if for every
F € T such that Homy(G;[n], F) = 0 for every G; € & and n € Z then
F~0.

Recall that if 7 is a triangulated category, then a triangulated sub-
category B of T is called thick if it is closed under isomorphisms and
direct summands.

Definition 2.1.2. Let S be a set of objects of T. The smallest thick
triangulated subcategory of T containing S is called the thick envelope
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of S and is denoted (S). One says that S classically generates T if (S)
is equal to T .

Definition 2.1.3. Assume that T admits arbitrary direct sums in a
given universe. An object L in T is compact if Homy (L, ) commutes
with direct sums. We denote by T¢ the full subcategory of T consisting
of compacts objects.

Definition 2.1.4. Let T be a triangulated category admitting arbitrary
direct sum in a given universe. The category T is compactly generated
if it is generated by a set of compact objects.

The following result was proved independently by Ravenel and Nee-
man, see [15] and [18].

Theorem 2.1.5. Assume that T is compactly generated then a set of
objects S C T¢ classically generates T if and only if it generates T .

We give an inductive description of the thick envelope of a subset of a
triangulated category. For that purpose, we introduce a multiplication
on the set of full subcategories of a triangulated category. We follow
closely the exposition of [4].

Definition 2.1.6. Let T be a triangulated category. Let C and D be
full subcategories of T. Let C x D be the strictly full subcategory of T
whose objects E occur in a triangle of the form

C—FE—D—C[l]
where C € C and B € D.

Proposition 2.1.7. The operation % is associative.

Let S be a set of objects of 7. We denote by add(S) the smallest full
subcategory in 7 which contains S and is closed under taking finite
direct sums and shifts.

We denote by smd(S) the smallest full subcategory which contains S
and is closed under taking direct summands.

Lemma 2.1.8. If C and D are closed under finite direct sums, then
smd(smd(C) x D) = smd(C x D).

Denote

(8)1 = smd(add(S))
(S)p =smd((S)1 x...x(S)1)

k factors
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Then (S) is the thick envelope of S (see Definition 2.1.2).

2.2. Recollection on algebraic categories. In this section, we recall
some classical facts on algebraic categories, [10], [11], [12]. In this
section R is a commutative unital ring.

Definition 2.2.1. A Frobenius category & is an exact category (in the
sense of Quillen [17]) with enough projective and injective objects such
that an object is projective if and only if it is injective.

Let o and ¢” in £ We denote by N (o, ¢') the subgroup of Homg (o, o)
formed by the maps that can be factorized through an injective object.
We denote by £ the category with the same objects as £ and whose
morphisms spaces are the quotients Homg (o, 0 ) /N (0,0). The cate-
gory & is called the stable category of £. A classical result states that
£ is a triangulated category.

Definition 2.2.2. One says that an R-linear triangulated category is
algebraic if it is triangle equivalent to the stable category of an R-linear
Frobenius category.

Proposition 2.2.3. A triangulated subcategory of an algebraic trian-
qulated category is algebraic.

Proposition 2.2.4. The derived category of a Abelian category is al-
gebraic.

We have the following theorem from [11] which is a consequence of
[10, Theorem 4.3]. If A is a dg category, we denote by D(A) its derived
category in the sense of [10] (note that D(A) is not a dg category).

Theorem 2.2.5. Let £ be a cocomplete Frobenius category and set
T =E&. Assume that T has a compact generator G. Then, there is a dg
algebra A and an equivalence of triangulated categories F': D(A) — T
with F(A) = G. In particular, we have

H"(A) = Homp)(A, Aln]) = Homy (G, Gn]), n € Z.

2.3. The case of Dgycon(Ox). Let (X, Ox) be a scheme. We denote
by Qcoh(X) the category of quasi-coherent Ox-modules. Its derived
category is denoted by D(Qcoh(X)). We write Dycon(Ox) for the full
triangulated subcategory of D(Ox ) consisting of complexes with quasi-
coherent cohomology.

Theorem 2.3.1 ([3]). If X is a quasi-compact and separated scheme
then the canonical functor D(Qcoh(X)) — Deon(Ox) is an equivalence.
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Definition 2.3.2. Let (X,Ox) be a scheme. A perfect complex on
X is a complex of Ox-modules which is locally quasi-isomorphic to a
bounded complex of locally free Ox-modules of finite type. We denote
by Dper(Ox) C Dyeon(Ox) the category of perfect complezes.

In this paper, we are interested in complex smooth algebraic vari-
eties. We give a few properties of perfect complexes in this setting.
Since X is an algebraic variety, X is a Noetherian topological space.
Thus, a perfect complex in Dyeon(Ox) is in Dgcoh(OX). Since Ox is

Noetherian it follows that Dye(Ox) C D2, (Ox). Finally since X is

coh

smooth, we have D%, (Ox) C Dper(Ox). Thus, on a smooth algebraic
variety, Dper(Ox) = Db, (Ox).

Recall the following theorem from [4].
Theorem 2.3.3. Assume that X is a quasi-compact and quasi-separated
scheme. Then,
(i) the compact objects in D,on(Ox) are the perfect complexes,
(1) Dyeon(Ox) is generated by a single perfect complex.
As a corollary Bondal and Van den Bergh obtain

Theorem 2.3.4. Assume that X is a quasi-compact quasi-separated
scheme. Then D yon(Ox) is equivalent to D(Ag) for a suitable dg algebra
Ay with bounded cohomology.

2.4. h-graduation.

2.4.1. The case of ringed space. In this section, X is a topological space
and R is a Z[h] x-algebra on X without A-torsion.Throughout this text
we assume that 7 is central in R. We set Rg = R/AR. We refer the
reader to [8] for more details.

Definition 2.4.1. We denote by gr, : D(R) — D(Ry) the left derived
functor of the right exact functor Mod(R) — Mod(Rg) given by M
M/BM. For M € D(R) we call gr;,(M) the graded module associated
to M. We have

L
gr, M~ TR, %)/\/l
Proposition 2.4.2. (i) Let K, € D(R?) and Ky € D(R). Then,
L L
g1 (K1 @ o) = gry (K1) @ grj,(Ks).
R Ro

(i7) Let KC; € D(R) (i = 1,2). Then
gr(RHomg (K1, K2)) ~ RHomg, (gr, K1, grj, K2).
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Proposition 2.4.3. Let X and Y be two topological spaces and f :
X — Y amorphism of topological spaces. The functor gr;, : D(Z[h]x) —
D(Z[hly) commutes with the operations of direct images R f. and of in-
verse images.

2.4.2. The case of algebroid stacks. We write C" for the ring C[[h]]. In
this section Ax denotes a C'-algebroid stack without A-torsion. As in
the previous subsection we refer the reader to [8].

Definition 2.4.4. Let Ax be a C'-algebroid stack without h-torsion
on a topological space X. One denotes by gr,(Ax) the C-algebroid as-
sociated with the prestack & given by:

Ob(S(U)) = Ob(A(U)) for an open set U of X,
Home (o, 0') = Homy(o,0')/hHomy(o,0") for 0,0 € A(U).

There is a natural functor Ax — gr,;(Ax) of C-algebroid stacks.
This functor induces a functor

ty : Mod(gr; Ax) — Mod(Ax).
The functor ¢, admits a left adjoint functor M — C ®cn M. The
functor ¢4 is exact and it induces a functor

lg : D(gl"h.Ax) — D(.Ax)
On extends the definition of gr; by

L L
gry(M) =~ gr;(Ax) % M =~ CgM-

The propositions of the preceding subsection concerning sheaves ex-
tend to the case of algebroid stacks. Finally we have the following
important proposition.

Proposition 2.4.5. The functor gr, and i, define pairs of adjoint
functors (gry, ty) and (tq, gry[—1]).
Proof. We refer the reader to [8, proposition 2.3.6]. O

2.5. Cohomologically Complete Module. In this subsection, we
briefly recall some facts about cohomologically complete modules. We
closely follow [8] and refer the reader to it for an in depth treatment of
the notion of cohomological completeness.

In this section, X is a topological space and R is a Z|[h]x-algebra
without A-torsion. We set R := Z[h, i '] @z R.

The right orthogonal category D(R'®)" to the full subcategory
D(R™¢) of D(R) is the full triangulated subcategory consisting of ob-
jects M € D(R) satistying Hompg)(N, M) =~ 0 for any N' € D(R"*).
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Definition 2.5.1. An object M € D(R) is cohomologically complete
if its belong to D(R!€)L". We write D..(R) for D(RY@¢)Lr.

Propositions 2.5.2, 2.5.4, 2.5.6 are proved in [§].

Proposition 2.5.2. (i) For M € D(R), the following conditions are
equivalent:

(a) M is cohomologically complete,
(b) RHomg (R'*?, M) ~ RHomyy, (Z[h, K], M) ~ 0,

(c) For anyx € X, j=0,1 and any i € Z,
lim Extf (R, H'(U, M)) = 0.
zelU

Here, U ranges an open neighborhood system of x.

(ii) RHomg (R!¢/R, M) is cohomologically complete for any M €
D(R).

(iii) For any M € D(R), there exists a distinguished triangle
MaM-ME
with M" € D(RY) and M" € D(R).
(iv) Conversely, if
MaM-ME
is a distinguished triangle with M’ € D(R") and M" € D.(R),
then M' ~ RHompg (R, M) and M" ~ RHomp (R"/R[-1], M).

Lemma 2.5.3. Assume that M € D(R) is cohomologically complete.
Then RHomg (N, M) € D(Zx|[h]) is cohomologically complete for any
N € D(R).

Proposition 2.5.4. Let M € D(R) be a cohomologically complete
object. If gr, M ~ 0, then M ~ 0.

Corollary 2.5.5. Let f : M — N be a morphism of D..(R). If gr,(f)

is an isomorphism then f is an isomorphism.

Proposition 2.5.6. Let f : X — Y be a continuous map, and M &€
D(Zx[h)). If M is cohomologically complete, then so is R f.M.

The following result is implicit in [8]. We make it explicit since we
use it frequently.
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Proposition 2.5.7. Let M € D(R) such that there locally exists n €
N, such that i"M ~ 0. Then M is cohomologically complete.

Proof. The question is local. Thus we can assume that Ax is a sheaf.
The action of A on A% is an isomorphism thus the morphism

ho : RHom(AYS, M) — RHom (A, M)
is an isomorphism. The morphism
oh : RHom(AY, M) — RHom (A, M)

is locally nilpotent. Since h is central in R, then ho = oh. Thus,
RHom (A%, M) = 0. O

2.6. Modules over formal deformations after [8]. In this subsec-
tion, we recall some facts about formal deformation of ringed spaces.
We refer the reader to [8] for DQ-modules. (Note that they are called
twisted deformations in [21]). We refer to [14], [9] for stacks and alge-
broid stacks. We denote by C" the ring C[[h]].

Definition 2.6.1 ([8]). Let (X,0Ox) be a commutative ringed space
on a topological space X. Assume that Ox is a Noetherian sheaf of
C-algebras. A formal deformation algebra Ax of Ox is a sheaf of C'-
algebras such that

(i) h is central in Ax
(i) Ax has no h-torsion
(1i1) Ax is h-complete
(iv) Ax/hAx ~ Ox as sheaves of C-algebras.
(v) There exists a base B of open subsets of X such that for any
U € B and any coherent Ox|y-module F, we have H"(U, F') =0
for any n > 0.

Remark 2.6.2. Clearly, on a complex algebraic variety, condition (iv)
of the preceding definition is satisfied.

Definition 2.6.3. A formal deformation algebroid Ax on X is a C"-
algebroid such that for each open set U C X and each o € Ax(U), the
C"-algebra End 4, (o) is a formal deformation algebra on U.

Let Ax be a formal deformation algebroid on X. We denote by
Mod(Ax) the category of functors Fet(Ax, Mod(C%)). The category
Mod(Ax) is a Grothendieck category. For a module M over an al-
gebroid Ax the local notion of being coherent, locally free etc. still
make sense.We denote by D(Ax) the derived category of Mod(Ax),
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by D?(Ax) its bounded derived category and by D, (Ax) the full tri-
angulated subcategory of D°(Ax) consisting of objects with coherent
cohomologies.

Definition 2.6.4. We say that an algebroid is trivial if it is equivalent
to the algebroid stack associated to a sheaf of rings.

From now on, we assume that X is a smooth algebraic variety en-
dowed with the Zarisky topology. There are the following results (see
Remark 2.1.17 of [8] due to Prof. Joseph Oesterlé)

Proposition 2.6.5. On a smooth algebraic variety X, the group H*(X, O%)
15 zero.

Corollary 2.6.6. On a smooth algebraic variety, invertible Ox-algebroid
stacks are trivial.

By the definition of the functor gr,, it is clear that gr, Ax is an
Ox invertible algebroid (see [8] for a definition of invertible) and by
Corollary 2.6.6 it follows that

(2.1) gr, Ax ~ Ox.
Proposition 2.6.7. The functor gr, induces a functor
gry, s DYyu(Ax) = D2,(Ox).
We have the following results from [8].

Proposition 2.6.8. Let d € N. Assume that any coherent Ox-module
locally admits a resolution of length < d by free Ox-modules of finite
rank. Let M® be a complex of Ax-modules concentrated in degrees [a, b]
and assume that H’(/\/l) s coherent for all i. Then, in a neighborhood
of each x € X, there exists a quasi-isomorphism L* — M® where L®

is a complex of free Ax-modules of finite rank concentrated in degrees
l[a—d—1,b].

We have the following sufficient condition which is a corollary of more
general results that ensure that under certain conditions, an algebroid
stack of formal deformation is trivial (see [13], [5], [6], [21]).

Proposition 2.6.9. Let X be a smooth algebraic variety endowed with
a deformation algebroid Ax. IfH' (X, Ox) = H*(X,0x) = 0, then Ax
is equivalent to the algebroid stack associated to a formal deformation
algebra of Ox.
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3. Q.C.C MODULES

3.1. Graded quasi-coherent modules and quasi-coherent Ox-
modules. We start by recalling some results concerning the derived
category of quasi-coherent sheaves.

Definition 3.1.1. Let M € D(Ax). We say that M is graded quasi-
coherent if gry(M) € Dyeon(Ox). We denote by Dygeon(Ax) the full
subcategory of D(Ax) formed by graded quasi-coherent modules.

Proposition 3.1.2. The category D gyeon(Ax) is a triangulated subcat-
egory of D(Ax).
Proof. Obvious. 0

3.2. Q.C.C objects. In this subsection, we introduce the category of
gcc-modules.

Definition 3.2.1. An object M € D(Ax) is qcc if it is graded quasi-
coherent and cohomologically complete. The full subcategory of D(Ax)
formed by gce-modules is denoted by Dye.(Ax).

Since, Dgee(Ax) = Dgqeon(Ax) N Dec(Ax ), we have
Proposition 3.2.2. The category D ,..(Ax) is a C"-linear triangulated
subcategory of D(Ax).
Proposition 3.2.3. If M € D (Ax) is such that gr, M € D%, (Ox),
then M € Db, (Ax).

Proof. 1t is a direct consequence of [8, Theorem 1.6.4]. O
Proposition 3.2.4. If M € D%, (Ax), then M € D’ (Ax).
Proof. 1t is a direct consequence of [8, Theorem 1.6.1]. O

We now prove that Dyc.(Ax) is cocomplete. For that, we first prove
that D..(Ax) is cocomplete.

Definition 3.2.5. We denote by (-)* the functor
RHom 4, (A% /Ax)[—1],-) : D(Ax) — D(Ax).
We call this functor the functor of cohomological completion.
The following exact sequence
(3.1) 0— Ax — Al — A/ Ax — 0.

induces a morphism

.Al)?c/.Ax[—l] — Ax.
This morphism yields to a morphism of functor
(3.2) ce:id — (1)
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Proposition 3.2.6. The morphism of functor
gry(cc) : gryoid — gr, o)™
is an isomorphism.
Proof. We have the following isomorphism
g, RHom . (A% / Ax)[—1], M) ~
RHomg, ax (gry (A% ) Ax)[-1], g, M).

Applying the functor gr, to (3.1), we obtain the following distin-
guished triangle.

(AR A 1] = gy Ax = g AR 5
Noticing that gr; A%%¢ ~ 0, we deduce that the map gr;, (A% / Ax)[-1] —
gr, Ax is an isomorphism which proves the claim O
Corollary 3.2.7. For every M € D(Ax),
gr, M ~ gr, M.

Definition 3.2.8. Let (M;);cr be a family of objects of D..(Ax). We

set e

DM, — (@ M,»)

iel iel
where @ denote the direct sum in the category D(Ax).
Proposition 3.2.9. The category D .(Ax) admits direct sums. The
direct sum of the family (M;)ier is given by @M.

i€l

Proof. Let (M;);c; be a family of elements of D..(Ax). By Proposition

2.5.2 (i1), @M, is cohomologically complete.
il
Using the natural transformation (3.2) we obtain a morphism

ce : @ M; — @M,
icl iel
It remains to shows that for all 7 € D..(Ax), cc induces an isomor-
phism

(3.3) HomAX(@Mi,}_) = HomAX(@Mi,}_).
i€l i€l
It is enough to prove the isomorphism

(3.4) RHom 4, ((PM;, F) = RHomu, (P M,, F).

i€l i€l
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Since both terms of (3.4) are cohomologically complete by Lemma
2.5.3, it remains to check the isomorphism on the associated graded
map. Applying gr;, to (3.4) and using Lemma 2.4.2 (i7) and Proposition
3.2.6 , we obtain an isomorphism

R’HOIngrh Ax (grh(@Mi)> gry Jr) :> RHomgrh Ax (grh(@ Ml)7 g1y, ‘F)
i€l iel
which proves the isomorphism (3.4).
Moreover by definition of the direct sum, we have

(35) HOIIlAX(@MZ',./—") :> HHomAX(Mi,]:).
i€l i€l
Composing the isomorphisms (3.3) and (3.5), we obtain the following
functorial isomorphism

Hom 4, (M, F) = [] Homay (M;, F)
iel iel
which prove the proposition. U

Proposition 3.2.10. The category D..(Ax) admits direct sums. The
direct sum of the family (M;)icr is given by @M.

il
Proof. We know by Proposition 3.2.9, that D..(Ax) admits direct sums
and it is given by @. Let (M;)ic; € Dyec(Ax). Then, by Corollary
3.2.7, gr, M, = Bicr gry, M. It follows that AM; € Dyee(Ax). O

el iel

3.3. Compact objects and generators in Dycc(Ax). In this subsec-
tion, we show that Dgc.(Ax) is generated by a compact generator and
we describe its compact objects. We start by proving some additional
properties on the functors gr, and ¢, which are defined in subsection
2.4.

Concerning ¢ , recall that there is a functor of stacks Ax — grj(Ax) ~
Ox inducing

ty : D(Ox) — D(Ax)

Notice that Ox can be endowed with a structure of left Ox-module
and right Ayx-module. When endowed with such structures we denote
it by Oxa. The module Ox4 belongs to D*(Ox @¢ AY). Similarly we
have 4Oy € D’ (Ax ®@c OF). When Oy is endowed with its structure
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of Ax ® A¥-module we denote it by 4Ox4 € D*(Ax @c AY).
With these notations, we have

er, (M) = OXA§> M and 1y (M) = 40x Go, M.

Hence
L L
tgogrp(M)=40x @ Oxs @ M
Ox Ax
L
~ 40x4 @ M.
Ax
Proposition 3.3.1. For every M € D(Ox),

Lg © gTp, 0ty (M) = 1y(M) @ 1,(M)[1]

Proof. We have the exact sequence of Ax ® A¥-modules

0 Ax — Ay AOx 4 — 0.

Thus, for every M € D(Ax), we have ¢ ogr, (M) ~ (Ax LA Ax)ﬁ% M.
Hence, for M € D(Ox), ¢, 0 gry 0t,(M) 2 1,(M) & 1,(M)][1]. O
Corollary 3.3.2. If M € Dyon(Ox), then ty(M) € Dyee(Ax).

Proof. Let M is in Dgeon(Ox) and consider gry, oiy(M). We compute
H'(gry, 0y (M)).

tg(H' (g1, 019(M))) = H' (14 0 g1 014 (M))
~ H' (14 (M) & 15(M)[1])
~ 1y (H (M) & HH (M),
The functor ¢, : Mod(Ox) — Mod(Ax) is fully faithful thus
H'(gry o14(M)) ~ H'(M) & HTH (M)

thus 1,(M) is in Dgqeon(Ax) and it is cohomologicaly complete by
Proposition 2.5.7. 0

Proposition 3.3.3. If G is a generator of D,on(Ox), then 1,(G) is a
generator of D yee(Ax)

Proof. By Proposition 3.3.2, 1,(G) is in Dyec(Ax). Let M € Dyec(Ax)
with RHom 4, (¢,(G), M) = 0. By Proposition 2.4.5, we have

RHom 4, (¢4(G), M) ~ RHomop, (G, gr;,(M)[-1]).



14 FRANCOIS PETIT

Thus, RHome, (G, gr,(M)[—1]) ~ 0 and gr,(M)[—1] is in Dgeon(Ox)
thus gr,(M)[—1] ~ 0. Since M is cohomologically complete, M =~
0. O

Lemma 3.3.4. If F € D’ ,(Ax) satisfies Aé?céf = 0 then F is
compact in D .(Ax).

Proof. Let (M,);er a family of objects of Dyec(Ax). By adjunction in
between (A%/Ax)[~1] ;\% - and RHom 4, (A%°/Ax)[~1],-), we have

Homu, (F, M) ~ Hom, (A%/ Ax)[~1] & F, D M,).

icl Ax icl

In Mod(Ax ® AY), we have the exact sequence

0—Ax — Al)?c — .Al)?c/.AX — 0.

Tensoring by F, we obtain the distinguished triangle in D(Ax)
L L L
Ao Ax[-1] @ F—= Ax & F —= Al & F >
Ax Ax Ax

L L

Since Al;gCE@ F =0, A/ Ax[-1] ﬁi) F is isomorphic to F. It follows
X X

that

(3.6) Hom 4, (F, @DM;) ~ Homu, (F, P M,).

i€l iel
The module F belongs to D%, (Ax). Using Proposition 2.6.8, and
the fact that X is a Noetherian topological space, we have

(37) HomAX(]—',@Mi) ~ @HOIDAX(.F,Mi)
iel i€l
which together with (3.6) prove the lemma. O

Corollary 3.3.5. If F is compact in Dyeon(Ox) then 1y(F) is compact
mn chc<./4x).

Corollary 3.3.6. If G is a compact generator of D on(Ox) then 14(G)
is a compact generator of D .(Ax).

Corollary 3.3.7. The category Dy..(Ax) is compactly generated.
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Proof. By Theorem 2.3.3 due to Bondal and Van den Bergh, Dcon(Ox)
has a compact generator. Then, the claim is a direct consequence of
Corollary 3.3.6. dJ

Theorem 3.3.8. An object M of D .(Ax) is compact if and only if
M e D, (Ax) and A @4, M = 0.

Proof. The condition is sufficient by Lemma 3.3.4. Let G be a com-
pact generator of Dyeon(Ox). By Theorem 2.1.5, we know that the
set of compact objects of Dye.(Ax) is equivalent to the thick envelope
(t4(G)). Let us show that if F € (1,(G)) then F € D’ (Ax) and
A @4, F = 0. We will proceed by induction.

Recall that (1,(G))1 = smd(add(¢4(G)) (cf. subsection 2.1) where
smd(add(ey(G)) denote the smallest full subcategory of Dc.(Ax) con-
taining add(:,(G)) and closed under taking direct summand. The cat-
egory add(ty(G)) is the smallest full subcategory of Dge(Ax) which
contains ¢4(G) and is closed under taking finite direct sums and shifts.

It is clear that if F € add(:,(G)), then F € D%, (Ax) and A ® 4,
F =0. If F € smd(add(¢4(G))), then there exist M € smd(add(¢4(G)))
such that F & M € add(1y(G)). Hence, A% ® 4, F = 0. We still need
to check that for every i € Z, H'(F) € Moden(Ax). The question is lo-
cal, so we can choose an open set U of X such that Ax|y is trivial. The
sheaf H'(F|y) is a direct summand of the coherent sheaf H'((F&M)|y)
and Ax is a Noetherian sheaf (see subsection 1.1 of [8] for a definition)

thus H'(F|y) is coherent.

Assume that for every k < n, (G)}, is a subcategory of D?, (Ax) and
that for every F € (G)r, A @4, F =0. Let F in (G),11. By Lemma
2.1.8, (G)pi1 = smd({G), x (G)1). Since Db, (Ax) is a triangulated
category, the induction hypothesis implies that (G), *(G); C D%, (Ax).
It follows that F is a direct summand of an object of the category
(G)y % (G)1. Then, F € D, (Ax) and A @4, F = 0. O

coh

3.4. DG Affinity of DQ-modules. In this subsection we prove that
category of qcc DQ-modules is DG affine.

Theorem 3.4.1. Assume X is a smooth complex algebraic variety en-
dowed with a deformation algebroid Ax. Then, Dy..(Ax) is equivalent
to D(A) for a suitable dg algebra A with bounded cohomology.

Proof. By Proposition 3.2.2, Dy.(Ax) is a C'-linear triangulated sub-
category of D(Ax) which is algebraic by Proposition 2.2.4. It fol-
lows, by Proposition 2.2.3, that Dqc.(Ax) is algebraic. By Proposition
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3.2.10, Dqec(Ax) is a cocomplete category. Moreover, by Corollary
3.3.6, Dgec(Ax) has a compact generator G. It follows from Theorem
2.2.5 that Dyc(Ax) is equivalent to the derived category of a dg algebra
A such that

H'(A) = Homzy (14(9), 14(G) n]), n € Z.

Using the adjunction between ¢, and gr,[—1] and [4, Lemma 3.3.8], we
get that the cohomology of A is bounded. O

4. Q.C.C SHEAVES ON AFFINE VARIETIES

We assume that X is a smooth algebraic affine variety. In view of
Proposition 2.6.9, we assume that Ay is sheaf of formal deformations.
We set A =T'(X, Ax), B =T'(X,0x) and ax : X — {pt}. As usual
we denote by Ay (resp. Bx) the constant sheaf with stalk A (resp. B).

4.1. Preliminary results.
Lemma 4.1.1. The Ax-module Ax is flat.
Proof. 1t is a direct consequence of [8, Theorem 1.6.5]. O

Lemma 4.1.2. Let f : X — Y be a morphism of varieties and let
M e D(f 1 Ay) then

R fiM ~ (R fu M) in D(Ay).
Proof. 1t is a direct consequence of [8, 1.5.12] O
We recall the following classical result.
Lemma 4.1.3. Let M € D*(B). The canonical morphism
(4.1) M — RI(X,0x ®p, ax'M)
is an isomorphism.

Proof. If M is concentrated in degree zero, the result follows directly
from the equivalence of categories between Qcoh(Ox) and Mod(B).
The result extends immediately to the derived category because Ox®p,
- is an exact functor and because RI'(X, -) is exact on Qcoh(Ox) since
X is affine. U

If R — R’ is a morphism of sheaves of rings, we denote by f org the
forgetful functor from D*(R’) to D*(R) and grf the functor D(Ch) —

D(Cx), M+ Cx & M.
o
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Proposition 4.1.4. (i) The diagram

foray

DY (Ay) X pr(ch)
fortx

Db(Ax) —=
- ig
DY(Ox) 1% DA (Cy)

Bx
foro

foray

D(C%)

forey

D (Bx) E—— Db CX

s commutative.
(ii) The siz forgetful functors forgfg commute with RT'(X;-).

Proof. (i) We start by proving that forep, o gr, = grtofors,. Let
M € D*(Ax). We have

foroy ogr,(M) = Ox Q% M
~C ®AX ® M
Ch
~ Cg%forAX(M)
~ grl o fora, (M).

The other commutation relations are obvious and are left to the reader.

(ii) Let us prove (ii) for forgx The other cases being similar. The

functors foro : Mod(Ox) — Mod(By) is exact since Oy is flat over
Bx and this functor is right adjoints of an exact functor. Thus it
preserves injective resolution. U

Proposition 4.1.5. Let M € D*(Ax). Then, there is an isomorphism
in D(B)

gr, RI'(X, M) ~ RI'(X, gr;, M).
Proof. Notice the claim is true when /\/l € D°(Ch%). Indeed, the functor
gr, : D’(C") — D®(C) is given by Cx ® where Cy is in D*(Cx®¢, C%)
that is to say in Db((C’}(). In the category DY(C%), Cx admits a free
resolution given by (C§< % Ch%. Thus we can apply the projection
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formula and we get the isomorphism
L N L
p: Cg@;RaX*M = Rax.(Cx ® M).
(CX

We denote by forp, the forgetful functor from D?(Ox) to D*(Cy). In
this proof, we write gr, M for (’)X§> M, grfx M for BXj‘%) M and
X X

erB M for B % M with M € D*(A) .

By restriction, there is a morphism Bx /(%{ M — Ox EL?( M. Tt induces
a morphism

Homp, (forgy (g, M), foroy (g, M) —

(4.2) Homp, (gry* M, forgi(grh M)).
The coevaluation ay' Rax.M — M of the adjunction between ay'
and R ax, induces a morphism

Homp, (gry* M, forg? (gry M)) —

(4.3) Homgp, (grp* (ax' Rax M), forg¥ (gr, M)).

The adjunction between ay' and RI'(X, ) gives the following isomor-

phism

HomBX(grf)‘(oz)_(1 RaxM), forgﬁ(grh/\/l)) ~

(4.4) Homp(gry RI(X, M), RI(X, forgX (gry M))).

and by Proposition 4.1.4 (ii), there is an isomorphism in D*(B),
RT(X, forgX (gr, M)) ~ RI(X, gr, M).

Hence, the image of the identity by the composition of the maps (4.2),
(4.3) and (4.4) leads to a morphism

pr: B(%)RF(X,M) — RI'(X, gr, M)

such that forg(pr) = p. Since forp is conservative, pr is an isomor-
phism. 0

4.2. Q.C.C sheaves on affine varieties. We define the two functors:

®:D° (Ax) — D’.(A), ®(M) = RI'(X, M)

qcce
and
Db (A) = Db (Ax), U(M) = (Ax @4, ax M),

qcc
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Theorem 4.2.1. Let X be a smooth affine variety. The functors ®
and VU are equivalences of triangulated categories and are inverses one
to each other and the diagram below is quasi-commutative

«4x)‘443'Db(A)

qcc(

gry, &ln

qcoh(cj)() [)b(lg)_

OX®BX
Proof. Let M € D!, (Ax). By definition,
W o B(M) = RHoma, (AL /Ax)[~1], Ax %)RF(X, M)).

By adjunction, we have the morphism of functor ay' o Ray, — id. It
follows that we have a morphism ay' RI'(X, M) — M. Tensoring by

L
A;ﬂ%- we get

(4.5) Ax @4, ay' RI(X, M) = Ax @4, M.
Moreover,
Hom 4, (Ax ®4,, M, M) >~ Homa(M, Homy, (Ax, M))
~ Hom 4 (M, M).

Consequently the image of the identity gives a morphism Ax ®4,
M — M. By composing with (4.5), one obtains a morphism

Ax @4, ay RI(X, M) — M.
Applying the functor (-)° to the preceding morphism we obtain
(Ax ®4, ay' RI(X, M) — M,
Since M is cohomologically complete, M ~ M. Thus

(4.6) (Ax @4, ay' R[(X, M) — M.

Applying gr;, to the preceding formula, and using the well known equiv-
alence

RO(Y,)
choh(OX) D (B> )

OX®BX

we obtain the isomorphism

OX ®BX RF(X, grh M) L) grh M
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Since (Ax ®4, ax' RI['(X, M))* and M are cohomologically com-
plete modules, it follows that (4.6) is an isomorphism.

Let M € Db (A). By definition,
o W(M)=RI(X,(Ax ®a, ax' M)®).
and using Lemma 4.1.2 we get that
DoW (M)~ (RINX, Ax @4, M)).

We have a morphism

Rax,.Ax @4, M — Rax.(Ax @4, ax M).

Since X is affine we obtain Rax.,Ax ~ A thus

M = RT(X, Ax @4, M).

We have a map

(4.7) M — (RI(X, Ax ®a, M)).
Applying the functor gr;,, we obtain

(4.8) gr, M — RI'(X,Ox ®p, gr, M).

Using Lemma 4.1.3, we deduce that the map (4.8) is an isomorphism.
It follows by Corollary 2.5.5 that the morphism (4.7) is an isomorphism.
This proves the announced equivalence. 0
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