On the absolute continuity of one-dimensional SDE's driven by a fractional Brownian motion

Ivan Nourdin

Université Henri Poincaré, Institut de Mathématiques Élie Cartan, B.P. 239
54506 Vandœuvre-lès-Nancy Cédex, France
Ivan.Nourdin@iecn.u-nancy.fr

Thomas Simon

Université d'Évry-Val d'Essonne, Équipe d'Analyse et Probabilités Boulevard François Mitterand, 91025 Évry Cédex, France Thomas.Simon@maths.univ-evry.fr

Abstract

The problem of absolute continuity for a class of SDE's driven by a real fractional Brownian motion of any Hurst index is adressed. First, we give an elementary proof of the fact that the solution to the SDE has a positive density for all t > 0 when the diffusion coefficient does not vanish, echoing in the fractional Brownian framework the main result we had previously obtained for Marcus equations driven by Lévy processes [9]. Second, we extend in our setting the classical entrance-time criterion of Bouleau-Hirsch[2].

Keywords: Absolute continuity - Doss-Sussmann transformation - Fractional Brownian motion - Newton-Côtes SDE.

MSC 2000: 60G18, 60H10.

1 Introduction

In this note we study the absolute continuity of the solutions at any time t > 0 to SDE's of the type:

$$X_{t} = x_{0} + \int_{0}^{t} b(X_{s}) ds + \int_{0}^{t} \sigma(X_{s}) \diamond dB_{s}^{H}, \tag{1}$$

where b, σ are real functions and B^H is a linear fractional Brownian motion (fBm) with Hurst index $H \in (0,1)$. In (1), \diamond means a particular type of linear non-semimartingale integrators, the so-called Newton-Côtes integrator, which was recently introduced by one of us $et\ al.$ [7] [8]. Roughly speaking, \diamond is an operator defined through a limiting procedure involving the usual Newton-Côtes linear approximator (whose order depends on the roughness of the path B^H), and a forward-backward decomposition à la Russo-Vallois [12]. This gives a reasonable class of solutions to (1) as soon as σ is regular enough. We refer to [7] and [8] for more details on this topic.

The main interest of \diamond is that it yields a first order Itô's formula: if $f: \mathbb{R}^2 \to \mathbb{R}$ is regular enough and $Y: \Omega \times \mathbb{R}^+ \to \mathbb{R}$ is a bounded variation process, then for every $t \geq 0$

$$f(B_t^H, Y_t) = f(0, Y_0) + \int_0^t f_x'(B_s^H, Y_s) \diamond dB_s^H + \int_0^t f_y'(B_s^H, Y_s) dY_s, \tag{2}$$

see [8] for details. This formula allows to solve (1) through Doss [5] and Sussmann [13]'s classical computations. More precisely, our solution X is given by $X_t = \varphi(B_t^H, Y_t)$ for every t > 0 where $(x, y) \mapsto \varphi(x, y)$ is the flow associated to σ :

$$\varphi_x'(x,y) = \sigma(\varphi(x,y)), \ \varphi(0,y) = y \text{ for every } (x,y) \in \mathbb{R}^2,$$
 (3)

and Y is the solution to the random ODE

$$Y_t = x_0 + \int_0^t a(B_s^H, Y_s) ds,$$

with the notation

$$a(x,y) = \frac{b(\varphi(x,y))}{\varphi'_y(x,y)} = b(\varphi(x,y)) \exp\left\{-\int_0^x \sigma'(\varphi(u,y)) du\right\}$$
(4)

for every $(x, y) \in \mathbb{R}^2$. In the sequel, we will only refer to X as given by the above Doss-Sussmann transformation and we will study the absolute continuity with respect to the Lebesgue measure of X_t for any t > 0.

Our first result, which is given in Section 2, states that X_t has a positive density for every t > 0 as soon as σ does not vanish. Notice that in the much more difficult framework where the driving process of (1) is a non Gaussian Lévy process with infinitely many jumps, the same criterion was obtained in [9]. Here, the simple proof relies on a suitable Girsanov transformation [11] which reduces to the easy case when $b \equiv 0$, i.e. when $X_t = \varphi(B_t^H, x_0)$ for every t > 0. This positivity result is related to Proposition 6 in [1], where in a multidimensional setting but without drift, a sufficient condition (which becomes $\sigma(x_0) \neq 0$ in dimension one) under which X_t has a density for every t > 0 was given, as well as an equivalent of the density f_t at x_0 when $t \to 0$. We remark that in dimension one, a closed formula - see (5) below - can be readily obtained.

Of course, this non-vanishing condition on σ is not optimal. For instance, thinking of the equation $dX_t = X_t \diamond dB_t^H$ whose solution is $X_t = X_0 \exp B_t^H$, we see that the positivity assumption on σ is not necessary. Moreover, in the Brownian case H = 1/2, it is well-known that this criterion can be relaxed either into a condition of Hörmander type when σ is regular enough - see e.g. [10] p. 111, or into an optimal criterion involving the entrance time into $\{\sigma(x) \neq 0\}$ when σ has little regularity - see Theorem 6.3. in [2]. We did not try to go in the Hörmander direction, since the computations involving Newton-Côtes integrals become quite messy. Nevertheless, we were able to obtain a literal extension of Bouleau-Hirsch's criterion for any $H \in (0,1)$. This extension may seem a little surprising, since Bouleau-Hirsch's criterion bears a Markovian flavour, whereas the solution to our SDE is not Markovian in general. The proof, which is given in Section 3, consists in computing the Malliavin derivative of X_t via the Doss-Sussmann transformation, and then using a general non-degeneracy criterion of Nualart-Zakai.

Notice finally that the computation of this Malliavin derivative relies mainly on the existence of a Stratonovich change of variable formula. Hence, our Theorem B below could probably be extended to other type of "rough" equations driven by fBm, see e.g. [4] and [6]. In these two papers there are restrictions from below on the Hurst parameter of the driving fBm, but on the other hand this latter is allowed to be multidimensional. Since Bouleau-Hirsch's criterion also works in a multidimensional framework (with a more complicated formulation for the entrance-time), one may ask for a general fractional extension of this result. The present note can be viewed as a first attempt in this direction.

2 A non-vanishing criterion on the diffusion coefficient

The following theorem, whose proof is elementary, yields a first simple criterion on σ according to which X_t has a positive density on \mathbb{R} for every t > 0.

Theorem A If σ does not vanish, then X_t has a positive density on \mathbb{R} for every t > 0.

Proof. Considering $-B^H$ instead of B^H if necessary, we may suppose that $\sigma > 0$. Recalling that $\varphi : \mathbb{R}^2 \to \mathbb{R}$ is the flow associated with σ , we first notice that for every fixed $y \in \mathbb{R}$, the function $x \mapsto \varphi(x,y)$ is a bijection onto \mathbb{R} . Indeed, $\varphi(\cdot,y)$ is clearly increasing and $\ell = \lim_{x \to +\infty} \varphi(x,y)$ exists in $\mathbb{R} \cup \{+\infty\}$. If $\ell \neq +\infty$, then $\lim_{x \to \infty} \varphi'_x(x,y) = \sigma(\ell) > 0$ and $\lim_{x \to +\infty} \varphi(x,y) = +\infty$. Similarly, we can show that $\lim_{x \to -\infty} \varphi(x,y) = -\infty$, which yields the desired property. We will denote by $\psi : \mathbb{R}^2 \to \mathbb{R}$ the inverse of φ , i.e. $\psi(x,y)$ is the unique solution to $\varphi(\psi(x,y),y) = x$.

(i) When $b \equiv 0$, we have $X_t = \varphi(B_t^H, x_0)$ for every t > 0 and we can write, for every $A \in \mathcal{B}(\mathbb{R})$,

$$\mathbb{P}(X_t \in A) = \mathbb{P}(B_t^H \in \psi(A, x_0)) = \frac{1}{\sqrt{2\pi t^{2H}}} \int_{\psi(A, x_0)} e^{-\frac{u^2}{2t^{2H}}} du$$
$$= \frac{1}{\sqrt{2\pi t^{2H}}} \int_A e^{-\frac{\varphi(v, x_0)^2}{2t^{2H}}} |\sigma(\varphi(v, x_0))| dv.$$

Hence, X_t has an explicit positive density given by

$$f_{X_t}(v) = \frac{1}{\sqrt{2\pi t^{2H}}} e^{-\frac{\varphi(v,x_0)^2}{2t^{2H}}} |\sigma(\varphi(v,x_0))|.$$
 (5)

(ii) When $b \not\equiv 0$, we can first suppose that b has compact support, by an immediate approximation argument. Besides, for every t > 0, we have

$$X_t = \varphi(B_t^H, Y_t) = \varphi(B_t^H, \varphi(\psi(Y_t, x_0), x_0)) = \varphi(B_t^H + \psi(Y_t, x_0), x_0),$$

the last equality coming from the flow property of φ . Since b has compact support, it is easy to see from (4) and the bijection property of φ that Y_t is a bounded random variable for every t > 0. Hence $\psi(Y_t, x_0)$ is also bounded for every t > 0 and we can appeal to Girsanov's theorem for fBm (see Theorem 3.1 in [11]), which yields

$$X_t = \varphi(\tilde{B}_t^H, x_0),$$

where \tilde{M} is a fBm under a probability \mathbb{Q} equivalent to \mathbb{P} . Hence we are reduced to the case $b \equiv 0$ and we can conclude from above that, under \mathbb{Q} , X_t has a positive density over \mathbb{R} . Since \mathbb{P} and \mathbb{Q} are equivalent, the same holds under \mathbb{P} .

Remark Theorem A entails in particular that Supp $X_t = \mathbb{R}$ for every t > 0. Actually, this support property can be extended on the functional level: when σ does not vanish, it follows easily from Doss's arguments [5] that Supp $X = \mathcal{C}_{x_0}$, where $X = \{X_t, t \geq 0\}$ is viewed as a random variable valued in \mathcal{C}_{x_0} , the set of continuous functions from \mathbb{R}^+ to \mathbb{R} starting from x_0 endowed with the local supremum norm.

3 Extension of a result of Bouleau-Hirsch

In this section we extend Theorem A quite considerably, giving a necessary and sufficient condition on σ in the spirit of Bouleau-Hirsch's [2] criterion. However our arguments are somewhat more elaborate, and we first need to recall a few facts about the Gaussian analysis related to fractional Brownian motion. In order to simplify the presentation and without loss of generality, we will fix an horizon T > 0 to (1), hence we will define fBm on [0, T] only.

3.1 Some recalls about fractional Brownian Motion

Let us give a few facts about the Gaussian structure of fBm and its Malliavin derivative process, following Sect. 3.1 in [11] and Chap. 1.2 in [10]. Set

$$R_H(t,s) := \frac{1}{2}(s^{2H} + t^{2H} - |s - t|^{2H}), \ s, t \in [0, T].$$

Let \mathcal{E} be the set of step-functions on [0,T]. Consider the Hilbert space \mathcal{H} defined as the closure of \mathcal{E} wih respect to the scalar product

$$\left(\mathbf{1}_{[0,t]},\mathbf{1}_{[0,s]}\right)_{\mathcal{H}} = R_H(t,s).$$

More precisely, if we set

$$K_H(t,s) = \Gamma (H+1/2)^{-1} (t-s)^{H-1/2} F (H-1/2, 1/2 - H; H+1/2, 1 - t/s),$$

where F stands for the standard hypergeometric function, and define the linear operator K_H^* from \mathcal{E} to $L^2([0,T])$ by

$$(K_H^*\varphi)(s) = K_H(T,s)\varphi(s) + \int_s^T (\varphi(r) - \varphi(s)) \frac{\partial K_H}{\partial r}(r,s) dr,$$

then \mathcal{H} is isometric to $L^2([0,T])$ thanks to the equality

$$(\varphi, \rho)_{\mathcal{H}} = \int_0^T (K_H^* \varphi)(s) (K_H^* \rho)(s) \, ds. \tag{6}$$

 B^H is a centred Gaussian process with covariance function $R_H(t,s)$, hence its associated Gaussian space is isometric to \mathcal{H} through the mapping $\mathbf{1}_{[0,t]} \mapsto B_t^H$.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a smooth function with compact support and consider the random variable $F = f(B_{t_1}^H, \dots, B_{t_n}^H)$ (we then say that F is a smooth random variable). The derivative process of F is the element of $L^2(\Omega, \mathcal{H})$ defined by

$$D_s F = \sum_{i=1}^n \frac{\partial f}{\partial x_i} (B_{t_1}^H, \dots, B_{t_n}^H) \mathbf{1}_{[0,t_i]}(s).$$

In particular $D_s B_t^H = \mathbf{1}_{[0,t]}(s)$. As usual, $\mathbb{D}^{1,1}$ is the closure of smooth random variables with respect to the norm

$$||F||_{1,1} \; = \; \mathbb{E}\left[|F|\right] + \mathbb{E}\left[||D.F||_{\mathcal{H}}\right]$$

and $\mathbb{D}_{loc}^{1,1}$ is it associated local domain, that is the set of random variables F such that there exists a sequence $\{(\Omega_n, F_n), n \geq 1\} \subset \mathcal{F} \times \mathbb{D}^{1,1}$ such that $\Omega_n \uparrow \Omega$ a.s. and $F = F_n$ a.s. on Ω_n (see [10] p. 45 for more details). We finally recall the following criterion which is due to Nualart-Zakai (see Theorem 2.1.3 in [10]):

Theorem 1 (Nualart-Zakai) If $F \in \mathbb{D}^{1,1}_{loc}$ and a.s. $||D.F||_{\mathcal{H}} > 0$, then F has a density with respect to Lebesque measure on \mathbb{R} .

3.2 Statement and proof of the main result

Let $J = \sigma^{-1}(\{0\})$ and int J be the interior of J. Consider the deterministic equation

$$x_t = x_0 + \int_0^t b(x_s) ds \tag{7}$$

and the deterministic time

$$t_x = \sup\{t \ge 0 : x_t \not\in \text{int } J\}.$$

When H=1/2, it was proved by Bouleau-Hirsch (see e.g. Theorem 6.3. in [2]) that X_t has a density with respect to Lebesgue measure if and only if $t>t_x$. In particular X_t has a density for all t as soon as $\sigma(x_0)\neq 0$, which also follows from Hörmander's condition. Notice that Bouleau-Hirsch's result holds in a more general multidimensional context (but then t_x is the entrance time of X into the set where σ has maximal rank, and t_x is no more deterministic). In dimension 1, we aim to extend this result to fBm of any Hurst index:

Theorem B Let $\{x_t, t \geq 0\}$, $\{X_t, t \geq 0\}$ and t_x be defined as above. Then X_t has a density with respect to Lebesgue measure if and only if $t > t_x$.

We will need a lemma which extends Prop. 2.1.2 in [3], Chap. IV, to fBm.

Lemma 2 With the above notations,

$$t_x = \inf\{t > 0: X_t \not\in \text{int } J\}$$
 a.s.

Proof. According to (3), it is obvious that $\varphi(x,y) = y$ for all $x \in \mathbb{R}$ et $y \in J$ and then $\varphi'_y(x,y) = 1$ for all $x \in \mathbb{R}$ and $y \in \text{int } J$. Set $\tau = \inf\{t > 0 : X_t \notin \text{int } J\}$ and $T = \inf\{t > 0 : Y_t \notin \text{int } J\}$. We have a.s.

- $t < T \Rightarrow \forall s \le t$: $Y_s \in \text{int } J \Rightarrow \forall s \le t$: $X_s = \varphi(B_s^H, Y_s) = Y_s \Rightarrow \forall s \le t$: $X_s \in \text{int } J$ $\Rightarrow t \le \tau$, which yields $T \le \tau$.
- $t < \tau \Rightarrow \forall s \le t$: $X_s \in \text{int } J \Rightarrow \forall s \le t$: $\varphi(B_s^H, X_s) = X_s = \varphi(B_s^H, Y_s) \Rightarrow \forall s \le t$: $X_s = Y_s \Rightarrow \forall s \le t$: $Y_s \in \text{int } J \Rightarrow t \le T$. Hence $\tau \le T$.
- $t < t_x \Rightarrow \forall s \le t$: $x_s \in \text{int } J \Rightarrow \forall s \le t$: $x'_s = b(x_s) = \frac{b \circ \varphi(B_s^H, x_s)}{\varphi'_y(B_s^H, x_s)} \Rightarrow \forall s \le t$: $x_s = Y_s$ $\Rightarrow \forall s \le t$: $Y_s \in \text{int } J \Rightarrow t \le T$, so that $t_x \le T$.
- $t < T \Rightarrow \forall s \le t$: $Y_s \in \text{int } J \Rightarrow \forall s \le t$: $Y'_s = \frac{b \circ \varphi(B_s^H, Y_s)}{\varphi'_y(B_s^H, Y_s)} = b(Y_s) \Rightarrow \forall s \le t$: $Y_s = x_s \Rightarrow \forall s \le t$: $X_s \in \text{int } J \Rightarrow t \le t_x$, whence $T \le t_x$.

Finally, this proves that a.s. $t_x = T = \tau$, and completes the proof of the Lemma.

Proof of Theorem B. Suppose first that $t > t_x$. Recall that $X_t = \varphi(B_t^H, Y_t)$, where φ is given by (3) and Y is the unique solution to

$$Y_s = x_0 + \int_0^s L_u^{-1} b(X_u) du,$$

where we set

$$L_u = \varphi'_y(B_u^H, Y_u) = \exp\left[\int_0^{B_u^H} \sigma'(\varphi(z, Y_u)) dz\right]$$

for every $u \ge 0$ - the second equality being an obvious consequence of (3). Notice that $L_u > 0$ a.s. for every $u \ge 0$. We will also use the notation

$$M_u = \varphi''_{yy}(B_u^H, Y_u) = L_u \int_0^{B_u^H} \sigma''(\varphi(z, Y_u)) \varphi'_y(z, Y_u) dz,$$

the second equality coming readily from (3) as well.

We now differentiate the random variables X_u , $u \leq t$. Fixing $s \in [0, t]$ once and for all, the Chain Rule (see Prop. 1.2.2 in [10]) yields

$$D_s X_u = (\sigma(X_u) + L_u D_s Y_u) \mathbf{1}_{[0,u]}(s).$$

In particular, setting $N_u = L_u^{-1} D_s X_u$ for every $u \leq t$, we get

$$N_t = L_t^{-1} \sigma(X_t) + D_s Y_t.$$

Itô's formula (2) entails

$$L_t = 1 + \int_0^t L_u \sigma'(X_u) \diamond dB_u^H + \int_0^t M_u dY_u$$

and

$$L_t^{-1}\sigma(X_t) = L_s^{-1}\sigma(X_s) + \int_s^t \left(\sigma'(X_u) - L_u^{-2}M_u\sigma(X_u)\right) dY_u.$$

On the other hand, differentiating Y_t yields

$$D_s Y_t = \int_s^t N_u b'(X_u) \, du - \int_s^t \left(\sigma'(X_u) - L_u^{-2} M_u \sigma(X_u) + L_u^{-1} M_u N_u \right) dY_u.$$

Putting everything together, we get

$$N_t = L_s^{-1} \sigma(X_s) \exp \left[\int_s^t \left(b'(X_u) - L_u^{-2} M_u b(X_u) \right) du \right].$$

Hence,

$$D_s X_t = \sigma(X_s) \exp\left[\int_s^t b'(X_u) \, du\right] \left(\frac{L_t}{L_s} \exp\left[\int_s^t L_u^{-1} M_u \, dY_u\right]\right).$$

Notice that by Itô's formula

$$L_u = \exp\left[\int_0^u \sigma'(X_v) \diamond dB_v^H + \int_0^u L_v^{-1} M_v dY_v\right],$$

so that

$$D_s X_t = \sigma(X_s) \exp\left[\int_s^t b'(X_u) du + \int_0^t \sigma'(X_u) \diamond dB_u^H\right].$$

Now since $t > t_x$, it follows from Lemma 2 and the a.s. continuity of $s \mapsto \sigma(X_s)$ that the function $s \mapsto D_s X_t$ does not vanish on a subset of [0, t] with positive Lebesgue measure. It is then not difficult to see that the same holds for the function $s \mapsto (K_H^* D.X_t)(s)$. Using (6), we obtain

$$||D.X_t||_{\mathcal{H}}^2 = (D.X_t, D.X_t)_{\mathcal{H}} = \int_0^T (K_H^* D.X_t)^2(s) ds > 0$$
 a.s.

Thanks to Theorem 1, we can conclude that X_t has a density with respect to Lebesgue measure.

Suppose finally that $t \leq t_x$. Then it follows by uniqueness that $X_t = x_t$ a.s. where x_t is deterministic, so that X_t cannot have a density. This completes the proof of Theorem B.

References

- [1] F. Baudoin and L. Coutin. Etude en temps petit des solutions d'EDS conduites par des mouvements browniens fractionnaires. To appear in C. R. Acad. Sci. Paris.
- [2] N. Bouleau and F. Hirsch. Formes de Dirichlet générales et densité des variables aléatoires réelles sur l'espace de Wiener. J. Funct. Analysis 69 (2), pp. 229-259, 1986.
- [3] N. Bouleau and F. Hirsch. Dirichlet Forms and Analysis on Wiener Space. De Gruyter, Berlin, 1991.
- [4] L. Coutin and Z. Qian. Stochastic analysis, rough path analysis and fractional Brownian motion. *Probab. Theory Related Fields* **122** (1), pp. 108-140, 2002.
- [5] H. Doss. Liens entre équations différentielles stochastiques et ordinaires. Ann. Inst. H. Poincaré Probab. Statist. XIII (1), pp. 99-125, 1977.
- [6] D. Feyel and A. de la Pradelle. Curvilinear integrals along rough paths. Preprint Evry, 2004.
- [7] M. Gradinaru, I. Nourdin, F. Russo and P. Vallois. *m*-order integrals and Itô's formula for non-semimartingale processes; the case of a fractional Brownian motion with any Hurst index. To appear in *Ann. Inst. H. Poincaré Probab. Statist.*
- [8] I. Nourdin. PhD Thesis, Nancy, 2004.
- [9] I. Nourdin and T. Simon. On the absolute continuity of Lévy processes with drift. To appear in *Annals of Probability*.
- [10] D. Nualart. The Malliavin Calculus and Related Topics. Springer-Verlag, 1995.
- [11] D. Nualart and Y. Ouknine. Stochastic differential equations with additive fractional noise and locally unbounded drift. Preprint Barcelona, 2003.
- [12] F. Russo and P. Vallois. Forward, backward and symmetric stochastic integration. *Probab. Theory Rel. Fields* **97** (4), pp. 403-421, 1993.
- [13] H. J. Sussmann. On the gap between deterministic and stochastic ordinary differential equations. Ann. Prob. 6, pp. 19-41, 1978.