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Abstract. We characterize the asymptotic independence between blocks consisting of
multiple Wiener-Itô integrals. As a consequence of this characterization, we derive the
celebrated fourth moment theorem of Nualart and Peccati, its multidimensional extension,
and other related results on the multivariate convergence of multiple Wiener-Itô integrals,
that involve Gaussian and non Gaussian limits. We give applications to the study of the
asymptotic behavior of functions of short and long range dependent stationary Gaussian
time series and establish the asymptotic independence for discrete non-Gaussian chaoses.

1. Introduction

Let B = (Bt)t∈R+ be a standard one-dimensional Brownian motion, q > 1 be an integer,
and let f be a symmetric element of L2(Rq

+). Denote by Iq(f) the q-tuple Wiener-Itô
integral of f with respect to B. It is well known that multiple Wiener-Itô integrals of
different orders are uncorrelated but not necessarily independent. In an important paper
[17], Üstünel and Zakai gave the following characterization of the independence of multiple
Wiener-Itô integrals.

Theorem 1.1 (Üstünel-Zakai). Let p, q > 1 be integers and let f ∈ L2(Rp
+) and g ∈ L2(Rq

+)
be symmetric. Then, random variables Ip(f) and Iq(g) are independent if and only if∫

Rp+q−2
+

∣∣∣∣∫
R+

f(x1, . . . , xp−1, u)g(xp+1, . . . , xp+q−2, u) du

∣∣∣∣2 dx1 . . . dxp+q−2 = 0. (1.1)

Rosiński and Samorodnitsky [15] observed that multiple Wiener-Itô integrals are indepen-
dent if and only if their squares are uncorrelated:

Ip(f) ⊥⊥ Iq(g) ⇐⇒ Cov(Ip(f)2, Iq(g)2) = 0. (1.2)

This condition can be viewed as a generalization of the usual covariance criterion for the
independence of jointly Gaussian random variables (the case of p = q = 1).

In the seminal paper [11], Nualart and Peccati discovered the following surprising central
limit theorem.
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Theorem 1.2 (Nualart-Peccati). Let Fn = Iq(fn), where q > 2 is fixed and fn ∈ L2(Rq
+)

are symmetric. Assume also that E[F 2
n ] = 1 for all n. Then convergence in distribution of

(Fn) to the standard normal law is equivalent to convergence of the fourth moment. That
is, as n→∞,

Fn
law→ N(0, 1) ⇐⇒ E[F 4

n ]→ 3. (1.3)

Shortly afterwards, Peccati and Tudor [12] established a multidimensional extension of
Theorem 1.2. Since the publication of these two important papers, many improvements
and developments on this theme have been considered. In particular, Nourdin and Peccati
[7] extended Theorem 1.2 to the case when the limit of Fn’s is a centered gamma distributed
random variable. We refer the reader to the book [8] for further information and details of
the above results.

Heuristic argument linking Theorem 1.1 and Theorem 1.2 was given by Rosiński [14,
pages 3–4], while addressing a question of Albert Shiryaev. Namely, let F and G be two
i.i.d. centered random variables with fourth moment and unit variance. The link comes
via a simple formula

1

2
Cov

(
(F +G)2, (F −G)2

)
= E[F 4]− 3,

criterion (1.2), as well as the celebrated Bernstein’s theorem that asserts that F and G are
Gaussian if and only if F +G and F −G are independent. A rigorous argument to carry
through this idea is based on a characterization of the asymptotic independence of multiple
Wiener-Itô integrals, which is much more difficult to handle than the plain independence,
and may also be of an independent interest. The covariance between the squares of multiple
Wiener-Itô integrals plays the pivotal role in this characterization.

At this point we should also mention an extension of (1.2) to the multivariate setting.
Let I be a finite set and (qi)i∈I be a sequence of non-negative integers. Let Fi = Iqi(fi)
be a multiple Wiener-Itô integral of order qi, i ∈ I. Consider a partition of I into disjoint
blocks Ik, so that I = ∪dk=1Ik, and the resulting random vectors (Fi)i∈Ik , k = 1, . . . , d.
Then

{(Fi)i∈Ik : k ≤ d} are independent⇔ Cov(F 2
i , F

2
j ) = 0 ∀i, j from different blocks. (1.4)

The proof of this criterion is similar to the proof of (1.2) in [15].
In this paper in Theorem 3.4 we establish an asymptotic version of (1.4) characterizing

the asymptotic moment-independence between blocks of multiple Wiener-Itô integrals.
As a consequence of this result, we deduce the fourth moment theorem of Nualart and
Peccati [11] in Theorem 4.1, its multidimensional extension due to Peccati and Tudor
[12] in Theorem 4.2, and some neat estimates on the speed of convergence in Theorem
4.3. Furthermore, we obtain new multidimensional extension of a theorem of Nourdin
and Peccati [7] in Theorem 4.5, and give another new result on the bivariate convergence
of vectors consisting of multiple Wiener-Itô integrals in Theorem 4.7. Proposition 5.3
applies Theorem 4.7 to establish the limit process for functions of short and long range
dependent stationary Gaussian time series in the spirit of the celebrated Breuer-Major [2]
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and Dobrushin-Major-Taqqu [4, 16] Theorems. In Theorem 5.4 we establish the asymptotic
moment-independence for discrete non-Gaussian chaoses using some techniques of Mossel,
O’Donnel and Oleszkiewicz [5].

The paper is organized as follows. In Section 2 we list some basic facts from Gaussian
analysis and prove some lemmas needed in the present work. In particular, we establish
Lemma 2.3, which a version of the Cauchy-Schwarz Inequality well suited to deal with
contractions of functions, see (2.8). It is used in the proof of the main result, Theorem
3.4. Section 3 is devoted to the main results on the asymptotic independence. Section 4
gives some immediate consequences and related applications of the main result. Section
5 provides further applications to the study of short and long range dependent stochastic
processes and multilinear random forms in non-Gaussian random variables.

2. Preliminaries

We will give here some basic elements of Gaussian analysis that are in the foundations
of the present work. The reader is referred to the books [8, 10] for further details and
ommited proofs.

Let H be a real separable Hilbert space. For any q > 1 let H⊗q be the qth tensor
product of H and denote by H�q the associated qth symmetric tensor product. We write
X = {X(h), h ∈ H} to indicate an isonormal Gaussian process over H, defined on some
probability space (Ω,F , P ). This means that X is a centered Gaussian family, whose
covariance is given in terms of the inner product of H by E [X(h)X(g)] = 〈h, g〉H. We also
assume that F is generated by X.

For every q > 1, let Hq be the qth Wiener chaos of X, that is, the closed linear subspace
of L2(Ω,F , P ) generated by the random variables of the type {Hq(X(h)), h ∈ H, ‖h‖H = 1},
where Hq is the qth Hermite polynomial defined as

Hq(x) = (−1)qe
x2

2
dq

dxq
(
e−

x2

2

)
. (2.5)

We write by convention H0 = R. For any q > 1, the mapping

Iq(h
⊗q) = Hq(X(h)) (2.6)

can be extended to a linear isometry between the symmetric tensor product H�q equipped
with the modified norm

√
q! ‖·‖H⊗q and the qth Wiener chaos Hq. For q = 0 we write

I0(c) = c, c ∈ R.
It is well known (Wiener chaos expansion) that L2(Ω,F , P ) can be decomposed into the

infinite orthogonal sum of the spaces Hq. Therefore, any square integrable random variable
F ∈ L2(Ω,F , P ) admits the following chaotic expansion

F =
∞∑
q=0

Iq(fq), (2.7)
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where f0 = E[F ], and the fq ∈ H�q, q > 1, are uniquely determined by F . For every q > 0
we denote by Jq the orthogonal projection operator on the qth Wiener chaos. In particular,
if F ∈ L2(Ω,F , P ) is as in (2.7), then JqF = Iq(fq) for every q > 0.

Let {ek, k > 1} be a complete orthonormal system in H. Given f ∈ H�p and g ∈ H�q,
for every r = 0, . . . , p∧ q, the contraction of f and g of order r is the element of H⊗(p+q−2r)

defined by

f ⊗r g =
∞∑

i1,...,ir=1

〈f, ei1 ⊗ . . .⊗ eir〉H⊗r ⊗ 〈g, ei1 ⊗ . . .⊗ eir〉H⊗r . (2.8)

Notice that f ⊗r g is not necessarily symmetric: we denote its symmetrization by f⊗̃rg ∈
H�(p+q−2r). Moreover, f ⊗0 g = f ⊗g equals the tensor product of f and g while, for p = q,
f⊗q g = 〈f, g〉H⊗q . In the particular case where H = L2(A,A, µ), where (A,A) is a measur-
able space and µ is a σ-finite and non-atomic measure, one has that H�q = L2

s(A
q,A⊗q, µ⊗q)

is the space of symmetric and square integrable functions on Aq. Moreover, for every
f ∈ H�q, Iq(f) coincides with the q-tuple Wiener-Itô integral of f . In this case, (2.8) can
be written as

(f ⊗r g)(t1, . . . , tp+q−2r) =

∫
Ar

f(t1, . . . , tp−r, s1, . . . , sr)

× g(tp−r+1, . . . , tp+q−2r, s1, . . . , sr)dµ(s1) . . . dµ(sr).

We have
‖f ⊗r g‖2 = 〈f ⊗p−r f, g ⊗q−r g〉 for r = 0, . . . , p ∧ q, (2.9)

where 〈·〉 (‖ · ‖, respectively) stands for inner product (the norm, respectively) in an
appropriate tensor product space H⊗s. Also, the following multiplication formula holds: if
f ∈ H�p and g ∈ H�q, then

Ip(f)Iq(g) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(f⊗̃rg), (2.10)

where f⊗̃rg denotes the symmetrization of f ⊗r g.
We conclude these preliminaries by three useful lemmas, that will be needed throughout

the sequel.

Lemma 2.1.
(i) Multiple Wiener-Itô integral has all moments satisfying the following hypercontractivity-

type inequality[
E|Ip(f)|r

]1/r ≤ (r − 1)p/2
[
E|Ip(f)|2

]1/2
, r > 2. (2.11)

(ii) If a sequence of distributions of {Ip(fn)}n≥1 is tight, then

sup
n
E|Ip(fn)|r <∞ for every r > 0. (2.12)
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Proof. (i) Inequality (2.11) is well known and corresponds e.g. to [8, Corollary 2.8.14].
(ii) Combining (2.11) for r = 4 with Paley’s inequality we get for every θ ∈ (0, 1)

P
(
|Ip(f)|2 > θE|Ip(f)|2

)
≥ (1− θ)2

(
E|Ip(f)|2

)2

E|Ip(f)|4
≥ (1− θ)29−p. (2.13)

By the assumption, there is an M > 0 such that P (|Ip(fn)|2 > M) < 9−p−1, n ≥ 1. By
(2.13) with θ = 2/3 and all n, we have

P
(
|Ip(fn)|2 > M

)
< 9−p−1 ≤ P

(
|Ip(fn)|2 > (2/3)E|Ip(fn)|2

)
.

As a consequence, E|Ip(fn)|2 ≤ (3/2)M . Applying (2.11) we conclude (2.12). 2

Lemma 2.2.
(1) Let p, q > 1, f ∈ H�p and g ∈ H�q. Then

‖f⊗̃g‖2 =
p!q!

(p+ q)!

p∧q∑
r=0

(
p

r

)(
q

r

)
‖f ⊗r g‖2, (2.14)

(2) Let q > 1 and f1, f2, f3, f4 ∈ H�q. Then

(2q)!〈f1 ⊗̃ f2, f3 ⊗̃ f4〉 =

q−1∑
r=1

q!2
(
q

r

)2

〈f1⊗rf3, f4⊗rf2〉+q!2
(
〈f1, f3〉〈f2, f4〉+〈f1, f4〉〈f2, f3〉

)
.

(2.15)
(3) Let q > 1, f ∈ H�(2q) and g ∈ H�q. We have

〈f ⊗̃q f, g ⊗̃ g〉 =
2q!2

(2q)!
〈f ⊗q f, g ⊗ g〉+

q!2

(2q)!

q−1∑
r=1

(
q

r

)2

〈f ⊗r g, g ⊗r f〉. (2.16)

Proof. Without loss of generality, we suppose throughout the proof that H is equal to
L2(A,A, µ), where (A,A) is a measurable space and µ is a σ-finite measure without atoms.

(1) Let σ be a permutation of {1, . . . , p+q} (this fact is written in symbols as σ ∈ Sp+q).
If r ∈ {0, . . . , p∧ q} denotes the cardinality of {1, . . . , p}∩ {σ(p+ 1), . . . , σ(p+ q)}, then it
is readily checked that r is also the cardinality of {p+ 1, . . . , p+ q} ∩ {σ(1), . . . , σ(p)} and
that ∫

Ap+q

f(t1, . . . , tp)g(tp+1, . . . , tp+q)f(tσ(1), . . . , tσ(p))g(tσ(p+1), . . . , tσ(p+q))dµ(t1) . . . dµ(tp+q)

=

∫
Ap+q−2r

(f ⊗r g)(x1, . . . , xp+q−2r)
2dµ(x1) . . . dµ(xp+q−2r) = ‖f ⊗r g‖2. (2.17)

Moreover, for any fixed r ∈ {0, . . . , p∧ q}, there are p!
(
p
r

)
q!
(
q
r

)
permutations σ ∈ Sp+q such

that {1, . . . , p} ∩ {σ(p + 1), . . . , σ(p + q)} = r. (Indeed, such a permutation is completely
determined by the choice of: (a) r distinct elements y1, . . . , yr of {p + 1, . . . , p + q}; (b)
p − r distinct elements yr+1, . . . , yp of {1, . . . , p}; (c) a bijection between {1, . . . , p} and
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{y1, . . . , yp}; (d) a bijection between {p + 1, . . . , p + q} and {1, . . . , p + q}\{y1, . . . , yp}.)
Now, observe that the symmetrization of f ⊗ g is given by

f⊗̃g(t1, . . . , tp+q) =
1

(p+ q)!

∑
σ∈Sp+q

f(tσ(1), . . . , tσ(p))g(tσ(p+1), . . . , tσ(p+q)).

Therefore, using (2.17), we can write

‖f⊗̃g‖2 = 〈f ⊗ g, f⊗̃g〉 =
1

(p+ q)!

∑
σ∈Sp+q

∫
Ap+q

f(t1, . . . , tp)g(tp+1, . . . , tp+q)

×f(tσ(1), . . . , tσ(p))g(tσ(p+1), . . . , tσ(p+q))dµ(t1) . . . dµ(tp+q)

=
1

(p+ q)!

p∧q∑
r=0

‖f ⊗r g‖2Card{σ ∈ Sp+q : {1, . . . , p} ∩ {σ(p+ 1), . . . , σ(p+ q)} = r}.

and (2.14) follows.

(2) We proceed analogously. Indeed, we have

〈f1 ⊗̃ f2, f3 ⊗̃ f4〉 = 〈f1 ⊗ f2, f3 ⊗̃ f4〉

=
1

(2q)!

∑
σ∈S2q

∫
A2q

f1(t1, . . . , tq)f2(tq+1, . . . , t2q)

×f3(tσ(1), . . . , tσ(q))f4(tσ(q+1), . . . , tσ(2q))dµ(t1) . . . dµ(t2q)

=
1

(2q)!

q∑
r=0

〈f1 ⊗r f3, f4 ⊗r f2〉Card{σ ∈ S2q : {σ(1), . . . , σ(q)} ∩ {1, . . . , q} = r},

from which we deduce (2.15).

(3) We have

(g ⊗̃ g)(t1, . . . , t2q) =
1

(2q)!

∑
σ∈S2q

g(tσ(1), . . . , tσ(q))g(tσ(q+1), . . . , tσ(2q))

=
1

(2q)!

q∑
r=0

∑
σ∈S2q

{σ(1),...,σ(q)}∩{1,...,q}=r

g(tσ(1), . . . , tσ(q))g(tσ(q+1), . . . , tσ(2q)),

and

(f⊗qf)(t1, . . . , t2q) =

∫
Aq

f(t1, . . . , tq, x1, . . . , xq)f(x1, . . . , xq, tq+1, . . . , t2q)dµ(x1) . . . dµ(xq),
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so that

〈f ⊗̃q f, g ⊗̃ g〉 = 〈f ⊗q f, g ⊗̃ g〉

=
1

(2q)!

q∑
r=0

〈f ⊗r g, g ⊗r f〉Card{σ ∈ S2q : {σ(1), . . . , σ(q)} ∩ {1, . . . , q} = r}

=
1

(2q)!

q∑
r=0

(
q

r

)2

q!2〈f ⊗r g, g ⊗r f〉

=
q!2

(2q)!
〈f ⊗q g, g ⊗q f〉+

q!2

(2q)!
〈f ⊗ g, g ⊗ f〉+

1

(2q)!

q−1∑
r=1

(
q

r

)2

q!2〈f ⊗r g, g ⊗r f〉.

Since 〈f ⊗q g, g ⊗q f〉 = 〈f ⊗ g, g ⊗ f〉 = 〈f ⊗q f, g ⊗ g〉, the desired conclusion (2.16)
follows. �

Lemma 2.3 (Generalized Cauchy-Schwarz Inequality). Assume that H = L2(A,A, µ),
where (A,A) is a measurable space equipped with a σ-finite measure µ. For any integer
M > 1, put [M ] = {1, ...,M}. Also, for every element z = (z1, ..., zM) ∈ AM and every
nonempty set c ⊂ [M ], let zc denote the element of A|c| (where |c| is the cardinality of c)
obtained by deleting from z the entries with index not contained in c. (For instance, if
M = 5 and c = {1, 3, 5}, then zc = (z1, z3, z5).) Let

(α) C, q > 2 be integers, and let c1, ..., cq be nonempty subsets of [C] such that each
element of [C] appears in exactly two of the ci’s (this implies that

⋃
i ci = [C] and∑

i |ci| = 2C);
(β) let h1, ..., hq be functions such that hi ∈ L2(µ|ci|) := L2(A|ci|,A|ci|, µ|ci|) for every

i = 1, ..., q (in particular, each hi is a function of |ci| variables).
Then ∣∣∣ ∫

AC

q∏
i=1

hi(zci)µ
C(dz[C])

∣∣∣ 6 q∏
i=1

‖hi‖L2(µ|ci|). (2.18)

Moreover, if c0 := cj ∩ ck 6= ∅ for some j 6= k, then∣∣∣ ∫
AC

q∏
i=1

hi(zci)µ
C(dz[C])

∣∣∣ 6 ‖hj ⊗c0 hk‖L2(µ|cj4ck|)

q∏
i 6=j,k

‖hi‖L2(µ|ci|), (2.19)

where

hj ⊗c0 hk(zcj4ck) =

∫
A|c0|

hj(zcj)hk(zck)µ|c0|(dzc0).

(Notice that hj ⊗c0 hk = hj ⊗|c0| hk when hj and hk are symmetric.)

Proof. In the case q = 2, (2.18) is just the Cauchy-Schwarz inequality and (2.19) is
an equality. Assume that (2.18)–(2.19) hold for at most q − 1 functions and proceed by
induction. Among the sets c1, . . . , cq at least two, say cj and ck, have nonempty intersection.
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Set c0 := cj ∩ ck, as above. Since c0 does not have common elements with ci for all i 6= j, k,
by Fubini’s theorem∫

AC

q∏
i=1

hi(zci)µ
C(dz[C]) =

∫
AC−|c0|

hj ⊗c0 hk(zcj4ck)

q∏
i 6=j,k

hi(zci)µ
C−|c0|(dz[C]\c0). (2.20)

Observe that every element of [C] \ c0 belongs to exactly two of the q − 1 sets: cj4ck, ci,
i 6= j, k. Therefore, by the induction assumption, (2.18) implies (2.19), provided cj4ck 6= ∅.
When cj = ck, we have hj ⊗c0 hk = 〈hj, hk〉 and (2.19) follows from (2.18) applied to the
product of q− 2 functions in (2.20). This proves (2.19), which in turn yields (2.18) by the
Cauchy-Schwarz inequality. The proof is complete. �

3. The main results

The following theorem characterizes moment-independence of limits of multiple Wiener-Itô
integrals.

Theorem 3.1. Let d > 2, and let q1, . . . , qd be positive integers. Consider vectors

(F1,n, . . . , Fd,n) =
(
Iq1(f1,n), . . . , Iqd(fd,n)

)
, n > 1,

with fi,n ∈ H�qi. Assume that for some random vector (U1, . . . , Ud),

(F1,n, . . . , Fd,n)
law→ (U1, . . . , Ud) as n→∞. (3.21)

Then Ui’s admit moments of all orders and the following three conditions are equivalent:
(α) U1, . . . , Ud are moment-independent, that is, E[Uk1

1 . . . Ukd
d ] = E[Uk1

1 ] . . . E[Ukd
d ] for

all k1, . . . , kd ∈ N;
(β) limn→∞Cov(F 2

i,n, F
2
j,n) = 0 for all i 6= j;

(γ) limn→∞ ‖fi,n ⊗r fj,n‖ = 0 for all i 6= j and all r = 1, . . . , qi ∧ qj;

Moreover, if the distribution of each Ui is determined by its moments, then (a) is equivalent
to that

(δ) U1, . . . , Ud are independent.

Remarks 3.2.
(1) Theorem 3.1 raises a question whether the moment-independence implies the usual

independence under weaker conditions than the determinacy of the marginals. (Re-
call that a random variable having all moments is said to be determinate if any other
random variable with the same moments has the same distribution.) The answer
is negative in general, see [1, Theorem 5 ].
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(2) Assume that d = 2 (for simplicity). In this case, (γ) becomes ‖f1,n ⊗r f2,n‖ → 0

for all r = 1, . . . , q1 ∧ q2. In view of Theorem 1.1 of Üstünel and Zakai, one may
expect that (γ) could be replaced by a weaker condition (γ′): ‖f1,n ⊗1 f2,n‖ → 0.

However, the latter is false. To see it, consider a sequence fn ∈ H�2 such that
‖fn‖2 = 1

2
and ‖fn ⊗1 fn‖ → 0. By Theorem 4.1 below, Fn := I2(fn)

law→ U ∼
N(0, 1). Putting f1,n = f2,n = fn, we observe that (γ′) holds but (α) does not, as
(I2(f1,n), I2(f2,n))

law→ (U,U).

(3) Taking into account that assumptions (γ) and (δ) of Theorem 4.1 are equivalent,
it is natural to wonder whether assumption (γ) of Theorem 3.1 is equivalent to its
symmetrized version:

lim
n→∞

‖fi,n ⊗̃r fj,n‖ = 0 for all i 6= j and all r = 1, . . . , qi ∧ qj.

The answer is negative in general, as is shown by the following counterexample.
Let f1, f2 : [0, 1]2 → R be symmetric functions given by

f1(s, t) =

{
−1 s, t ∈ [0, 1/2]
1 elsewhere and f2(s, t) =

{
−1 s, t ∈ (1/2, 1]
1 elsewhere.

Then 〈f1, f2〉 = 0 and

(f1 ⊗1 f2)(s, t) =

 −1 if s ∈ [0, 1/2] and t ∈ (1/2, 1]
1 if t ∈ [0, 1/2] and s ∈ (1/2, 1]
0 elsewhere,

so that f1 ⊗̃1 f2 ≡ 0 and ‖f1 ⊗1 f2‖ =
√

2.

(4) The condition of moment-independence, (α) of Theorem 3.1, can also be stated in
terms of cumulants. Recall that the joint cumulant of random variables X1, . . . , Xm

is defined by

κ(X1, . . . , Xm) = (−i)m ∂m

∂t1 · · · ∂tm
logE[ei(t1X1+···+tmXm)]∣∣t1=0,...,tm=0

,

provided E|X1 · · ·Xm| < ∞. When all Xi are equal to X, then κ(X, . . . , X) =
κm(X), the usual mth cumulant of X, see [6]. Then Theorem 3.1(α) is equivalent
to
(α’) for all integers 1 ≤ j1 < · · · < jk ≤ d, k ≥ 2, and m1, . . . ,mk ≥ 1

κ(Uj1 , . . . , Uj1︸ ︷︷ ︸
m1

, . . . , Ujk , . . . , Ujk︸ ︷︷ ︸
mk

) = 0. (3.22)

Theorem 3.1 was proved in the first version of this paper [9]. Our proof of the crucial
implication (γ) ⇒ (α) involved tedious combinatorial considerations. We are thankful to
an anonymous referee who suggested a shorter and more transparent line of proof using
Malliavin calculus. It significantly reduced the amount of combinatorial arguments of the
original version but requires some basic facts from Malliavin calculus. We incorporated
referee’s suggestions and approach into the proof of a more general Theorem 3.4. Even



10 IVAN NOURDIN AND JAN ROSIŃSKI

though Theorem 3.1 becomes a special case of Theorem 3.4 (see Corollary 3.6), we keep
its original statement for a convenient reference.

Definition 3.3. For each n > 1, let Fn = (Fi,n)i∈I be a family of real-valued random
variables indexed by a finite set I. Consider a partition of I into disjoint blocks Ik, so
that I = ∪dk=1Ik. We say that vectors (Fi,n)i∈Ik , k = 1, . . . , d are asymptotically moment-
independent if each Fi,n admits moments of all orders and for any sequence (`i)i∈I of
non-negative integers,

lim
n→∞

{
E
[∏
i∈I

F `i
i,n

]
−

d∏
k=1

E
[∏
i∈Ik

F `i
i,n

]}
= 0. (3.23)

The next theorem characterizes the asymptotic moment-independence between blocks
of multiple Wiener-Itô integrals.

Theorem 3.4. Let I be a finite set and (qi)i∈I be a sequence of non-negative integers.
For each n > 1, let Fn = (Fi,n)i∈I be a family of multiple Wiener-Itô integrals, where
Fi,n = Iqi(fi,n) with fi,n ∈ H�qi. Assume that for every i ∈ I

sup
n
E
[
F 2
i,n

]
<∞. (3.24)

Given a partition of I into disjoint blocks Ik, the following conditions are equivalent:

(a) random vectors (Fi,n)i∈Ik , k = 1, . . . , d are asymptotically moment-independent;

(b) limn→∞Cov(F 2
i,n, F

2
j,n) = 0 for every i, j from different blocks;

(c) limn→∞ ‖fi,n ⊗r fj,n‖ = 0 for every i, j from different blocks and r = 1, . . . , qi ∧ qj.

Proof: The implication (a)⇒ (b) is obvious.

To show (b)⇒ (c), fix i, j belonging to different blocks. By (2.10) we have

Fi,nFj,n =

qi∧qj∑
r=0

r!

(
qi
r

)(
qj
r

)
Iqi+qj−2r(fi,n⊗̃rfj,n),

which yields

E[F 2
i,nF

2
j,n] =

qi∧qj∑
r=0

r!2
(
qi
r

)2(
qj
r

)2

(qi + qj − 2r)!‖fi,n⊗̃rfj,n‖2.

Moreover,

E[F 2
i,n]E[F 2

j,n] = qi!qj!‖fi,n‖2‖fj,n‖2.
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Applying (2.14) to the second equality below, we evaluate Cov(F 2
i,n, F

2
j,n) as follows:

Cov(F 2
i,n, F

2
j,n) = (qi + qj)!‖fi,n⊗̃fj,n‖2 − qi!qj!‖fi,n‖2‖fj,n‖2 (3.25)

+

qi∧qj∑
r=1

r!2
(
qi
r

)2(
qj
r

)2

(qi + qj − 2r)!‖fi,n⊗̃rfj,n‖2

= qi!qj!

qi∧qj∑
r=1

(
qi
r

)(
qj
r

)
‖fi,n ⊗r fj,n‖2 +

qi∧qj∑
r=1

r!2
(
qi
r

)2(
qj
r

)2

(qi + qj − 2r)!‖fi,n⊗̃rfj,n‖2

> max
r=1,...,qi∧qj

‖fi,n ⊗r fj,n‖2. (3.26)

This bound yields the desired conclusion.

Now we will prove (c)⇒ (a). We need to show (3.23) for fixed li. Writing F li
i,n as

Fi,n × . . .× Fi,n︸ ︷︷ ︸
li

and enlarging I and Ik’s accordingly, we may and do assume that all

li = 1. We will prove (3.23) by induction on Q =
∑

i∈I qi. The formula holds when Q = 0
or 1. Therefore, take Q ≥ 2 and suppose that (3.23) holds whenever

∑
i∈I qi ≤ Q− 1.

Fix i1 ∈ I1 and set

Xn =
∏

i∈I1\{i1}

Iqi(fi,n), Yn =
∏
j∈I\I1

Iqj(fj,n).

Assume that q1 ≥ 1, otherwise the inductive step follows immediately. Let δ denote the
divergence operator in the sense of Malliavin calculus and let D be the Malliavin derivative,
see [10, Ch. 1.2-1.3]. Using the duality relation [10, Def. 1.3.1(ii)] and the product rule
for the Malliavin derivative [3, Theorem 3.4] we get

E
[∏
i∈I

Fi,n
]

= E
[
Iqi1 (fi1,n)XnYn

]
= E

[
δ(Iqi1−1(fi1,n))XnYn

]
= E

[
Iqi1−1(fi1,n)⊗1 D(XnYn)

]
= E

[
Yn Iqi1−1(fi1,n)⊗1 DXn

]
+ E

[
Xn Iqi1−1(fi1,n)⊗1 DYn

]
= An +Bn.

First we consider Bn. Using the product rule for DYn we obtain

Bn =
∑
j∈I\I1

E
[
Iqi1−1(fi1,n)⊗1 DFj,n

∏
i∈I\{i1,j}

Fi,n
]

=
∑
j∈I\I1

qjE
[
Iqi1−1(fi1,n)⊗1 Iqj−1(fj,n)

∏
i∈I\{i1,j}

Fi,n
]
.

By the multiplication formula (2.10) we have

Iqi1−1(fi1,n)⊗1 Iqj−1(fj,n) =

qi1∧qj∑
s=1

(s− 1)!

(
qi1 − 1

s− 1

)(
qj − 1

s− 1

)
Iqi1+qj−2s(fi1,n⊗̃sfj,n).
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Since i1 and j belong to different blocks, condition (c) of the theorem applied to the above
expansion yields that Iqi1−1(fi1,n) ⊗1 Iqj−1(fj,n) converges to zero in L2. Combining this
with (3.24) and Lemma 2.1 we infer that limn→∞Bn = 0.

Now we consider An. If Card(I1) = 1, then Xn = 1 by convention and so An = 0. Hence

lim
n→∞

{
E
[∏
i∈I

Fi,n
]
− E

[
Fi1,n

] d∏
k=2

E
[∏
i∈Ik

Fi,n
]}

= lim
n→∞

Bn = 0.

Therefore, we now assume that Card(I1) ≥ 2. Write An = E
[
ZnYn

]
, where

Zn = Iqi1−1(fi1,n)⊗1 DXn

=
∑

i∈I1\{i1}

qiIqi1−1(fi1,n)⊗1 Iqi−1(fi,n)
∏

j∈I1\{i1,i}

Fj,n

=
∑

i∈I1\{i1}

qi

qi1∧qi∑
s=1

(s− 1)!

(
qi1 − 1

s− 1

)(
qi − 1

s− 1

)
Iqi1+qi−2s(fi1,n⊗̃sfi,n)

∏
j∈I\{i1,i}

Fj,n.

Thus An is a linear combination of the terms

E
[(
Iqi1+qi−2s(fi1,n⊗̃sfi,n)

∏
j∈I1\{i1,i}

Fj,n
)
Yn
]
,

where i1, i ∈ I1, i1 6= i, 1 ≤ s ≤ qi1 ∧ qi. The term under expectation is a product of
multiple integrals of orders summing to

∑
j∈I qj − 2s. Therefore, the induction hypothesis

applies provided
lim
n→∞

(
fi1,n⊗̃sfi,n

)
⊗r fj,n = 0 (3.27)

for all j ∈ Ik with k > 2 and all r = 1, . . . , (qi1 + qi − 2s) ∧ qj.
Suppose that (3.27) holds. Then by the induction hypothesis

lim
n→∞

{
An − E[Zn]E[Yn]

}
= 0.

Moreover,

E[Zn] = E
[
Iqi1−1(fi1,n)⊗1 DXn

]
= E[Iqi1 (fi1,n)Xn] = E

[∏
i∈I1

Fi,n
]
.

Hence, by the induction hypothesis applied to Yn and the uniform boundedness of all
moments of Fi,n, we get

lim
n→∞

{
E
[∏
i∈I

Fi,n
]
−

d∏
k=1

E
[∏
i∈Ik

Fi,n
]}

= lim
n→∞

{
An − E[Zn]E[Yn]

}
= 0.

It remains to show (3.27). To this aim we will describe the structure of the terms under
the limit (3.27). Without loss of generality we may assume that H = L2(µ) := L2(A,A, µ),
where (A,A) is a measurable space and µ is a σ-finite measure without atoms. Recall
notation of Lemma 2.3. For every integer M > 1, put [M ] = {1, ...,M}. Also, for
every element z = (z1, ..., zM) ∈ AM and every nonempty set c ⊂ [M ], we denote by zc the
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element of A|c| (where |c| is the cardinality of c) obtained by deleting from z the entries with
index not contained in c. (For instance, if M = 5 and c = {1, 3, 5}, then zc = (z1, z3, z5).)

Observe that
(
fi1,n⊗̃sfi,n

)
⊗r fj,n is a linear combination of functions ψ(zJ1), z ∈ AM

obtained as follows. Set M = qi1 + qi + qj − s − r and M0 = qi1 + qi − s, so that
M > M0 ≥ 2. Choose b1, b2 ⊂ [M0] such that |b1| = qi1 , |b2| = qi and |b1∩b2| = s, and then
choose b3 ⊂ [M ] such that |b3| = qj and |b3∩ (b1∪b2)| = r. It follows that b1∪b2∪b3 = [M ]
and b1∩ b2∩ b3 = ∅. Therefore, each element of [M ] belongs exactly to one or two bi’s. Let

J = {j ∈ [M ] : j belongs to two sets bi}
and put J1 = [M ] \ J . Then

(
fi1,n⊗̃sfi,n

)
⊗r fj,n is a linear combination of functions of the

form
ψ(zJ1) =

∫
AJ

fi1,n(zb1)fi,n(zb2)fj,n(zb3)µ
|J |(dzJ),

where the summation goes over all choices b1, b2 under the constraint that the sets b1 ∩ b2

and b3 are fixed. This constraint makes J1 unique, |J1| = qi1 + qi + qj − 2s− 2r.
Let ci = bi ∩ J , i = 1, 2, 3 and notice that either c1 ∩ c3 6= ∅ or c2 ∩ c3 6= ∅ since r ≥ 1.

Suppose c0 = c1 ∩ c3 6= ∅, the other case is identical. Applying Lemma 2.3 with zJ1 fixed
we get

|ψ(zJ1)|2 ≤ |fi1,n ⊗|c0| fj,n(zb14b3)|2
∫
A|c2|
|fi,n(zb2)|2 µ|c2|(dzc2)

Since b14b3 and b3 \ c3 make a disjoint partition of J1, and additional integration with
respect to zJ1 yields

‖ψ‖L2(µ|J1|) ≤ ‖fi1,n ⊗|c0| fj,n‖L2(µ|b14b3|) ‖fi,n‖L2(µ|b2|) → 0

as n→∞. This yields (3.27) and completes the proof of Theorem 3.4. �

Remark 3.5. Condition (b) of Theorem 3.4 is equivalent to

(b’) for every 1 ≤ k 6= l ≤ d

lim
n→∞

Cov(‖(Fi,n)i∈Ik‖
2 , ‖(Fi,n)i∈Il‖

2) = 0,

where ‖·‖ denotes the Euclidean norms in R|Ik| and R|Il| respectively.

Proof. Indeed, condition (b) of Theorem 3.4 implies (b’) and the converse follows from

Cov(‖(Fi,n)i∈Ik‖
2 , ‖(Fi,n)i∈Il‖

2) =
∑

i∈Ik,j∈Il

Cov(F 2
i,n, F

2
j,n) ≥ Cov(F 2

i,n, F
2
j,n),

as the squares of multiple Wiener-Itô integrals are non-negatively correlated, cf. (3.26). �

The following corollary is useful to deduce the joint convergence in law from the con-
vergence of marginals. It is stated for random vectors, as is Theorem 3.4, but it obviously
applies in the setting of Theorem 3.1 when all vectors are one-dimensional.

Corollary 3.6. Under notation of Theorem 3.4, let (Ui)i∈I be a random vector such that
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(i) (Fi,n)i∈Ik
law→ (Ui)i∈Ik as n→∞, for each k;

(ii) vectors (Ui)i∈Ik , k = 1, . . . , d are independent;
(iii) condition (b) or (c) of Theorem 3.4 holds [equivalently, (β) or (γ) of Theorem 3.1

when all Ik are singletons];
(iv) L(Ui) is determined by its moments for each i ∈ I.

Then the joint convergence holds,

(Fi,n)i∈I
law→ (Ui)i∈I , n→∞.

Proof: By (i) the sequence {(Fi,n)i∈I}n≥1 is tight. Let (Vi)i∈I be a random vector such that

(Fi,nj
)i∈I

law→ (Vi)i∈I

as nj → ∞ along a subsequence. From Lemma 2.1(ii) we infer that condition (3.24) of
Theorem 3.4 is satisfied. It follows that each Vi has all moments and (Vi)i∈Ik

law
= (Ui)i∈Ik

for each k. By (iv), the laws of vectors (Ui)i∈I and (Vi)i∈I are determined by their joint mo-
ments, respectively, see [13, Theorem 3]. Under the assumption (iii), the vectors (Fi,n)i∈Ik ,
k = 1, . . . , d are asymptotically moment independent. Hence, for any sequence (`i)i∈I of
non-negative integers,

E
[∏
i∈I

V `i
i

]
− E

[∏
i∈I

U `i
i

]
= E

[∏
i∈I

V `i
i

]
−

d∏
k=1

E
[∏
i∈Ik

U `i
i

]
= lim

nj→∞

{
E
[∏
i∈I

F `i
i,nj

]
−

d∏
k=1

E
[∏
i∈Ik

F `i
i,nj

]}
= 0.

Thus (Vi)i∈I
law
= (Ui)i∈I . �

4. Applications

4.1. The fourth moment theorem of Nualart-Peccati.

We can give a short proof of the difficult and surprising part implication (β)⇒ (α) of the
fourth moment theorem of Nualart and Peccati [11], that we restate here for a convenience.

Theorem 4.1 (Nualart-Peccati). Let (Fn) be a sequence of the form Fn = Iq(fn), where
q > 2 is fixed and fn ∈ H�q. Assume moreover that E[F 2

n ] = q!‖fn‖2 = 1 for all n. Then,
as n→∞, the following four conditions are equivalent:

(α) Fn
law→ N(0, 1);

(β) E[F 4
n ]→ 3;

(γ) ‖fn ⊗r fn‖ → 0 for all r = 1, . . . , q − 1;
(δ) ‖fn ⊗̃r fn‖ → 0 for all r = 1, . . . , q − 1.
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Proof of (β) ⇒ (α). Assume (β). Since the sequence (Fn) is bounded in L2(Ω) by the
assumption, it is relatively compact in law. Without loss of generality we may assume that
Fn

law→ Y and need to show that Y ∼ N(0, 1). Let Gn be an independent copy of Fn of the
form Gn = Iq(gn) with fn ⊗1 gn = 0. This can easily be done by extending the underlying
isonormal process to the direct sum H⊕ H. We then have

(Iq (fn + gn) , Iq (fn − gn)) = (Fn +Gn, Fn −Gn)
law→ (Y + Z, Y − Z)

as n→∞, where Z stands for an independent copy of Y . Since
1

2
Cov[(Fn +Gn)2, (Fn −Gn)2] = E[F 4

n ]− 3→ 0,

Y + Z and Y − Z are moment-independent. (If they were independent, the classical
Bernstein Theorem would conclude the proof.) However, in our case condition (α′) in
(3.22) says that

κ(Y + Z, . . . , Y + Z︸ ︷︷ ︸
m1

, Y − Z, . . . , Y − Z︸ ︷︷ ︸
m2

) = 0 for all m1,m2 ≥ 1.

Taking n ≥ 3 we get
0 = κ(Y + Z, . . . , Y + Z︸ ︷︷ ︸

n−2

, Y − Z, Y − Z)

= κ(Y, . . . , Y︸ ︷︷ ︸
n

) + κ(Z, . . . , Z︸ ︷︷ ︸
n

) = 2κn(Y ),

where we used the multilinearity of κ and the fact that Y and Z are i.i.d. Since κ1(Y ) = 0,
κ2(Y ) = 1, and κn(Y ) = 0 for n ≥ 3, we infer that Y ∼ N(0, 1). �

4.2. Generalizing a result of Peccati and Tudor.

Applying our approach, one can add a further equivalent condition to a result of Peccati
and Tudor [12]. As such, Theorem 4.2 turns out to be the exact multivariate equivalent of
Theorem 4.1.

Theorem 4.2 (Peccati-Tudor). Let d > 2, and let q1, . . . , qd be positive integers. Consider
vectors

Fn = (F1,n, . . . , Fd,n) =
(
Iq1(f1,n), . . . , Iqd(fd,n)

)
, n > 1,

with fi,n ∈ H�qi. Assume that, for i, j = 1, . . . , d, as n→∞,

Cov
(
Fi,n, Fj,n

)
→ σij. (4.28)

Let N be a centered Gaussian random vector with the covariance matrix Σ = (σij)16i,j6d.
Then the following two conditions are equivalent (n→∞):

(i) Fn
law→ N ;

(ii) E
[
‖Fn‖4

]
→ E

[
‖N‖4

]
;

where ‖ · ‖ denotes the Euclidean norm in Rd.
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Proof. Only (ii)⇒ (i) has to be shown. Assume (ii). As in the proof of Theorem 4.1, we
may assume that Fn

law→ Y and must show that Y ∼ Nd(0,Σ). Let Gn = (G1,n, . . . , Gd,n)
be an independent copy of Fn of the form

(
Iq1(g1,n), . . . , Iqd(gd,n)

)
. Observe that

1

2
Cov

(
‖Fn +Gn‖2, ‖Fn −Gn‖2 )

= E[‖Fn‖4]−
(
E[‖Fn‖2]

)2 − 2
d∑

i,j=1

Cov(Fi,n, Fj,n)2.

Using this identity for N and N ′ in place of Fn and Gn, where N ′ is an independent copy
of N , we get

E[‖N‖4] =
d∑

i,j=1

(
σiiσjj + 2σ2

ij

)
. (4.29)

Hence
1

2
Cov

(
‖Fn +Gn‖2 , ‖Fn −Gn‖2 ) = E[‖Fn‖4]− E[‖N‖4]

+
d∑

i,j=1

[
σiiσjj + 2σ2

ij − Var(Fi,n)Var(Fj,n)− 2Cov(Fi,n, Fj,n)2
]
→ 0.

By Remark 3.5, Fn + Gn and Fn − Gn are asymptotically moment-independent. Since
one-dimensional projections of Fn + Gn and Fn − Gn are also asymptotically moment-
independent, we can proceed by cumulants as above to determine the normality of Y . �

The following result associates neat estimates to Theorem 4.2.

Theorem 4.3. Consider a vector

F = (F1, . . . , Fd) = (Iq1(f1), . . . , Iqd(fd))

with fi ∈ H�qi, and let Σ = (σij)16i,j6d be the covariance matrix of F , σij = E[FiFj]. Let
N be the associated Gaussian random vector, N ∼ Nd(0,Σ).

(1) Assume that Σ is invertible. Then, for any Lipschitz function h : Rd → R we have

∣∣E[h(F )]− E[h(N)]
∣∣ 6 √d ‖Σ‖1/2

op ‖Σ−1‖op‖h‖Lip
√
E‖F‖4 − E‖N‖4,

where ‖·‖op denotes the operator norm of a matrix and ‖h‖Lip = supx,y∈Rd
|h(x)−h(y)|
‖x−y‖ .

(2) For any C2-function h : Rd → R we have∣∣E[h(F )]− E[h(N)]
∣∣ 6 1

2
‖h′′‖∞

√
E‖F‖4 − E‖N‖4,

where ‖h′′‖∞ = max16i,j6d supx∈Rd

∣∣∣ ∂2h
∂xi∂xj

(x)
∣∣∣.
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Proof: The proof is divided into three steps.

Step 1: Recall that for a Lipschitz function h : Rd → R [8, Theorem 6.1.1] yields

∣∣E[h(F )]− E[h(N)]
∣∣ 6 √d ‖Σ‖1/2

op ‖Σ−1‖op‖h‖Lip

√√√√ d∑
i,j=1

E

{(
σij −

1

qj
〈DFi, DFj〉

)2
}
,

while for a C2-function with bounded Hessian [8, Theorem 6.1.2] gives

∣∣E[h(F )]− E[h(N)]
∣∣ 6 1

2
‖h′′‖∞

√√√√ d∑
i,j=1

E

{(
σij −

1

qj
〈DFi, DFj〉

)2
}
.

Step 2: We claim that for any i, j = 1, . . . , d,

E

{(
σij −

1

qj
〈DFi, DFj〉

)2
}
6 Cov(F 2

i , F
2
j )− 2σ2

ij.

Indeed, by [8, identity (6.2.4)] and the fact that σij = 0 if qi 6= qj, we have

E

{(
σij −

1

qj
〈DFi, DFj〉

)2
}

=


q2
i

∑qi∧qj
r=1 (r − 1)!2

(
qi−1
r−1

)2(qj−1
r−1

)2
(qi + qj − 2r)!‖fi⊗̃rfj‖2 if qi 6= qj

q2
i

∑qi−1
r=1 (r − 1)!2

(
qi−1
r−1

)4
(2qi − 2r)!‖fi⊗̃rfj‖2 if qi = qj

6


∑qi∧qj

r=1 r!2
(
qi
r

)2(qj
r

)2
(qi + qj − 2r)!‖fi⊗̃rfj‖2 if qi 6= qj∑qi−1

r=1 r!
2
(
qi
r

)4
(2qi − 2r)!‖fi⊗̃rfj‖2 if qi = qj

.

On the other hand, from (3.25) we have

Cov(F 2
i , F

2
j )− 2σ2

ij

=



qi!qj!
∑qi∧qj

r=1

(
qi
r

)(
qj
r

)
‖fi ⊗r fj‖2

+
∑qi∧qj

r=1 r!2
(
qi
r

)2(qj
r

)2
(qi + qj − 2r)!‖fi⊗̃rfj‖2 if qi 6= qj

qi!
2
∑qi−1

r=1

(
qi
r

)2‖fi ⊗r fj‖2

+
∑qi−1

r=1 r!
2
(
qi
r

)4
(2qi − 2r)!‖fi⊗̃rfj‖2 if qi = qj

.

The claim follows immediately.
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Step 3: Applying (4.29) we get

E‖F‖4 − E‖N‖4 =
d∑

i,j=1

(
E[F 2

i F
2
j ]− σiiσjj − 2σ2

ij

)
=

d∑
i,j=1

{
Cov(F 2

i , F
2
j )− 2σ2

ij

}
.

Combining Steps 1-3 gives the desired conclusion. �

4.3. A multivariate version of the convergence towards χ2.

Here we will prove a multivariate extension of a result of Nourdin and Peccati [7]. Such an
extension was an open problem as far as we know.

In what follows, G(ν) will denote a random variable with the centered χ2 distribution
having ν > 0 degrees of freedom. When ν is an integer, then G(ν)

law
=
∑ν

i=1(N2
i −1), where

N1, . . . , Nν are i.i.d. standard normal random variables. In general, G(ν) is a centered
gamma random variable with a shape parameter ν/2 and scale parameter 2. Nourdin and
Peccati [7] established the following theorem.

Theorem 4.4 (Nourdin-Peccati). Fix ν > 0 and let G(ν) be as above. Let q > 2 be
an even integer, and let Fn = Iq(fn) be such that limn→∞E[F 2

n ] = E[G(ν)2] = 2ν. Set
cq = 4 [(q/2)!]3 [q!]−2. Then, the following four assertions are equivalent, as n→∞:

(α) Fn
law→ G(ν);

(β) E[F 4
n ]− 12E[F 3

n ]→ E[G(ν)4]− 12E[G(ν)3] = 12ν2 − 48ν;
(γ) ‖fn⊗̃q/2fn − cq × fn‖ → 0, and ‖fn ⊗r fn‖ → 0 for every r = 1, ..., q − 1 such that

r 6= q/2;
(δ) ‖fn⊗̃q/2fn − cq × fn‖ → 0, and ‖fn⊗̃rfn‖ → 0 for every r = 1, ..., q − 1 such that

r 6= q/2.

The following is our multivariate extension of this theorem.

Theorem 4.5. Let d > 2, let ν1, . . . , νd be positive reals, and let q1, . . . , qd > 2 be even
integers. Consider vectors

Fn = (F1,n, . . . , Fd,n) =
(
Iq1(f1,n), . . . , Iqd(fd,n)

)
, n > 1,

with fi,n ∈ H�qi, such that limn→∞E[F 2
i,n] = 2νi for every i = 1, . . . , d. Assume that:

(i) E[F 4
i,n]− 12E[F 3

i,n]→ 12ν2
i − 48νi for every i;

(ii) limn→∞Cov(F 2
i,n, F

2
j,n) = 0 whenever qi = qj for some i 6= j;

(ii) limn→∞E[F 2
i,nFj,n] = 0 whenever qj = 2qi.
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Then
(F1,n, . . . , Fd,n)

law→ (G(ν1), . . . , G(νd))

where G(ν1), . . . , G(νd) are independent random variables having centered χ2 distributions
with ν1, . . . , νd degrees of freedom, respectively.

Proof. Using the well-known Carleman’s condition, it is easy to check that the law of G(ν)
is determined by its moments. By Corollary 3.6 it is enough to show that condition (γ) of
Theorem 3.1 holds.

Fix 1 6 i 6= j 6 d as well as 1 6 r 6 qi ∧ qj. Switching i and j if necessary, assume that
qi 6 qj. From Theorem 4.4(γ) we get that fk,n ⊗r fk,n → 0 for each 1 6 k 6 d and every
1 6 r 6 qk − 1, except when r = qk/2. Using the identity

‖fi,n ⊗r fj,n‖2 = 〈fi,n ⊗qi−r fi,n, fj,n ⊗qj−r fj,n〉 (4.30)

(see (2.9)) together with the Cauchy-Schwarz inequality we infer that condition (γ) of
Theorem 3.1 holds for all values of r, i and j, except of the cases: r = qi = qj, r = qi/2 =
qj/2, and r = qi = qj/2. Assumption (i) together with (3.26) show that fi,n ⊗r fj,n → 0
for all 1 6 r 6 qi = qj. Thus, it remains to verify condition (γ) of Theorem 3.1 when
r = qi = qj/2. Lemma 2.2 (identity (2.16) therein) yields

〈fj,n ⊗̃qi fj,n, fi,n ⊗̃ fi,n〉

=
2qi!

2

qj!
〈fj,n ⊗qi fj,n, fi,n ⊗ fi,n〉+

qi!
2

qj!

qi−1∑
s=1

(
qi
s

)2

〈fj,n ⊗s fi,n, fi,n ⊗s fj,n〉.

Using (4.30) and Theorem 4.4 and a reasoning as above, it is straightforward to show that
the sum

∑qi−1
s=1

(
qi
s

)2〈fj,n⊗sfi,n, fi,n⊗sfj,n〉 tends to zero as n→∞. On the other hand, the
condition on the qi-th contraction in Theorem 4.4(δ) yields that fj,n ⊗̃qi fj,n − cqjfj,n → 0
as n→∞. Moreover, we have

〈fj,n, fi,n ⊗̃ fi,n〉 =
1

qj!
E[Fj,nF

2
i,n],

which tends to zero by assumption (ii). All these facts together imply that
〈fj,n ⊗qi fj,n, fi,n ⊗ fi,n〉 → 0 as n → ∞. Using (4.30) for r = qi we get fi,n ⊗qi fj,n → 0,
showing that condition (γ) of Theorem 3.1 holds true in the last remaining case. The proof
of the theorem is complete. 2

Example 4.6. Consider Fn = (F1,n, F2,n) = (Iq1(f1,n), Iq2(f2,n)), where 2 ≤ q1 ≤ q2 are
even integers. Suppose that

E[F 2
1,n]→ 1, E[F 4

1,n]− 6E[F 3
1,n]→ −3, and

E[F 2
2,n]→ 2, E[F 4

2,n]− 6E[F 3
2,n]→ 0, as n→∞.

When q1 = q2 or q2 = 2q1 we require additionally:

Cov(F 2
1,n, F

2
2,n)→ 0 (q1 = q2), E[F 2

1,nF2,n]→ 0 (q2 = 2q1).
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Then Theorem 4.5 (the case ν1 = 2, ν2 = 4) gives

Fn
law→ (V1 − 1, V2 + V3 − 2)

where V1, V2, V3 are i.i.d. standard exponential random variables.

4.4. Bivariate convergence.

Theorem 4.7. Let p1, . . . , pr, q1, . . . , qs be positive integers. Assume further that min pi >
max qj. Consider

(F1,n, . . . , Fr,n, G1,n, . . . , Gs,n) =
(
Ip1(f1,n), . . . , Ipr(fr,n), Iq1(g1,n), . . . , Iqs(gs,n)

)
, n > 1,

with fi,n ∈ H�pi and gj,n ∈ H�qj . Suppose that as n→∞

Fn = (F1,n, . . . , Fr,n)
law→ N and Gn = (G1,n, . . . , Gs,n)

law→ V, (4.31)
where N ∼ Nr(0,Σ), the marginals of V are determined by their moments, and N, V are
independent. If E[Fi,nGj,n]→ 0 (which trivially holds when pi 6= qj) for all i, j, then

(Fn, Gn)
law→ (N, V ) (4.32)

jointly, as n→∞.

Proof. We will show that condition (c) of Theorem 3.4 holds. By (2.12) we may and
do assume that E[F 2

i,n] = 1 for all i and n. By Theorem 4.1(γ), ‖fi,n ⊗r fi,n‖ → 0 for all
r = 1, . . . , pi − 1. Observe that

‖fi,n ⊗r gj,n‖2 = 〈fi,n ⊗pi−r fi,n, gj,n ⊗qj−r gj,n〉
so that ‖fi,n ⊗r gj,n‖ → 0 for 1 ≤ r ≤ pi ∧ qj = qj, except possibly when r = pi = qj. But
in this latter case,

pi!‖fi,n ⊗r gj,n‖ = pi!
∣∣〈fi,n, gj,n〉∣∣ =

∣∣E[Fi,nGj,n]
∣∣→ 0

by the assumption. Corollary 3.6 concludes the proof. �

Theorem 4.7 admits the following immediate corollary.

Corollary 4.8. Let p > q be positive integers. Consider two stochastic processes Fn =
(Ip(ft,n))t∈T and Gn = (Iq(gt,n))t∈T , where ft,n ∈ H�p and gt,n ∈ H�q. Suppose that as
n→∞

Fn
f.d.d.→ X and Gn

f.d.d.→ Y,

where X is centered and Gaussian, the marginals of Y are determined by their moments,
and X, Y are independent. If E[Ip(ft,n)Iq(gs,n)]→ 0 (which trivially holds when p 6= q) for
all s, t ∈ T , then

(Fn, Gn)
f.d.d.→ (X, Y )

jointly, as n→∞.
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5. Further Applications

5.1. Partial sums associated with Hermite polynomials. Consider a centered sta-
tionary Gaussian sequence {Gk}k>1 with unit variance. For any k > 0, denote by

r(k) = E[G1G1+k]

the covariance between G1 and G1+k. We extend r to Z− by symmetry, that is, r(k) =
r(−k). For any integer q > 1, we write

Sq,n(t) =

bntc∑
k=1

Hq(Gk), t > 0,

to indicate the partial sums associated with the subordinated sequence {Hq(Gk)}k>1. Here,
Hq denotes the qth Hermite polynomial given by (2.5).

The following result is a summary of the main finding in Breuer and Major [2].

Theorem 5.1. If
∑

k∈Z |r(k)|q <∞ then, as n→∞,
Sq,n√
n

f.d.d.→ aq B,

where B is a standard Brownian motion and aq =
[
q!
∑

k∈Z r(k)q
]1/2.

Assume further that the covariance function r has the form

r(k) = k−DL(k), k > 1,

with D > 0 and L : (0,∞) → (0,∞) a function which is slowly varying at infinity and
bounded away from 0 and infinity on every compact subset of [0,∞). The following result
is due to Taqqu [16].

Theorem 5.2. If 0 < D < 1
2
then, as n→∞,

S2,n

n1−DL(n)

f.d.d.→ bD R1−D,

where bD = [(1−D)(1− 2D)]−1/2 and RH is a Rosenblatt process of parameter H = 1−D,
defined as

RH(t) = cH I2 (fH(t, ·)) , t > 0,

with

fH(t, x, y) =

∫ t

0

(s− x)
H
2
−1

+ (s− y)
H
2
−1

+ ds, t > 0, x, y ∈ R,

cH > 0 an explicit constant such that E[RH(1)2] = 1, and the double Wiener-Itô integral
I2 is with respect to a two-sided Brownian motion B.

Let q > 3 be an integer. The following result is a consequence of Corollary 4.8 and
Theorems 5.1 and 5.2. It gives the asymptotic behavior (after proper renormalization of
each coordinate) of the pair (Sq,n, S2,n) when D ∈

(
1
q
, 1

2

)
∪
(

1
2
,∞). Since what follows is

just mean to be an illustration, we will not consider the remaining case, that is, when
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D ∈
(
0, 1

q

)
; it is an interesting problem, but to answer it would be out of the scope of the

present paper.

Proposition 5.3. Let q > 3 be an integer, and let the constants ap and bD be given by
Theorems 5.1 and 5.2, respectively.

(1) If D ∈ (1
2
,∞) then (

Sq,n√
n
,
S2,n√
n

)
f.d.d.→ (aq B1, a2B2) ,

where (B1, B2) is a standard Brownian motion in R2.
(2) If D ∈

(
1
q
, 1

2

)
then(

Sq,n√
n
,

S2,n

n1−DL(n)

)
f.d.d.→ (aq B, bD R1−D) ,

where B is a Brownian motion independent of the Rosenblatt process R1−D of pa-
rameter 1−D.

Proof: Let us first introduce a specific realization of the sequence {Gk}k>1 that will allow
one to use the results of this paper. The space

H := span{G1, G2, . . .}
L2(Ω)

being a real separable Hilbert space, it is isometrically isomorphic to either RN (for some
finite N > 1) or L2(R+). Let us assume that H ' L2(R+), the case where H ' RN being
easier to handle. Let Φ : H → L2(R+) be an isometry. Set ek = Φ(Gk) for each k > 1. We
have

r(k − l) = E[GkGl] =

∫ ∞
0

ek(x)el(x)dx, k, l > 1. (5.33)

If B = (Bt)t∈R+ denotes a standard Brownian motion, we deduce that

{Gk}k>1
law
=

{∫ ∞
0

ek(t)dBt

}
k>1

,

these two sequences being indeed centered, Gaussian and having the same covariance struc-
ture. Using (2.6) we deduce that Sq,n has the same distribution than Iq

(∑n
k=1 e

⊗q
k

)
(with

Iq the q-tuple Wiener-Itô integral associated to B).
Hence, to reach the conclusion of point 1 it suffices to combine Corollary 4.8 with The-

orem 5.1. For point 2, just use Corollary 4.8 and Theorem 5.2, together with the fact
that the distribution of RH(t) is determined by its moments (as is the case for any double
Wiener-Itô integral). �
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5.2. Moment-independence for discrete homogeneous chaos. To develop the next
application we will need the following basic ingredients:

(i) A sequence X = (X1, X2, . . .) of i.i.d. random variables, with mean 0, variance 1
and all moments finite.

(ii) Two positive integers q1, q2 as well as two sequences ak,n : Nqk → R, n > 1 of
real-valued functions satisfying for all i1, . . . , iqk ≥ 1 and k = 1, 2,
(a) [symmetry] ak,n(i1, . . . , iqk) = ak,n(iσ(1), . . . , iσ(qk)) for every permutation σ;
(b) [vanishing on diagonals] ak,n(i1, . . . , iqk) = 0 whenever ir = is for some r 6= s;
(c) [unit-variance] qk!

∑∞
i1,...,iqk=1 ak,n(i1, . . . , iqk)2 = 1.

Consider

Qk,n(X) =
∞∑

i1,...,iqk=1

ak,n(i1, . . . , iqk)Xi1 . . . Xiqk
, n > 1, k = 1, 2. (5.34)

This series converges in L2(Ω), E[Qk,n(X)] = 0 and E[Qk,n(X)2] = 1. We have the following
result.

Theorem 5.4. As n→∞, assume that the contribution of each Xi to Qk,n(X) is uniformly
negligible, that is,

sup
i≥1

∞∑
i2,...,iqk=1

ak,n(i, i2, . . . , iqk)2 → 0, k = 1, 2, (5.35)

and that, for any r = 1, . . . , q1 ∧ q2,

∞∑
i1,...,iq1+q2−2r=1

(
∞∑

l1,...,lr=1

a1,n(l1, . . . , lr, i1, . . . , iq1−r)a2,n(l1, . . . , lr, iq1−r+1, . . . , iq1+q2−2r)

)2

→ 0.

(5.36)
Then Q1,n(X) and Q2,n(X) are asymptotically moment-independent.

Proof: Fix M,N > 1. We want to prove that, as n→∞,

E[Q1,n(X)MQ2,n(X)N ]− E[Q1,n(X)M ]E[Q2,n(X)N ]→ 0. (5.37)

The proof is divided into three steps.

Step 1. In this step we show that

E[Q1,n(X)MQ2,n(X)N ]− E[Q1,n(G)MQ2,n(G)N ]→ 0 as n→∞. (5.38)

Following the approach of Mossel, O’Donnel and Oleszkiewicz [5], we will use the Lindeberg
replacement trick. Let G = (G1, G2, . . .) be a sequence of i.i.d. N(0, 1) random variables
independent of X. For a positive integer s, set W(s) = (G1, . . . , Gs, Xs+1, Xs+2, . . .), and
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put W(0) = X. Fix s ≥ 1 and write for k = 1, 2 and n ≥ 1,

Uk,n,s =
∑

i1,...,iqk
i1 6=s,...,iqk 6=s

ak,n(i1, . . . , iqk)W
(s)
i1
. . .W

(s)
iqk
,

Vk,n,s =
∑

i1,...,iqk
∃j: ij=s

ak,n(i1, . . . , iqk)W
(s)
i1
. . . Ŵ

(s)
s . . .W

(s)
iqk

= qk

∞∑
i2,...,iqk=1

ak,n(s, i2, . . . , iqk)W
(s)
i2
. . .W

(s)
iqk
,

where Ŵ (s)
s means that the term W

(s)
s is dropped (observe that this notation bears no

ambiguity: indeed, since ak,n vanishes on diagonals, each string i1, . . . , iqk contributing to
the definition of Vk,n,s contains the symbol s exactly once). For each s and k, note that
Uk,n,s and Vk,n,s are independent of the variables Xs and Gs, and that

Qk,n(W(s−1)) = Uk,n,s +XsVk,n,s and Qk,n(W(s)) = Uk,n,s +GsVk,n,s.

By the binomial formula, using the independence of Xs from Uk,n,s and Vk,n,s, we have

E[Q1,n(W(s−1))MQ2,n(W(s−1))N ]

=
M∑
i=0

N∑
j=0

(
M

i

)(
N

j

)
E[UM−i

1,n,sU
N−j
2,n,sV

i
1,n,sV

j
2,n,s]E[X i+j

s ].

Similarly,

E[Q1,n(W(s))MQ2,n(W(s))N ]

=
M∑
i=0

N∑
j=0

(
M

i

)(
N

j

)
E[UM−i

1,n,sU
N−j
2,n,sV

i
1,n,sV

j
2,n,s]E[Gi+j

s ].

Therefore

E[Q1,n(W(s−1))MQ2,n(W(s−1))N ]− E[Q1,n(W(s))MQ2,n(W(s))N ]

=
∑
i+j≥3

(
M

i

)(
N

j

)
E[UM−i

1,n,sU
N−j
2,n,sV

i
1,n,sV

j
2,n,s]

(
E[X i+j

s ]− E[Gi+j
s ]
)
.

Now, observe that Propositions 3.11, 3.12 and 3.16 of [5] imply that both (U1,n,s)n,s≥1 and
(U2,n,s)n,s≥1 are uniformly bounded in all Lp(Ω) spaces. It also implies that, for any p > 3,
k = 1, 2 and n, s ≥ 1,

E[|Vk,n,s|p]1/p 6 CpE[V 2
k,n,s]

1/2,

where Cp depends only on p. Hence, for 0 ≤ i ≤M , 0 ≤ j ≤ N , i+ j ≥ 3, we have∣∣E[UM−i
1,n,sU

N−j
2,n,sV

i
1,n,sV

j
2,n,s]

∣∣ ≤ C E[V 2
1,n,s]

i/2E[V 2
2,n,s]

j/2, (5.39)
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where C does not depend on n, s ≥ 1. Since E[Xi] = E[Gi] = 0 and E[X2
i ] = E[G2

i ] = 1,
we get

E[V 2
k,n,s] = qkqk!

∞∑
i2,...,iqk=1

ak,n(s, i2, . . . , iqk)2.

When i ≥ 3, then (5.39) is bounded from above by

C

sup
i≥1

∞∑
i2,...,iq1=1

a1,n(i, i2, . . . , iq1)
2

(i−2)/2
∞∑

i2,...,iq1=1

a1,n(s, i2, . . . , iq1)
2,

where C does not depend on n, s ≥ 1, and we get a similar bound when j ≥ 3. If i = 2,
then j ≥ 1 (i+ j ≥ 3), so (5.39) isz bounded from above by

C

sup
i≥1

∞∑
i2,...,iq2=1

a2,n(i, i2, . . . , iq2)
2

j/2
∞∑

i2,...,iq1=1

a1,n(s, i2, . . . , iq1)
2,

and we have a similar bound when j = 2. Taking into account assumption (5.35) we infer
that the upper-bound for (5.39) is of the form

Cεn

2∑
k=1

∞∑
i2,...,iqk=1

ak,n(s, i2, . . . , iqk)2,

where limn→∞ εn = 0 and C is independent of n, s. We conclude that∣∣E[Q1,n(W(s−1))MQ2,n(W(s−1))N ]− E[Q1,n(W(s))MQ2,n(W(s))N ]
∣∣

≤ Cεn

2∑
k=1

∞∑
i2,...,iqk=1

ak,n(s, i2, . . . , iqk)2,

where C does not depend on n, s. Since, for fixed k, n, Qk,n(W(s)) → Qk,n(G) in L2(Ω)
as s → ∞, by Propositions 3.11, 3.12 and 3.16 of [5], the convergence holds in all Lp(Ω).
Hence∣∣E[Q1,n(X)MQ2,n(X)N ]− E[Q1,n(G)MQ2,n(G)N ]

∣∣
≤

∞∑
s=1

∣∣E[Q1,n(W(s−1))MQ2,n(W(s−1))N ]− E[Q1,n(W(s))MQ2,n(W(s))N ]
∣∣

≤ Cεn

2∑
k=1

∞∑
i1,...,iqk=1

ak,n(i1, i2, . . . , iqk)2 = C
(
(q1!)−1 + (q2!)−1

)
εn.

This proves (5.38).

Step 2. We show that n→∞,

E[Q1,n(X)M ]− E[Q1,n(G)M ]→ 0 and E[Q2,n(X)N ]− E[Q2,n(G)N ]→ 0. (5.40)

The proof is similar to Step 1 (and easier). Thus, we omit it.
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Step 3. Without loss of generality we may and do assume that Gk = Bk−Bk−1, where B
is a standard Brownian motion. For k = 1, 2 and n > 1, due to the multiplication formula
(2.10), Qk,n(G) is a multiple Wiener-Itô integral of order qk with respect to B:

Qk,n(G) = Iqk

 ∞∑
i1,...,iqk=1

ak,n(i1, . . . , iqk)1[i1−1,i1]×...×[iqk−1,iqk ]

 .

In this setting, condition (5.36) coincides with condition (γ) of Theorem 3.1 (or (c) of
Theorem 3.4). Therefore,

E[Q1,n(G)MQ2,n(G)N ]− E[Q1,n(G)M ]E[Q2,n(G)N ]→ 0. (5.41)

Combining (5.38), (5.40) and (5.41) we get the desired conclusion (5.37). �

Remark 5.5. The conclusion of Theorem 5.4 may fail if either (5.35) or (5.36) are not
satisfied. It follows from Step 3 above that the theorem fails when (5.36) does not hold
and X is Gaussian. Theorem 5.4 also fails when (5.35) is not satisfied, (5.36) holds, and
X is a Rademacher sequence, as we can see from the following counterexample. Consider
q1 = q2 = 2, and set

a1,n(i, j) =
1

4

(
1{1}(i)1{2}(j) + 1{2}(i)1{1}(j) + 1{1}(i)1{3}(j) + 1{3}(i)1{1}(j)

)
a2,n(i, j) =

1

4

(
1{2}(i)1{4}(j) + 1{4}(i)1{2}(j)− 1{3}(i)1{4}(j)− 1{4}(i)1{3}(j)

)
.

Then Q1,n(X) = 1
2
X1(X2 + X3) and Q2,n(X) = 1

2
X4(X2 − X3), where Xi are i.i.d. with

P (Xi = 1) = P (Xi = −1) = 1/2. It is straightforward to check that (5.36) holds and
obviously (5.35) is not satisfied. Since Q1,n(X)Q2,n(X) = 0, we get

0 = E[Q1,n(X)2Q2,n(X)2] 6= E[Q1,n(X)2]E[Q2,n(X)2],

implying in particular that Q1,n(X) and Q2,n(X) are (asymptotically) moment-dependent.
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