ASYMPTOTIC INDEPENDENCE OF MULTIPLE WIENER-ITO
INTEGRALS AND THE RESULTING LIMIT LAWS

IVAN NOURDIN AND JAN ROSINSKI

ABSTRACT. We characterize the asymptotic independence between blocks consisting of
multiple Wiener-Ito integrals. As a consequence of this characterization, we derive the
celebrated fourth moment theorem of Nualart and Peccati, its multidimensional extension,
and other related results on the multivariate convergence of multiple Wiener-Ito integrals,
that involve Gaussian and non Gaussian limits. We give applications to the study of the
asymptotic behavior of functions of short and long range dependent stationary Gaussian
time series and establish the asymptotic independence for discrete non-Gaussian chaoses.

1. INTRODUCTION

Let B = (By)er . be a standard one-dimensional Brownian motion, ¢ > 1 be an integer,
and let f be a symmetric element of L?(R%). Denote by I,(f) the g-tuple Wiener-Ito
integral of f with respect to B. It is well known that multiple Wiener-It6 integrals of
different orders are uncorrelated but not necessarily independent. In an important paper
[17], Ustiinel and Zakai gave the following characterization of the independence of multiple
Wiener-1t6 integrals.

Theorem 1.1 (Ustiinel-Zakai). Let p,q > 1 be integers and let f € L*(RY) and g € L*(R%)
be symmetric. Then, random variables I,(f) and I,(g) are independent if and only if

/p+q—2
RY

Rosinski and Samorodnitsky [15] observed that multiple Wiener-1t6 integrals are indepen-
dent if and only if their squares are uncorrelated:

L(f) L I,(g) <= Cov(L,(f)*, I,(9)*) =0. (1.2)

This condition can be viewed as a generalization of the usual covariance criterion for the
independence of jointly Gaussian random variables (the case of p = ¢ = 1).

In the seminal paper [11], Nualart and Peccati discovered the following surprising central
limit theorem.

2
/ fxr, o mp1,0)g(Tpsa, o Tprgeo,w) du| dxy ... depyg—o = 0. (1.1)
R+
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Theorem 1.2 (Nualart-Peccati). Let F,, = I,(f,), where ¢ = 2 is fized and f, € L*(R%)
are symmetric. Assume also that E[F?| =1 for all n. Then convergence in distribution of
(Fy) to the standard normal law is equivalent to convergence of the fourth moment. That
18, GS N — 00,

F, ™ N(0,1) < E[FY]—>3 (1.3)

Shortly afterwards, Peccati and Tudor [12]| established a multidimensional extension of
Theorem 1.2. Since the publication of these two important papers, many improvements
and developments on this theme have been considered. In particular, Nourdin and Peccati
[7] extended Theorem 1.2 to the case when the limit of F,,’s is a centered gamma distributed
random variable. We refer the reader to the book [8] for further information and details of
the above results.

Heuristic argument linking Theorem 1.1 and Theorem 1.2 was given by Rosiriski [14,
pages 3—4|, while addressing a question of Albert Shiryaev. Namely, let F' and G be two
i.i.d. centered random variables with fourth moment and unit variance. The link comes
via a simple formula

%Cov((F +G)?, (F - G)*) = E[F"] -3,

criterion (1.2), as well as the celebrated Bernstein’s theorem that asserts that ' and G are
Gaussian if and only if F' 4+ G and F — G are independent. A rigorous argument to carry
through this idea is based on a characterization of the asymptotic independence of multiple
Wiener-It6 integrals, which is much more difficult to handle than the plain independence,
and may also be of an independent interest. The covariance between the squares of multiple
Wiener-Itd integrals plays the pivotal role in this characterization.

At this point we should also mention an extension of (1.2) to the multivariate setting.
Let I be a finite set and (¢;)ier be a sequence of non-negative integers. Let F; = I, (f;)
be a multiple Wiener-It6 integral of order ¢;, ¢ € I. Consider a partition of I into disjoint
blocks I, so that I = U¢_ I}, and the resulting random vectors (F})icr,, k = 1,...,d.
Then

{(F))icr, : k < d} are independent < Cov(F?, F7) = 0 Vi, j from different blocks. (1.4)
The proof of this criterion is similar to the proof of (1.2) in [15].

In this paper in Theorem 3.4 we establish an asymptotic version of (1.4) characterizing
the asymptotic moment-independence between blocks of multiple Wiener-It6 integrals.
As a consequence of this result, we deduce the fourth moment theorem of Nualart and
Peccati [11] in Theorem 4.1, its multidimensional extension due to Peccati and Tudor
[12] in Theorem 4.2, and some neat estimates on the speed of convergence in Theorem
4.3. Furthermore, we obtain new multidimensional extension of a theorem of Nourdin
and Peccati 7] in Theorem 4.5, and give another new result on the bivariate convergence
of vectors consisting of multiple Wiener-Ité integrals in Theorem 4.7. Proposition 5.3
applies Theorem 4.7 to establish the limit process for functions of short and long range
dependent stationary Gaussian time series in the spirit of the celebrated Breuer-Major 2]
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and Dobrushin-Major-Taqqu [4, 16] Theorems. In Theorem 5.4 we establish the asymptotic
moment-independence for discrete non-Gaussian chaoses using some techniques of Mossel,
O’Donnel and Oleszkiewicz [5].

The paper is organized as follows. In Section 2 we list some basic facts from Gaussian
analysis and prove some lemmas needed in the present work. In particular, we establish
Lemma 2.3, which a version of the Cauchy-Schwarz Inequality well suited to deal with
contractions of functions, see (2.8). It is used in the proof of the main result, Theorem
3.4. Section 3 is devoted to the main results on the asymptotic independence. Section 4
gives some immediate consequences and related applications of the main result. Section
5 provides further applications to the study of short and long range dependent stochastic
processes and multilinear random forms in non-Gaussian random variables.

2. PRELIMINARIES

We will give here some basic elements of Gaussian analysis that are in the foundations
of the present work. The reader is referred to the books [8, 10| for further details and
ommited proofs.

Let $) be a real separable Hilbert space. For any ¢ > 1 let H®? be the ¢th tensor
product of $ and denote by $H®? the associated ¢th symmetric tensor product. We write
X = {X(h),h € $} to indicate an isonormal Gaussian process over $), defined on some
probability space (€2, F, P). This means that X is a centered Gaussian family, whose
covariance is given in terms of the inner product of ) by £ [X(h)X (g)] = (h, g)s. We also
assume that F is generated by X.

For every ¢ > 1, let H, be the ¢gth Wiener chaos of X, that is, the closed linear subspace
of L*(Q, F, P) generated by the random variables of the type { Hy(X (h)), h € 9, ||h| 4 = 1},
where H, is the gth Hermite polynomial defined as

2 dl a2
Hy(z) = (=1)%> I (e77). (2.5)
We write by convention Hg = R. For any ¢ > 1, the mapping
I4(h®1) = Hy(X (h)) (2.6)

can be extended to a linear isometry between the symmetric tensor product $? equipped
with the modified norm /¢! ||||ge, and the gth Wiener chaos H,. For ¢ = 0 we write
Iy(c) =¢c, ceR.

It is well known (Wiener chaos expansion) that L?(2, F, P) can be decomposed into the
infinite orthogonal sum of the spaces H,. Therefore, any square integrable random variable
F € L*(Q, F, P) admits the following chaotic expansion

hE

F=) L(f), (2.7)

Q
Il
o
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where fy = E[F], and the f, € H9?, ¢ > 1, are uniquely determined by F. For every ¢ > 0
we denote by J, the orthogonal projection operator on the gth Wiener chaos. In particular,
if Fe L*(Q,F,P)isasin (2.7), then J,F = I,(f,) for every ¢ > 0.

Let {ex, k > 1} be a complete orthonormal system in §). Given f € H®? and g € H9,

for every r = 0,...,pAq, the contraction of f and g of order r is the element of $5®P+a=2r)
defined by
fRg= Y (fiea® .06, )50 ® (g€, ® ... Q€ )g0r. (2.8)

i1, ir=1

Notice that f ®, g is not necessarily symmetric: we denote its symmetrization by f®,g €
HOWP+a=2r)  Moreover, f ®yg = f ® g equals the tensor product of f and g while, for p = ¢,
f®,9 = (f,9)sea. In the particular case where $ = L*(A, A, ), where (4, A) is a measur-
able space and p is a o-finite and non-atomic measure, one has that H°7 = L2( A%, A®4 ;,29)
is the space of symmetric and square integrable functions on A?. Moreover, for every
f € 9%, I,(f) coincides with the g-tuple Wiener-It6 integral of f. In this case, (2.8) can
be written as

(f O g)<t17"'7tp+q—27‘> = f(t17"'7tp—7"7817"‘757")
AT
X G(tprt1s -y tprgear, S1,- -, Sp)dp(s1) - . dp(sy).
We have
1f @ gl = (f @pr f,9 @g-r g) forr=0,....pAg, (2.9)
where (-) (]| - ||, respectively) stands for inner product (the norm, respectively) in an

appropriate tensor product space $®°. Also, the following multiplication formula holds: if
fe€H®? and g € HV, then

L0 = S () (s w0, (210

r=0

where f®,g denotes the symmetrization of f ®, g.

We conclude these preliminaries by three useful lemmas, that will be needed throughout
the sequel.
Lemma 2.1.

(1) Multiple Wiener-Ito integral has all moments satisfying the following hypercontractivity-
type inequality
F1/r 1/2
[EILOITY < e =P [BIL(AP) r>2 (2.11)
(i) If a sequence of distributions of {1,(fn)}n>1 is tight, then

sup E|L,(fn)|" < oo for every r > 0. (2.12)
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Proof. (i) Inequality (2.11) is well known and corresponds e.g. to [8, Corollary 2.8.14].
(ii) Combining (2.11) for » = 4 with Paley’s inequality we get for every 6 € (0, 1)

P(IL(H) > 0E|L()P) > (1 - ey%

By the assumption, there is an M > 0 such that P(|L,(f,)]> > M) < 977! n > 1. By
(2.13) with 6 = 2/3 and all n, we have

P(IL(fa)? > M) <9771 < P(|L,(f2)]* > (2/3)E|L,(fa)[*)-
As a consequence, F|L,(f,)]* < (3/2)M. Applying (2.11) we conclude (2.12). O

> (1—6)%97". (2.13)

Lemma 2.2.
(1) Letp,g =1, f € HP and g € H®1. Then

/gl = ,Z( ()17 ool (2.14)

(2) Letq 1 and f17f27f37f4 EﬁGq Then

COURE o B L) = g (i)2<f1®rf3, Fa® o A0 (o Fa) (o fi) 4 o ) o ).
- (2.15)
(3) Let g > 1, f € H°CD and g € H®7. We have
L 241 ¢ & (q)
(f@f,g®9) = @U ®q f,9®9) + 2) ; <r> (f@rg, 9@ ). (2.16)

Proof. Without loss of generality, we suppose throughout the proof that £ is equal to
L?(A, A, i), where (A, A) is a measurable space and p is a o-finite measure without atoms.

(1) Let o be a permutation of {1,...,p+¢} (this fact is written in symbols as 0 € &,4,).
If r €{0,...,pAq} denotes the cardinality of {1,...,p}N{o(p+1),...,0(p+¢q)}, then it
is readily checked that r is also the cardinality of {p+1,...,p+¢}N{c(1),...,0(p)} and
that

fs s tp)g (s - tprg) f(to), - to@) (o), - totra) ) dp(tr) - - dpa(tpiq)

Ap+a

= /A+ @9 @ ) du@) - dp(pgar) = [1f @0 gl (2.17)

Moreover, for any fixed r € {0,...,pAq}, there are p! (f)q! (7‘{) permutations o € &,4, such
that {1,....,p}N{o(p+1),...,0(p+q)} = r. (Indeed, such a permutation is completely
determined by the choice of: (a) r distinct elements yi,...,y, of {p+1,....p+ q}; (b)
p — r distinct elements y,41,...,y, of {1,...,p}; (¢) a bijection between {1,...,p} and
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{y1,...,yp}; (d) a bijection between {p + 1,...,p+q} and {1,...,p + ¢}\{v1,--.. 4 }.)
Now, observe that the symmetrization of f ® ¢ is given by

fég(tla tp—i—q Z f 1)7"‘7 )g(ta(p+1)7"‘7t0'(p+q))’

O’GG p+q

Therefore, using (2.17), we can write

If@gl* = (f ® g, [®g) =

(p+q)

Xf(tcr(l)a SR 7t0(P))g<ta(p+1)a s 7to(p+q))du(tl) s d:u(thrq)

g / f(tlv'"7tp)g(tp+l7"'atp+q)
p+q
p

A
+4q

PAq
1

B EY) |Z||f®r9|| Card{oc € Gpyq: {1,....,p} N{olp+1),...,0(p+q)} =r}.

and (2.14) follows.
(2) We proceed analogously. Indeed, we have

<f1<§>f2,f3®f4> = <f1®f2,f3®f4>
= 2q‘ > Jilte, o tg) faltgrn, - - tag)

2
0€Gyq A%

X fa(to()s - - - s to(@) falto(gri)s - - - s toag) )dp(ts) - - - dpa(tag)

- @ SO @, oo f @0 f) Card{o € &, {o(1),...,a(g)} N {1,...,q} =1},

from which we deduce (2.15).

(3) We have
~ 1
(g ®g)(t1, ce ,th) = —2 ' g(tg(l), o ,ta(q))g(ta(q+1), e 7t0'(2q))
(29)! 25
1 q
- (2 )' Z g(tg(l)’ cet ’tU(Q)>g(t0(q+1)? cee 7to(2q))7
9 r=0 0€B2y
{o(1),...,0(q)}{1,....q¢}=r
and

(f®qf)(t1, e ,th) = f(tla PN ,tq,i[}l, Ce 7l'q)f($1, e ,xq,tqH, e ,th)dlLL(CCl) Ce d,u(xq),
Ad
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so that

= L!Z<f®rg;g®r f)Card{o € Gy, : {0(1),...,0(q)} N{L,...,q} =1}

(2q
- QQuZ( ) 0*(f ©r 9,9 @, f)

q!2 q[2 1
- (2q)‘<f®qg’g®qf>+( )<f®gg®f Z()ql2f®ng®rf>.
‘ 1

Since (f ®, 9,9 ®, f) = (f® 9,9 f) = (f ®, f,9 ® g), the desired conclusion (2.16)
follows. Il

Lemma 2.3 (Generalized Cauchy-Schwarz Inequality). Assume that $ = L*(A, A, p),
where (A, A) is a measurable space equipped with a o-finite measure . For any integer
M > 1, put [M] = {1,....M}. Also, for every element z = (21, ..., 2n1) € AM and every
nonempty set ¢ C [M], let z. denote the element of Al°l (where |c| is the cardinality of c)
obtained by deleting from z the entries with index not contained in c. (For instance, if
M =5 and c ={1,3,5}, then z. = (z1, 23, 25).) Let
(a) C,q = 2 be integers, and let ¢y, ...,c, be nonempty subsets of [C] such that each
element of [C] appears in exactly two of the ¢;’s (this implies that | J, ¢; = [C] and
> lail =2C);
(B) let hy,...,h, be functions such that h; € L?(pleil) := L2(Alel Aledl plel) for every
i=1,...,q (in particular, each h; is a function of |c;| variables).
Then

q

‘/ACHh z.,) 1 (dz(c)) ‘ Hl|hl|Lz el (2.18)

Moreover, if co :=c; N ¢y # 0 for some j # k, then

q q
| [ TLtutee) utamen)| <y e iy ] Willguey, 219
AC T itk
where
hj @co hi(Ze;ne,) = / | hj(zc;)hi(Ze, ) u'co‘(dZCO).
Alo
(Notice that hj ®c, hi, = hj ®\co| b when hj and hy, are symmetric.)

Proof. In the case ¢ = 2, (2.18) is just the Cauchy-Schwarz inequality and (2.19) is
an equality. Assume that (2.18)—(2.19) hold for at most ¢ — 1 functions and proceed by
induction. Among the sets cq,. .., ¢, at least two, say ¢; and ¢, have nonempty intersection.
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Set ¢y := ¢; N ¢y, as above. Since ¢y does not have common elements with ¢; for all ¢ # j, k,
by Fubini’s theorem

q

/ H hi(2ze,) n€ (dzie)) = / hy @eq hi(Ze,ne,) [ Pil2e) 1€ dzicpe,)-  (2.20)

AC AC—leol itk

Observe that every element of [C] \ ¢y belongs to exactly two of the ¢ — 1 sets: ¢;Acy, ¢,
i # j, k. Therefore, by the induction assumption, (2.18) implies (2.19), provided ¢;Acy, # 0.
When ¢; = ¢, we have h; ®@., hi = (hj, hi) and (2.19) follows from (2.18) applied to the
product of ¢ — 2 functions in (2.20). This proves (2.19), which in turn yields (2.18) by the
Cauchy-Schwarz inequality. The proof is complete. O

3. THE MAIN RESULTS

The following theorem characterizes moment-independence of limits of multiple Wiener-Ito
integrals.

Theorem 3.1. Let d > 2, and let q,,...,qq be positive integers. Consider vectors
(Fl,n; ] 7Fd,n) == (Iql(fl,n)a see 7qu<fd,n))7 n > 17
with fi, € H9%. Assume that for some random vector (Uy,...,Uy),
(Fim, - Fun) S (Uy,...,Ug)  asn— 0. (3.21)

Then U;’s admit moments of all orders and the following three conditions are equivalent:
(a) Uy, ..., Uy are moment-independent, that is, E[UF ... U = E[UM] ... E[U%] for
all kv, ... kg € N;
(8) limy— oo Cov(F7,, F2 ) =0 foralli# j;
(v) imy, oo || fin ®r finl| =0 for alli# 5 and allr =1,...,¢; A\ q;;
Moreover, if the distribution of each U; is determined by its moments, then (a) is equivalent
to that
(0) Uy, ..., Uy are independent.

Remarks 3.2.

(1) Theorem 3.1 raises a question whether the moment-independence implies the usual
independence under weaker conditions than the determinacy of the marginals. (Re-
call that a random variable having all moments is said to be determinate if any other
random variable with the same moments has the same distribution.) The answer
is negative in general, see |1, Theorem 5 |.
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(2) Assume that d = 2 (for simplicity). In this case, () becomes ||fi, @, fon| — 0
forall r = 1,...,q1 A ¢o. In view of Theorem 1.1 of Ustiinel and Zakai, one may
expect that (y) could be replaced by a weaker condition (v'): || fi.n ®1 fanl — 0.

However, the latter is false. To see it, consider a sequence f, € $®2 such that

Ifal2 = L and ||f, ®1 full = 0. By Theorem 4.1 below, F, := L(f,) =5 U ~

N(0,1). Putting f1, = fo, = fn, we observe that (7') holds but («) does not, as
law
(La(f1n), I2(fom)) = (U, U).

(3) Taking into account that assumptions () and (§) of Theorem 4.1 are equivalent,
it is natural to wonder whether assumption () of Theorem 3.1 is equivalent to its
symmetrized version:

Hm || fin @y finl| =0foralli#jandalr=1,...,¢Ag.
n—oo

The answer is negative in general, as is shown by the following counterexample.
Let fi1, fo : [0,1]> = R be symmetric functions given by

f1<s,t>={_11 e and fz<s,t>={_1

Then (f1, f2) = 0 and

1 s,t € (1/2,1]
elsewhere.

-1 ifsel0,1/2] and t € (1/2,1]
(fi®r fo)(s,t)=4¢ 1 if t €[0,1/2] and s € (1/2,1]
0 elsewhere,

so that f1 @1 fo = 0 and || f1 @1 faf = V2.

(4) The condition of moment-independence, («) of Theorem 3.1, can also be stated in
terms of cumulants. Recall that the joint cumulant of random variables X, ..., X,

is defined by
am ,
Z(t1X1+"‘+thm)
Oty - - Oty log Ele ]’tlzo ..... tm=0’

provided E|X;--- X,,| < co. When all X; are equal to X, then r(X,..., X) =
KEm(X), the usual mth cumulant of X, see [6]. Then Theorem 3.1(«) is equivalent
to

() for all integers 1 < j1 < -+ < jp <d, k >2, and mq,...,mp > 1

K(Ujﬂ‘"7Uj117“'7Ujk7"'7U):0' (322)

Jk
NS >y

KXy, o, X)) = (=)™

vV vV
mi mg

Theorem 3.1 was proved in the first version of this paper [9]. Our proof of the crucial
implication () = («) involved tedious combinatorial considerations. We are thankful to
an anonymous referee who suggested a shorter and more transparent line of proof using
Malliavin calculus. It significantly reduced the amount of combinatorial arguments of the
original version but requires some basic facts from Malliavin calculus. We incorporated
referee’s suggestions and approach into the proof of a more general Theorem 3.4. Even
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though Theorem 3.1 becomes a special case of Theorem 3.4 (see Corollary 3.6), we keep
its original statement for a convenient reference.

Definition 3.3. For each n > 1, let F,, = (F,,)icr be a family of real-valued random
variables indexed by a finite set I. Consider a partition of I into disjoint blocks Iy, so
that I = U{_,I;,. We say that vectors (Fjp)icr,, k = 1,...,d are asymptotically moment-
independent if each F;, admits moments of all orders and for any sequence ({;);c; of
non-negative integers,

1im {E[T]FL) - T BT £l =0 (3.23)

iel k=1 i€l

The next theorem characterizes the asymptotic moment-independence between blocks
of multiple Wiener-It6 integrals.

Theorem 3.4. Let I be a finite set and (q;)icr be a sequence of non-negative integers.
For each n > 1, let F,, = (F;n)ier be a family of multiple Wiener-Ito integrals, where
Fin = 1,(fin) with fi, € 9°%. Assume that for everyi € I

sup E[F,] < o0. (3.24)

Given a partition of I into disjoint blocks Iy, the following conditions are equivalent:
(a) random vectors (F;,)ier,, k =1,...,d are asymptotically moment-independent;
(b) limp, o Cov(F7,, F7,) = 0 for every i,j from different blocks;
(c) imy oo || fin @7 finll = 0 for every i,j from different blocks and r =1,...,¢; A g;.
Proof: The implication (a) = (b) is obvious.
To show (b) = (c), fix 4, j belonging to different blocks. By (2.10) we have

qiNG;
qi q; ~
Fz',nFj,n = Z 70! <T) (;)IqurquT(fi,n@Tfj,n)a

r=0

which yields

qiNGj 2 2
4i 4; =
BlFL L] = Y (%) (%) @t o - 201l

r
r=0
Moreover,

E(F]EIF}] = ailgi! | finl Pl finl*
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E?,, F?,) as follows:

Cov(F2,, F?) = (4 + ¢) | fin®Finll> — @'ai! | finl P\l inl (3.25)

qiNgj
i q ®
r2 ( ) () (@ + 5 = 20)! | fin®r il
qiNg;j a a0 qZ/\qJ q; q; 2
o (;) (TJ) T fj,n”z + Z r!?(rz) (;) (¢i +q; — 27')!Hf’i,n®rfj7n”2
:: r=1

> _fnax Hfzn®rf]n”2 (3.26)

Applying (2.14) to the second equality below, we evaluate Cov(

This bound ylelds the desired conclusion.

Now we will prove (c) = (a). We need to show (3.23) for fixed [;. Writing F%lln as
Finx...x F;, and enlarging I and [;’s accordingly, we may and do assume that all

v~

l;
l; = 1. We will prove (3.23) by induction on @ = >, ¢;- The formula holds when @ = 0
or 1. Therefore, take ) > 2 and suppose that (3.23) holds whenever » ., ¢ < Q — 1.

Fix i1 € I; and set
H fzn H f]n

ZEIl\{Z1} jEI\I1

Assume that ¢; > 1, otherwise the inductive step follows immediately. Let § denote the
divergence operator in the sense of Malliavin calculus and let D be the Malliavin derivative,
see [10, Ch. 1.2-1.3]. Using the duality relation [10, Def. 1.3.1(ii)|] and the product rule
for the Malliavin derivative [3, Theorem 3.4] we get

H F’L nl = %1 (fll n)X Y, } L [5(]‘1i1_1(fi1’n))XnYn}

icl
= E[[qz'lfl(fil,n) ®1 D(XnYn)]
- E[Y [q”fl(fil,n) 1 DXn:| + E[Xn Iqilfl(fihn) ®1 DYn]
= A, + B,.

First we consider B,,. Using the product rule for DY,, we obtain

B, = Z E[qu‘lfl(fil,n> @1 DFJQ“ H Fl’"]

JeI\Ih ie€l\{i1,5}
= Z qu[[qaglfl(fil,n) &1 [qul<fj,n) H E,n] .
JEIN\ iel\{i1,5}

By the multiplication formula (2.10) we have

qiy NGj
G, — 1\ (q;—1 ~
[qz-l—l(fihn) ®1 Ig;—1(fin) = Z (s — 1)!( 1 ) (s]— 1)IQi1+Qj_25(fi17n®5fj7n)‘

s=1
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Since i1 and j belong to different blocks, condition (¢) of the theorem applied to the above
expansion yields that I, —1(fi, n) ®1 Iy;-1(fj.) converges to zero in L?. Combining this
with (3.24) and Lemma 2.1 we infer that lim,_,, B,, = 0.

Now we consider A,,. If Card(l;) = 1, then X,, = 1 by convention and so A,, = 0. Hence

d
lim { B[] ] = E[Fo] [T B[] Fial } = lim B, =0,
k=2

icl i€l
Therefore, we now assume that Card(/;) > 2. Write A, = E [ZnYn}, where
Zn - Iqil—l(fil,n) ®1 DXn

= Z Qi]qz'l—l(fil,n) ®1 qu‘—l(fi,n) H ij

ien\{i1} Jehi\{i1,i}

Qi NGi
¢, — 1\ (@ —1 ~
- Z @ Z (8 - 1)!( Sl_ 1 ) (5 _ 1)qu'l+qz'28(fi1,n®sfi,n> H ij

i€l \{i1} s=1 jen{i1,i}

Thus A,, is a linear combination of the terms

E[(]qil+qif2s<fi1,n®sfi,n) H F},n) Yn} )
J€n\{i1,i}

where 41,1 € I1, 13 # 1, 1 < s < ¢, A q. The term under expectation is a product of
multiple integrals of orders summing to > jer 4 — 2s. Therefore, the induction hypothesis
applies provided

lim (fh,nésfi,n) Or fj,n =0 (327)

n—oo
forall j € I, with k >2and all r =1,...,(¢;, + ¢ —2s) Ag,.

Suppose that (3.27) holds. Then by the induction hypothesis

lim {4, — E[Z,|E[Y,]} = 0.

n—oo
Moreover,
E[Zn] = E[qu'l—l(fiun) ®1 DX,J = E[]qz'l (fu,n)Xn] = E[ H an}
i€l
Hence, by the induction hypothesis applied to Y, and the uniform boundedness of all
moments of F;,, we get

tim {E[[] Fin] = [T ELT] Fin } = lim {4, — EIZJEW]} =0
iel k=1 i€l
It remains to show (3.27). To this aim we will describe the structure of the terms under
the limit (3.27). Without loss of generality we may assume that § = L?(u) := L*(A, A, i),
where (A,.A) is a measurable space and p is a o-finite measure without atoms. Recall
notation of Lemma 2.3. For every integer M > 1, put [M] = {1,....,M}. Also, for
every element z = (zy, ..., 237) € AM and every nonempty set ¢ C [M], we denote by z,. the
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element of Al°l (where |c| is the cardinality of ¢) obtained by deleting from z the entries with
index not contained in c. (For instance, if M =5 and ¢ = {1, 3,5}, then z. = (21, 23, 25).)
Observe that ( firn®s fm) ®, fjn is a linear combination of functions ¢ (z,, ), z € AM
obtained as follows. Set M = ¢, +¢ +¢ —s —r and My = ¢, + ¢ — s, so that
M > My > 2. Choose by, by C [My] such that |by| = g;,, |ba] = ¢; and |byNbe| = s, and then
choose by C [M] such that |bs| = ¢; and |b3N (by Uby)| = r. It follows that by Uby Ubs = [M]
and by Nby N b3 = (). Therefore, each element of [M] belongs exactly to one or two b;’s. Let
J ={j € [M]: j belongs to two sets b;}
and put J; = [M]\ J. Then (fi, n®sfin) @ fjn is a linear combination of functions of the
form

0) = [ B il ) 1 ),

where the summation goes over all choices by, b, under the constraint that the sets b; N by
and b3 are fixed. This constraint makes .J; unique, |J1| = ¢;, + ¢ + ¢; — 25 — 2r.

Let ¢; = b; N J, i =1,2,3 and notice that either ¢; Ne3 # () or ¢3 N ey # B since r» > 1.
Suppose ¢y = ¢; Ncg # (), the other case is identical. Applying Lemma 2.3 with z;, fixed
we get

|w(ZJ1)’2 < ’fihn ®|CO\ fj,n(zb1ﬂbs)|2 ’fi,n<zb2)|2ﬂlcz‘(dzc2)

Aleal
Since by Abs and b3 \ c3 make a disjoint partition of .J;, and additional integration with
respect to z;, yields

[l p2qunty < N fivn @jeol Fimllp2gumiovsiy | finll 2ty — 0
as n — 0o. This yields (3.27) and completes the proof of Theorem 3.4. O

Remark 3.5. Condition (b) of Theorem 3.4 is equivalent to
(b?) for every 1 <k #1<d
lim Cov(||(Fin)ien|” 1(Finienll) = 0,

where ||-|| denotes the Euclidean norms in R+ and R/ respectively.

Proof. Indeed, condition (b) of Theorem 3.4 implies (b’) and the converse follows from
COV(”( zn)zelkH ||< i,n ZEIzH Z COV zn7 ) > COV(EQTL’F‘]%TL)’
i€ly, g€l

as the squares of multiple Wiener-1t6 integrals are non-negatively correlated, cf. (3.26). O

The following corollary is useful to deduce the joint convergence in law from the con-
vergence of marginals. It is stated for random vectors, as is Theorem 3.4, but it obviously
applies in the setting of Theorem 3.1 when all vectors are one-dimensional.

Corollary 3.6. Under notation of Theorem 3.4, let (U;)ier be a random vector such that
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law

(1) (Fin)ier, = (Ui)icr, asn — oo, for each k;
(i) vectors (U)ier,, k=1,...,d are independent;
(iii) condition (b) or (c) of Theorem 3.4 holds [equivalently, () or (v) of Theorem 3.1
when all Iy, are singletons];
(iv) L(U;) is determined by its moments for each i € I.

Then the joint convergence holds,
(Ein)ier i (Usi)ier, mn — oo.
Proof: By (i) the sequence {(F; . )ier}n>1 is tight. Let (V;);er be a random vector such that
(FinyJier =5 (Vi)ier

as n; — oo along a subsequence. From Lemma 2.1(ii) we infer that condition (3.24) of

Theorem 3.4 is satisfied. It follows that each V; has all moments and (V})cr, fa (Us)ier,
for each k. By (iv), the laws of vectors (U;);cr and (V;);er are determined by their joint mo-
ments, respectively, see [13, Theorem 3|. Under the assumption (iii), the vectors (F; ,)icr,,
k =1,...,d are asymptotically moment independent. Hence, for any sequence (¢;);c; of
non-negative integers,

d
E[][v"] - e[11vf] = e[1Iv"] - 1T Bl 1] v
il il iel k=1 icly
d
= 1im {B[T] ) - TIEIT] 5} =0
e il k=1 el
Thus (V;)ier o (Ui)ier- g

4. APPLICATIONS

4.1. The fourth moment theorem of Nualart-Peccati.

We can give a short proof of the difficult and surprising part implication (5) = («) of the
fourth moment theorem of Nualart and Peccati [11], that we restate here for a convenience.

Theorem 4.1 (Nualart-Peccati). Let (F,,) be a sequence of the form F,, = I,(f,), where
q = 2 is fived and f, € H®1. Assume moreover that E[F?] = q!||f,||> = 1 for all n. Then,
as n — 00, the following four conditions are equivalent:

(@) F ¥ N(0,1);

(8) E[F,] — 3;

(7) ||f7‘b®7‘ leH _>Of07" allr = 17“'7q_ 17'

(8) || fu®@r fal = 0 forallr =1,...,q— 1.
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Proof of (8) = (a). Assume (). Since the sequence (F},) is bounded in L?*(Q2) by the

assumption, it is relatively compact in law. Without loss of generality we may assume that

F, ¥y and need to show that Y ~ N(0,1). Let G}, be an independent copy of F,, of the
form G,, = 1,(g,) with f, ®; g, = 0. This can easily be done by extending the underlying
isonormal process to the direct sum $ @ $. We then have

Iy (fa 4 90) s Iy (fr = 90)) = (Fp + Gy Fy — G) ™5 (Y + 2,Y — Z)

as n — 0o, where Z stands for an independent copy of Y. Since
1
5Cov[(Fn + G2 (F, — G = E[FY] -3 -0,

Y + Z and Y — Z are moment-independent. (If they were independent, the classical
Bernstein Theorem would conclude the proof.) However, in our case condition (o) in
(3.22) says that

KY+Z,....Y+2ZY—Z..,Y—=2)=0 forall mj,my;>1.

~~ ~~
mi m2

Taking n > 3 we get
0=sY+Z,....Y+Z2,Y-ZY —2Z)

nYZ
=r(Y,....Y)+k(Z,...,2) =2r,(Y),
—— —_——

where we used the multilinearity of x and the fact that Y and Z are i.i.d. Since x1(Y") =0,
ko(Y) =1, and k,(Y) = 0 for n > 3, we infer that ¥ ~ N(0, 1). O

4.2. Generalizing a result of Peccati and Tudor.

Applying our approach, one can add a further equivalent condition to a result of Peccati
and Tudor [12]. As such, Theorem 4.2 turns out to be the exact multivariate equivalent of
Theorem 4.1.

Theorem 4.2 (Peccati-Tudor). Let d > 2, and let ¢, . .., qq be positive integers. Consider
vectors

Fo=Fip,....Fipn) = (Iql(fl,n)7 o a]qd(fd,n))» n>1,
with fi, € H°%. Assume that, for i,j =1,...,d, asn — oo,

Cov(Fip, Fjn) — 0. (4.28)

Let N be a centered Gaussian random vector with the covariance matriv ¥ = (05)1<i j<d-
Then the following two conditions are equivalent (n — o0):

(i) F, = N;
(i) E[IF)*] = E[INI];

where || - || denotes the Euclidean norm in RY.
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Proof. Only (ii) = (i) has to be shown. Assume (i7). As in the proof of Theorem 4.1, we

may assume that F, =¥ Y and must show that ¥ ~ Ny(0,%). Let Gy, = (G-, Gan)
be an independent copy of F), of the form ([q1 (91.0), -+, 1y, (gd,n)). Observe that

1

:E[HFnH4] ( [ F5 H _ZZCOV i F, )

2,j=1

Using this identity for N and N’ in place of F,, and G,,, where N’ is an independent copy
of N, we get
d

E[IN1") =Y (0u0y; +20%). (4.29)

ij=1
Hence

1

§COV( ||Fn + Gn”2 ) ”Fn - Gn||2) = E[||Fn||4] - E[||N||4]

d
+ Z (01055 + 20% — Var(F; ,)Var(Fj,) — 2Cov(F; ,, Fj,)*] — 0.

t,j=1

By Remark 3.5, F,, + G,, and F,, — (G,, are asymptotically moment-independent. Since
one-dimensional projections of F, + G, and F, — G, are also asymptotically moment-
independent, we can proceed by cumulants as above to determine the normality of Y. [J

The following result associates neat estimates to Theorem 4.2.

Theorem 4.3. Consider a vector

F = (F1, . -;Fd) - (Iq1<f1>> s 7chz(fd>)

with f; € H9%, and let ¥ = (04;)1<ij<a be the covariance matriz of F, 0;; = E[F;F}|. Let
N be the associated Gaussian random vector, N ~ N4(0,%).

(1) Assume that ¥ is invertible. Then, for any Lipschitz function h : R? — R we have

|E[(F)] = E[L(N)]] < VAIZ[2 I lopllAllip VEN I = EIN]I,

() =h(y)|

where ||-||,, denotes the operator norm of a matriz and |||y = sup, yega =

(2) For any C’z—functzon h:R? — R we have
1 "
|EI(F)] = BRI < 5 IW [V EIFI* = BN,

_9%*h
81:1890] (.I) ‘ :

where ||h || = MaXi<; j<a SUP,cpa
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Proof. The proof is divided into three steps.

Step 1: Recall that for a Lipschitz function h : R? — R [8, Theorem 6.1.1] yields

d

(BI(E)] - EIN)| < VA SIS op bl ZE{(aij—quwFi,Dmf},

ij=1

while for a C2-function with bounded Hessian [8, Theorem 6.1.2] gives

d

B~ BRI < 3| S B { (0 = S (OF DE)’}.

i,7=1

Step 2: We claim that for any 7,7 =1,...,d,
1 2
E{(aij — q—j(DE-, DFy)) } < Cov(F7, F7) — 207,
Indeed, by [8, identity (6.2.4)] and the fact that o;; = 0 if ¢; # ¢;, we have

E{(aij —

1N\ 5 2
G0N (r — 1)2(4- )2 (471 (g, 4+ g5 — 20| Fi&e S )12 i g #£

1 2
q—j<DFi>DF}'>) }

4 oy .
@SN = D)2 (24 — 20| i@, £ if ¢; = g
Zqz/\qj r|2(ql)2(;> (Qz‘ +q— 2r)!||fi®rfj||2 if g; # q;

N

- A4 ~ : '
I P (%) (24 = 20) 1 fi@r 1P if g; = g,
On the other hand, from (3.25) we have

COV(F2 F?) — 207,

(qlg;! S0 (1) ()i & f]|22
+qu " '2(?) ( ) (qi +q —2r)! ”fl®7“f3”2 if ¢; # g

g2 30 (1) Hfz ®r fj“2
\ + S (4) 25 — 20) ! £ £ 12 if ¢ =g

The claim follows immediately.
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Step 3. Applying (4.29) we get

E|F|* — E|N|* = zd: (E[FiQFjQ] — 040j; — 20%)
z,jd—l
= Z {COV(FZ-Q,FjQ) - 20%}.
ij=1
Combining Steps 1-3 gives the desired conclusion. O

4.3. A multivariate version of the convergence towards y>.

Here we will prove a multivariate extension of a result of Nourdin and Peccati [7]. Such an
extension was an open problem as far as we know.
In what follows, G(v) will denote a random variable with the centered y? distribution

having v > 0 degrees of freedom. When v is an integer, then G(v) law S (N2 —1), where
Ny, ..., N, are i.i.d. standard normal random variables. In general, G(v) is a centered
gamma random variable with a shape parameter /2 and scale parameter 2. Nourdin and
Peccati 7] established the following theorem.

Theorem 4.4 (Nourdin-Peccati). Fiz v > 0 and let G(v) be as above. Let g > 2 be
an even integer, and let F,, = I,(f,) be such that lim, ., E[F?] = E[G(v)?] = 2v. Set

cg =41(q/2) [qV]>. Then, the following four assertions are equivalent, as n — oo:
() F, ™ G(v);

(B) E[FY —12E[F3] — E[G(v)*] — 12E[G(v)?] = 1202 — 48v;

(7) ||fn<§>q/2fn —cg X full =0, and || fr, @, full = O for everyr =1,...,q — 1 such that
r#q/2;

(0) ||fn<§>q/2fn — ¢y X ful| = 0, and ||fn(§>,,fn|| — 0 for everyr = 1,...,qg — 1 such that
r#q/2.

The following is our multivariate extension of this theorem.

Theorem 4.5. Let d > 2, let vq,...,vq be positive reals, and let qq,...,q5 = 2 be even
integers. Consider vectors

Ey=Fin s Fan) = (I, (fin) - Igu(fan)), n=1,
with fin € H9%, such that lim, E[an} = 2u; for everyi=1,...,d. Assume that:
(i) E[F},] — 12E[F}?,] — 1207 — 48y, for every i;
(i) limyo0o Cov(F7,, F7,) = 0 whenever q; = q; for some i # j;

(ii) limp oo E[F7, Fjn] = 0 whenever q; = 2q;.
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Then
law
(Fl,m” Fdn) (G(V1>7"'7G(Vd>>
where G(v1),...,G(vy) are independent random variables having centered x? distributions
with vy, ..., vg degrees of freedom, respectively.

Proof. Using the well-known Carleman’s condition, it is easy to check that the law of G(v)
is determined by its moments. By Corollary 3.6 it is enough to show that condition () of
Theorem 3.1 holds.

Fix 1 <i#j<daswellas 1 <r < ¢ Ag;. Switching 7 and j if necessary, assume that
¢; < ¢;. From Theorem 4.4(v) we get that fi, ®, fr, — 0 for each 1 < k < d and every
1 <r < qp—1, except when r = ¢, /2. Using the identity

1finn ®r finll* = {fin @q=r fims fin ®g=r Fim) (4.30)

(see (2.9)) together with the Cauchy-Schwarz inequality we infer that condition () of
Theorem 3.1 holds for all values of r, i and j, except of the cases: r = ¢, = ¢, r = ¢;/2 =
¢;/2, and r = ¢; = ¢;/2. Assumption (i) together with (3.26) show that f;, ®, fj» — 0
for all 1 < r < ¢; = ¢;. Thus, it remains to verify condition () of Theorem 3.1 when
r =g¢; = ¢;/2. Lemma 2.2 (identity (2.16) therein) yields

<fj n éqi fj,m fi,n é) fZ,n>

2¢;!° 0 & (@
- q <fjn(®qZ f]nafzn®fzn ' ( ) f],n®s fi,nafi,n(g)sfj,n)-

J*

Using (4.30) and Theorem 4.4 and a reasoning as above, it is straightforward to show that
the sum Zqz_l ( ) (fin®s fins fin®s fin) tends to zero as n — oo. On the other hand, the

condition on the g;-th contraction in Theorem 4.4(8) yields that f;, ®,, fin — Cq; fim — 0
as n — o0o. Moreover, we have

~ 1
<fj,n7 fi,n X fz,n) = ;E[Fj,npgnL
5!
which tends to zero by assumption (iz). All these facts together imply that
(fim Rg; fin, fin ® fin) — 0 as n — oo. Using (4.30) for r = ¢; we get fin ®q fin — 0,
showing that condition () of Theorem 3.1 holds true in the last remaining case. The proof
of the theorem is complete. O

Example 4.6. Consider F,, = (Fi,, Fon) = (I, (fin), Ly, (fon)), where 2 < g1 < ¢o are
even integers. Suppose that
E[Ff,)— 1, E[F},]—6E[F,] — -3, and
E[F},) —2, E[F;,]—6E[F;,]—0, asn— .
When ¢, = ¢» or ¢ = 2¢; we require additionally:
Cov(FL,, F3,) = 0 (1 =), E[Ff,Fon] =0 (g2 = 2q1).
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Then Theorem 4.5 (the case vy = 2, vy = 4) gives
Fo ™S (Vi —1,Va + V5 — 2)

where Vi, V5, V3 are i.i.d. standard exponential random variables.

4.4. Bivariate convergence.

Theorem 4.7. Let py,...,pr, q1,--.,qs be positive integers. Assume further that minp; >
max g;. Consider

(FLTU LR Fr,na Gl,na cee 7Gs,n> = ([pl (fl,n>7 s 7IpT (fr,n>7 Iq1 (gl,n)a s 7Iqs (gs,n>)7 n 2 17
with f;, € HOP and 9jn € H9% . Suppose that as n — oo

Fo=Fip ... F)) SN and G, = (Gin,...,Gen) SV, (4.31)

where N ~ N,(0,X), the marginals of V' are determined by their moments, and N,V are
independent. If E[F;,,G;,] — 0 (which trivially holds when p; # q;) for all i,j, then

(F,, G) 2 (N, V) (4.32)

jointly, as n — oo.

Proof. We will show that condition (c) of Theorem 3.4 holds. By (2.12) we may and
do assume that E[F?,] = 1 for all i and n. By Theorem 4.1(v), || fin @, finll — 0 for all
r=1,...,p; — 1. Observe that

||fz,n Qr gj,n||2 = <fz,n ®pi—7‘ fz‘,m 9jn ®qj—r gj,n>

so that ||fi, @ gjnl = 0 for 1 <r < p; Ag; = ¢j, except possibly when r = p; = ¢;. But
in this latter case,

pz'”fz;n Oy gj,nH = pz'|<fz,n7 gj,n>’ = ‘E[-Fi,nGj,nH — 0
by the assumption. Corollary 3.6 concludes the proof. Il

Theorem 4.7 admits the following immediate corollary.

Corollary 4.8. Let p > q be positive integers. Consider two stochastic processes F,, =
(L(fin))ter and Gy, = (I)(Gen))ter, where fi, € HP and g, € HOU. Suppose that as

n — 00

EMY X and @, "y,

where X is centered and Gaussian, the marginals of Y are determined by their moments,
and X,Y are independent. If E[I,(fin)l;(gsn)] — O (which trivially holds when p # q) for

all s,t €T, then

(F,,G,) 'S (X,Y)

jointly, as n — oo.
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5. FURTHER APPLICATIONS

5.1. Partial sums associated with Hermite polynomials. Consider a centered sta-
tionary Gaussian sequence {Gy}r>1 with unit variance. For any k& > 0, denote by
r(k) = E[G1G114]

the covariance between G; and Gp.;. We extend r to Z_ by symmetry, that is, r(k) =
r(—k). For any integer ¢ > 1, we write

[nt]

Sen(t) =D Hy(Gr), t>0,
k=1

to indicate the partial sums associated with the subordinated sequence { H,(G)}x>1. Here,
H, denotes the gth Hermite polynomial given by (2.5).
The following result is a summary of the main finding in Breuer and Major [2].

Theorem 5.1. If Y, . |r(k)|? < oo then, as n — oo,

Sqn f.dd.
L aq B,

vn

where B is a standard Brownian motion and ag = [q¢!' Y, 7(k)?] Yz,

Assume further that the covariance function r has the form
r(k) = k_DL(k:), kE>1,
with D > 0 and L : (0,00) — (0,00) a function which is slowly varying at infinity and

bounded away from 0 and infinity on every compact subset of [0, 00). The following result
is due to Taqqu [16].

Theorem 5.2. If0 < D < % then, as n — o0,

Son  fdd
— bp R

where bp = [(1 — D)(1 — 2D)]"? and Ry is a Rosenblatt process of parameter H = 1— D,
defined as

RH@) =culp (fH(tv'»’ t =0,
with

H

fult,z,y) = / (s—0)F (s —p)

cg > 0 an explicit constant such that E[Ry(1)?] = 1, and the double Wiener-Ité integral
15 1s with respect to a two-sided Brownian motion B.

s, t>0, 1,y €R,

+ ol

Let ¢ > 3 be an integer. The following result is a consequence of Corollary 4.8 and
Theorems 5.1 and 5.2. It gives the asymptotic behavior (after proper renormalization of
each coordinate) of the pair (S;,,S2,) when D € (%, 1) U (4, 00). Since what follows is
just mean to be an illustration, we will not consider the remaining case, that is, when
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D e (0, %); it is an interesting problem, but to answer it would be out of the scope of the
present paper.

Proposition 5.3. Let ¢ > 3 be an integer, and let the constants a, and bp be given by
Theorems 5.1 and 5.2, respectively.

(1) If D € (3,00) then

Sgn S\ fdd.
(\;ﬁ’\;ﬁ) — (anl,ang),

where (By, By) is a standard Brownian motion in R?.
(2) If D € (%, 1) then

S n S N f.d.d.
(S mmiy) o o)

where B is a Brownian motion independent of the Rosenblatt process Ry_p of pa-
rameter 1 — D.

Proof: Let us first introduce a specific realization of the sequence {Gy}r>1 that will allow
one to use the results of this paper. The space

L*(Q)

H :=span{G1, G, ...}

being a real separable Hilbert space, it is isometrically isomorphic to either RY (for some
finite N > 1) or L2(R,). Let us assume that H ~ L?(R,), the case where H ~ R" being
easier to handle. Let ® : H — L*(R,) be an isometry. Set e, = ®(Gy) for each k > 1. We
have

r(k— 1) = |GGy = / " en@e(@)ds, k1> 1. (5.33)

If B = (By)ier, denotes a standard Brownian motion, we deduce that

{Gr} =1 ' {/ ek(t)dBt} ;
0 k>1

=

these two sequences being indeed centered, Gaussian and having the same covariance struc-
ture. Using (2.6) we deduce that S, has the same distribution than I,(Y_,_, e;?) (with
I, the g-tuple Wiener-It6 integral associated to B).

Hence, to reach the conclusion of point 1 it suffices to combine Corollary 4.8 with The-
orem 5.1. For point 2, just use Corollary 4.8 and Theorem 5.2, together with the fact
that the distribution of Ry (t) is determined by its moments (as is the case for any double
Wiener-Ito integral). O
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5.2. Moment-independence for discrete homogeneous chaos. To develop the next
application we will need the following basic ingredients:

(i) A sequence X = (Xj, Xo,...) of i.i.d. random variables, with mean 0, variance 1
and all moments finite.
(ii) Two positive integers q¢i1,¢2 as well as two sequences ay, : N — R n > 1 of

real-valued functions satisfying for all ¢,...,%, >1and k = 1,2,
(a) [symmetry] agy, (i1, - - -, ig,) = @kn(io@) - - - l0(g)) for every permutation o;
(b) [vanishing on diagonals| ay (i1, ..., %, ) = 0 whenever i, = i, for some r # s;
(c) [unit-variance] q.!> 77 i =1 e (i1y o yig)% =1
Consider
QenX) = > aalin,... i) X; ... X5, n>1, k=12 (5.34)
i1y =1

This series converges in L?(Q2), E[Q.»(X)] = 0 and E[Qy»(X)?] = 1. We have the following
result.

Theorem 5.4. Asn — oo, assume that the contribution of each X; to Qpn(X) is uniformly
negligible, that is,

sup Ao (iyin, ..o yig ) — 0, k=1,2 (5.35)
i>1 .
=7 42 zqkzl

.....

and that, for any r =1,...,q1 A qa,

0o 0o 2
E E al’n(ll,...,lr,il,...,/L'qlfr)ag,n(ll,...,lr,iq1,r+1,...,Z.q1+q2,27-) — 0.
l1

i15eeeyigy ag—2r=1
(5.36)
Then Q1.,(X) and Q2.,(X) are asymptotically moment-independent.

Proof: Fix M, N > 1. We want to prove that, as n — oo,
B[Q1,4(X)" Q2n(X)"] = ElQ10(X)"] E[Q2,n(X)"] — 0. (5.37)
The proof is divided into three steps.
Step 1. In this step we show that
B(Q10(X)" Q2n(X)"] = E[Q14(G)" Q2(G)*] = 0 as n — oo (5.38)

Following the approach of Mossel, O’Donnel and Oleszkiewicz [5], we will use the Lindeberg
replacement trick. Let G = (G1, G, ...) be a sequence of i.i.d. N(0,1) random variables
independent of X. For a positive integer s, set W) = (G1,..., Gy, Xgi1, Xgio2,...), and
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put WO = X Fix s > 1 and write for k =1,2 and n > 1,

_ : : (s) (s)
Ukns = E (i1, - ig ) Wi - .Wiqk,
i1eigy
11#S,.., iqk7é$
$ ) ® (s)
. . S S S
v%ﬂus = (Uﬁn(Zl,...,qu)Lmel W ...L@qu
i1, igy
Elj:ij:S
(o]
_ : . (s) (s)
= E U (S, 82, - - 5 1, ) Wi W
2,y =1

where W means that the term W is dropped (observe that this notation bears no
ambiguity: indeed, since ay, vanishes on diagonals, each string 7y, ...,1%, contributing to
the definition of V,, s contains the symbol s exactly once). For each s and k, note that
Ukn,s and Vj, s are independent of the variables X and G, and that

ka(w(s—l)) - Uk,n,s + stk,n,s and Qk,n(w(s)) - Uk,n,s + Gs‘/k,n,&
By the binomial formula, using the independence of X, from Uy, s and V , s, we have

E[Qn(WED)MQ,  (WE=D)N]

M N
M\ (N Neio »
= ( . ) ( )E[U%L;ZUQJYR_,g %Z,n,s‘/éj,n,s]E[X;+]]‘
i—0 j—o \° J

Similarly,
E[Q1n(WO) Y Qa (WE)Y]
M N
M\ (N i N . L
-3 (V) () st e
i=0 j=0 J
Therefore

EQua(W )M Qo (W)Y — B[Q1 (W)Y Qs (WH)Y]
M\ (N P » »
- (1)) potniviavin g, e - me),
itjza N J

Now, observe that Propositions 3.11, 3.12 and 3.16 of [5] imply that both (Uy, s)ns>1 and
(U n,s)n,s>1 are uniformly bounded in all LP(2) spaces. It also implies that, for any p > 3,
k=1,2and n,s > 1,

E[|‘/]€7n75|p]l/p < Cp E[Vlf,n,s}l/{

where (), depends only on p. Hence, for 0 <¢ < M, 0<j7 <N, ¢+ j > 3, we have
\E[UM Uy Ve, Ve | < OBV, P EIVE, 2 (5.39)

1n,s ¥2mn,s "1n,s'2n,s 1,n,s 2,n,s
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where C' does not depend on n,s > 1. Since E[X;] = F[G;] = 0 and E[X?] = E[G?] =1

we get
[0.9]

EVZ, . = axar! Z (8,02, -+ g, )%,
1250-50q, =1
When i > 3, then (5.39) is bounded from above by
(1—2)/2
o o0
C' | sup Z a1 (iy 0,y ig)? Z a1 (8,00, - -+ yig )%,
2L i =1 inyenigy =1

where C' does not depend on n,s > 1, and we get a similar bound when j > 3. If i = 2,
then 7 > 1 (i+j > 3), so (5.39) isz bounded from above by

/2
o0 [e.e]
.o . 2 . . 2
C Sup E a2,n(z722>"'7zq2) § al,n<5722>"'77’q1) )
izl igy=1 i2,eyiqy =1

and we have a similar bound when j = 2. Taking into account assumption (5.35) we infer
that the upper-bound for (5.39) is of the form

Ce, g E akn Syig, .- sig )%

where lim,,_,.. €, = 0 and C' is mdependent of n,s. We conclude that

| B[Qua (W™ )M Qo (WD) — [Q1 (WM Qy (WM

.2
< Ce, E E akn S, 02,y lg )"

where C does not depend on n,s. Since, for fixed k,n, Qk,n(W(S ) = Qra(G) in L*(Q)
as s — 0o, by Propositions 3.11, 3.12 and 3.16 of [5], the convergence holds in all LP((2).
Hence

|E[Q1,n(X)MQ2 n( )N] - E[Ql,n(G>MQ2,n(G>NH
< |EQua(WENMQy  (WET)N] — E[Q (WM Q,,, (WEN)N]|

.....

This proves (5.38).
Step 2. We show that n — oo,

E[Q1,(X)M] = E[Q1,(G)M] = 0 and E[Q2,(X)"] = E[Q2,(G)N] = 0. (5.40)

The proof is similar to Step 1 (and easier). Thus, we omit it.
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Step 3. Without loss of generality we may and do assume that Gy, = By — By_1, where B
is a standard Brownian motion. For £k = 1,2 and n > 1, due to the multiplication formula
(2.10), Qkn(G) is a multiple Wiener-1t6 integral of order ¢ with respect to B:

[e.9]

Qk,n(G) = Iy Z ak,n(ih cee 7iqk)1[i1—17i1]X...X[iqk—l,iqk]

In this setting, condition (5.36) coincides with condition (y) of Theorem 3.1 (or (c) of
Theorem 3.4). Therefore,

ElQ1n(G)"Q2n(G)"] = E[Q1.0(G)"]E[Q2n(G)"] = 0. (5.41)
Combining (5.38), (5.40) and (5.41) we get the desired conclusion (5.37). O

Remark 5.5. The conclusion of Theorem 5.4 may fail if either (5.35) or (5.36) are not
satisfied. It follows from Step 3 above that the theorem fails when (5.36) does not hold
and X is Gaussian. Theorem 5.4 also fails when (5.35) is not satisfied, (5.36) holds, and
X is a Rademacher sequence, as we can see from the following counterexample. Consider
q1 = ¢ = 2, and set

—_

arn(i,j) = =(Layp(0)1y(h) + 12y () 113(J) + 1y (0) 15y (5) + Ly (0)113.(4))

4
asn(i,7) = = (Lip(0)Lay(4) + Lgay ()12 (5) — Lgsy (1) Lgay (5) — Ly (1) 153 (j)).-

1

4
= %X (XQ + Xg) and QQ,n(X) = %X4(X2 - Xg), where Xz are i.i.d. with
P(X; = —1) = 1/2. It is straightforward to check that (5.36) holds and
) is not satisfied. Since @1, (X)Q2,(X) = 0, we get

Then Q1,(X)
obviously (5.35

- E[Ql,n(X)2Q2,n(X)2] 7& E[Ql,n(X)g]E[QQ,n(X)z]a

implying in particular that @ ,(X) and Q2,(X) are (asymptotically) moment-dependent.
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