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On certain finiteness questions in the arithmetic of modular forms

I. Kiming, N. Rustom and G. Wiese

ABSTRACT

We investigate certain finiteness questions that arise naturally when studying approximations
modulo prime powers of p-adic Galois representations coming from modular forms. We link these
finiteness statements with a question by K. Buzzard concerning p-adic coefficient fields of Hecke
eigenforms.

Specifically, we conjecture that for fixed IV, m, and prime p with p not dividing N, there is
only a finite number of reductions modulo p™ of normalized eigenforms on I'; (V).

We consider various variants of our basic finiteness conjecture, prove a weak version of it, and
give some numerical evidence.

1. Introduction

Let p be a prime number. For theoretical and practical purposes, p-adic modular Galois
representations are naturally studied through their modulo p™ approximations. As explained
below, with this article we would like to contribute to the “weight aspect” by presenting
theoretical results, numerical data and proposing some guiding finiteness conjectures.

Although our motivation stems foremostly from Galois representations, in this article we
work with modular forms and restrict to the case of classical (elliptic) modular forms, as
they already present many problems that are not yet well understood. Moreover, we chose to
consider approximations modulo p™ for fixed m, instead of varying or “big enough” m. This
choice is forced upon us by the underlying motivation of our work. We explain this motivation
below in 1.10.
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1.1. Definition of “modulo p

We first need to define the term “modulo p™”. We fix once and for all algebraic closures
Q (containing Z, its ring of integers), Q, (containing Z,, the clements integral over Z,) of
Q and Q,, respectively, as well as an embedding Q— @W which we will tacitly be using.
Let v, be the normalized (v,(p) = 1) valuation on @,. The two natural requirements that (1)
“modulo p” should mean “modulo p” when coefficients/traces lie in some extension K/Q,, with
p above p, and that (2) the meaning of “modulo p™” be invariant under extensions of the field
of coefficients/traces, force upon us the following definition, introduced in [32] and utilized

in [10]: For m € N define
ZI ™) = Zp){x € T | vp(z) > m — 1}.

For a,b € Z, we say that a=b mod p™ if the images of a,b in Z/(p™) coincide. More
concretely, for a,b € Og C Z, (the valuation ring of K/Q,) we have a =b mod p™ if and
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only if a — b € pex/e(m=1+1 where eg g is the ramification index. Moreover, by “reducing

modulo p™” we understand taking the image under the natural maps Z, — Z/(p™) or

O — O/per/e(m=D+1 " respectively.

1.2. Finiteness conditions and conjectures.

Before formulating the various finiteness conditions, our conjectures, and our results, we
need to set up some basic notation.

For N € N, we let &(N) be the set of normalized newforms on I';(N) of some weight k.
Thus, every member of &(N) is in particular a normalized cuspidal eigenform for all Hecke
operators. Here, “all Hecke operators” obviously refers to level N. In the following we will
also more generally be considering normalized cuspidal eigenforms for all Hecke operators, and
these will be referred to simply as “eigenforms”. Of course, “eigenforms” is a more general
concept than newforms, as eigenforms might be oldforms.

The eigenvalue of any Hecke operator T;, will always be denoted a,(f); it coincides with
the n-th coefficient of the standard g-expansion. For f € G(N) we have an attached p-adic
Galois representation py, : Gg — GLa(Z,), where Gy is shorthand for Gal(Q/Q). For m € N
we denote by pyspm the reduction of p¢, modulo p™, i.e., the composition of py, with the
map induced from Z, - Z/(p™). As usual, we write Prp = Pfp1- In general, these Galois
representations depend on the choice of a lattice, but we will only be working with their
characters, which are well-defined in all cases. See 2.2 for more details.

DEerFINITION 1. Fix N € N| p a prime not dividing N, and m € N.

As above we denote by &(N) the set of all normalized newforms on I';(N) and some
weight k£ > 1 (we allow k =1 in the definition, but in the article weight 1 will not play any
role.) Elements f € &(NV) are identified with their standard g-expansions.

Let (V) denote the set of all characters of all p-adic Galois representations arising from
elements f € G(N).

We let G,,,(IN) denote the set of reductions modulo p™ of the standard g-expansions of the
elements of G(N). Elements in &,,(N) are called strong eigenforms modulo p™. Similarly, we
let R, (N) be the set of reductions modulo p™ of R(N) (in the sense of composition with the
natural projection).

We work with the ‘naive’ definition of modular forms with coefficients in a ring R: the R-
submodule of R[[¢]] spanned by the modular forms with integral standard g-expansions. The
space of cusp forms on I'; (N) of weight k and coefficients in Z/(p™) is denoted by Si(Z/(p™)).
The Hecke operators T, act on the space Si(Z/(p™)). A weak eigenform modulo p™ is a
normalized eigenform for all 7,,, n € N, in Si(Z/(p™)) for some weight k.

We also denote by S<i(Z/(p™)) the direct sum over all j < k of the spaces S;(Z/(p™)).

We recall below in section 2.7 an example due to Calegari and Emerton showing that there
may be an infinite number of weak eigenforms in a space Si(Z/(p?)). Hence the distinction
between strong and weak eigenforms modulo p™ is important.

Consider now the following finiteness statements and recall that p t N:

Strong,,,: The set G,,(N) is finite, i.e., the set of strong eigenforms modulo p™ on I'1(N) is
finite.

Rep,,,: The set R,,,(N) is finite, i.e., the set of reductions modulo p™ of the characters of the
Galois representations of Hecke eigenforms in level N is finite.
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Weak,,,: There exists a constant k = k(N,p,m) depending only on N, p, m, such that
Gn(N) C S<k(Z/(p™)), i.e., any strong eigenform modulo p™ occurs in the weak sense at
weight at most k.

Fin,,: For any k the set &,,(N) N S<x(Z/(p™)) is finite, i.e., for any k there is only a finite
number of strong eigenforms occurring in the weak sense at weight k.

We also consider the following finiteness condition that was raised as a question by K.
Buzzard at least for T'o(N) ([5], Question 4.4). Recall again pt N. If f € &(N), denote by
Ky, the p-adic coefficient field of f:

Ky, =Qpar(f)| ¢ prime with £ Np).
The finiteness condition then concerns the degree Ky, : Qp]:

(B): There is a constant ¢(N,p) depending only on N, p, such that [Ky, : Qp] < ¢(N,p) for
all f € G(N).

Additionally, we will be considering a finiteness condition I, that asserts a uniform bound
for all f € &(N) for the index of the projections to Z/(p™) of Zy[ae(f) | ¢ prime with £{ Np]
inside its normalization. See 2.3 below for a precise statement of the condition.

Our most basic finiteness conjecture concerns strong eigenforms modulo p™. We will see
further below that the following two conjectures are in fact equivalent.

CONJECTURE 1. Strong,, holds for any m.
CONJECTURE 2. Fin,, holds for any m.

1.3. Relation between the conjectures and results.

It is immediately clear that statement Strong,, implies each of the statements Rep,,,
Weak,,, and Fin,,.

By work of Jochnowitz [22], statement Strong; is true, and hence so are Rep,, Weak;,
and Fin;.

But already the question of whether Strong, holds seems to be totally open; in fact, a result
in this paper (Theorem 2) suggests that m = 2 is already the decisive case.

In section 2 we prove the following relationship between some of the above finiteness
conditions. In our opinion, this sheds light on some aspects of Buzzard’s question, i.e., whether
condition (B) holds, and it places our finiteness conjectures into a framework that has already
attracted some attention (see for instance Conjecture 1.1 of [7] that implies (and is conjecturally
equivalent to) statement (B).)

THEOREM 2. The following are equivalent:

(i) Statement (B) holds, and so in particular Buzzard’s question has an affirmative answer.
(ii) For all m € N, statements Strong,, (or Rep,,) and I, hold.
(iii) Statements Strong, (or Rep,) and I hold.

In a previous version of this article, the following theorem was stated as a conjecture. We
are indebted to Frank Calegari for explaining the proof to us, cf. the additional remarks below
in subsection 1.7.
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THEOREM 3. Assume p > 5. Then the statement Weak,,, holds for any m, that is, there
exists a constant k = k(N,p,m) depending only on N, p, m, such that any strong eigenform
modulo p™ occurs in the weak sense at weight at most k in the same level N.

REMARK 1. Without the assumption p > 5, the following slightly weaker statement is true:
there exists a constant k' = k/(IN, p,m) depending only on N, p, m, such that for any strong
eigenform f modulo p™ there is a weak eigenform g mod p™ at weight at most k£ in the same
level N such that f and g agree at all coeflicients of index prime to p.

The only reason we need the assumption p > 5 occurs in the very last step of the proof
where we need a “weight bound” in connection with the application of the 6 operator modulo
p™. Such a bound is provided by [9] that avoids a discussion of the cases p € {2,3}. Without
having worked out the details it is however fairly clear to us that such bounds should exist for
all p and that Theorem 3 holds without any restriction on p.

As it is immediately clear from definitions that the two conditions Weak,, and Fin,,
together imply Strong,,, we thus have the equivalence of Conjectures 1 and 2 as a consequence
of Theorem 3.

COROLLARY 4. Conjectures 1 and 2 are equivalent.

1.4. Strong eigenforms and characters.

We stress that by Definition 1 strong eigenforms modulo p™ are equal if their g-expansions
are equal. In particular, the Fourier coeflicients at the “bad primes” (i.e., those dividing Np) of
equal strong eigenforms modulo p™ are equal. We wish to formulate the following conjecture:

CONJECTURE 3. Statement Rep,, holds for all m.

It is clear that this conjecture is weaker than Conjecture 1. We think that it is an interesting
question whether they are in fact equivalent. We have not attempted to answer this question.
In fact, the (necessarily continuous) character of a Galois representation modulo p™ is uniquely
determined by the images of Frob, for primes ¢ in any density-one set of primes, hence it does
not give any information (a priori) on the coefficients at “bad primes” of the strong eigenforms
modulo p™ admitting this representation.

We would like to add a word of explanation why we chose the set R,,(N) the way we did:
ultimately we would like to understand the set of isomorphism classes of strongly modular
Galois representations modulo p™; if its residual (i.e., the mod p) representation is absolutely
irreducible, the isomorphism class of the representation modulo p™ is uniquely determined
by its character, cf. [8, Théoreéme 1]; however, this does not necessarily hold if the residual
representation is not absolutely irreducible. Our choice of the set R,,(NN) is thus explained
by our desire not to enter into details about the possible reductions modulo p™ of Galois
representations which are not residually absolutely irreducible.

1.5. Reformulations in terms of weight bounds.

Let f be an eigenform modulo p™, either strong or weak. We say that f occurs strongly resp.
weakly at a specific weight kg if there is a strong resp. weak eigenform in S, (I'1(N),Z/(p™))
equal to f.
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Thus, Conjecture 1 can now equivalently be formulated as the statement that there be a
constant x(N,p, m) depending only on N, p, m such that any strong eigenform modulo p™
on I'1(N) occurs strongly at weight < x(N,p, m). We call such a constant — if it exists — a
strong weight bound for strong eigenforms modulo p™ on I'; (). Similarly, the constant from
Theorem 3 is called a weak weight bound for strong eigenforms modulo p™ on I';(N). Hence,
Conjecture 1 and Theorem 3 state the existence for any m of a strong resp. weak weight bound
for strong eigenforms modulo p™ on T';(N).

One can ask whether a stronger form of Theorem 3 holds: does any weak eigenform modulo
p™ occur weakly at some weight bounded by a function of N, p, m? However, in this paper we
chose not to consider this strengthening.

1.6. Relation between strong and weak eigenforms mod p™ and between Conjecture 1 and
Theorem 3.

In [10] two of us with Imin Chen introduced the notions of strong and weak eigenforms
modulo p™ with a slightly different definition. We include in section 2.5 an explicit example
showing that weak eigenforms are not necessarily strong (at any weight). This is not the only
indication that Conjecture 1 probably does not follow from Theorem 3 in any immediately
obvious way. Even more serious is the fact that there may exist infinitely many weak eigenforms
modulo p™ at some fixed weight, as discovered by Calegari and Emerton, see section 2.6.

1.7. The special case N =1 and p = 2.

Given Theorem 3 above, it is natural to ask about the form of the constant k(N,p, m). In
the very special case where N =1, p = 2, and with the further restriction that there be no
ramification in the coefficient fields, we shall show that one can use the theory of Serre and
Nicolas to obtain explicit bounds. The relevant theorem is Theorem 13, see also Remark 3
below. We do not obtain “formulas” for the weight bounds in question, merely a method for
computing such. We illustrate the method with the computation of explicit bounds for the
cases m < 4 at the end of subsection 3.2.

As Frank Calegari explained to us, the structure of the core inductive step in the proof of
Theorem 13 can be reinterpreted in such a way that it is susceptible to generalization by using
a decisive input from [7], specifically [7, Theorem 2.2]. He then showed us a sketch of Theorem
3 above. The proof of Theorem 3 that we give is a slight variation of the sketch that we owe
to Calegari, in particular we shall work with group cohomology rather than the cohomology of
modular curves as in [7].

As Theorem 13 is by now superseded by Theorem 3, we have chosen to skip some of the
details of its proof. For full details, the interested reader is referred to the preprint version of
this paper, see [23].

1.8. Numerical data.

In section 3.3 we provide a bit of numerical data pertaining to this question of how the
constants k(N,p, m) of Theorem 3 depend on N, p, m. Our data set is not sufficiently large
to warrant any conjectures about the optimal shape of the constants k(N, p, m). However, the
data do raise the interesting question of whether these constants can be chosen so as to be
independent of V.

In the spirit of Serre’s Modularity Conjecture, it seems reasonable to ask whether a weight
bound can be derived purely locally at p, in which case the independence of N would be clear.
One could for instance try to classify the reductions modulo p™ of all 2-dimensional crystalline
representations of the absolute Galois group of Q,, and to prove that all of them can be
obtained as reductions coming from bounded weight. For m = 1, this is done in [3] for slopes
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between 1 and 2, in [4] for slope 1 and in [6] for slopes less than 1. Moreover, one might then
hope to have some local-global compatibility modulo p™ in order to obtain a weak eigenform
(a global object) in the minimal weight predicted locally. For the authors, this appears only as
a vague speculation at the moment. If one had classification results of reductions modulo p™ of
crystalline representations for given slope (or range of slopes) like those cited above for m = 1,
one might be able to check whether such a local-global compatibility could hold, and possibly
make precise predictions for weight bounds. For this, also see the next paragraph.

1.9. The finiteness conjectures for finite slope.

One test of Conjecture 1 is to ask whether it holds if we restrict the eigenforms in some
way. If one restricts to eigenforms with a fixed, finite p-slope, the finiteness statement of
Conjecture 1 becomes true, but then additional questions arise in the direction of a more
precise, “quantitative” version of Conjecture 1. We will discuss this briefly in section 3.1.

1.10. Motivation

We now explain the motivation underlying this work by first considering the “level” aspect
before treating the “weight” one, which is the focus of this paper. Let ¢ | N be a prime different
from p. Ribet’s famous theory of “level lowering”, which is a fundamental input in the proof
of Fermat’s Last Theorem and of Serre’s Modularity Conjecture, translates statements on
the structure of p; |Gy, with G, = Gg, = Gal(Q,/Q,), into a congruence modulo p of f and
some other Hecke eigenform at level N/g; for instance, if ¢ [| N, then p, |G, is unramified
at ¢ if and only if such a congruence exists. In the quest of determining (computationally or
theoretically) the structure of ps ,|G, it is thus most natural to relate statements on pyp, m|Gq
to statements on congruences modulo p™ of Hecke eigenforms. The underlying theory of “level
lowering modulo p™” has to some extent been developed, especially by Dummigan [16] and
also by Tsaknias [31], but there are still many open cases. For an application of level lowering
modulo higher powers of p to Diophantine problems, see [12].

We now turn our attention to weights. By the weight aspect of Serre’s Modularity Conjecture,
i.e., the theorem of Khare and Wintenberger, there is a minimal weight determined by the
restriction ﬁf’p|Gp (even by the restriction to the inertia group at p) such that in that weight
there is a Hecke eigenform g of the same level as f such that f and g are congruent modulo p;
conversely, such a congruence determines the shape of ﬁf,p\Gp. It is thus natural to approach
the study of ps,|G, through approximations modulo p™ on the modular side, i.e., through
congruences modulo p™ with forms in “low” weights.

Finally it is worthwhile to mention the question of the existence and number theoretic
meaning of companion forms modulo p™ because it is also situated in the spirit of weights
modulo p™ (see [1], that, however, is restricted to ordinary forms and coefficients unramified

at p).

2. Proofs of the theorems

Before beginning the proof of Theorem 2 we first make some initial observations concerning
coefficient fields and modular Galois representations modulo p"™. We also introduce the
finiteness statement I,,, in detail.

2.1. Coefficient fields
For f € &(N) we have the coefficient field

Ky :=Q(an(f) | neN),
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which is a finite extension of Q. For D € N let
K}D) = Q(ae(f) | ¢ prime with £1 ND).

The statement of the following lemma is well-known, but we include the short proof for lack
of a precise reference.

LEMMA 5. In the above setting we have K}D)

Consequently, for the p-adic coefficient field
Ky p=Qpae(f)| ¢ prime with £1 Np),
we have that Ky, = Qp(a,(f) | n €N) for f € G(N).

= Ky for any D € N.

Proof. The second statement clearly follows from the first. To prove the first statement,
since f is an eigenform, it suffices to prove that a, € K}D) for any prime ¢ dividing ND. Let

g be such a prime and let o € Gal(@/K}D)). Now,
of == Za(an)q"

is again an newform on I'1(IN) with nebentypus ce if € is the nebentypus of f, cf. [13,
Proposition 2.7].

If ¢ is any prime not dividing ND we have cay = ay. As f and of are eigenforms for all
Hecke operators, this implies that ca; = a; for all ¢t € N with (¢, ND) = 1. By Multiplicity One,
see specifically [26, Theorem 4.6.19], we can conclude that of = f whence in particular that
oaq = Qq.

Since this holds for any o € Gal(@/K;D)), we must have a4 € KJ(CD). O

Another consequence of the Lemma is that for f € G(V) all character values e(d), where € is
the Dirichlet character/nebentype of f, lie in the field K J(CD): by [28, Corollary 3.1], one knows

that they are all in K¢, and by Lemma 5 we have Ky = KJ(CD).

REMARK 2. Lemma 5 is false in general if we just assume that f is an eigenform. A
concrete counterexample is as follows. Consider f := A, the unique form of weight 12 and level
1. At level 3, f gives rise to two oldforms, f and g := f(¢®). If one computes the action of
Us (the Hecke operator corresponding to the prime 3 at level 3) on the basis f, g of the space
of oldforms, one finds that it is given by the matrix (‘113 _?611) where a3z = a3(f) = 252. The
characteristic polynomial of this is 22 — 252z 4+ 3'! that is irreducible over Q. Let v,y be the
roots. Then f — «'g is a normalized eigenform with the property that the Ty-eigenvalues are in
Q for all primes £ # 3, whereas the Us-eigenvalue is «y that is not in Q, but rather in a quadratic
extension.

This examples reflects a general phenomenon: suppose that our level N has form N = M{"
where £ is prime, and suppose that f is a newform at level M. Then f gives rise to oldforms
(@), f(@"),..., f(¢"), and one can easily and explicitly compute the action of the level N
Hecke operator U, on the span of these oldforms, see e.g. [34, Proposition 4]. One finds that its
characteristic polynomial equals (2% — a,(f)x + de(€)¢*~1) - 27~1 where € is the nebentypus, k
is the weight, 6 = 1 if /1 M, and 6 = 0 otherwise. This proves that the ¢-th coefficient of any
eigenform in this span lies in an at most quadratic extension of Q(as(f)).

Using the commutativity of the Hecke operators, we obtain that the field of coefficients of
any eigenform is the composite of the coefficient field of the underlying newform with an at
most quadratic extension for each prime dividing the level.
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An implication of this is the following. If we had defined the set G(V) using eigenforms
rather than newforms, then the resulting condition (B) would be equivalent to the condition
(B) that we formulated in 1.2 above: this is because any p-adic field admits only finitely many
quadratic extensions.

Because of some technicalities in the proof of Theorem 2, specifically relating to the finiteness
condition I,,, we are confining ourselves to newforms at least as far as that theorem is
concerned. In later parts of the paper, such as in Theorem 3 or section 3.1, it does not make
any difference whether we are working with newforms or eigenforms.

2.2. The Galois representation.

Let Oy, be the valuation ring of Ky, let py,, be the maximal ideal of Oy, denote by ey,
the ramification index of Ky ,/Qp, and by res, the residue degree.

It follows from the construction of the Galois representation py, on étale cohomology and
the Eichler-Shimura theorem that pf, can be defined to take its image in GLg(Ofp) this
involves the choice of a Galois-stable lattice. If the residual representation p; , is absolutely
irreducible, then by a theorem of Carayol [8, Théoréme 3], the image can even be taken in
Zplae(f) | £ prime with ¢4 Np]. In that case, the representation is also independent (up to
isomorphism) of the chosen lattice; the character is independent in all cases.

Reducing py, “mod p™”, as defined in the introduction means to compose this repre-
sentation with the reduction of elements in Oy, modulo p; | (m=L)es»+1 The mod p™ Galois
representation py , ., attached to f has the usual properties such as belng unramified outside
Np and with (a¢(f) mod p™) equal to the trace of p¢,, m (Froby) for any prime £ Np.

It is important to notice that we have Rep,,,; = Rep,,: any mod p™ representation of the
type that we are considering is in fact the reduction mod p™ of some mod p™+! representation

Pfp,m+1-

2.3. The finiteness statement I,,
Let again f € &(N). The ring Oy, has the subring Zy[a,(f)| ¢ prime with £{ Np]. In
general, the inclusion
Zplae(f) | ¢ prime with £ Np] C Oy,
is proper, but of finite index. The statement we need is the following “version modulo p™” of
it. Write Z/(p™)[ae(f) (mod p™) | £4 Np prime] for the subring of Z/(p™) generated by the

images of ay(f) for all primes £{ Np; it is naturally a subring of Oy, /pe»(m=D+1,
Now consider for fixed N with p{ N the “index finiteness” statement:

I,,: There is a constant ¢(N,p,m) depending only on N, p, m, such that

[(Of/0557 D% L (Z/ (™)) [ae(f)  (mod p™)) | £+ Np prime] < o(N, p,m)
for all f € G(N).

It is obvious that I,,41 implies I,

In connection with the condition I,,, the reader should be reminded of the following. Let O¢
denote the ring of integers of the field Ky = Q(a,(f) | n € N) of coefficients of f. It has been
known for a long time that

sup [Oy : Zlae(f) | ¢ prime with £4 Np|] = co
fES(N)
cf. [20, Theorem 1.2] (that states that this index actually converges to co with growing weight).

See also [7, Theorem 2.1]. Thus, there is certainly no “global” reason for why statement I,
should be true.
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We note that since statement Strong,; holds due to the work of Jochnowitz [22], statement
I, is seen to be equivalent to the residue degrees ress, being bounded when f runs through
G(N). It seems to be an open question whether this actually holds. Of course, it is implied by
statement (B).

2.4. Proof of Theorem 2.

We now establish relations between the various finiteness statements and in particular prove
Theorem 2.
Let us consider the following inclusions for f € G(N):

Zp/(P™)]ae(f) (mod p™) | £+ Np prime | =: A, (f)
Zy/(P")lan(f) (mod p™) | n € N] =: By (f) (2.1)
Op /s DH = (1),

N

N

PROPOSITION 6. Fix N € N and let m € N. We use the notation from equation (2.1).
(i) Statement Rep,, implies that #A,,(f) is bounded for f € G(N).
) Statement Strong,, implies that # By, (f) is bounded for f € &G(N).
(iii) Statement (B) implies statement I,,, and that #C,,(f) is bounded for f € G(N).
(iv) Statement (B) is equivalent to #C5(f) being bounded for f € G(N).
) Statement (B) implies statement Rep,, .
) The conjunction of statement Rep,,, and the boundedness for f € G(N) of the index
A (f) C B, (f) is equivalent to statement Strong,,, .
(vii) The conjunction of statements Rep,, and I,, implies the boundedness of #C,,(f) for
fe6(N).

(viii) Statement (B) implies statement Strong,,, .

Proof. ((i)) This is clear because there are only finitely many different characters
modulo p™.

((ii)) This is equally clear because there are only finitely many different strong eigenforms
modulo p™.

((iii)) (B) implies that ey, and resy, are bounded for f € G(N), hence so is #C,,(f) =
#Of’p/p;f;(mfl)ﬂ = presro(ern(m=1+1)_ Thig implies that the fraction Z :(f) which equals
the index in question, is also bounded, and we thus get statement I,,.

((iv)) If #Co(f) = presre(esptD) is bounded for f € G(N), then so are res, and ey,
implying (B).

((v)) As we are assuming (B) there is a finite extension K of Q, of bounded degree such
that any f € &(N) has coefficients in O, the valuation ring of K. If p is the prime of O above p
then this means that any representation py , ., attached to an f € (V) as above has image in
the finite group G := GL2(O/p"), where v := e(K/Q,)(m — 1) + 1. Hence, the degree [L : Q]
is bounded, where L/Q is the extension cut out by a pf ... As L ramifies at most at Np,
by Hermite-Minkowski (and the fact that bounded degree and bounded ramification set imply
bounded discriminant) there are only finitely many possibilities for L/Q. For each L/Q there
are only finitely many equivalence classes of representations Gal(L/Q) — GL2(O/p7), and thus
R (N) is finite, i.e., we have statement Rep,,,.

((vi)) Statement Strong,, implies Rep,, and the boundedness of #B,,(f) and so in
particular the boundedness of the index A,,(f) C B,,(f). Conversely, by Rep,, there are
only finitely many collections of numbers (as(f) (mod p™)) for ¢t Np. Moreover, Rep,,
implies the boundedness of #A,,(f), and hence together with the boundedness of the index
A (f) € B, (f) implies the boundedness of #B,,(f). So, for each prime ¢ with ¢ | Np there
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is then only a finite number of possibilities for (ae(f) (mod p™)). We deduce that Strong,,
holds.

((vii)) This is clear from the inclusions ((i)).

((viii)) As statement (B) implies both Rep,,, by ((v)) and the finiteness of the index A,,(f) C
B, (f), the result follows by ((vi)). O

Proof Proof of Theorem 2.. Statement (B) implies Strong,,, Rep,,, and I,, by Proposi-
tion 6((viii)), ((v)), and ((iii)). Thus (1) = (2) in the Theorem is clear.

We also recall the trivial implications Strong,, = Rep,,, Rep,,,; = Rep,,, and
Strong,,,; = Strong,,.

Thus, if we assume Rep,, and I,, for some m > 2, we have Rep, and Iy and hence
the boundedness of #C5(f) for f € &(N) by Proposition 6((vii)); we then obtain (B) by
Proposition 6((iv)). Statement Strong,,, for all m follows.

This shows that we have (2) = (3) = (1) in the Theorem. O

2.5. Weak eigenforms modulo p™ are not necessarily strong in any weight if m > 1.

This was raised as a question in [10]. For an explicit example, let f = ESA +2A3 in
weight 36, level 1 modulo 4. One can check that f is an eigenform by computing the first
couple of Hecke operators. Note that f is not congruent to A modulo 4, so by the result of
Hatada that every strong level 1 form modulo 4 has to be A (Theorems 3 and 4 of [19]), we
find that f is weak but not strong.

2.6. Abundance of weak eigenforms and of Galois representations mod p™.

There exist infinitely many weak eigenforms modulo p™ in some fixed weights. This was
pointed out by Calegari and Emerton in [7], _and the reasoning is as follows. Suppose that we
have eigenforms f and ¢ in some Si(I'1(N),Z,) such that

f=g (modp), but f#g (modp?).

Suppose for simplicity that their coeflicient fields are unramified over @@, so that p generates
the maximal ideal of their valuation rings. Let us write the forms like this:

f=¢+pfiand g = ¢+ pg
with modular forms ¢, f1, g1. The eigenvalues of some Hecke operator T" on f and g are
A=a+pA and p = a+ pus.

Let a,b be in the maximal unramified extension of Z, such that a + b is invertible. Put

W af +bg
“wb= Ty
Note phap = pp (mod p?), independent of a and b. This yields
A +b
Thap = (a+ pw)ha,b (mod p?).

a+b
Since f # g (mod p?) there exists some Hecke operator T for which the \; and u; are not both
0. It is then obvious that the eigenvalue of that 7" on h,; can take infinitely many different
values by varying a and b.

We point out that this implies also that there can be infinitely many non-isomorphic modular
Galois representations modulo p? in the same level (under the assumption that the mod p Galois
representation attached to f is absolutely irreducible). Hence, the analogue of Conjecture
1 with weak eigenforms mod p™ instead of strong ones is false. Moreover, by choosing a,b
appropriately, the ring of traces can be of arbitrarily large degree.
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Of course, the same argument works mutatis mutandis with more general coefficients and
also generally in a situation where f = g (mod p™), but f # g (mod p™*1!).

2.7. Proof of Theorem 3.

We now begin to prepare for the proof of Theorem 3. As already mentioned above in 1.7,
the idea of the proof was explained to us by Frank Calegari. We shall give a slight variant of
his sketch, working in particular with group cohomology rather than cohomology of modular
curves. We allow p to be any prime; the specialisation p > 5 will only appear in the end, so
that we will prove Remark 1 along the way.

Let us fix kg € N and m € N. Since the results are known for m = 1, we henceforth assume
m > 2.

We modify Euler’s ¢-function in the following way, motivated by the weights of the Eisenstein
series to be used at the end of the proof. We let o(p™) = ¢(p™) = (p — 1)p™ ! (i.e., the usual
Euler totient function) if p > 2 and $(2™) = 2m~2.

Define

MSn = @ Mk(FI(N)an)a
2<k<n,k=ko mod ¢(p™)

and define T<,, as the Z,-algebra of all Hecke operators, acting diagonally on M<,,. We then
define

M = @ Mk(Fl(N)a@p)a
k>2,k=ko mod @(p™)

i.e., M is the direct limit of the M<,. We define T as the projective limit of the Z,-algebras
T<,. Then T acts in a natural way on M.
We consider the natural map

M — M = S5 My(T1(N)NL(p™),Q,),
k>2,k=ko mod @(p™)

which is of course an injection. This injection is not equivariant with respect to the Hecke
operator T}, and this is the main reason why we are working with the p-deprived Hecke algebras
below.

For the sake of completeness, we include a formal argument for the equivariance with respect
to the action of the Hecke operators T;, with n prime to p. It suffices to consider the action of
Ty where /¢ is a prime, £ # p. Put:

0:=(59)-

Then, regardless of whether I is 'y (V) or T'1 (N) N T'(p™), we find the following representatives
{7i} of left cosets of 6 'T'§ NT in ' (cf. for instance the reasoning in [14, 5.2]). Put:
1p™i

Vi ::(o 1 )
for i =0,...,£—1, and, in case £{ N,

Yoo *= (Nif’" p’f’b)
where a,b € Z are chosen so that af — p? Nb = 1. Then with ; := 67; so that
5= (37
for j=0,...,4—1, and

5. ( at "
co = \ Npme ¢
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the action of Ty on the weight k component both of M and M is given by
F > Flids

where the summation is over ¢ € {0,...,¢ — 1} if /| N, and over i € {0,...,£ —1} U{oo} if
{1N.
Next we utilize the Eichler-Shimura embedding of M; into H ® @p where

H:= @ HY(T(N)NT(p™), Vi—2)
k>2,k=ko mod @G(p™)
with
Vi = Sym"(Z2)
for w € Z>. This embedding is equivariant with respect to the action of the Hecke operators

T,, with n prime to p. We recall, cf. [30, 8.3] or [15], p. 116, the action of a Hecke operator T}
for ¢ prime, ¢ # p, on HY(I'1(N) N T (p™), V,): if c € CHT1(N)NT(p™), V) then

(Tee) () = D 07-c(6:7853)

where j(4) is such that (51-7(5;(}) € I', and ¢ is the involution

(e8) =(%2),
and where, as above, the summation is over ¢ € {0,...,£—1}if £ | N, and over ¢ € {0,...,¢ —
1}U{oco} if £1 N.
Let us now write T and T/, , for the ‘p-deprived’ Hecke algebras over Z,, i.e., those generated
by the operators whose index is prime to p, acting on M and H, respectively. As summary of

the above discussion we now have the following.

LEMMA 7. There is a Hecke equivariant injection M — H ® @p giving rise to a surjection
T/ ., — T’ of Z,-algebras.

Co.

The decisive observation is now the following proposition.

PROPOSITION 8. Let I.,, be the annihilator of ']I"Coh acting on H @ Z/p™Z.

Then I, is an open ideal and the quotient T’ , /I o Is finite. Hence, if we denote by I the
image of the ideal 1., under the surjection T/ , — T’ from Lemma 7, then I is an open ideal
of T" and the quotient T’ /I is also finite.

Proof. Let us start with the remark that annihilators of continuous actions on Hausdorff
spaces are always closed ideals. Moreover, in profinite rings, closed ideals of finite index are
open.

Retain notation as above, before Lemma 7, and put I' :=I';(N) N T'(p™). Notice first that
the short exact sequence

0 — Sym™(22) = Vi 5 Vi — Vi @ Z/p™Z — 0
gives rise to the injection

0— HY(I',V,) ® Z/p™Z — H (I, V,, @ Z/p™Z).
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(In fact, this is most often an isomorphism, notably when N is sufficiently large so that T' is
torsion free, or when p > 5; this follows from the proof of Proposition 2.6(a) of [35]; however,
we do not need to know this for our argument.)

We have a natural definition of Hecke operators acting on H(T',V,, ® Z/p™Z), namely by
the “same” formulas that define the action on H YT, V4,). Thus we have a p-deprived Hecke
algebra T , acting on

H = P HY (T, V2 ® Z/p™Z),
k>2,k=ko mod @(p™)

and an injection H ® Z/p™Z — H that _is p-deprived Hecke equivariant. Thus, we have a
surjection 'Jl‘wh/Icoh —» ’]I‘coh/Icoh, where Icoh denotes the annihilator of 'JI" o, acting on H. We
see that it suffices to show that T,/ Icoh is finite.

As abelian group, V, ® Z/p™Z = (Z/p™Z)**! is isomorphic to the abelian group of
homogeneous polynomials, say in « and y, of total degree w and coefficients in Z/p™Z. Consider
a prime £ different from p. Now the main point is that each of the matrices % above is congruent
modulo p™ to a diagonal matrix with entries £ and 1. Hence the action of 45 on the basis z*y"
where u + v = w is diagonal:

5;_.xuyv — guxuyv
for every j=0,...,0—1,00. Thus, if we view a cocycle ¢ € C*(T,V,, ® Z/p™Z) as having

values in (Z/p™Z)“*T! with coordinate functions ¢;, i = 0,...w, then the action of T, on c is
given in concrete terms as

(Tye) (v 25 co( 3752(1)) 01(5]751(3)) W(‘Sﬂ(gi_(;)))
_Z f CO ]751(3)) Vs 161((%")/52_(;)) Cu;(5g’751(])))

— (13 Z co(856; 1)), 04 ch 89651 - ch 3765))
J
where the sum is over j =0,...,¢ — 1 when ¢ | N7 and over j :O7...,£—1,oo when £t N.
It follows that, as a module over the p-deprived Hecke algebra, we have

H'T,V,, ® Z/p"Z) = P H" (T, Z/p" L) (i)
=0
where HY(T',Z/p™7Z)(i) is H'(T',Z/p™Z), but with twisted Hecke action so that T acts as the
old Ty, but then multiplied by .
Since the largest order of an element in (Z/p™Z)* is precisely ¢(p™), we conclude that the
action of TV, /I.on on H factors through the finite Hecke module
Hm)-1

P H'T,Z/p 7)),
=0

and we are done. ]

LEMMA 9. Let f be a normalized eigenform on I'1 (N) of weight ko with eigenvalues ay € O
for all primes £ # p, where O is the valuation ring of a finite extension K of Q,. Write e for
the ramification index of K/Q,. Then there is a ring homomorphism

b Thop/Leon — OJp" D

e(m—1)+1

such that ¢(1y) = a; mod pp for all primes ¢ # p. Moreover, ¢ factors through T'/I.
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Proof. The eigenform f lives in M and under the injection from Lemma 7 gives rise to an
eigenclass 0 # ¢ € H ® K. The eigenvalues can be expressed by the ring homomorphism
v T, T — O

such that ¢ (7Ty) = a; and hence Tyc = ayc for all primes ¢ # p. By multiplying or dividing by
a power of m, a fixed uniformizer of K, we may assume that ¢ € H ® O and that 7 { c. Write
¢ for the image of ¢ in

Heo/p" " = (Hez/p"2) o 0/pi" V.

Denote by 1 the composition of ¢ with the natural projection O —» O/petm=D+1 " The
eigenvalue of the Hecke operator T' on the eigenclass € is given by (7). Let now T € I .
Then

0="Te=vy(T)e.
As 7t ¢, we conclude ¥(T') = 0, and hence that ¢ factors through T’ , /I on, as claimed. As v
factors through T, it follows that ¢ factors through T'/I. O

Proof Proof of Theorem 3.. 'We must show the existence of a constant k(N, p, m) depending
only on N, p, m, such that any normalized eigenform f on I'1(N) of any weight & is congruent
modulo p™ to a weak eigenform modulo p™ on I'1 (V) in weight bounded by k(N, p,m).

Obviously we may, and will, assume that £ > 2 and only consider such f of weight k congruent
modulo @(p™) to some fixed kg (that can be taken to satisfy 2 < kg <14 @(p™).)

Let f=73", anq™ be the g-expansion of f where the coefficients are in a finite extension
K/Q,. By Lemma 9, f gives rise to a ring homomorphism

¢TI — Ofpsm—HH

such that ¢(T;) = a; mod p;(mlel for all primes ¢ # p. Now, by Proposition 8, T'/I is finite.

For positive integers s > r, consider the natural surjection . s: T, — T given by
restricting the Hecke operators. The p-deprived Hecke algebra T’ is the projective limit of
the T, with transition maps 7, ; it comes with natural surjections 7, : T/ — T’ . We further
have that the open ideal I of T’ is the projective limit of the m.(I). By the exactness of
projective limits on compact topological groups, we obtain that T'/I is the projective limit
of T, /m-(I). As T’/I is finite, it follows that there is some r € N bounded by a constant,

depending only on N, p, and m, and with the property that T’ /m,.(I) = T’/I. Hence, ¢ can
be seen as a ring homomorphism ¢ : T . /7, (I) — (’)/p%mfl)ﬂ.

We may then consider 1 as a linear combination of modular forms of weights at most r that
are all congruent to kg modulo $(p™). By multiplying by convenient classical Eisenstein series
(cf. for instance [29], p. 196) we can actually bring all involved forms into weight . This is the
main point where we use the modified Euler function ¢: the Eisenstein series in question have
weight @(p™) := ¢(p™) = p™ 1 (p — 1) when p > 2, but weight @¢(2™) := 2™~2 when p = 2.

It follows that there is a modular form g = 3", b,q™ of weight r on I'y (V') which modulo p™
is a weak eigenform outside p and such that

by =ay (mod p™)

for primes ¢ different from p. The form ¢ is normalized since % is a ring homomorphism. At
this point we have proved Remark 1.

By Corollary 11 in subsection 3.1 below, we may further assume that the p-slope v,(a,) of
f exceeds m — 1 so that a, =0 (mod p™).

Let us now assume p > 5. Possibly we have b, # 0 (mod p™). However, let us consider the
result h = " ¢,q" of applying the § operator modulo p™ (with effect }°  a,q™ — > noy,g™
on g-expansions) m times to g. By [9, Theorem 1] we know that A is the reduction modulo
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p™ of a modular form on I'y (N) of weight 7 +m - (2 + 2p™ ! (p — 1)). By construction we will
have ¢, = b, = a, (mod p™) for n coprime to p, and also ¢, =0 = a, (mod p™). Also, h is
normalized since g is. We conclude that h is a weak eigenform on I'y (V) of weight r +m -
(2+2p™~1(p—1)), and that in fact h = f (mod p™). Since r was bounded by a function only
depending on N, p, m, our claim follows. O

3. Further results

3.1. Strong weight bounds for bounded p-slope
As before we fix N € N with p{ N. Let

f= Zanqn € Sk(Fl(N)va)

be an eigenform. We can embed f into the space Si(I'1(N)NTo(p),Z,) of cusp forms of
weight k on I'1(N) NTo(p) and coefficients in Z,. The Atkin U, operator acts on this space
with effect on g-expansions as U, (>~ b,¢4") = D bpnq™. The form f gives rise to two eigenforms
in S,(T1(N)NTo(p),Z,) with corresponding Up,-eigenvalues A, \’ that are the roots of the
polynomial 22 — a,x + p*~1, cf. [17, Section 4].

As usual the number v,(ap) is called the p-slope of f, or simply the slope of f since p is
fixed.

By the theorem on local constancy of dimensions of generalized U, eigenspaces, due to
Coleman [11, Theorem D] and, in explicit form (for p > 5), Wan [33, Theorem 1.1], we can see
immediately that the finiteness statement corresponding to Conjecture 1, but for fixed, finite
slope, is true:

PROPOSITION 10. Fix N, p, m, and o € Q. There is a constant k(N, p, m, o) depending
only on N, p, m, o such that any eigenform on I'1(N) of p-slope « is congruent modulo p™ to
an eigenform of the same type and of weight < k(N,p, m, ).

Proof. The theorem mentioned above, i.e., local constancy of dimensions of generalized U,
eigenspaces (in Si(I'1(N)NTo(p),Z,)), [11, Theorem D], [33, Theorem 1.1], implies that the
dimension of any such eigenspace is bounded above by a function depending only on the data
N, p, and a € Q>¢. As a consequence, if f is an eigenform on I';(N) of fixed p-slope a then
the field of coeflicients Ky, has degree over @, bounded by a function of N, p, and o € Q>¢
(because the eigenspace in question is stabilized by the Hecke operators and thus the eigenvalues
in question arise via diagonalizing Hecke operators in a space of bounded dimension.)

Now, the proof of Proposition 6, specifically the argument provided for item ((viii)) of that
proposition, applied to the set of slope « eigenforms on I'1 (V) instead of G(IN) shows the
claim. U

COROLLARY 11. Fixing N, p, m, and b € Q>¢ there is only a finite number of reductions
modulo p™ of eigenforms on I'1(N) of p-slope bounded by b.

Proof. This follows from Proposition 10 since the set of p-slopes of eigenforms on I'; (V) is
a discrete subset of R, cf. [11], remark after Theorem B3.4. O
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One can ask for possible explicit values for k(N,p, m,a). In the preprint [25], J. Mahnkopf
uses an analysis of the trace formula to embed modular forms of fixed, finite slope into families,
albeit not in the rigid analytic sense. His Theorem G of that preprint implies the existence of
a constant k(NN,p,m, «) as above, and in fact gives a possible explicit value. We will not quote
that value as it is a bit involved, but only note that it depends on the dimensions of certain
generalized U, eigenspaces. One is led to the following question.

QUESTION 1. What is the optimal shape of the above constant k(N, p,m, «)?

Additionally, we would like to make the following remark. In connection with this question
it is natural first of all to think about utilizing Coleman’s theory of p-adic families of modular
forms. However, it seems that the current state of this theory does not lead to an answer to
the above question, at least not in any immediately obvious way. Let us briefly explain this
point.

The following statement is a consequence of Coleman’s theory (see [11, Corollary B5.7.1];
the proof is only sketched in [11], but see [36, Section 2] for a detailed proof):

Suppose that fo € Sk, (F1(N) NTo(p), Z,) is a p-new eigenform of slope  and with kg > a +
1. Then there exists t € N such that the following holds: whenever m,k € N where k > o+ 1

and
k=ko (modp™(p—1))

there exists a p-new eigenform f € Si(T'1(N) N Ty(p),Z,) of slope a such that
f=/fo (modp™).

We can refer to the number ¢ as the “radius” of the p-adic analytic family passing through
fo. The following question naturally arises.

QUESTION 2. Is the above radius bounded above by a constant depending on N, p, «a, but
not on fy?

Clearly, an affirmative answer to this question together with an explicit upper bound would
instantly lead to an explicit possible value for the above constant k(N,p, m, «).

However, the late Robert Coleman confirmed in an email exchange (August 2013) with the
first author that current knowledge about the properties of p-adic analytic families of modular
forms does not warrant an affirmative answer to Question 2.

3.2. Weak weight bounds modulo 2™ at level 1

As we explained in 1.7 above, Theorem 13 was proved before Theorem 3 and is of course
a very weak version of Theorem 3. We have chosen to retain this theorem though, because of
the explicit weight bounds that become possible with this method of proof, see 3.2.2 below.
This raises the obvious question about whether explicit weight bounds in Theorem 3 can be
obtained via a generalization of this method.

As Theorem 13 is by now superseded by Theorem 3, we shall restrict ourselves to summarizing
parts of the arguments leading to Theorem 13. We refer the interested reader to the preprint
version [23] of this paper for full details.

For the arguments we need to bring in some standard Eisenstein series on SLy(Z) and discuss
the full algebra of modular forms on SLs(Z). However, as above, we will still reserve the word
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“eigenform” for “normalized cuspidal eigenform for all Hecke operators” since this is our main
focus.

Denote as usual by @ := E4 and R := Eg the normalized Eisenstein series on SL2(Z) of
weight 4 and 6, respectively, and by A Ramanujan’s form of weight 12. We write M (A) for
the set of modular forms on SLg(Z) of weight k and coefficients in a commutative ring A.
We remind the reader that we are using the naive definition of “coefficients in A” throughout
this paper, so that we have My (A) = Mp(Z) ® A. Similarly, Si(A) will denote cusp forms on
SLo(Z) with coefficients in A.

Given an even integer k > 4, one knows, cf. for instance [24, Theorem X.4.3], that the forms
of shape

QeAC ifk=0 (mod 4)
RQ*A°¢ if k=2 (mod4)

with 4a+12¢ =k (k=0 (mod 4)) and 4a+12¢c =k — 6 (k=2 (mod 4)), form a basis for
the space of modular forms of weight k with coefficients in Z, i.e., every modular form with
g-expansion in Z[[g]] is a Z-linear combination of the above basis forms.

Consequently, if f € Mi(Z/2™Z) we can write

f= Y auQeac

4a+12c=k
if k=0 (mod 4), and
f =R- Z aa,cQaAc

4a+12c=k—6

if k=2 (mod 4), with certain coefficients ¢, . € Z/2™Z.

Here, we have abused notation slightly, denoting again by @, R, A the images in the
appropriate My (Z/2™7Z) of the forms Q, R, A.

In this expansion of f the coeflicients o . € Z/2™Z are uniquely determined. Thus, we can
make the following definition.

DEFINITION 12. For f € S(Z/2™Z) define the degree deg,, f of f to be the highest power
of A occurring in the expansion of f as above.

In situations where m does not vary and it is clear what it is, we may suppress the m from
the notation and just write deg f for deg,, f.

For simplicity of notation we have chosen to formulate and prove the next theorem for strong
eigenforms that are reductions of eigenforms with coeflicients in Z,. However, the statement
(with the same constant C'(m)) holds more generally for strong eigenforms that are reductions
of forms with coeflicients in the ring of integers of the maximal unramified extension of Q.
The proof is, mutatis mutandis, the same as the one that follows below. See also Remark 3
below.

THEOREM 13. There exists a constant C(m) depending only on m such that the following
holds.

Whenever f € Si(Z/2™7Z) is a strong eigenform modulo 2™ that is the reduction of an
eigenform with coefficients in Zs then

deg,, f < C(m).
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Any such form is the reduction modulo 2™ of a form of weight bounded by a constant k(m)
depending only on m, that can be taken to be 12C(m) for m = 1,2,3, and to be 6 +2™2 +
12C(m) if m > 4.

The proof of Theorem 13 makes use of the following theorem of Hatada, see [18, Theorem
1] (and [19] for further results).

PRrROPOSITION 14 Hatada. Let f € Sk(SL2(Z)) be an eigenform. Then for any prime p:
ap(f) =0 (mod 2).
Consequently, we have (f (mod 2)) = (A (mod 2)).

3.2.1. Serre-Nicolas codes In this subsection we work exclusively with modular forms mod
2 on SL2 (Z)

As Q@ = R=1 (mod 2), the algebra of modular forms mod 2 of level 1 is Fo[A]. We call an
element of Fy[A] even resp. odd if the occurring powers of A all have even resp. odd exponents.
By [27], section 2.2, the subspaces of even and odd elements are both invariant under the action
of every Hecke operator T; where ¢ is an odd prime. If f € Fo[A] we can write, in a unique
fashion,

f=fet /o

where f. and f, are even and odd, respectively.

The main, and in fact decisive, ingredient in the proof of Theorem 13 is the following
proposition that can be proved on the basis of Serre—Nicolas’ theory, particularly Propositions
4.3 and 4.4 of [27]. We skip the details here and refer the reader to [23] for full details.

PROPOSITION 15. For every odd integer k > 0, there exists a constant N (k) depending
only on k such that, whenever f € Fo[A] is odd with

sup{deg T3(f),deg T5(f)} < k,
then:
deg f < N(k).

Before the proof of Theorem 13 we also need the following statement that is an immediate
consequence of [29, Théoreme 1].

THEOREM 16. Let f and g be modular forms on SLa(Z) with coefficients in Zy and weights
k and ky, respectively.

Assume that at least one of the coefficients of f is a unit and that we have f = g (mod 2™)
for some m € N. Then

k=Fk (mod2%™)

where

(m) = 1 ifm <2
A=Y m—2 ifm>3.

Of course, there is a version of the theorem for odd primes, but we will not need that.
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Proof. By our definition of modular forms with coefficients in Zs, there exist modular forms
/' € Mg(Z) and ¢’ € My, (Z) such that f = f (mod 2™) and g = ¢’ (mod 2™). The hypothesis
then says that f' = ¢’ (mod 2™). We can now use [29, Théoréme 1] to finish the proof. O

Proof Proof of Theorem 13. Let us first show that the last statement of the theorem, i.e.,
the weak weight bound, follows from the first. From the first statement, any strong eigenform
modulo 2™ is the reduction of a form that can be written as a linear combination of monomials
Q*A°, or RQ*A°, and where ¢ < C(m). Now, from the g-expansion of @ we have that Q =1
(mod 2*) whence Q%" =1 (mod 2***). Suppose that m > 4. Then for any non-negative a we
have Q% = Qa/ (mod 2™) for some a’ < 2™~*. For such an a’ the weight of a monomial RQ“/AC
is <6+4-2m"*1 +12C(m) = 6 +2™2 + 12C(m), and the claim follows. For m = 1,2,3 the
claim follows from the congruences @ = R =1 (mod 23).

We now show the existence of the constant C'(m) by induction on m. For m = 1, the result
is classical, and it is implied by Proposition 14 that we can take C'(1) = 1.

Assume m > 1 and that the statement is true for m — 1. Let f € Sk(Z/2™Z) be a strong
eigenform modulo 2™. The reduction of f modulo 27! is a strong eigenform modulo 2™1.
By the induction hypothesis, deg,, ; (f (mod 2™~ 1)) < C(m — 1). Thus, (f (mod 2™71)) is
the reduction modulo 2™~ of a form g of weight at most x(m — 1) and coefficients in Zy and
for which the highest power of A occurring in the expansion of g as a sum of monomials Q*A¢,
or RQ*A°, is bounded by C(m — 1).

Let the weights of f and g be k and k1, respectively. Since f and g have the same reduction
modulo 2! we know by Theorem 16 that

k=k (mod2¥m=1)

Replacing f by fQ% with a sufficiently large s, we may assume that k > k1 + 6. Write
k =k +t-240m=1_ Suppose first that m > 5. Then Q2" =1 (mod 2™~1) and so the form

g:=g-(Q° )

is of weight k, and has the same reduction modulo 2! as f. In the cases 2 < m < 4 one also
finds a form g; with these properties, by taking g; := g - Q" when k = k; (mod 4), and g :=
g - RQ" when k = k; + 2 (mod 4) with the appropriate power r. It works because @ = R =1
(mod 23).

Also, the highest power of A occurring when we expand ¢; in a sum of monomials in @,
A, and, possibly, R, is bounded from above by C(m — 1). This follows because g has that
same property. By the argument in the beginning of the proof, it follows that the form g; is
congruent modulo 2™ to a form go of weight bounded by a constant w(m) depending only
on m (specifically, one can take the weight bound from the beginning of the proof with C'(m)
replaced by C(m — 1).) Clearly then, if ¢ is any prime number we must have

2m,—5

1
deg,,, Tegr = degy, Tega < T5w(m).

Consider now that we have
f=g+2" h (mod 2™)

with some modular form h with coeflicients in Zy and weight k.

Now, h (mod 2) is a polynomial in A, and if we can bound the degree of this polynomial we
are done.

Let A2, A3 and A5 be respectively the eigenvalues of the operators 15, T3, and T5 associated
to f. By Proposition 14, we know that Ay = A3 = A5 =0 (mod 2). Thus for ¢ € {2,3,5}, we
have:

Tof =Tyg1 + 2" Toh = Aof = Mgr (mod 2™)
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which gives
2™ ITyh = \g1 — Tyog1 (mod 2™)
for ¢ € {2,3,5}. Thus,

1
deg,, (2™ 'T,h) < ﬁw(m)

and hence

1
dogy (Tyh) < —=w(m)
12
for £ € {2,3,5}.
Now split (b (mod 2)) into even and odd parts as explained above:

(h (mod 2)) = he + ho.
We have
1
deg, Tyhe , degy Trh, < Ew(m)
for ¢ € {2,3,5}.

Consider the classical U and V' operators on mod 2 modular forms. For the even part h, we
have h, = ¢? = V(@) for some mod 2 modular form ¢. Since To = U (mod 2), we see that:

Tohe = UV((b) = ¢

Hence deg; ¢ < {5w(m), and so deg; he < tw(m).

For the odd part, we have deg; Tyh, < %w(m) for £ € {3,5}. By Proposition 15, it follows
that deg; h, is bounded by N(|5w(m)]) if [Lw(m)] is odd, and by N(|{5w(m)] +1) if
| 5w(m)] is even.

We are done. |

REMARK 3. As we noted above, Theorem 13 holds more generally for strong eigenforms
that are reductions of forms with coefficients in the ring of integers of the maximal unramified
extension of Qz, and with the same constant C'(m). The proof is essentially the same.

If one allowed non-trivial ramification in the coefficient field the argument breaks down at
the induction step: in going from m — 1 to m one would need not 1, but e inductional steps,
and thus one looses control over the constants involved, or rather, they will depend on e.

3.2.2. Explicit bounds for low values of m It is natural to ask for an explicit “formula”
for the constants C(m), but we have not been able to find one. For any given m, though, a
constant C'(m) that works in Theorem 13 can in principle be determined, the main obstacle
being determining constants N (-) that work in Proposition 15. We give now examples for the
low values m = 1,2, 3,4.

We have C(1) =1 as already remarked and used in the above. To determine constants C'(m)
for m = 2, 3,4, we refer back to the inequalities appearing at the end of the proof of Theorem
13:

1
degq he < éw(m),
and:
. N(|&Hw(m)]) if |5w(m)] is odd
d 21 ho < { N(Léw(m” + 1) if Léw(m)J is even



ON CERTAIN FINITENESS QUESTIONS Page 21 of 24

where, as in the beginning of the proof, we have:

(m) < 6+2m"2+120(m—1) ifm >4
W= 120(m — 1) if m=2,3.

By the proof of Theorem 13, it then follows that we can take:

C(m) = sup{Cm — 1), [gwlm)], N(| g5w(m)))}.

Using a computer, we compute the following values for the function N(-):

k N(k)
1 5
5 17
17 65

We also check that the function N is non-decreasing on the set of odd integers k such that
1 < k <100. The calculation of the values of C'(m) are summarized in the following table:

wim) < [gwim)] < [pwim)] < N(lHwm) < C(m)

3

12 12
1 . . - - 1
2 19 3 1 5 5
3 63 11 5 17 17
4 214 35 17 65 65

A computer search shows that these values are sharp for m = 2 and m = 3, i.e., in each of
these cases there exists a weak eigenform modulo 2" for which deg,, attains the upper bound
C(m). We do not know whether the value for C(4) is sharp, as the calculations become too
demanding.

3.3. Some numerical data

We will finally present a bit of numerical data that can be seen as an experimental approach
to the constant k(N,p, m) of Theorem 3.

The following table summarizes our data. The explanation of the table is this: for each entry
we generated all eigenforms of weight < k4, on the group in question; then, we looked at the
reduction modulo p™ of each of these eigenforms f and determined the smallest weight k(f)
where it occurs weakly modulo p™; the number k in the corresponding entry is the maximum
of the k(f) for f in this particular set of eigenforms.
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Group D m k kmae

To(1) 5 2 76 320
To(1) 5 3 276 288
To(1) 7 2 148 246
To(1) 11 2 364 374
To(2) 5 2 76 174
To(2) 5 3 216 316
To(2) 7 2 148 246
To2) 11 2 364 370
To(3) 5 2 76 174
To(3) 5 3 276 278
To(3) 7 5 148 222
To(5) 5 2 76 138
T'o(9) 5 2 76 150
I.(3) 5 2 76 174
T (3) 5 3 276 206
I(3) 7 2 148 204
r(1) 5 2 76 88

Thus, the number x can be seen as an “experimental value” for the constants occurring in
Theorem 3. The values of k£ in the table would be consistent with a more precise version of
the statement of Theorem 3, namely that it holds with a constant k(N,p,m) that is in fact
independent of N, and has the following precise value:

k(N,p,m) =2p™ +p° +1

when m > 2.

However, we certainly do not feel that the extent of our data above warrants us actually
making this conjecture. It merely raises the question of whether this is a general bound. If it
is, we feel that it would be suggestive of a relatively “elementary” reason for that bound. We
hope to return to this question elsewhere.

The reader may recall that there is in fact an established value for k(N,p,1), namely
k(N,p,1) = p? + p, cf. the work of Jochnowitz in [21], [22], specifically [21, Lemma 4.4]. It
might then be objected that this value does not seem to fall into any easily discernible pattern
with the above values for m > 2. However, one should remember that the established value
k(N,p,1) = p? + p is intimately connected with the behavior of the 6 operator modulo p and
that, as the paper [9] shows, the 6 operator modulo p™ behaves in a much more complicated
way when m > 2. Hence the authors do not feel that one has very much guidance from the
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established value of k(N,p,1) when it comes to guessing the optimal shape of the constant
k(N,p,m) for m > 2.
The computations were done in MAGMA, cf. [2].

3.4. Further questions

All of the results above concerning “weight bounds” are weight bounds for strong eigenforms.
Thus, a natural question to ask is whether there exist “weak weight bounds for weak eigenforms
for fixed N, p, and m as above”. Cf. the discussion in 1.5.

We do not know the answer to this question, but we would like to remark that the following
statement can be proved and can be seen as pointing somewhat in the direction of an affirmative
answer.

PROPOSITION 17. There exists a constant w = w(N,p,m,e) such that: if f€
S1(0/p<tm=+1) js a weak eigenform mod p™ where O is the valuation ring of a finite extension
K/Q, with ramification index € < e and p the maximal ideal of O, then there exists a weak
eigenform g in weight < w such that:

f=g (modp™).

Thus, if condition (B) of 1.2 holds, the above proposition implies the existence of “weak
weight bounds for weak eigenforms”. The question of establishing such bounds unconditionally
is naturally raised.
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