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ABSTRACT. Let ` > 3 be a prime and N be a square-free integer prime to `. For each prime p dividing
N , let ap be either 1 or −1. We give a sufficient criterion for the existence of a newform f of weight 2 for
Γ0(N) such that the mod ` Galois representation attached to f is reducible and Upf = apf for primes p
dividing N . The main techniques used are level raising methods based on an exact sequence due to Ribet.
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1. INTRODUCTION

It has been known that newforms for congruence subgroups of SL2(Z) give rise to compatible systems
of `-adic Galois representations, and if the `-adic Galois representations attached to two newforms are
isomorphic for some prime `, then the newforms are, in fact, equal. But the corresponding statement is not
true for the semisimplifications of the mod ` reductions of `-adic Galois representations attached to new-
forms, as different newforms can be congruent modulo `. To study the different levels from which a given
modular mod ` representation ρ can arise is interesting and has been discussed by several mathematicians,
Carayol, Diamond, Khare, Mazur, Ribet, and Taylor in the case when ρ is (absolutely) irreducible. (e.g.
see [DT94].)

For simplicity, fix a prime ` > 3 and let f be a newform of weight 2 for Γ0(N) with a square-free
integer N prime to `. Assume that ρf , the semisimplified mod ` Galois representation attached to f , is
reducible. Then, ρf ' 1 ⊕ χ =: ρ, where χ is the mod ` cyclotomic character (Proposition 2.1). In the
sense of Serre [Se87], the optimal level of ρ is 1 because it is unramified outside `. The main purpose of
this paper is to find the possible non-optimal levels of ρ as in the irreducible cases due to Diamond and
Taylor [DT94]. Since we consider a newform f of weight 2 and square-free levelN with trivial character,
an eigenvalue of the Hecke operator Up of f is either 1 or −1 for a prime p dividing N . So, by switching
prime factors of the level, we elaborate the above problem as follows.

Question 1.1. Is there a newform f of weight 2 and level N =
t∏
i=1

pi with trivial character whose mod `

Galois representation is reducible such that Upif = f for 1 ≤ i ≤ s and Upjf = −f for s < j ≤ t ?

We call a t-tuple (p1, · · · , pt) for s of distinct primes admissible if such a newform f exists. So, our
question is to find admissible t-tuples for s ≤ t.

Date: October 11, 2014.
2010 Mathematics Subject Classification. 11F33, 11F80 (Primary); 11G18(Secondary).
Key words and phrases. Eisenstein ideals, non-optimal levels.

1



2 HWAJONG YOO

In this paper, we prove the following theorems.

Theorem 1.2 (Necessary conditions). Assume a t-tuple (p1, · · · , pt) for s is admissible and let N =
t∏
i=1

pi. Then,

(1) s ≥ 1.

(2) If s = t, ` | φ(N) :=
t∏
i=1

(pi − 1).

(3) pj ≡ −1 (mod `) for s < j ≤ t.

Theorem 1.3 (Sufficient conditions). Let N =
t∏
i=1

pi. Then, a t-tuple (p1, · · · , pt) for s is admissible if

one of the following holds.
(1) s = t is odd and ` | φ(N).
(2) s+ 1 = t, s is odd, and pt ≡ −1 (mod `).
(3) s = 1, t > 1, and pj ≡ −1 (mod `) for 1 < j ≤ t.
(4) s = 2, t > 2 is even, and pj ≡ −1 (mod `) for 2 < j ≤ t.
(5) t is even, pt ≡ −1 (mod `), and a (t− 1)-tuple (p1, · · · , pt−1) for s is admissible.
(6) s < t, t is even, and a (t− 1)-tuple (p2, · · · , pt) for (s− 1) is admissible.

In most cases, the above necessary conditions are also sufficient for admissibility. On the other hand,
there are some cases that the necessary conditions do not guarantee admissibility, for instance, s = t = 2.

Using above theorem we can get some results on admissible t-tuples for t ≤ 4. When (s, t) =
(2, 2), (2, 3) or (4, 4), we use a different argument to get some sufficient conditions on admissibility.

Theorem 1.4 (Admissible t-tuples for t ≤ 4). A t-tuple (p1, · · · , pt) for s is admissible if
(1) (s, t) = (1, 1) if and only if p1 ≡ 1 (mod `).
(2) (s, t) = (1, 2) if and only if p2 ≡ −1 (mod `).
(3) (s, t) = (2, 2) if and only if some extra conditions hold (Theorem 2.4).
(4) (s, t) = (1, 3) if and only if p2 ≡ p3 ≡ −1 (mod `).
(5) (s, t) = (2, 3) if some conditions hold (Theorem 6.1).
(6) (s, t) = (3, 3) if and only if ` | (p1 − 1)(p2 − 1)(p3 − 1).
(7) (s, t) = (1, 4) if and only if p2 ≡ p3 ≡ p4 ≡ −1 (mod `).
(8) (s, t) = (2, 4) if and only if p3 ≡ p4 ≡ −1 (mod `).
(9) (s, t) = (3, 4) if and only if p4 ≡ −1 (mod `).

(10) (s, t) = (4, 4) if some conditions hold (Theorem 6.4).

In §2, we introduce Ribet’s work, which was announced in his CRM lecture [R10]. In §3, we study
level raising methods which are main tools of this paper. In §4, we present a complete proof of Ribet’s
work on admissible tuples using results in the previous section.

In §5 and §6, we discuss generalization of Ribet’s work and give some examples of admissible triples
for s = 2 and of admissible quadruples for s = 4.

In Appendices, we provide some known results on arithmetic of Jacobian varieties of modular curves
and Shimura curves. We include some proofs of them for reader’s convenience.

1.1. Notation. Let B be a quaternion algebra over Q of discriminant D such that B ⊗Q R ' M2(R).
(Hence, D is the product of the even number of disctinct primes.) LetO be an Eichler order of level N of
B, and set ΓD0 (N) = O×,1, the set of (reduced) norm 1 elements inO. LetXD

0 (N) be the Shimura curve
for B with ΓD0 (N) level structure. Let JD0 (N) be the Jacobian of XD

0 (N). If D = 1, X0(N) = X1
0 (N)

denotes the modular curve for Γ0(N) and J0(N) = J1
0 (N) denotes its Jacobian variety. (Note that if

D 6= 1, XD
0 (N)(C) ' H/ΓD0 (N), where H is the complex upper half plane.) By Igusa [Ig59], Deligne-

Rapaport [DR93], Cerednik [Ce76], Drinfeld [Dr76], Katz-Mazur [KM85], and Buzzard [Bu97], there
is an integral model of XD

0 (N). By the theory of Raynaud [Ra70], there is the Néron model of JD0 (N)
over Z, we denote it by JD0 (N)/Z. We denote by JD0 (N)/Fp

the special fiber of JD0 (N)/Z over Fp. For a
Jacobian variety J over Q, we denote by Xp(J) (resp. Φp(J)) the character group (resp. the component
group) of its special fiber J/Fp

of the Néron model J/Z.
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There are Hecke operators Tp acting on JD0 (N), we denote by TDN the Z-subalgebra of the endomor-
phism ring of JD0 (N) generated by all Tn. In the case that D = 1 (resp. N = 1), we denote by TN (resp.
TD) T1

N (resp. TD1 ). If p divides DN , we denote by Up the Hecke operator Tp on JD0 (N). For a prime p
dividing DN , there is also the Atkin-Lehner involution wp on JD0 (N). For a maximal ideal m of a Hecke
ring T, we denote by Tm the localization of T at m, i.e.,

Tm := lim
←n

T/mn.

There are two degeneracy maps αp, βp : XD
0 (Np) → XD

0 (N) for a prime p not dividing DN . Here,
αp (resp. βp) is the one induced by “forgetting the level p structure” (resp. by “dividing by the level p
structure”). For any divisor M of N , we denote by JD0 (N)M -new the M -new subvariety of JD0 (N). We
also denote by (TDN )M -new the image of TDN in the endomorphism ring of JD0 (N)M -new. If M = N ,
we define JD0 (N)new := JD0 (N)N -new and (TDN )new := (TDN )N -new. A maximal ideal of TDN is called
M -new if its image in (TDN )M -new is still maximal.

In this paper, we assume that ` > 3 is a prime and N is a square-free integer prime to `. For such
an integer N , we define two arithmetic functions φ(N) and ψ(N), where φ(N) :=

∏
p|N (p − 1) and

ψ(N) :=
∏
p|N (p+ 1).

Since we focus on Eisenstein maximal ideals of residue characteristic ` > 3 in this paper, we introduce
the following notation for convenience.

Notation 1.5. We say that for two natural numbers a and b, a is equal to b up to products of powers of 2
and 3 if a = b × 2x3y for some integers x and y. For two finite abelian groups A and B, we denote by
A ∼ B if A` := A⊗ Z`, the `-primary subgroup of A, is isomorphic to B` for all primes ` - 6.

For a module X , End(X) denotes its endomorphism ring.
We denote by χ the mod ` cyclotomic character, i.e.,

χ : Gal(Q/Q) � Gal(Q(ζ`)/Q) ' (Z/`Z)× → F×` ,

where ζ` is a primitive `-th root of unity. Note that χ is unramified outside ` and χ(Frobp) ≡ p (mod `)

for a prime p 6= `, where Frobp denotes an arithmetic Frobenius element for p in Gal(Q/Q).
For an ideal m of T and a variety A over a field K which is a T-module, A[m] denotes the kernel of m

on A, i.e.
A[m] := {x ∈ A(K) : Tx = 0 for all T ∈ m}.

Acknowledgements. The author would like to thank his advisor Kenneth Ribet for his inspired sugges-
tions and comments. The author would like to thank Seunghwan Chang, Yeansu Kim, and Sug Woo
Shin for many suggestions toward the correction and improvement of this paper. The author would like
to thank Gabor Wiese for helpful conversations and comments. The author would also like to thank
Chan-Ho Kim for providing examples in §6.

2. RIBET’S WORK

In this section, we discuss Ribet’s result on reducible representations arising from modular forms of
weight two for Γ0(N) with a square-free integer N .

2.1. Reducible mod ` Galois representations arising from newforms. Let ` > 3 be a prime and let
N be a square-free integer prime to `. Let f be a newform of weight 2 for Γ0(N). Assume that ρf , the
semisimplified mod ` Galois representation associated to f , is reducible. Then,

Proposition 2.1 (Ribet). ρf is isomorphic to 1⊕ χ, where χ is the mod ` cyclotomic character.

Proof. Since ρf is reducible, it is the direct sum of two 1-dimensional representations. Let α, β :

Gal(Q/Q) → F× be the corresponding characters, where F is some finite field of characteristic `. As is
well known, the hypothesis that N is square-free implies that the representation ρf is semistable outside
` in the sense that inertia subgroups of Gal(Q/Q) for primes other than ` act unipotently in the represen-
tation ρf . It follows that α and β are unramified outside `. Accordingly, each of these two characters is
some power of χ. If α = χi and β = χj , the two exponents i and j are determined modulo (` − 1) by
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the restrictions of α and β to an inertia group for ` in Gal(Q/Q). Using the results of [Ed92], one sees
easily that these exponents can only be 0 and 1 (up to permutation). �

2.2. Admissible tuples. Fix a prime ` > 3. Fix t, the number of prime factors ofN , and s ∈ {1, · · · , t},
the number of plus signs. (s might be zero but in the theorem below, we will show that s 6= 0.)

We seek to characterize t-tuples (p1, · · · , pt) of distinct primes for s so that there is a newform f of

level N =
t∏
i=1

pi with weight two and trivial character such that

(1) ρf ' 1⊕ χ, where ρf is the semisimplified mod ` Galois representation associated to f ,
(2) Upif = f for 1 ≤ i ≤ s, and
(3) Upjf = −f for s < j ≤ t.

We call these t-tuples for s admissible. When we discuss admissible tuples, we always fix a prime ` > 3
and assume that the level N is prime to `.

2.3. Result on admissible tuples. In this subsection, we introduce the work of Ribet on admissible
tuples, which was announced in his CRM lecture [R10]. For a proof, see §4.

Theorem 2.2 (Ribet). Let a t-tuple (p1, · · · , pt) for s be admissible and let N =
t∏
i=1

pi. Then the

following hold.
(1) s ≥ 1.
(2) If s = t, ` | φ(N).
(3) For s < j ≤ t, pj ≡ −1 (mod `).

Assume that a t-tuple (p1, · · · , pt) for s is admissible. If s = t, then ` | φ(N). And if s+ 1 = t, then
pt ≡ −1 (mod `). Ribet proved that this is also a sufficient condition when s is odd.

Theorem 2.3 (Ribet). Let N =
t∏
i=1

pi. Then, a t-tuple (p1, · · · , pt) for s is admissible if one of the

following holds.
(1) If s = t and s is odd, ` | φ(N).
(2) If s+ 1 = t and s is odd, pt ≡ −1 (mod `).

By the Theorem 2.2 and 2.3, a single (p) for s = 1 is admissible if and only if p ≡ 1 (mod `).
When t = 2, a pair (p, q) for s = 1 is admissible if and only if q ≡ −1 (mod `). On the other hand, we

only have a necessary condition for admissibility of a pair (p, q) for s = 2 that ` | φ(pq) = (p−1)(q−1).
Without loss of generality, we assume that p ≡ 1 (mod `). Then,

Theorem 2.4 (Ribet). A pair (p, q) for s = 2 is admissible if and only if q ≡ 1 (mod `) or q is an `-th
power modulo p.

When t is even, Ribet proved a level raising theorem.

Theorem 2.5 (Ribet). Assume that a (t− 1)-tuple (p1, · · · , pt−1) for s is admissible and t is even. Then,
a t-tuple (p1, · · · , pt) for s is admissible if and only if pt ≡ −1 (mod `).

3. LEVEL RAISING METHODS

In his paper [R84], Ribet studied the kernel of the map

γp : J0(N)× J0(N)→ J0(Np)

which is induced by the degeneracy maps. He also computed the intersection of the p-new subvariety
and the p-old subvariety of J0(Np). Diamond and Taylor generalized Ribet’s result [DT94], and they
determined non-optimal levels of irreducible mod ` modular representations by level raising methods.
However we cannot directly use their methods to find non-optimal levels of 1⊕χ. The reason is basically
that the kernels of their level raising maps are “Eisenstein”, and we do not know Up actions on the
kernels for primes p dividing the level. Instead, we introduce new level raising methods based on an
exact sequence due to Ribet.
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3.1. Equivalent condition. Let m be a maximal ideal of the Hecke ring TN of residue characteristic
`. Let ρm be the semisimplified mod ` Galois representation associated to m. Assume p is a prime not
dividing N . We call level raising occurs for m (from level N to level Np) if there is a maximal ideal n
of TNp such that

(1) n is p-new, and
(2) ρn, the semisimplified mod ` representation associated to n, is isomorphic to ρm.

Let T := TNp. Since Tp-old is isomorphic to TN [Up]/(U
2
p − TpUp + p), a maximal ideal m of TN can

be regarded as a maximal ideal of Tp-old once we choose a root γ of the polynomialX2−TpX+p (mod m)

so that Up − γ ∈ m. By abusing notation, let m be a maximal ideal of T whose image in Tp-old is m. If
level raising occurs for m, m is also p-new. In other words, the image of m in Tp-new is also maximal.

To detect level raising, Ribet showed that all congruences between p-new and p-old forms can be
detected geometrically by the intersection between the p-old and the p-new parts of the relevant Jacobian.

Theorem 3.1 (Ribet). Let J := J0(Np). As before, assume that Np is prime to ` and p - N . Let m be
a maximal ideal of TNp of residue characteristic ` which is p-old. Then level raising occurs for m if and
only if

Jp-old
⋂
Jp-new[m] 6= 0.

Proof. Let Ω := Jp-old
⋂
Jp-new. If Ω[m] 6= 0, Jp-new[m] is not zero, which implies that m is p-new.

Conversely, assume Ω[m] = 0. Consider the following exact sequence

0 // Ω // Jp-old × Jp-new // J // 0.

Let e = (1, 0) ∈ End(Jp-old) × End(Jp-new). If e 6∈ End(J), J 6' Jp-old × Jp-new. Thus, Ω[m] = 0,
which means that m is not in the support of Ω, implies that e ∈ End(J)⊗T Tm. Moreover, e ∈ T⊗Z Q
because Ω is finite. Thus,

e ∈ (T⊗ZQ)
⋂

(End(J)⊗T Tm).

The intersection (T⊗ZQ)
⋂

(End(J)⊗TTm) is equal to the localization of the saturation of T in End(J)
at m. Since T is saturated in End(J) locally at m by the theorem of Agashe, Ribet, and Stein [ARS12],
e ∈ Tm.

If m is also a maximal ideal after projection T → Tp-new, the injection T ↪→ Tp-old × Tp-new is not
an isomorphism after localizing at m. Thus, e = (1, 0) ∈ Tp-old × Tp-new cannot be in Tm, which is a
contradiction. Therefore m is not p-new. �

Remark 3.2. The theorem of Agashe, Ribet, and Stein is as follows,

Theorem 3.3 (Agashe, Ribet, and Stein). Let ` be the characteristic of TN/m. Then, TN is saturated in
End(J0(N)) locally at m if

(1) ` - N , or
(2) ` ‖ N and T` ≡ ±1 (mod m).

In our case, the level Np is prime to `, so TNp is saturated in End(J0(Np)) locally at m.

When we consider Jacobians of Shimura curves, we don’t have the q-expansion principle, so the satu-
ration property of the Hecke algebra is difficult to prove. However, we can prove the following.

Proposition 3.4. Let T := Tprq , J := Jpr0 (q), and m := (`, Up − 1, Uq − 1, Ur + 1, Ts − s −
1 : for primes s - pqr) ⊂ T. Assume that p 6≡ 1 (mod `) and q 6≡ 1 (mod `). Then, T is saturated in
End(J) locally at m.

Proof. It suffices to find a free Tm-module of finite rank on which End(J) operates by functoriality (as
in the paper [ARS12]).

Let Y (resp. L, X) be the character group of Jpr0 (q) at r (resp. J0(pqr), J0(pq) at p). By Ribet [R90],
there is an exact sequence

0 // Y // L // X ⊕X // 0.

Let a (resp. b) be the corresponding Eisenstein ideal to m in Tpqr (resp. Tpq). Since p 6≡ 1 (mod `) and
a pair (p, q) for s = 2 is not admissible, b is not p-new, so X ⊕ X does not have support at b. (Note
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that the action of Tpq on X factors through Tp-newpq .) Thus, Ym ' La. Since L/aL is of dimension 1 over
Tpqr/a by Theorem B.4 and L is of rank 1 over Tpqr in the sense of Mazur [M77], La is free of rank 1
over (Tpqr)a by Nakayama’s lemma. So, Ym ' La is also a free module of rank 1 over Tm. �

Remark 3.5. Ribet provides the above proof.

Using the above proposition and the proof of Theorem 3.1, we can prove the following theorem.

Theorem 3.6. Let T := Tprq , J := Jpr0 (q), and m := (`, Up−1, Uq−1, Ur+1, Ts−s−1 : for primes s -
pqr) ⊂ T. Assume that p 6≡ 1 (mod `) and q 6≡ 1 (mod `). Then, level raising occurs for m if and only
if

Jq-old
⋂
Jq-new[m] 6= 0.

3.2. The intersection of the p-old subvariety and the p-new subvariety. As in the previous subsection,
let p be a prime not dividingN . Let Ω be the intersection of the p-old subvariety and the p-new subvariety
of J0(Np). By the degeneracy maps, we have the following maps

J0(N)× J0(N)
γp // J0(Np) // J0(N)× J0(N).

The composition of the above two maps is the matrix

δp :=

(
p+ 1 Tp
Tp p+ 1

)
.

Let ∆ be the kernel of the above composition δp, i.e.

∆ := J0(N)2[δp] = {(x, y) ∈ J0(N)2 : (p+ 1)x = −Tpy and Tpx = −(p+ 1)y}.

Let Σ be the kernel of γp. Then ∆ contains Σ and is endowed with a canonical non-degenerate alternating
Gm-valued pairing. Let Σ⊥ be the orthogonal to Σ relative to this pairing. Then, Σ⊥ contains Σ and we
have the formula

Ω = Σ⊥/Σ.

For more details, see [R84].
We define ∆+ and ∆− as follows.

∆+ := {(x,−x) ∈ J0(N)2 : x ∈ J0(N)[Tp − p− 1]}

and

∆− := {(x, x) ∈ J0(N)2 : x ∈ J0(N)[Tp + p+ 1]}.

They are eigensubspaces of ∆ for the Atkin-Lehner operator wp. (wp acts on J0(N)2 by swapping its
components.) If we ignore 2-primary subgroups, ∆ ∼ ∆+⊕∆− . Furthermore we have the filtrations as
follows.

0 ⊂ Σ+ ⊂ (Σ⊥)+ ⊂ ∆+

and

0 ⊂ Σ− ⊂ (Σ⊥)− ⊂ ∆−.

Since ∆/Σ⊥ is the Gm-dual of Σ and Σ is an antidiagonal embedding of the Shimura subgroup of J0(N)
by Ribet [R84], Σ+ ∼ Σ and Σ− ∼ 0. Thus,

(Σ⊥)− ∼ ∆−.

By the map γp, (Σ⊥)+ maps to (Σ⊥)+/Σ and (Σ⊥)− ∼ ∆− maps to ∆− (up to 2-primary subgroups).
Since Σ⊥/Σ lies in J0(Np)p-new, Up + wp = 0. Hence, (Σ⊥)+/Σ (resp. ∆−) corresponds to the +1
(resp. −1)-eigenspace of Ω for the Up operator (up to 2-primary subgroups).
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3.3. Ribet’s exact sequence. Let Xp(J) (resp. Φp(J)) be the character group (resp. the component
group) of J at p. By the degeneracy maps, there is a Hecke equivariant map between component groups

Φp(J
D
0 (Np))× Φp(J

D
0 (Np))→ Φp(J

D
0 (Npq)),

where q is a prime not dividing NDp. Let K (resp. C) be the kernel (resp. the cokernel) of the above
map. We recall Theorem 4.3 of [R90].

Theorem 3.7 (Ribet). There is a Hecke equivariant exact sequence

0 // K // X ⊕X/µq(X ⊕X) // Ψ // C // 0,

where

X := Xp(J
D
0 (Np)), Ψ := Φq(J

Dpq
0 (N)), and µq :=

(
q + 1 Tq
Tq q + 1

)
.

If we ignore 2-,3-primary subgroups ofK (resp. C), it is isomorphic to Φp(J
D
0 (Np)) (resp. Z/(q + 1)Z).

For a prime ` > 3, we denote by A` A ⊗Z Z`. We can decompose the above exact sequence into the
eigenspaces by the action of the Uq operator as follows.

+1 eigenspaces : 0 // Φp(J
D
0 (Np))` // (X/(Tq − q − 1)X)` // Ψ+

`
// 0.

−1 eigenspaces : 0 // (X/(Tq + q + 1)X)` // Ψ−`
// (Z/(q + 1)Z)` // 0,

where Ψ+ (resp. Ψ−) denotes +1 (resp. −1) eigenspace for Uq operator on Ψ. For more details, see
[R90] or Appendix A.

4. PROOF OF RIBET’S WORK

Even though Ribet’s work has been explained in many lectures (e.g. [R10]), a complete proof has not
been published yet. In this section, we present it based on his idea.

By Mazur’s approach, using ideals in the Hecke algebra TN , proving admissibility of a t-tuple (p1, · · · , pt)
for s is equivalent to showing that a maximal ideal m is new, where m = (`, Upi − 1, Upj + 1, Tr −

r − 1 : 1 ≤ i ≤ s, s < j ≤ t, for all primes r - N :=
t∏
i=1

pi). To prove that m is new, we seek a

Tnew
N -module A such that A[m] 6= 0. (Since Tnew

N has 1, A[Tnew
N ] = 0.)

Proof of Theorem 2.2.
(1) When s = 0 and t = 1, Mazur proved that a single (N) is not admissible [M77]. Ribet gener-

alized his result to the case s = 0 and t = 2 [R08]. Ribet’s method also works for all t > 2.
We present a proof of non-existence of admissible triples for s = 0. This method can be easily
generalized to the case s = 0 and t > 3.

Assume a triple (p, q, r) for s = 0 is admissible and f is a newform of level pqr such that
(a) ρf ' 1⊕ χ and
(b) Ukf = −f for k = p, q, and r.

This implies that p ≡ q ≡ r ≡ −1 (mod `) by (3) below.
Let e be the normalized Eisenstein series of weight 2 and level 1,

e(τ) := − 1

24
+

∞∑
n=1

σ(n)xn,

where σ(n) =
∑

d|n,d>0

d and x = e2πiτ . The filtration of e (mod `) is ` + 1 (cf. [M77], [Se72],

[Sw73]); in other words, e (mod `) cannot be expressed as a sum of mod ` modular forms of
weight 2 and level prime to `. Raising the level of e, we can get Eisenstein series of weight 2 and
level pqr.

Definition 4.1. For any modular form g of level N and a prime p which does not divide N ,

[p]+(g)(z) := g(z)− pg(pz) and [p]−(g)(z) := g(z)− g(pz).

Recall Proposition 2.8 of [Y14].
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Proposition 4.2. Let g be an Eisenstein series of weight 2 and level N which is an eigenform for
all Hecke operators, then [p]+(g) (resp. [p]−(g)) is an Eisenstein series of weight 2 and levelNp
such that the eigenvalue of Up is 1 (resp. p).

For a positive integer n, let en(τ) := e(nτ). Let P := e + ep ≡ [p]+(e) (mod `) (resp.
Q := e + eq, R := e + er) be the mod ` Eisenstein series of weight 2 and level p (resp. q, r).
Raising the level, ep + epq (resp. epq + epqr) is a mod ` modular form of weight 2 and level pq
(resp. pqr). Therefore,

e+ epqr = P − (ep + epq) + (epq + epqr)

is also a mod ` modular form of weight 2 and level pqr. Let E :=
∑

n|pqr en and F :=∑
n|pqr(−1)ω(n)en = [p]− ◦ [q]− ◦ [r]−(e), where ω(n) is the number of distinct prime factors of

n. Since p ≡ q ≡ r ≡ −1 (mod `), E is congruent modulo ` to

[p]+ ◦ [q]+ ◦ [r]+(e) =
∑
n|pqr

(−1)ω(n)nen.

Thus E and F are mod ` eigenforms for all Hecke operators, and E is a mod ` modular form of
weight 2 and level pqr. Moreover,

Up(E) ≡ Uq(E) ≡ Ur(E) ≡ 1 (mod `) and Up(F ) ≡ Uq(F ) ≡ Ur(F ) ≡ −1 (mod `).

Since F and f have the same Fourier expansion at i∞ modulo `, by the q-expansion principle,
they are equal modulo `. In other words, F is a mod ` modular form of weight 2 and level pqr.
However, this is a contradiction because

−8e = E − F − 2P − 2Q− 2R− 2(e+ epqr)

is also a mod ` modular form of weight 2 and level pqr.
(2) Let N =

∏t
i=1 pi and let G = [pt]

+ ◦ · · · ◦ [p1]
+(e) be an Eisenstein series of level N . Then the

constant term of the Fourier expansion of G at i∞ is (−1)t+1 φ(N)
24 . (Proposition 2.13 of [Y14].)

Assume that a t-tuple (p1, · · · , pt) for s = t is admissible. Then there is a newform f of
level N such that ρf ' 1 ⊕ χ and Upif = f for 1 ≤ i ≤ t. Since G and f have the same
eigensystem modulo a maximal ideal above `, the Fourier expansion of G−f at i∞ is congruent
to (−1)t+1 φ(N)

24 modulo a maximal ideal. Hence, (−1)t+1 φ(N)
24 is 0 modulo ` because we assume

that ` > 3 and there is no modular form of weight 2 and level N whose Fourier expansion at i∞
is constant. (cf. Lemma 5.10 of chapter II of [M77].)

(3) Assume that a t-tuple (p1, · · · , pt) for s is admissible. Then, there is a newform f =
∑
anq

n of
level N such that ρf ' 1 ⊕ χ, Upif = f for 1 ≤ i ≤ s, and Upjf = −f for s < j ≤ t. The
semisimplification of the local representation ρf |Gal(Qp/Qp)

for a prime divisor p of N is ε⊕ εχ,
where ε is an unramified quadratic character such that ε(Frobp) = ap. Thus, for s < j ≤ t,
ε(Frobpj ) = apj = −1, and

ρf (Frobpj ) = 1 + pj ≡ −1− pj (mod `),

which implies that pj ≡ −1 (mod `).

�

Proof of Theorem 2.3.

(1) Let m := (`, Upi − 1, Tr − r − 1 : 1 ≤ i ≤ t, for primes r - N) be an Eisenstein maximal
ideal of TN . It is enough to show that m is new.

Assume that ` | φ(N). Let p = p1 and D = N/p. Let Φp := Φp(J
D
0 (p)) be the component

group of JD0 (p)/Fp
. Since ` | φ(N), Φp[m] 6= 0 by Proposition A.2 and A.3. By Theorem

3.10 of [R90] and the monodromy exact sequence (A.1) in the Appendix A, the action of the
Hecke ring on Φp factors through (TDp )p-new, so m is p-new in TDp . By the Jacquet-Langlands
correspondence, m is new.
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(2) Let q := pt and n := (`, Upi − 1, Uq + 1, Tr − r − 1 : 1 ≤ i ≤ s, for primes r - N) be an
Eisenstein maximal ideal of TN . Assume that q ≡ −1 (mod `). Let p := p1 and D := N/pq (if
s = 1, set D = 1). Since the number of distinct prime factors of D is even, there are Shimura
curves XD

0 (p), XD
0 (pq), and XDpq

0 (1). By the Ribet’s exact sequence in §3.3, we have

Φp(J
D
0 (p))× Φp(J

D
0 (p))

γq // Φp(J
D
0 (pq)) // C // 0

and
Φq(J

Dpq
0 (1)) // C // 0.

By Corollary A.6, C is annihilated by n. Therefore, n is a proper maximal ideal of TDpq. By
the Jacquet-Langlands correspondence, n is a new maximal ideal of TDpq. In other words, the
given t-tuple for s is admissible.

�

Proof of Theorem 2.4. Let I := (Up − 1, Tr − r − 1 : for primes r 6= p) be the Eisenstein ideal
of T := Tp and m := (`, I). By Mazur, Im := I ⊗ Tm is a principal ideal and it is generated by
ηq := Tq − q− 1 for a good prime q (Proposition 16.6 of Chap II of [M77]). Moreover, q is a good prime
if and only if q 6≡ 1 (mod `) and q is not an `-th power modulo p (cf. Theorem 11 of loc. cit.). In other
words, the above condition on q is equivalent to the condition that ηq is not a generator of Im.

Assume that ηq is not a generator of Im. By the Ribet’s exact sequence in §3.3, we have

0 // Φ`
// (X/ηqX)` // (Ψ+)` // 0,

where Φ := Φp(J0(p)), X := Xp(J0(p)), and Ψ := Φq(J
pq
0 (1)). By Mazur, Φ is a free module of rank

1 over T/I and Xm is free of rank 1 over Tm (§II.11 of loc. cit.). Since (X/IX)⊗T Tm = Xm/ImXm '
(T/I)m, if ηq is not a generator of Im, then #(X/ηqX)m > #(X/IX)m = #(T/I)m = #(Φ)m. In
other words, after localizing the above exact sequence at m, Ψ+

n 6= 0, where n = (`, Up − 1, Uq −
1, Tr − r − 1 : for primes r - pq) is an ideal of Tpq corresponding to m. Thus, n is maximal. By the
Jacquet-Langlands correspondence, n is new.

Conversely, ηq is a local generator of Im. Let Ω be the intersection of the q-old subvariety and the
q-new subvariety of J0(pq). Let ∆ := J0(p)

2[δq] and let Σ be the kernel of γq as in §3.2. We have a
filtration of ∆+

0 ⊂ Σ ⊂ (Σ⊥)+ ⊂ ∆+

and ∆+ is isomorphic to J0(p)[ηq]. Since ηq is a generator of Im, (∆+)m is isomorphic to J0(p)[I]m.
By Mazur (loc. cit.), J0(p)[I] is free of rank 2 and Σ is free of rank 1 over T/I . Thus, the m-primary
subgroup of (Σ⊥)+/Σ is 0 because ∆+/(Σ⊥)+ is the Gm-dual of Σ. In other words, the m-primary
subgroup of Ω is 0, i.e., m is not in the support of Ω. By Theorem 3.1, m is not q-new. In other words, a
pair (p, q) for s = 2 is not admissible. �

Proof of Theorem 2.5. Assume that a (t− 1)-tuple (p1, · · · , pt−1) for s is admissible and t is even.
Let p = p1, D =

∏t−1
j=2 pj , and q = pt. (If t = 2, let D = 1.) Since the number of prime factors of

D is even, there are Shimura curves XD
0 (p), XD

0 (pq), and XDpq
0 (1). If a t-tuple (p, . . . , pt−1, q) for s is

admissible, then q ≡ −1 (mod `) by Theorem 2.2.
Conversely, assume q ≡ −1 (mod `). Since a (t − 1)-tuple (p, · · · , pt−1) for s is admissible, there

is a new Eisenstein maximal ideal m := (`, Upi − 1, Upj + 1, Tr − r − 1 : 1 ≤ i ≤ s, s < j ≤
t − 1, for primes r - pD) in TpD. Let X := Xp(J

D
0 (p)) be the character group of JD0 (p)/Fp

. Then, by
the Ribet’s exact sequence in §3.3, we have

0 // (X/(Tq + q + 1)X)` // (Ψ−)`,

where Ψ := Φq(J
Dpq
0 (1)). Because q ≡ −1 (mod `), ` ∈ m, and Tq − q − 1 ∈ m, Tq + q + 1 ∈ m.

By the Jacquet-Langlands correspondence and the fact that (TDp )p-new acts faithfully on X , X/mX 6= 0.
Therefore (X/(Tq + q + 1)X)` has support at m, so Ψ−[n] 6= 0, where n := (`, Upi − 1, Upj + 1, Tr −
r − 1 : 1 ≤ i ≤ s, s < j ≤ t, for primes r - Dpq) ⊂ TDpq. In other words, n is maximal. By the
Jacquet-Langlands correspondence, n is new. �
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5. ADMISSIBLE TUPLES FOR s = 1 OR EVEN t

In this section we present new results on admissible tuples for s = 1 or even t.

Theorem 5.1. Assume t > s. A t-tuple (p1, · · · , pt) for s = 1 is admissible if and only if pi ≡
−1 (mod `) for 2 ≤ i ≤ t.

Proof. Assume a t-tuple (p1, · · · , pt) for s = 1 is admissible. Then, by Theorem 2.2, pi ≡ −1 (mod `)
for 2 ≤ i ≤ t.

Conversely, assume pi ≡ −1 (mod `) for 2 ≤ i ≤ t.
(1) Case 1 : Assume that t is odd and a (t − 1)-tuple (p1, · · · , pt−1) for s = 1 is admissible. Let

p := p1, q := pt, C =
∏t−1
i=3 pi, and D =

∏t−1
i=2 pi. (If t = 3, set C = 1.) Let m := (`, Up −

1, Upi + 1, Tr − r − 1 : 2 ≤ i ≤ t− 1, for primes r - pD) be a new Eisenstein maximal ideal
of TpD. Let n := (`, Up−1, Uq + 1, Upi + 1, Tr− r−1 : 2 ≤ i ≤ t− 1, for primes r - pDq)
be an Eisenstein maximal ideal of TpDq. It suffices to show that n is new.

Since t is odd, there are Shimura curves XC
0 (pp2) and XDq

0 (p). By the Ribet’s exact sequence
in §3.3, we have

0 // (X/(Tq + q + 1)X)` // Ψ−`
// (Z/(q + 1)Z)` // 0,

where X := Xp2(JC0 (pp2)) and Ψ := Φq(J
Dq
0 (p)). Since (TCpp2)p2-new acts faithfully on X and

m is new, X/mX 6= 0. Moreover, Tq + q + 1 ∈ m because q ≡ −1 (mod `), ` ∈ m, and
Tq − q − 1 ∈ m. Thus, m is in the support of (X/(Tq + q + 1)X)`, so n is also in the support
of Ψ−` . Therefore n is a proper maximal ideal of TDqp . If n is p-old, then there is a new maximal
ideal (`, Upi + 1, Tr − r− 1 : 2 ≤ i ≤ t, for primes r - Dq) of TDq by the Janquet-Langlands
correspondence. In other words, a (t − 1)-tuple (p2, · · · , pt) for s = 0 is admissible, which
contradicts Theorem 2.2. Thus, n is p-new, so by the Janquet-Langlands correspondence n is a
new maximal of TpDq.

(2) Case 2 : Assume that t is even and a (t− 1)-tuple (p1, · · · , pt−1) for s = 1 is admissible. Then,
since pt ≡ −1 (mod `), by Theorem 2.5, a t-tuple (p1, · · · , pt) for s = 1 is admissible.

When t = 2, by Theorem 2.3, a pair (p1, p2) for s = 1 is admissible. Thus, by induction on t, a t-tuple
(p1, · · · , pt) for s = 1 is admissible for all t ≥ 2.

�

Using the same method as above, we can prove the following level raising theorem, which is almost
complement of the case in Theorem 2.5 when t is even. (This excludes the case s = t only.)

Theorem 5.2. Assume t is even and t > s. And assume that a (t − 1)-tuple (p2, · · · , pt) for (s − 1) is
admissible. Then, a t-tuple (p1, · · · , pt) is admissible for s.

In contrast to Theorem 2.5, there is no condition on p1 for raising the level.

Proof. Let m := (`, Upi − 1, Upj + 1, Tr − r − 1 : 2 ≤ i ≤ s, s < j ≤ t, for primes r - pD) be an
Eisenstein maximal ideal of TpD, where D :=

∏t−1
k=2 pk and p := pt. By our assumption, m is new. Let

n := (`, Upi − 1, Upj + 1, Tr − r − 1 : 1 ≤ i ≤ s, s < j ≤ t, for primes r - Dpq) be an Eisenstein
maximal ideal of TDpq. It suffices to show that n is new.

Since t is even, there are Shimura curves XD
0 (p) and XDpq

0 (1). By the Ribet’s exact sequence in §3.3,
we have

0 // Φ`
// (X/(Tq − q − 1)X)` // Ψ+

`
// 0,

where Φ := Φp(J
D
0 (p)), X := Xp(J

D
0 (p)), and Ψ := Φq(J

Dpq
0 (1)). Since m is new and (TDp )p-new acts

faithfully on X , X/mX 6= 0. Because Tq − q − 1 ∈ m, m lies in the support of (X/(Tq − q − 1)X)`.
Since m is not in the support of Φ` by Proposition A.2, n is in the support of Ψ+

` . Thus, n is a maximal
ideal of TDpq. By the Jacquet-Langlands correspondence, n is new. �

Corollary 5.3. Assume t > 2 is even. Then, a t-tuple (p1, · · · , pt) for s = 2 is admissible if and only if
pi ≡ −1 (mod `) for 3 ≤ i ≤ t.
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Proof. If a t-tuple is admissible, then by Theorem 2.2, pi ≡ −1 (mod `) for 3 ≤ i ≤ t.
Conversely, assume that pi ≡ −1 (mod `) for 3 ≤ i ≤ t. By Theorem 5.1, a (t−1)-tuple (p2, · · · , pt)

for s = 1 is admissible. Thus, a t-tuple (p1, · · · , pt) for s = 2 is admissible. �

6. ADMISSIBLE TRIPLES AND QUADRUPLES

In this section, we classify admissible triples and quadruples.

6.1. Admissible triples. By Theorem 2.2 and 2.3, a triple (p, q, r) for s = 3 is admissible if and only
if ` | φ(pqr). And by Theorem 5.1, a triple (p, q, r) for s = 1 is admissible if and only if q ≡ r ≡
−1 (mod `).

However if s = 2, we cannot directly use above theorems to get admissible triples. By Theorem
2.2, if (p, q, r) for s = 2 is admissible, then r ≡ −1 (mod `). Assume that r ≡ −1 (mod `). Let
I := (Up − 1, Ur + 1, Ts − s − 1 : for primes s - pr) be an Eisenstein ideal of T := Tpr and
m := (`, I). Since r ≡ −1 (mod `), m is new maximal at level pr. We want to understand admissibility
of a triple (p, q, r) for s = 2 by a level raising method.

Theorem 6.1. Assume p 6≡ 1 (mod `) and if q ≡ 1 (mod `), assume further that p is not an `-th power
modulo q. Let ηq := Tq − q − 1. Then, a triple (p, q, r) for s = 2 is admissible if ηq is not a generator of
Im.

Assume further that q 6≡ 1 (mod `) and r 6≡ −1 (mod `2). Then, a triple (p, q, r) for s = 2 is not
admissible if ηq is a generator of Im.

Proof. By the Ribet’s exact sequence in §3.3, we have

0 // Φ`
// (X/ηqX)` // Ψ+

`
// 0,

where Φ := Φp(J0(pr)), X := Xp(J0(pr)), and Ψ := Φq(J
pq
0 (r)). By the Appendix A, #Φm = `n,

where `n is the power of ` exactly dividing r + 1. By the result in [Y14], Xm is free of rank 1 over Tm

and (T/I)m ' Z/`nZ. Assume ηq is not a generator of Im. Then,

#(X/ηqX)m > #(X/IX)m = #(T/I)m = `n.

Thus, Ψ+
n 6= 0, where n := (`, Up − 1, Uq − 1, Ur + 1, Tw − w − 1 : for primes w - pqr) ⊂ Tpqr . In

other words, n is maximal. If it is r-old, then a pair (p, q) for s = 2 is admissible, which contradicts our
assumption. Therefore, n is r-new, and by the Jacquet-Langlands correspondence, n is new.

Assume further that q 6≡ 1 (mod `), r 6≡ −1 (mod `2), and ηq is a local generator of I , i.e., Im =
(ηq) = mm.

Let K be the kernel of the map Jpr0 (1)× Jpr0 (1)→ Jpr0 (q) by degeneracy maps. Then, as in §3.2, we
have

0 ⊂ K+
m ⊂ (K⊥)+m ⊂ J

pr
0 (1)[ηq]m.

Since by Proposition C.4, K+ contains the Skorobogatov subgroup of Jpr0 (1) at r, which is of order r+1
up to products of powers of 2 and 3, #K+

m ≥ `. Since (ηq) = Im = mm, Jpr0 (1)[ηq]m = Jpr0 (1)[m] and it
is of dimension 2 over Tpr/m ' F` by Theorem B.1. Because Jpr0 (1)[ηq]/(K

⊥)+ is the Gm-dual ofK+,
(K⊥/K)+m = 0. Since K⊥/K is isomorphic to the intersection of the q-old subvariety and the q-new
subvariety of Jpr0 (q) and m is not in the support of K⊥/K, by Theorem 3.6, level raising does not occur.
Thus, n is not q-new. �

6.1.1. Examples. When N is prime, ηq is a local generator of an Eisenstein ideal I = (Tr − r −
1 : for primes r 6= N) ⊂ TN at m := (`, I) if and only if q 6≡ 1 (mod `) and q is not an `-th power
modulo N . However, when N is composite, we don’t know what congruence implies local generation.

Consider the easiest case. As in Theorem 6.1, we assume that r ≡ −1 (mod `) and p 6≡ 1 (mod `).
Assume further that r 6≡ −1 (mod `2). In this case, Im = mm.

Let f(τ) =
∑
anx

n be a newform of weight 2 for Γ0(pr) whose mod ` Galois representation is
reducible such that ap = 1, ar = −1, where x = e2πiτ . If aq ≡ q+1 (mod m2), ηq := Tq−q−1 ∈ m2,
so ηq is not a local generator of I at m.
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Moreover, in our examples below, all newforms are defined over Q, i.e., Tpr = Z and m = `Z. Thus,
ηq is not a local generator if and only if ηq ≡ 0 (mod `2). In the examples below, we follow the notation
in Stein’s table [St].

(1) Admissibility of (2, q, 19) for s = 2 when ` = 5.
A newform f of level pr = 38 (as above) is E[38, 2]. Let an be the eigenvalue of Tn for

E[38, 2]. Then aq ≡ 1 + q (mod 25) when q = 23, 41, 97, 101, 109, 113, 149, 151, 193, 199,
239, 241, 251, 257, 277, 347, 359, 431, and 479 for primes q < 500. Since only (2, 151),
(2, 241), (2, 251), and (2, 431) for s = 2 are admissible, a triple (2, q, 19) for s = 2 is admissible
if

q = 23, 41, 97, 101, 109, 113, 149, 193, 199, 239, 257, 277, 347, 359, or 479

for q < 500.

Remark 6.2. A newform of level 2× 23× 19 with a2 = a23 = 1 and a19 = −1 is E[874, 8].

(2) Admissibility of (3, q, 19) for s = 2 when ` = 5.
A newform f of level pr = 57 (as above) is E[57, 3]. Let bn be the eigenvalue of Tn for

E[57, 3]. Then bq ≡ 1 + q (mod 25) when q = 41, 97, 101, 167, 197, 251, 257, 269, 313, 349,
409, 419, 431, and 491 for primes q < 500. Since only (3, 41), (3, 431), and (3, 491) for s = 2
are admissible, a triple (3, q, 19) for s = 2 is admissible if

q = 97, 101, 167, 197, 251, 257, 269, 313, 349, 409, or 419

for q < 500.
(3) Admissibility of (2, q, 29) for s = 2 when ` = 5.

A newform f of level pr = 58 (as above) is E[58, 1]. Let cn be the eigenvalue of Tn for
E[58, 1]. Then cq ≡ 1 + q (mod 25) when q = 89, 97, 137, 151, 181, 191, 223, 241, 251, 347,
367, 401, 431, 433, and 491 for primes q < 500. Since only (2, 151), (2, 241), (2, 251), and
(2, 431) for s = 2 are admissible, a triple (2, q, 29) for s = 2 is admissible if

q = 89, 97, 137, 181, 191, 223, 347, 367, 401, 433, or 491

for q < 500.
(4) Admissibility of (2, q, 13) for s = 2 when ` = 7.

A newform f of level pr = 26 (as above) is E[26, 2]. Let dn be the eigenvalue of Tn for
E[26, 2]. Then dq ≡ 1 + q (mod 49) when q = 43, 101, 223, 229, 233, 269, 307, 311, and 349
for primes q < 500. Since a pair (2, q) for s = 2 is not admissible for q < 500, a triple (2, q, 13)
for s = 2 is admissible if

q = 43, 101, 223, 229, 233, 269, 307, 311, or 349

for q < 500.

Remark 6.3. In the last case, a pair (2, q) for s = 2 is admissible when q = 631 and q = 673. As before,

d631 ≡ 1 + 631 (mod 49) and d691 ≡ 1 + 691 (mod 49).

In other words, computations tells that if a pair (p, q) for s = 2 is admissible then ηq := Tq − q− 1 is not
a local generator of I at m.

6.2. Admissible quadruples. By Theorem 5.1, a quadruple (p, q, r, w) for s = 1 is admissible if and
only if q ≡ r ≡ w ≡ −1 (mod `). And by Corollary 5.3, a quadruple (p, q, r, w) for s = 2 is admissible
if and only if r ≡ w ≡ −1 (mod `). Moreover, by Theorem 2.2 and 2.3, a quadruple (p, q, r, w) for
s = 3 is admissible if and only if w ≡ −1 (mod `).

Even though we don’t know what are the necessary and sufficient conditions for admissibility of
quadruples for s = 4, we can mimic the strategy for the case (s, t) = (2, 3).

By Theorem 2.2, a quadruple (p, q, r, w) for s = 4 is admissible only if ` | φ(pqrw). So, without loss
of generality, assume that p ≡ 1 (mod `). Assume further that `2 - φ(pqr). Let I := (Up − 1, Uq −
1, Ur − 1, Tk − k − 1 : for primes k - pqr) be an Eisenstein ideal of T := Tpqr and m := (`, I). By
Theorem 2.3, m is new.
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Theorem 6.4. A quadruple (p, q, r, w) for s = 4 is admissible if ηw := Tw − w − 1 is not a local
generator of I at m.

Before we prove the above theorem, we need some lemmas about the character group and the compo-
nent group of Jqr0 (p) over Fp.

Lemma 6.5. Let Φ := Φp(J
qr
0 (p)). Then, the order of Φ is φ(pqr) up to products of powers of 2 and

3 and Φ⊗ Tm ' Z/`Z.

Proof. This follows from Proposition A.2 and A.3. �

Lemma 6.6. Let X := Xp(J
qr
0 (p)). Then, #(X/IX)⊗ Tm ≥ #(T/I)⊗ Tm = `.

Proof. Since X is a (Tqrp )p-new-module of rank 1 in the sense of Mazur (§II.6 in [M77]), #(X/IX) ⊗
(Tqrp )p-newm ≥ #(Tqrp /I) ⊗ (Tqrp )p-newm . By the Janquent-Langlands correspondence, (Tqrp )p-new ' Tnew

and (Tqrp )p-newm ' Tnew
m . Since Im = mm from the assumption `2 - φ(pqr), (Tqrp /I) ⊗ (Tqrp )p-newm '

(Tnew/m)⊗ Tnew
m ' F`. Thus, the result follows. �

Proof of Theorem 6.4. It suffices to show that an ideal n := (`, Up − 1, Uq − 1, Ur − 1, Uw − 1, Tk −
k − 1 : for primes k - pqrw) of Tpqrs is new. By the Ribet’s exact sequence in §3.3, we have

0 // Φ`
// (X/ηwX)` // Ψ+

`
// 0,

where Ψ := Φw(Jpqrw0 (1)). Assume that ηw is not a local generator of I at m. Since ηw is not a local
generator of I at m, We have

#(X/ηwX)⊗ Tm > #(X/IX)⊗ Tm ≥ ` = Φ⊗ Tm.

Thus, n is in the support of Ψ, which means that n is a maximal ideal of Tpqrw. By the Janquet-Langlands
correspondence, n is new. �

6.2.1. Examples. Consider the easiest case. As in Theorem 6.4, we assume that p ≡ 1 (mod `) and
` - (q − 1)(r − 1). Assume further that p 6≡ 1 (mod `2). In this case, Im = mm.

Let f(τ) =
∑
anx

n be a newform of weight 2 for Γ0(pqr) whose mod ` Galois representation is
reducible such that ap = aq = ar = 1, where x = e2πiτ . If aw ≡ w+1 (mod m2), ηw := Tw−w−1 ∈
m2, so ηw is not a local generator of I at m.

Moreover, in our examples below, all newforms are defined over Q, i.e., Tpqr = Z and m = `Z. Thus,
ηq is not a local generator if and only if ηq ≡ 0 (mod `2). In the examples below, we follow the notation
in Stein’s table [St].

(1) Admissibility of (11, 2, 3, w) for s = 4 when ` = 5.
A newform f of level pqr = 66 (as above) is E[66, 2]. Let an be the eigenvalue of Tn for

E[66, 2]. Then aw ≡ 1 + w (mod 25) when w = 47, 53, 97, 101, 103, 127, 151, 211, 271, 307,
317, and 431 for primes w < 500. Thus, a quadruple (11, 2, 3, w) for s = 4 is admissible if

w = 47, 53, 97, 47, 53, 97, 101, 103, 127, 151, 211, 271, 307, 317, or 431

for w < 500.
(2) Admissibility of (31, 2, 3, w) for s = 4 when ` = 5.

A newform f of level pqr = 186 (as above) is E[186, 3]. Let bn be the eigenvalue of Tn for
E[186, 3]. Then bw ≡ 1 + w (mod 25) when w = 19, 43, 59, 67, 71, 101, 109, 113, 131, 157,
181, 191, 227, 281, 283, 307, 331, 349, 359, 421, 431, and 443 for primes w < 500. Thus, a
quadruple (31, 2, 3, w) for s = 4 is admissible if

w = 19, 43, 59, 67, 71, 101, 109, 113, 131, 157, 181, 191,

227, 281, 283, 307, 331, 349, 359, 421, 431, or 443

for w < 500.
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APPENDIX A. THE COMPONENT GROUP OF JD0 (Np) OVER Fp
In their paper [DR93], Deligne and Rapoport studied integral models of modular curves. Buzzard

extended their result to the case of Shimura curves [Bu97]. In this appendix, we explain the special fiber
of JD0 (Np)/Z over Fp for a prime p - DN and the Hecke actions on its component group. Assume that
N is a square-free integer prime to D.

A.1. The special fiber JD0 (Np)/Fp
.

Proposition A.1 (Deligne-Rapoport model). XD
0 (Np)/Fp

consists of two copies of XD
0 (N)/Fp

. They
meet transversally at supersingular points.

Let S be the set of supersingular points of XD
0 (Np)/Fp

. Then S is isomorphic to the set of isomor-
phism classes of right ideals of an Eichler order of level N of the definite quaternion algebra over Q of
discriminant Dp (cf. [R90]). By the theory of Raynaud [Ra70], we have the special fiber JD0 (Np)/Fp

of
the Néron model of JD0 (Np)/Z at p. It satisfies the following exact sequence

0 // J0 // JD0 (Np)/Fp
// Φp(J

D
0 (Np)) // 0,

where J0 is the identity component and Φp(J
D
0 (Np)) is the component group. Moreover, J0 is an

extension of JD0 (N)× JD0 (N)/Fp
by T , the torus of JD0 (Np)/Fp

. The Cartier dual of T , Hom(T,Gm),
is called the character group X := Xp(J

D
0 (Np)). It is isomorphic to the group of degree 0 elements in

the free abelian group ZS generated by the elements of S. (Note that, the degree of an element in ZS is
the sum of its coefficients.) There is a natural pairing of ZS such that

for any s, t ∈ S, 〈s, t〉 :=
#Aut(s)

2
δst,

where δst is the Kronecker δ-function. This pairing induces an injection X ↪→ Hom(X,Z) and the cok-
ernel of it is isomorphic to Φp(J

D
0 (Np)) by Grothendieck [Gr72]. We call the following exact sequence

the monodromy exact sequence

(A.1) 0 // X
i // Hom(X,Z) // Φp(J

D
0 (Np)) // 0.

For more details, see [R90].

A.2. Hecke actions on Φp(J
D
0 (Np)). By the Proposition 3.8 of [R90], the Frobenius automorphism

Frobp on X is equal to the operator Tp on it. Frobp sends s ∈ S to some other s′ ∈ S, or might fix s. For
elements s, t ∈ S the above map i sends s− t to φs − φt, where

φs(x) := 〈s, x〉 for any x ∈ S.

Thus in the group Φp(J
D
0 (Np)), φs = φt for any s, t ∈ S. Since for all s ∈ S, the elements 2

#Aut(s)φs

generate Hom(X,Z) and #Aut(s) is a divisor of 12, Φp(J
D
0 (Np)) ∼ Φ, where Φ is the cyclic subgroup

generated by the image of φs for some s ∈ S. (cf. Proposition 3.2 of [R90].)

Proposition A.2. For a prime divisor r of Dp (resp. N), Ur− 1 (resp. Ur− r) annihilates Φ. Moreover,
for a prime r not dividing DNp, Tr − r − 1 annihilates Φ.

Proof. On Φ, φs = φt. Thus, Up(φs) = φt = φs, where t = Frobp(s). Since S is isomorphic to the set
of isomorphism classes of right ideals on an Eichler order of level N in the definite quaternion algebra
over Q of discriminantDp, the set of supersingular points ofXDp/q

0 (Nq)/Fq
is again S for a prime q | D.

In other words, the character group of JDp/q0 (Nq)/Fq
does not depend on the choice of a prime divisor q

of Dp. (Hence the same is true for the component group by the monodromy exact sequence.) Using the
same description as above, we have Uq(φs) = φs for a prime divisor q of D.

Since the degree of the map Ur is r for a prime divisor r of N , Ur(φs) =
∑
aiφsi and

∑
ai = r.

Therefore Ur(φs) = rφs because in Φ, φs = φsi for all i. Similarly, Tr(φs) = (r + 1)φs for a prime r
not dividing DNp. �
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A.3. The order of Φ.

Proposition A.3. The order of Φ is equal to φ(Dp)ψ(N) up to products of powers of 2 and 3.

Proof. Let n be the order of Φ. Therefore, for any degree 0 divisor t =
∑
aisi, nφs(t) = 0. We

decompose n as a sum
∑
ni for non-negative integers ni. Then,

nφs(t) =

∑
j

njφs

(∑
i

aisi

)
=
∑
j

nj

(
φsj

(∑
i

aisi

))
=
∑
j

njaj
#Aut(sj)

2
= 0.

Therefore, for any i 6= j, we have ni
#Aut(si)

2 = nj
#Aut(sj)

2 = c by taking t = si−sj . Since n > 0, each
ni is positive and it is equal to 2c

#Aut(si)
, where 2c is the smallest positive integer which makes 2c

#Aut(si)

an integer for all i. Since #Aut(si) divides 12, 2c is a divisor of 12. Thus,

n =
∑
s∈S

12

#Aut(s)

up to products of powers of 2 and 3.
Recall Eichler’s mass formula. (cf. Corollary 5.2.3 of [Vi80].)

Proposition A.4 (mass formula). Let S be the set of isomorphism classes of right ideals of an Eichler
order of level N in a definite quaternion algebra of discriminant Dp over a number field K. Then,∑

s∈S

#R×

#Aut(s)
= 21−d × |ζK(−1)| × hK × φ(Dp)ψ(N),

where R is the ring of integers of K, ζK is the Dedekind zeta function of K, d is the degree of K over Q,
and hK is the class number of K.

In our case K = Q, so |ζK(−1)| = 1
12 , dK = hK = 1, and #R× = 2. Thus, the result follows. �

A.4. Degeneracy maps between component groups. Let q be a prime not dividing DNp. Let Φ (resp.
Φ′) be the cyclic subgroup of the component group of JD0 (Np) (resp. JD0 (Npq)) at p generated by the
image of φs for some s as above.

Let γq : JD0 (Np) × JD0 (Np) → JD0 (Npq) be the map defined by γq(a, b) = α∗q(a) + β∗q (b), where
αq, βq are the two degeneracy maps XD

0 (Npq)→ XD
0 (Np). Then, γq induces a map γ : Φ× Φ→ Φ′.

Proposition A.5. Let K (resp. C) be the kernel (resp. cokernel ) of γ.

0 // K // Φ× Φ
γ // Φ′ // C // 0.

Then, K ∼ Φ and C ' Z/(q + 1)Z.

Proof. Let S (resp. S′) be the set of supersingular points of XD
0 (Np)/Fp

(resp. XD
0 (Npq)/Fp

). Let
Φ = 〈φs〉 (resp. Φ′ = 〈φt〉) for some s ∈ S (resp. t ∈ S′). Since the degree of α∗q is q+1, α∗q(s) =

∑
aiti

for some ti ∈ S′, where
∑
ai = q + 1. Because φti = φt in Φ′, α∗q(φs) = (q + 1)φt. By the

same argument as above, β∗q (φs) = (q + 1)φt. Thus, the image of γ is generated by (q + 1)φt and
C ' Z/(q + 1)Z. Since α∗q(φs) = β∗q (φs), (a,−a) ∈ K for any a ∈ Φ. By comparing orders, we have
that the orders of K and Φ are equal up to products of powers of 2 and 3. �

Corollary A.6. For primes r | Dp (resp. r | N , r - DNpq), Ur−1 (resp. Ur−r, Tr−r−1) annihilates
C. Moreover, Uq + 1 annihilates C.

Proof. This follows from A.2. �

Remark A.7. If ` > 3 is prime, then the `-primary part of K (resp. C) is equal to the one of the kernel
K ′ (resp. the cokernel C ′) of

0 // K ′ // Φp(J
D
0 (Np))× Φp(J

D
0 (Np))

γq // Φp(J
D
0 (Npq)) // C ′ // 0,

because Φp(J
D
0 (Np)) and Φ are equal up to 2-, 3- primary subgroups.
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APPENDIX B. MULTIPLICITY ONE THEOREMS

B.1. The dimension of Jpr0 (1)[m]. Let J := Jpr0 (1) be the Jacobian of the Shimura curve Xpr
0 (1) and

T := Tpr be the Hecke ring in End(J). Assume that p 6≡ 1 (mod `) and r ≡ −1 (mod `). Then, the
corresponding ideal to m := (`, Up− 1, Ur + 1, Tw −w− 1 : for primes w - pr) ⊂ T in Tpr is neither
p-old nor r-old. In this case we can prove multiplicity one theorem for J [m].

Theorem B.1 (Ribet). J [m] is of dimension 2.

For a proof, we need the following proposition.

Proposition B.2. Tm is Gorenstein.

Proof. Let Y be the character group of J/Fp
. Then by Ribet [R90], there is an exact sequence;

0 // Y // L // X ⊕X // 0,

where L := Xr(J0(pr)) (resp. X := Xr(J0(r))) is the character group of J0(pr)/Fr
(resp. J0(r)/Fr

).
Since m is not old, (Tpr)a ' Tm and Xb = 0, where a (resp. b) is the corresponding Eisenstein ideal
to m in Tpr (resp. Tr). Thus, we have Ym ' La. Since for a, multiplicity one theorem holds [Y14], it
implies that La is free of rank 1 over (Tpr)a, i.e., Ym is free of rank 1 over Tm. By Grothendieck [Gr72],
there is a monodromy exact sequence,

0 // Y // Hom(Y,Z) // Φ // 0,

where Φ := Φp(J) is the component group of J/Fp
. After tensoring with Z` over Z,

0 // Y ⊗ Z` // Hom(Y ⊗ Z`,Z`) // Φ`
// 0.

Using an idempotent em ∈ T` := T⊗ Z`, we get

0 // Ym // Hom(Ym,Z`) // Φm
// 0.

By the Ribet’s exact sequence in §3.3, we have

0 // K // (X ⊕X)/(µp(X ⊕X)) // Φ // C // 0.

Since first, second, and fourth terms vanish after localizing at m (resp. a), Φm = 0, which implies that
Ym ' Hom(Ym,Z`) is self-dual. Therefore Tm is Gorenstein. �

Now we prove the theorem above.

Proof of Theorem B.1. Let Jm := ∪nJ [mn] be the m-divisible group of J and let TmJ be the Tate module
of J at m, which is Hom(Jm,Q`/Z`). Then TmJ is free of rank 2 if and only if J [m] is of dimension 2
over T/m. Since J has purely toric reduction at p, there is an exact sequence for any n ≥ 1 (c.f. [R76])

0 // Hom(Y/`nY , µ`n) // J [`n] // Y/`nY // 0.

By taking projective limit, we have

0 // Hom(Y ⊗ Z`,Z`(1)) // T`J // Y ⊗ Z` // 0,

where Z`(1) is the Tate twist. By applying idempotent em, we get

0 // Hom(Ym,Z`(1)) // TmJ // Ym // 0.

Since Ym is free of rank 1 over Tm, TmJ is free of rank 2 over Tm. �

Remark B.3. By Mazur (appendix of [Ti97]), Tm is Gorenstein if and only if J [m] is of dimension 2.
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B.2. The dimension of J0(pqr)[m]. Let J := J0(pqr) and T := Tpqr. Let L := Xp(J) be the character
group of J at p and m := (`, Up − 1, Uq − 1, Ur + 1, Ts − s− s : for primes s - pqr) ⊂ T.

Assume that p 6≡ 1 (mod `), q 6≡ 1 (mod `), and r ≡ −1 (mod `). Then,

Theorem B.4. L/mL is of dimension 1 over T/m and J [m] is of dimension 2.

Proof. By Theorem 4.2(2) of [Y14], dim J [m] = 2. Let T be the torus of J at p. Note that J [m] is a non-
trivial extension of µ` by Z/`Z that ramified only at r. Since Frobp acts by pUp on T , Z/`Z cannot be in
T [m]. Since the dimension of J [m] is 2, T [m] is at most of dimension 1. On the other hand, Tp-new acts
faithfully on T and m is p-new because a pair (p, r) for s = 1 is admissible. Accordingly, the dimension
of T [m] is at least 1. Therefore L/mL, which is the dual space of T [m], is of dimension 1. �

APPENDIX C. THE SKOROBOGATOV SUBGROUP OF JpD0 (N) AT p

In his paper [Sk05], Skorobogatov introduced “Shimura coverings” of Shimura curves. Let B be
a quaternion algebra over Q of discriminant pD such that B ⊗Q R ' M2(R). Let O be an Eichler
order of B of level N , and set ΓpD0 (N) := O×,1, the set of reduced norm 1 elements in O. Let Ip
be the unique two-sided ideal of O of reduced norm p. Then, 1 + Ip ⊂ ΓpD0 (N) and it defines a
covering X → XpD

0 (N). By Jordan [Sk05], there is an unramified subcovering X → Xp → XpD
0 (N)

whose Galois group is Z/((p+ 1)/ε(p)), where ε(p) is 1, 2, 3, or 6. (About ε(p), see page 781 of
[Sk05].) Since unramifed abelian coverings of XpD

0 (N) correspond to subgroups of JpD0 (N), we define
the Skorobogatov subgroup of JpD0 (N) from Xp.

Definition C.1. The Skorobogatov subgroup Σp of JpD0 (N) at p is the subgroup of JpD0 (N) which
corresponds to the above unramified covering Xp of XpD

0 (N).

These subgroups have similar properties to Shimura subgroups. For example,

Proposition C.2. On Σp, Up (resp. Uq, Ur, Ts) acts by −1 (resp. 1, r, s + 1) for primes q | D, r | N ,
and s - pDN .

Proof. The proof is similar to the action of Hecke operators on Shimura subgroups. By using moduli
theoretic description of XpD

0 (N), the complex points of X classifies (A,P ) where A is a false elliptic
curve with level N structure and P is a generator of A[Ip]. Since the level structures at primes r dividing
DN are compatible with the level structure at p, which gives rise to our covering X , the Atkin-Lehner
involution wr acts trivially on the covering group. This gives the action of Uq when q divides D because
Uq = wq. Since for primes r dividing N , Ur +wr = β∗r (αr)∗ and β∗r = wrα

∗
r , Ur = wrα

∗
r(αr)∗−wr =

wr(r + 1) − wr = r on Σp, where αr and βr are two degeneracy maps from XpD
0 (N) to XpD

0 (N/r).
For primes s - pDN , Ts = (βs)∗α

∗
s = (βs)∗wsβ

∗
s = (βs)∗β

∗
s = s+ 1 since the image of Skorobogatov

subgroups by degeneracy maps lies in Skorobogatov subgroups and ws acts trivially on it.
Consider Up on Σp. The map Up sends (A,P ) to (A/A[Ip], Q), where 〈P,Q〉 = ζp for some fixed

primitive p-th root of unity ζp and the pairing 〈−, −〉 on A[Ip]× A[p]/A[Ip]. (About the above pairing,
see [Bu97].) For σ in the covering group ofX → XpD

0 (N), it sends (A,P ) to (A, σP ). Thus UpσU−1p =

σ−1, which implies Up acts by −1 on Σp. �

Remark C.3. It might be easier than above if you consider the actions ofwp on the group of 2×2 matrices
as in Calegari and Venkatesh. See page 29 of [CV12].

Proposition C.4. Let K be the kernel of the map

Jpr0 (1)× Jpr0 (1)→ Jpr0 (q)

by the degeneracy maps α∗q and β∗q . Then K contains an antidiagonal embedding of Σr.

Proof. Let Σr (resp. Σ) be the Skorobogatov subgroup of Jpr0 (1) (resp. Jpr0 (q)) at r. Since wq acts
trivially on Σ and the image of Σr by α∗q lies in Σ, α∗q(a) + β∗q (−a) = α∗q(a) +wq(α

∗
q(−a)) = α∗q(a)−

α∗q(a) = 0. Thus, K contains {(a,−a) ∈ Jpr0 (1)× Jpr0 (1) : a ∈ Σr}. �

Remark C.5. Since K contains an antidiagonal embedding of Σr, K[m] 6= 0, where m := (`, Up −
1, Ur + 1, Ts − s− 1 : for primes s - pr) if r ≡ −1 (mod `).
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