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Abstract

Methods for absolute free energy calculation by alchemical transformation of a quantitative model to an analytically tractable one

are discussed. These absolute free energy methods are placed in the context of other methods, and an attempt is made to describe

the best practice for such calculations given the current state of the art. Calculations of the equilibria between the four free energy

basins of the dialanine molecule and the two right- and left-twisted basins of DNA are discussed as examples.
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1. Philosophies of Free Energy Calculation

The central object for the science of computational calorimetry is the partition function Z of the system under

study:

Z =

∫
d�rd�p e−H(�r,�p)/kBT (1)

If the partition function is known, then the free energy is also available:

A = −kBT ln(Z). (2)

For the purpose of this discussion we will concentrate on the Helmholtz free energy, A, which is defined at fixed

(N,V,T).
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The integral to find Z is over the entire configurational and momentum space of the N-particle system, however the

momentum part of the integral can be factored out of the expression:

H(�rN , �pN) = V(�rN) + K(�pN) (3)

Z =

∫
d�rN exp

(
−βV
(
�rN
)) ∫

d�pN exp
(
−βK

(
�pN
))

(4)

Z =

∫
d�rN exp

(
−βV
(
�rN
)) ∏

i

∫
d�pi exp

(
−β�p2

i /mi

)
(5)

Z = ZrZp (6)

Because Zp is readily accessible from the equipartition theorem, the calculation of a free energy is typically con-

sidered to have been solved if the configurational term of the partition function (Zr) is obtained.

1.1. The Strategy of Fitting a Distribution to the Partition Function

An established and well-used method to find the free energy is to fit a multimodal Gaussian distribution to Zr

(Schlitter [1993]). A “normal” simulation of the system is run, using molecular dynamics (MD) or Monte Carlo (MC)

to explore the equilibrium configurational space, with whatever techniques for accelerated sampling are available.

When the simulation is judged to have converged, the mass-weighted covariance matrix of the atomic coordinates is

diagonalised. The eigenvectors yielded by the diagonalisation are the normal modes of the system, and the eigenvalues

describe the width of the distribution of displacements along each mode. If a Gaussian is fitted to the probability

distribution function (PDF) for each mode, then this corresponds to the PDF of a harmonic spring and the free energy

may be writen down as that of a sum of independent harmonic oscillators.

This method of normal modes (sometimes called the Schlitter method) has the advantage that the spectrum of

modes can give useful physical insight into the dynamics of the system, and that the analysis can be carried out on the

results of a normal molecular dynamics simulation without any need to plan any computationally demanding separate

calculation.

Extensions and refinements to this method are numerous, for example addressing the problem of studying systems

which do not have harmonic dynamics, such as fluids (Henchman [2007]), however it is inherent to the class of

methods in which some mathematical entity must be fit to Zr (of which I will choose to view Schlitter as the exemplar)

that the basic difficulties of fitting a very-high dimensional distribution are difficult to evade. If a simple function such

as the Gaussian chosen by Schlitter is used, then the entropies for some modes will be incorrectly estimated; while

more complex fitting functions such as the non-parametric histogramming employed in the paper ( Numata et al.

[2007]) require correspondingly more data to optimise the fit. Although approaches from this “Schlitter family” are

certainly useful, their inherent difficulties and limitations suggest that other avenues should also be explored.

1.2. The Strategy of Making a Thermodynamic Path

Consider a piston of length L + λ, where λ can be adjusted between 0 and 1 by applying a force. The free energy

difference ΔA between two different volumes of the piston is just the equilibrium work to compress or expand it:

ΔA =

∫ 1

0

dλ,

〈
∂H(λ,�r, �p)

∂λ

〉
|NVTλ

(7)

Here, angle brackets indicate a time-average and the subscript λ indicates that each time-average is collected at a

value of λ which has been held constant long enough for the system to fully equilibrate.

If we consider two systems with distinct Hamiltonians H0 and H1, then λ can represent a path of alchemical

transformation between them, such that the total Hamiltonian is defined as equal to H0 when λ = 0 and to H1 when

λ = 1, but otherwise is some weighted average between them. The free energy difference between the systems

represented by the two Hamiltonians can then be found in the same way as the work done to compress the piston in
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equation 7. Here λ no longer represents a physical degree of freedom, but instead a path through a space having one

extra degree of freedom compared to the physical systems H0 and H1. The gradient
∂H(λ,�r,�p)

∂λ
is thus referred to as a

‘generalised force’.

Instead of defining a continuous thermodynamic path, it may be preferred to compare points on the path in a

pairwise way. In this case, a common approach is to find the Metropolis Monte Carlo probablity for two states to

exchange their value of λ:

e−βΔA =

〈
M(β[H(1,�r, �p) −H(0,�r, �p)])

〉
|λ=0,NVT〈

M(β[H(0,�r, �p) −H(1,�r, �p)])
〉
|λ=1,NVT

(8)

where M(v) = min(e−v, 1) is the Metropolis function (Bennett [1976]).

These two variants share a common essential philosophy, of sampling a path between two systems by means of a

series of intermediate states, and I note the method of eqn. 8 here only as context for the remainder of the discussion

which will focus on the Thermodynamic Integration (TI) approach of eqn. 7.

The strategy of thermodynamic paths has frequent difficulties in that the unphysical Hamiltonians which typically

exist for intermediate values of λ can lead to numerical instabilities in the simulations, and also in that the convergence

of the calculation proceeds only in proportion to the square of the length of simulation time which is employed

(assuming random sampling of the confgurational space). Despite these problems, TI calculations have become quite

standard and are an available feature of most major MD simulation codes, such as AMBER (Case et al. [2012]) and

Gromacs (Hess et al. [2008]), where they are commonly used for biochemical calculations such as free energies of

ligand binding (e.g. in Genheden et al. [2011]), or to find solvation free energies (e.g. Wescott et al. [2002]).

Any discussion of path-based free energy calculations should acknowledge the ingenious non-equilibrium methods

which can be used to find the equilibrium free energy (e.g. Goette and Grubmller [2009]), typically by exploiting

Crooks’ theorem to relate the equilibrium work to the work done in moving dissipatively along the integration path

(Crooks [1999]).

2. The Strategy of Making a Thermodynamic Path to a Tractable Model

The purpose of this paper is to discuss the strategy in which one endpoint of the mixing (by convention here:

H1 := H(λ = 1,�r, �p)), represents a system for which the free energy is tractable and can be directly written down. This

method generates absolute free energies rather than free energy differences, so is abbreviated here as ‘TIA’ (vs. ‘TIR’

for the relative method). Absolute free energies are not in themselves very useful, as it is the ΔA which determines

chemical equilibria, however a set of absolute values can sometimes yield relative values more conveniently than a

network or cycle of relative calculations.

The classical example of this strategy is the ‘Einstein Crystal’ method of Frenkel & Ladd (Frenkel and Ladd

[1984]), in which the endpoint of the integration is a set of non-interacting harmonic oscillators, with the centre of

each oscillation defined as the centre of the Wigner-Seitz cell of the original crystal. In order to treat liquids, a different

choice of H1 has been advanced in which the particles are no longer bound to a single well but can exchange wells

with each other in a Monte-Carlo move (Schilling and Schmid [2009]; Schmid and Schilling [2010]) giving more

‘liquid-like’ behaviour while retaining an analytically tractable partition function.

2.1. Why absolute free energies?

Calculations of absolute free energy at the time of writing are expensive and also can be difficult to parameterise,

while finding the relative free energy of (for example) removing a ligand from a binding site on a protein is now a well-

documented technique that can be carried out using automated workflows such as FEW (Homeyer and Gohlke [2013]).

In the author’s opinion, the best occasion to use absolute free energy methods is when a significant conformational

rearrangement takes place between the systems being compared. In this case it is easier to transmute a system into

one which has a very different Hamiltonian (the tractable reference HamiltonianH1) but a similar conformation than

one which has a different conformation but a similar Hamiltonian.
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3. Treatment of Water

When calculating absolute free energies of fluids, it may be valuable to allow a Monte-Carlo move in which the

particles exchange the well to which they are attracted. This use of this move has the effect of adding to the partition

function of the system a factorial term due to the indistinguishability of the particles, such that the total free energy A

is larger than the sum of the free energies of separate particle-well systems. The definition and use of these wells for

single-particle fluids is discussed elsewhere (Schilling and Schmid [2009]; Schmid and Schilling [2010]) however the

best method to extend this approach to water, and to liquids of multi-particle components is not immediately obvious.

In the first calculation to use explicit water together with the swapping moves of Schmid and Schilling (Berryman

and Schilling [2013]), all hydrogens were kept in place using the SHAKE algorithm, and of the water molecules

only the oxygen atoms were therefore treated by the H1 Hamiltonian. This method is not general to molecules with

more complex intramolecular degees of freedom than water and also raises concerns in the case where the normal

intermolecular forces on the hydrogens are mixed away, at values of λ approaching 1. The solution adopted for the

current implementation (AMBER 14) is to create harmonic wells for the hydrogen atoms, and to position the wells in

space relative to the oxygen atom (or to the first heavy atom of the chain, in the case of other solvents or melts). This

approach has the odd effect of giving each water molecule a preferred orientation as it diffuses about in the system,

but has the benefit of providing a numerically stable model with a well-defined free energy.

4. Correlated Sampling and Analysis of Errors

Consider two particles in separate 1-dimensional damped harmonic wells of spring constants k1 and k2 and friction

constant γ, subject to the same sequence of pseudorandom forces, G:

ẍ1 = −γẋ1 − k1x1 + γG (9)

ẍ2 = −γẋ2 − k2x2 + γG (10)

If we are interested in the difference of the two displacements, X, then it turns out that we can write a new Langevin-

like equation in this quantity:

X := x1 − x2 (11)

Ẍ = −γẊ − k1X − (k1 − k2)x2. (12)

Viewed in this way, X is itself a damped harmonic oscillator, but with a random force that enters only indirectly

through the last term (k1−k2)x2. This final term approaches zero as k1 approaches k2, so for systems which are similar

to each other we can expect that the dynamics will come to synchronise under the same sequence G, even if the initial

conditions are markedly different.

Although the strength of this effect in systems which are subject to chaotic dynamics or which are otherwise

markedly anharmonic is not immediately apparent, strong benefits from this approach in calculating differences be-

tween similar systems even using other dynamical schemes than Langevin have recently been shown (Assaraf et al.

[2011]).

4.1. Example Correlated Sampling Calculation Using Dialanine

A test calculation comparing the four conformational wells (C7eq, αL,C7ax and αR) of the capped dialanine molecule

was made. The solvent was treated using a Generalised Born model (Nguyen et al. [2013]) and the interatomic poten-

tials were specified using the AMBER ff99SB forcefield (Hornak et al. [2006]). The four conformational wells were

defined as rectangular regions using flat-bottomed restraints on the Φ and Ψ angles as defined in table 1. This is a

very rough approximation to the real well shapes (fig. 1) which is however sufficient for the purposes of investigating

convergence properties of the method. Different random number generator seeds were used for each value of λ (and
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C7eq αR C7ax αL

Φmin(◦) -210 -210 0 0

Φmax(◦) 20 0 120 120

Ψmin(◦) 10 -120 -225 0

Ψmax(◦) 260 30 0 120

Table 1. Dihedral angles boundaries used to define the four major free-energy basins of the dialanine molecule.

Fig. 1. Free energy lanscapes of the dialanine molecule in explicit (TIP3P) water and implicit (GB8) dielectric continuum with respect to the

dihedral angles Φ and Ψ, provided by Carlos Simmerling.

should be used for any restarts of the same trajectories), but the same set of seeds was used for each of the four separate

well calculations.

Simulations were run at 9 equally-spaced values of λ on the range [0..1]. The generalised force values at each

timestep were integrated using a simple Euler method to find the time series of ΔA. The averages of the ΔA values

relative to the C7eq well were collected after 50,000 timesteps (50ps) and the means and estimated standard errors

were estimated assuming a decorrelation time τ = 1000 steps. Table 2 shows that use of correlated sampling provides

a modest but real reduction of the statistical error for this system. According to equation 12, the reduction available

for other calculations should depend in some way on the degree of similarity between the systems being compared.

C7eq αR αL C7ax

Simmerling (implicit) 0.0 1.1 4.0 2.7

JTB, (implicit) 0.0 0.9 (±.10) 2.4 (±.10) 2.3 (±.10)

with new seeds: 0.0 0.9 (±.13) 2.4 (±.14) 2.3 (±.13)

Table 2. Free energy differences obtained from the Simmerling reference PMF (using the rough well definition of table 1) compared with values

calculated using TI. The use of correlated sampling reduces the statistical error by approximately 25% for this example.

5. Screening and Softcoring

When the Lennard-Jones or Coulomb potentials are scaled by some small λ, their gradients in the region that is

accessible at a given thermal energy kBT become gradually steeper, leading to severe numerical instabilities in MD

calculations. It is therefore necessary to modify the interatomic potentials in some way, either by adding an additional

purely repulsive term to the Hamiltonian (‘screening’) or by introducing a λ-dependence directly to the Lennard-Jones

and Coulomb interactions (‘softcoring’).
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Fig. 2. Example mixing functions that were used in conjunction with a ‘screening potential’ approach to prevent numerical instabilities in treatment

of the Lennard-Jones and Coulomb potentials (Berryman and Schilling [2013]).

An example screening approach that has been used (Berryman and Schilling [2013]) is to have a short-range

repulsive potential of polynomial form:

Vscreen(�r, λ) = fguide(λ)
∑
i, j>i

MAX[A(R0 − ri j)
B, 0]. (13)

In this approach, the screening potential is mixed out of the composite Hamiltonian at both endpoints of the

calculation, using a polynomial mixing function fguide(λ) such as in figure 2, such that the total Hamiltonian is H =

g0(λ)H0 + Vscreen + f1(λ)H1.

The introduction of a λ-dependence directly to the Lennard-Jones and Coulomb forces is apparently a little more

elegant than the use of a simple screening potential. The method for doing this which is implemented in the popular

AMBER simulation package (Case et al. [2012]; Steinbrecher et al. [2007]) is presented in eqns. 14 and 15.

VLJ(�r, λ) =
∑
i, j>i

(1 − λ)

⎡⎢⎢⎢⎢⎢⎣ A

[αλ + r6
i j

]2
+

B

αλ + r6
i j

⎤⎥⎥⎥⎥⎥⎦ (14)

VQ(�r, λ) =
∑
i, j>i

(1 − λ)
qiq j

ci j

√
βλ + r2

i j

(15)

where α and β are user-defined parameters. The functional forms of screened versus softcored potentials (for the

summed Lennard-Jones and Coulomb interactions with unit parameters A, B, c, α, β, q) are shown in figure 3.

An alternative means of softcoring with a different functional form is implemented in the GROMACS simulation

package (Hess et al. [2008]; Goette and Grubmller [2009]), however the essential difficulties and benefits of this

approach are present in both cases.

It is not easy to accurately predict the phase behaviour of a system from the form of the interaction potential, so it is

not surprising that the changes to the Hamiltonian made by the different softcoring strategies can have unpredictable

effects on the course of the thermodynamic integration calculation. If the change in the collective behaviour amounts to

a first-order phase transition, then systematic error will arise due to trapping of metastable states at values of λ near to

the transition value. Systematic error of this kind is particularly likely if a set of calculations is constructed to compare

multiple free energy basins of the same Hamiltonian, for instance to find the free energy difference between liquid and

solid phases. A significant hazard of this type of calculation is that the changes in the Hamiltonian with respect to λ can

cause the state which is being studied to leave the metastable basin, so that the full path e.g. [solid→ tractable model]

is not sampled, but instead part of the calculation jumps to e.g. the [liquid→ tractable model] path, causing hysteresis

in the integration. If a chance of this type of transition exists then it is advisable if possible to add restraints to the
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Fig. 3. Screened (left) and softcore (right) versions on the summed Lennard-Jones and Coulomb potentials.

H0 Hamiltonians which can prevent such a thing from taking place, without significantly altering the dynamics of the

system as long as it remains in the chosen metastable basin.

5.1. Dialanine Screening and Softcoring Example

The current implementation of the AMBER software (AMBER 14) supports both screening and softcoring of

interactions in TIA calculations (called EMIL in the AMBER software), however softcoring is supported only in

conjunction with explicit water. The dialanine free energy calculation of the previous section was therefore repeated

using the TIP3P (Jorgensen et al. [1983]) water model. This resulted in a system of 3193 atoms rather than the

previous 22, significantly increasing the computational expense, so no attempt was made to collect an accurate energy

difference. Instead, the standard deviation of the calculated energy was found over runs of length only 200,000 steps.

Standard deviations are shown in table 3. The presence of a larger number of atoms leads naturally to larger energies

and larger fluctuations, however it is important to note that the screened potentials have larger fluctuations than the

softcored ones, which suggests that the method of screening the Lennard-Jones core (while simple to implement) is

less effective than softcoring at providing an energetically stable simulation.

C7eq αR αL C7ax

σ(ΔA), GB screen . 5.2 5.1 5.0

σ(ΔA), screen . 99. 110. 97.

σ(ΔA), softcore . 87. 88. 87.

Table 3. Standard deviations of the time series of estimated free energies, with implicit solvent, explicit solvent using screened potentials, and

explicit solvent using softcored potentials.

6. Estimation of Convergence Times

The formula ESE = σ
√
τ

t−τ
gives the standard error of the mean assuming that a series of uncorrelated free

energy estimates are taken at intervals of τ steps (where σ is the standard deviation of the free energy). Convergence

properties of MD simulations of complex molecules can benefit from more sophisticated modelling, as applied in

(Berryman and Schilling [2013]), however this simple equation is used in order to get an idea of the timescales which

are needed to achieve a statistically accurate measurement of the free energy. Figure 4 shows the timescales needed

to achieve accuracy of 0.1 kcal/mol in each of the dialanine calculations. The approximate timescale of 109 timesteps
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Fig. 4. Projected rates of convergence for screened and softcored calculations.

(1 μs) for the 3193 atom systems is achievable by brute force on current hardware, but is not yet a casual calculation

for the molecular dynamics amateur.

The B/Z conformational equilibrium calculation of DNA previously carried out (Berryman and Schilling [2013])

had 30,113 atoms which, assuming that the variance of the free energy measurement scales linearly with the system

size, would lead to a requirement of the order 1010 timesteps. Fortunately, energies (and errors) for this system were

quoted per base pair of the 12-bp DNA double helix (this one order of magnitude in error should save two orders of

magnitude in computation time), and the acceptable error was of the order 1 kcal/mol rather than 0.1 kcal/mol (again,

one order of magnitude in error should save two orders of magnitude in computation time), so the calculation was

therefore of usable accuracy after simulations lasting less than 10 nanoseconds, rather than requiring runs in the 10μs

range.
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