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1 Introduction

Higher spin gauge theory is believed to be related to the massless limit of superstring
theory, and it should be useful for understanding typical properties of stringy states. A
non-trivial higher spin gauge theory is given by Vasiliev theory [? ] which has been used
to construct simplified versions of the AdS/CFT correspondence. For example, 4d Vasiliev
theory was proposed to be dual to the 3d O(NN) vector model [? ? |, and it was conjectured
in [? 7 ] that 3d higher spin gravity theory in [? | is related to a large N limit of the
2d Wy minimal model. Recently, an extended version of 4d Vasiliev theory was proposed
[? ] to be dual to the Aharony-Bergman-Jafferis (ABJ) theory [? 7 ], which is known to
be dual to superstring theory on AdS; x CP3. Therefore we have now a relation (dubbed
ABJ triality in [? ]) between 4d Vasiliev theory, ABJ theory and superstring theory. The
construction of the lower dimensional version should be useful to understand the triality
better since, in general, a more detailed analysis is possible in lower dimensional models.

between 3d Vasiliev theory and superstring theory is not as clear as for the ABJ triality.
One of the aims of this paper is to take a further step to uncover this relation.

In our previous work [? ], we have proposed that the N' = 2 higher spin supergravity
with M x M matrix valued fields (or equivalently with U(M) Chan-Paton factor) in [? |
is dual to an 't Hooft limit of

su(N + M) @ so(2N M),
SU(N)gym ©u(l)y

with Kk = NM(N + M)(N + M + k). The limit is taken with large N, k, but finite M and
finite 't Hooft parameter

(1.1)

N

A= ————.
N+ M+E

(1.2)

The ’t Hooft parameter is identified with the mass parameter of the matter fields in the
supergravity. The duality in the case where M = 2 coincides with the one proposed in [?
].

We would like to relate the duality to superstring theory. For this purpose we may
restrict ourselves to a singlet sector of the U(M) Chan-Paton factor with large M as in the
ABJ triality [? |. Thus it is natural to consider the N' = 2 Grassmannian Kazama-Suzuki
coset [? 7]

SU(N + M)k D SO(2NM)1
SU(N ) g4ar @ su(M) g4y ® (1),

(1.3)



for large M. However, we do not know what the string theory dual to this Kazama-
Suzuki model is. On the other hand, the coset (??) with M = 2 is based on a Wolf space
and is known to have (non-linear) N' = 4 superconformal symmetry [? ? ? ].! It was
argued in [? | that the target space of the involved superstring theory can be identified as
AdS3xS3xS3xS! due to the large N = 4 supersymmetry, see also [? ? |.2 Earlier works
on the large N/ = 4 holography may be found in [? ? ? |. However, in their approach, we
do not know how to introduce the large M structure of the U(M) Chan-Paton factor.

In order to improve this situation, we would like to take advantage of the enhanced
supersymmetry in the bulk. In general, the Vasiliev theory [? | is a one parameter family
of N/ = 2 supergravities with matrix valued fields, which includes higher spin gauge fields
and massive matter parameterized by A. However at the specific value A = 1/2, where
some matter fields become massless, the field content can consistently be truncated to the
half to obtain an A/ = p enhanced supersymmetry. The symmetry algebra has also been
studied in [? ]. Let us set p = 2n with n =0,1,2,.... We will see that the supersymmetry
can be extended to N/ = p + 1 and the superalgebra osp(p + 1|2) is generated by (see eq.
(10.16) in [? ])

Top = {Yarys}, QL=ya®¢', M"Y =[p ¢’]. (1.4)
Here yo (. =1,2) and ¢’ (I =1,2,...,p+ 1) satisfy
o yp) = 2ieap, {¢7, 07} =28, (1.5)

The Clifford elements ¢! generate the Clifford algebra Cp+1, which can be realized by
2™ x 2™ matrices.
In this paper we propose that the dual model is given by

su(N + M)k
su(N)g @ u(1)enar(N4 )

(1.6)

with & = N, but large N and M = 2".3 We consider a non-diagonal modular invariant
such that the su(/N)y factor in the denominator could be expressed by free fermions in the
adjoint representations of su(N). For V=1 (or n = 0) the duality is the same as the one
proposed in [? | if a level-rank duality as in [? ? ] is applied. In the dual form, it is known
that the bosonic model actually has N' = 1 supersymmetry assuming the non-diagonal
modular invariant [? 7 7 ? 7 |. See also [? 7 ? ? | for studies of this in the context of
higher spin holography. We show that the one-loop partition function of the coset model
(?7) in the large N limit with £ = N reproduces that of the dual gravity theory. Moreover,
we construct symmetry generators of the coset model explicitly at low spins which should
be dual to low spin gauge fields in the dual gravity theory.

Tt was already suggested in [? ] that coset models based on Wolf spaces could be used to construct
higher spin holography with large supersymmetry.

% An interesting connection to the alternating spin chain of [? | was mentioned in [? ].

3We consider the case where M is of the form M = 2" with n = 0,1,2,--- since we are interested in
the case with extended supersymmetry. However, we can easily extend the duality to the case with generic
integer M.



It can be shown that the supersymmetric coset (??)* with k = N = M and M =
27~1 is directly related to the bosonic coset (??) by decoupling some free fermions. The
supersymmetric form of the coset is more suitable in the discussion on the possible relation
to superstring theory. In fact, we find that the Grassmannian Kazama-Suzuki model in
(??) with Kk = N + M has enhanced N' = 3 superconformal symmetry even for finite N,
and this is also one of our main results. The large superconformal symmetry restricts the
possible target space of the dual superstring theory to a large extent, and currently only
a few candidates are known [? ? ? |. In this way, we find a possibility to construct a
three dimensional version of the ABJ triality by circumventing the problems that previously
existed.” We examine the duality between the Kazama-Suzuki model (??) with k = N+ M
and a superstring theory by comparing BPS states and marginal deformations.

This paper is organized as follows: In section 77, we introduce the higher spin gravity
with ' = p + 1 enhanced supersymmetry. We summarize its spectrum and obtain the
one-loop partition function. In section 7?7 we study the duality between the higher spin
gravity in section ?? and the bosonic coset (?7) with k = N and large N. We reproduce
the gravity partition function from the limit of the model. We also construct low spin
generators, which should be dual to low spin gauge fields in the bulk. In section 77 we
examine the supersymmetric models (?7) and (??). The partition function of the model
(??7) with £k = N — M and large N is shown to reproduce the gravity partition function
after some fermions are decoupled. Furthermore, we show the Kazama-Suzuki model (?7)
with & = N + M has N = 3 superconformal symmetry at the critical level, and utilizing
the fact we study relations between this model and a superstring theory.

In section ?7? the higher spin algebra of the bulk side is constructed as a truncation via
an Zso automorphism of the N' = 2 higher spin supergravity with M x M matrix valued fields
in [? ]. For M = 2P/2 the truncated higher spin algebra is shown to have an osp(p + 1/2)
subalgebra indicating a so(p+ 1) extended supersymmetry algebra on the boundary at the
linear level. In section ?? we consider the CFT side again, but this time we show that
the Grassmannian coset CFT dual to the untruncated higher spin supergravity at A\ = 1/2
contains an Zs automorphism working like the Zo automorphism on the bulk. This CFT
has a non-critical level in contrast to the previous models, but the level is chosen such that
the automorphism is given by level-rank duality composed with charge conjugation. We
then perform the truncation according to this Zs automorphism on the CFT side to get a
third candidate for the dual CFT (at least in the large N limit). We make some checks
of OPEs and matter states of the duality between this naive orbifold CFT and the bulk
theory.

Finally, we conclude this work and comment on open problems in section ?7?7. Two

4The coset model (??) actually does not preserve any supersymmetry. Even so we call this model as the
supersymmetric coset in order to distinguish this coset and the bosonic coset (??). Anyway, by gauging
the su(M) factor in (??), the model becomes the N/ = 2 supersymmetric Kazama-Suzuki model (?7).

®We can see from the argument in the ABJ triality [? ] that a higher spin theory with both U(M)
Chan-Paton factor and U(M) invariant condition has string-like spectrum. However, our coset may not
have enough supersymmetry such as to make the string-like theory to really be the superstring theory
contrary to the ABJ triality. Therefore we cannot deny the possibility that there is no superstring theory
dual to our coset.



technical appendices then follow; The detailed analysis on the CFT partition function is
given in appendix 7?7, and several techniques to examine the symmetry algebra of coset
models are collected in appendix 77.

2 Gravity partition function

We consider the higher spin gauge theory on AdSs with A/ = 2n+1 supersymmetry as in [?
? ], which can be obtained by a Zo-truncation of the ' = 2 higher spin supergravity with
M x M (M = 2") matrix valued fields, as mentioned in the introduction. In this section
we introduce the spectrum of the higher spin gravity and obtain its one-loop partition
function. See also section 7?7 for more details including an analysis of the supersymmetry.

The theory has a gauge sector and a matter sector. The gauge sector includes spin
s = 1,2,3,... bosonic higher spin gauge fields and spin s = 3/2,5/2,7/2,... fermionic
higher spin gauge fields. These fields take values in a u(M) Lie algebra with the exception
that the trace part of u(M) decouples for the spin 1 gauge field. The matter sector includes
two complex M x M matrix valued scalar fields with mass squared m? = —3/4 and two
massless M x M matrix valued Dirac fermions. Choosing the condition at the boundary
of AdS properly, the conformal dimensions of the dual operators are (h,h) = (1/4,1/4)
and (3/4,3/4) for each complex scalar, and (h, h) = (1/4,3/4) and (3/4,1/4) for the Dirac
fermions.

We parametrize the modulus of the torus at the AdS boundary by ¢. Then the one-
loop partition function of a bosonic spin s (= 2,3,4,...) gauge field on AdSs is given by [?

]
) q)zﬁi1 (2.1)
pms L '

It was shown in [? | that the same expression also holds for a spin 1 gauge field. For a
fermionic spin s — 1/2 (= 3/2,5/2,7/2,...) gauge field, the one-loop partition function is

7]

220 =TT+ (2:2)

n=s

Therefore, the contribution to the one-loop partition function from the gauge sector is

M? -
(HZ (@2 >> (z9@)" (2.3)

which follows from the spectrum mentioned above.
For a complex scalar with dual conformal dimension (h,h), the one-loop partition
function is [? 7 |

o

1
h _
Zscalar(Q) - H (1 _ qh+m(jh+n)2 ’ (24)

m,n=0




and for a Dirac fermion with dual conformal dimension (h,h —1/2), (h — 1/2,h) it is [? |

oo
Zh (@) = H (1+qh+mq-h+n—1/2) (1+qh+m—1/2q-h+n> . (2.5)

n,m=0

The total contribution from the matter sector is

M2
1/4 3/4 3/4
Zmatter(Q) = (Zsc/alar(q)(ZSp/iIlOr(q))zzsc/a]ar(Q)> ’ (26)
which leads to the total partition function
Zbulk(Q) = Zgauge(Q)Zmatter(Q) . (27)

In order to compare this expression to the CFT partition function, it is convenient to
rewrite it in terms of supercharacters of Young diagrams [? ? ? ? ]. Here we introduce a

supercharacter
schan) = > [[d"72, W)y = (~17¢"2, (2.8)
TeSTabg jeT'
where STab,, is the super Young tableau of shape « (see, e.g., [? | for a detailed explana-

tion). Then we can define

M
BaoM(a) = Y coran 1] schan @) (2.9)

Q1,0 A=1

with

M-3

_ B B

Cgl...oqu - Z Cglﬁl ( Cai+1ﬁA+l> Cal\]f[ 210‘1\4 (210)
B1s--Brm—2 A=1

by using the Clebsch-Gordan coefficients Gy of gl(co)+ which were introduced in [? ]. In
this language, the gravity partition function (??) takes the form

Ziuk(@) = Zgange(a) S 1By (@B ()2 (2.11)
AL AT

We now want to calculate this from the CFT side of the duality.

3 The bosonic coset models

In this section we study the coset (?7) with £k = N and large N but finite M (= 2"), and
examine its duality to the higher spin gravity with A" = 2n + 1 extended supersymmetry.
In the next subsection we define the coset model in more detail. Furthermore, we compute
the partition function of the coset model in the large N limit, and see the match with the
gravity partition function (??). In sections ?? we investigate the symmetry of the coset
model. It will turn out to be difficult to construct symmetry generators directly in the
form of the coset (??) with k = N. So we utilize a (conjectured) map from the coset with
k = N to the coset with k = N + M and some fermions decoupled as in (??7), where the
latter model is easier to analyze its symmetry generators.



3.1 Spectrum and partition function

The coset (?7) is a bosonic model, so one may wonder how it is possible that the coset

is dual to a supersymmetric gravity theory. In fact, we need to utilize a mechanism of

supersymmetry enhancement for the purpose. The bosonic coset (??7) may be obtained by
adding a su(M) factor to the Grassmannian model
su(N + M )k

su(N)g @ su(M) & u(1)pnrr(N )

as discussed in [? |. This bosonic coset is known to be dual to the following coset [? 7 ]

su(k)y @ su(k)p
su(k)N+um

(3.1)

(3.2)

A special thing happens at N = k since su(/N)y at this critical level has a description in
terms of free fermions in the adjoint representation of su(N). Moreover, it was argued in
[? 7 | that the model has N/ = 1 supersymmetry. For M = 1, the coset with N = k has
the A/ = 1 supersymmetric W}, as symmetry algebra, of which the bosonic W}, algebra is
a sub-algebra [? ? ? ]. This fact was used to construct the duality with the higher spin
gravity with A/ = 1 supersymmetry (i.e. M = 1 or equivalently n = 0) in [? ].0
In order to define the model, we also need to specify the spectrum leading to a modular
invariant partition function. In [? ] a non-diagonal modular invariant is chosen such that
adjoint fermions from su(/N)y in the numerator of (??) act like generators of symmetry.
The adjoint free fermions can be expressed by so(N? — 1) current algebra with level one.
The states of the coset (?7) with M = 1 are labeled by (A4;A_), where A} is the highest
weight for su(N)y and A_ for su(N)nyy1. At large N, it is convenient to express AL by
two Young diagrams (Al, AL), see, e.g., [? ]. Then, as explained in [? |, A is restricted
now to Ay € Q= {(A},A7)[AL = (A7)'}, where of is the transpose of . The Hilbert
space is thus [? ]
H=EPHr @Hr=, Ha_ = P (A;A). (3.3)
A ALeQ

We can now consider the original coset (?7?) for general M. The states of that coset are
labeled by (A4 n; AN, m), where Ay, are highest weights of su(L) and m € Zyynr(v4an)-
At large N, m is fixed as

m = N|Axsarl- — (N + M)A (3.4)

where |a/| is the number of boxes in a Young diagram « and |Ar|— = |[AL| —|AT| [? 2 7.
Thus the states are labeled by (Ap4+n; An) in the 't Hooft limit. As in (??7), we consider
the following spectrum

H= @ HAN+M®7'_[A}‘V+Mv HAninr = @ (AN+m;AN) S (3.5)

AnNt+m ANEQ

5The higher spin supergravity used in [? ] also has A" = 1 supersymmetry, but it is different from the
N =1 theory discussed here. For instance, the bosonic gauge fields in the higher spin theory used in [?
] have only even spin s = 2,4,6,..., but the N’ = 1 supergravity used in [? ] has gauge fields of spin
s=2,3,4,....



where the sum in Ay € Q is over A, = (A%)!. It is easy to check that the difference
of conformal weights of holomorphic and anti-holomorphic parts is integer or half-integer
h—he 37

Based on the spectrum (?7), we compute the coset partition function in the large N
limit and compare it with the gravity partition function (??). In the 't Hooft limit, the
character of (A;Z) has been computed as [? | (see also [? ])

1-X l ri_|=l_|=r N N)U*
02 (q) = XY (g)g = WHINIEETEDS™ VOO B ()ByM (@) (3.6)
iR

The vacuum character with (A;Z) = (0,0) is given by’

0 M 2 1SS
by (a) = X" (a) = (H zfg)(q)> (@) o= 67

s=2 :sl_q

The restriction coefficients RE{Q and the Clebsch-Gordan coefficients C’gé) ¥ are introduced
as

by M (g(v)) = 3" R M (v), bl (v)ehd (v ZC DY ehd (v (3.8)
[

with +(v) being an embedding of SU(N) into SU(N + M) and ch% a SU(L) character
of representation A. The function BQ’M(q) is the bosonic counter part of (?7), which is
defined as

BaM(@) = 3 caray ][ obas(Un) (3.9)
Q1 yees 0N A
with (??). Instead of supercharacters in (??), the following characters are used
Z H L (Un)j=q"" (3.10)

T€Tabg jET

where Tab, as the Young tableau of shape a.
In the current case, we need to set A = 1/2 and sum over Z € Q) as

=" 02 (q) (3.11)

ZeQ

as in (??). As shown in appendix ??, this expression can be simplified as

(@) = ¥ (@B (9)BY M (g) (3.12)

by extending the method used in [? |. The vacuum character is

oo M? 2_ 0
M@Z(Hzéf)(q)zﬁf)(w) (W@)" . R@=Tla+), 6w
s=2

n=s

—c/24

"Since we compare one-loop partition functions, we neglect the tree level contribution g , where c is

the central charge.



which is consistent with the spin content of higher spin gauge theory introduced in section
??. Using that (A!, A")* = (A", A!), we conclude that the one-loop partition function of
the bosonic coset (?7) with the spectrum (?7) in the 't Hooft limit is given by

2 2
Zerr(g) = |xo" (@] D ‘B/I\/z4’M(Q)B}\/r4’M(Q) : (3.14)
AL AT

This reproduces the one-loop partition function for A/ = 2n + 1 higher spin supergravity
with M = 2" in (??) when one compares with the rewritten form in (?7?).

3.2 Symmetry generators

We now construct the symmetry generators of the coset (?77?) explicitly at low spins. Let
us consider a generic coset G/ h. Then the symmetry generators are made from currents
of ¢, which should not have any singular OPEs with currents of A (see, e.g., [? ]). In
addition to this, we demand that the generators are primary with respect to the energy
momentum tensor. In the coset (??) with N = k and with the spectrum (?7?), the states
may be generated from (0, A_) by the action of adjoint free fermions. Therefore, in order
to construct generators of the symmetry algebra, we need to use the adjoint free fermions
along with currents of ¢ [? 7 |, see also [? 7 | and appendix ??. There the generators of
super W-algebras at low spins are constructed explicitly in the coset language.

The application of this method to our case does not seem to be straightforward. This
is because the critical level su(N)y model appears in the denominator of the coset, and
thus the adjoint free fermions cannot be used for the purpose to construct symmetry
generators. There is, however, a trick. Let us instead consider the case with k = N + M
in the coset (??7) and then construct the symmetry algebra. We then notice that a critical
level su(N + M)n4a model appears in the numerator, and it can be described by free
fermions in the adjoint representation of su(N 4+ M). It turns out that the symmetry
generators then contain fields with spin 1/2, and we decouple these free fermions as in [?
]. We will argue that the model after this decoupling actually is directly related to the
bosonic coset (??) with £ = N, which is exactly what we wanted to describe, i.e.

su(N+M)N - Su(N+M)N+M

~

. (3.15
Su(N)N D u(l)NzM(N+M) SU(N)N+M D u(l)NM(N+M)2 Free fermions decoupled ( )

Below we show this by using the description of su(N + M)y current algebra with
su(N 4+ M) adjoint fermions, and we explain what the relation means in some details.
With the description by the right hand side, we construct the low spin generators of the
left hand side explicitly.

3.2.1 Decoupling free fermions

We thus consider the coset (??) with £ = N + M and the following Hilbert space as

H=EPHry @ Hay, Hay= @ (AneasAn). (3.16)
AN

ANy EQ



We decompose su(N + M) as®
su(N + M) = su(N) @su(M) @ u(l)® (N,M) o (N, M). (3.17)

We use o = 1,2,...,N? — 1 for the adjoint representation of su(N) and a,a =1,2,..., N
for (anti-)fundamental representation of su(N). In addition to these su(V) indices, we in-
troduce su(M) indices. We use p = 1,2,..., M?—1 for the adjoint representation of su(M)
and 4,7 =1,2,..., M for (anti-)fundamental representation of su(M). In total, the gener-
ators su(N + M) can then be written as {t®, t*,t"(1), +(#) +(@)} where the normalization is
given in (77).

We introduce free fermions ¥ in the adjoint representation of su(N + M), i.e. A =
1,2,...,(N + M)? — 1. The operator products are given by

N B 5AB
v v ~ : 3.18
()W (w) ~ (3.18)
Then at level k = N 4+ M the su(N + M) currents can be expressed by the free fermions as
1

—§ZfABC\IJB\I/C. (3.19)

The fermions are transforming in the adjoint under these currents

1

JA) B (w) ~ Y i fAPCwC () —— . 3.20
P~ i ) (320)

The operator products between the currents can be computed as

N+ M 5AB : ABCJC
JA) I () ~ M) —+ 2otf W) (3.21)

(z —w) z—w
which are indeed those for su(N + M) currents with level K = N+ M. For the computation,
it is useful to utilize the formulas (??) and (?7?).

The su(N + M )n4n currents can be decomposed according to (?7) as

By
JP=Jr+Jy,  Jr = _% Z froogogd Jf = 5ab‘1f(ai)t%\1’(bj) ’
0,0

where J{* and J§' can be thought as the free fermion realization of su(N) currents with
level N and M, respectively. Similarly, J¥ and J§ can be identified as su(M) currents with
level M and N, respectively. The other components of su(N + M)y currents are

u N+M al
Ju) = NI VACOR GO I (3.23)

ar) __ N+N u(l ar oy (b7) a0 saa XY aj
Jla) —  / Nl Pu) gl )_l’_Z\I] w5 _Z\IJP(; tij_q;( 7

p

J(Zu') _ N + N Z(saa\yat(x bz) + Z \ij\I] aj tp 5%
NM

8Here we use L and L as the fundamental and the anti-fundamental representations of su(L), respectively.



The energy momentum tensor is given by the coset construction of Sugawara Virasoro

tensors
T= TzsvuJ(r]z\\f/erM) - TzsvuJ(r]z\\Q - T;(J%}(NJFM)? (3.24)
— 4(Nl+M) ZA: JATJA — NI Za: JeJe — 2NM(]\1Z T Ju(1) ju(n)
with

JUO = /NM(N + M)J*®) | (3.25)

Since now we express the currents by free fermions, this energy momentum tensor can be
written only in terms of free fermions utilizing (?7) and (77).

We can also go back from the energy momentum tensor expressed by free fermions to
one by currents, but it does not always give the original expression. With the formula (see,

e,g, [?7 ] and (6.34) of [?7 ])

5az325fj [aq,(aaq,(éj) _ \I,(an@\p@j)} (3.26)
1

1 - -
_ o Jo P 7P u(1) Fu(1)
2(N+M)ZQ:J2J2+2(M+N)ZP:J2J2+2NM(N+M)2J S

we rewrite the energy momentum tensor (?7?) of the model as
T =Tp+ 70 4 > Tyr + Ty (3.27)
o

Here Tp denotes the energy momentum tensor of (??) with k = N in (??), where we have

)

by the Sugawara construction from the su(M)y currents J5. The last two are those for

identified the su(N)ys currents as K¢ = J§'. The energy momentum tensor T;}I(M is given

free fermions as
1 1
Tye = =5 WPOV Tyuyy = —5 0" H0w"0. (3.28)

In summary, we have seen that su(N + M) x4z, that is (N + M)? — 1 free fermions in the
adjoint representation of SU(N + M), decompose as follows: N? — 1 free fermions in the
adjoint representation of SU(N) forming su(N)y; M? — 1 free fermions ¥, in the adjoint
representation of SU(M) forming su(M)as; NM fermions in the tensor product of the
fundamental representation of SU(/V) and the anti-fundamental representation of SU(M)
and another NM fermions in its conjugate representation and finally one fermion W) in
the trivial representation of both SU(N) and SU(M). So that the coset splits as

su(N + M)nim _ [su(N)y @ su(N)y
SU(N) N+ © (1) yar(nv4n)2 su(N) N+

@su(M)y| & v e wtd,  (3.29)

In the right hand side, su(N) y and su(N) s are generated by J{* and J§ and the su(N)n4 s
is generated by J¢ = J{* + J§ which also appears in the left hand side. We know that the
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coset (??) with &k = N is dual to (??) with & = N which has su(M )y in the denominator.
Let us assume that the su(M )y is canceled with the su(M )y in the right hand side of (77?)
as

su(N)y @ su(N)
su(N)N+m

M SU(N + M)N
@su(M))y ~ . 3.30
(M su(N)n & u(l) vz ar(nv4an) (3.30)

The su(N) s currents J§' are constructed by fermions in the bi-fundamental representation
under the su(M) invariant condition. The su(M)y currents J§ are also constructed by
the same bi-fundamental fermions but with su(N) invariant condition, so we may argue
that the currents play a role to relax the su(M) invariant condition. Once we admit this
assumption, we arrive at (??) using (??) and (??), where the decoupled fermions are ¥
and UM Since Ha, in (??) can be generated by the action of adjoint fermions T4 to
the state (0; Ay),” the Hilbert space after decoupling the fermions is (?7) but with Ha
generated by the action of U®, (@) and (@),

3.2.2 Generators at low spins

Based on these preparations, particularly the relation (??), we can construct symmetry
generators of the coset (??7) with &k = N from the one with &k = N + M. The symmetry
generators are then constructed as combinations of the free fermions in the adjoint repre-
sentation of su(N + M) that have only regular OPEs with the su(/V) currents J in (?7)
and the u(1) current J*1 in (??). Furthermore, we need to decouple free fermions ¥* and
(D) according to (?7?).

Let us start from spin 1/2 generators. From the coset with k = N + M, we find that
the spin 1/2 generators are given by

e, gul) (3.31)

They are exactly the fermions that we decouple, so there are no spin 1/2 generators. Since
the dual gravity theory does not have any spin 1/2 gauge fields, it is consistent with the
proposed duality.

We then move to spin 1 generators. Spin 1 currents can be constructed by bilinears of
fermions. We find that they are given by J¥§ in (?7),

J5 = 600w (3.32)

which generates the su(M) current algebra with level N. They are expected to be dual to
the M? — 1 spin 1 gauge fields in the dual gravity theory.

Spin 3/2 supercurrents consist of products of three fermions. We find the following
fields

Gij _ 5ij\I/ant + 3Ntb@(_l\:[;a\:[;(ai)\11(bj) , (333)

9The label Ay for su(N)n+a should be related to the label Ax4ar in (?7?) for su(N + M)n by the
action of transpose as usual for the level-rank duality, see, e.g., [? ].
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where the relative coefficient is fixed so as to have only regular OPEs with the su(N) and
u(1) currents, see also appendix ??. They are expected to be dual to the M? spin 3/2
gauge fields in the higher spin supergravity theory.

As we will see in section ??, we pick up so(2n + 1) generators, such as Q in (?7)
among the u(M) with M = 2" supercurrents as supersymmetry generators in the gravity
side. With the restricted class of spin 3/2 generators, we have ' = 2n + 1 supersymmetry
algebra as a consistent truncation of the whole higher spin symmetry algebra. However,
there seems to be no such a consistent truncation in the bosonic coset (??) with finite
k = N, M because of the non-linear terms in the symmetry algebra.

Among the linear combinations of the spin 3/2 generators in (?7), there is a special
operator defined by

l 7, @ 3N «
a=¢ JGJ chp (Jl—MJ2> (3.34)

with C' defined in (??). Due to the identification J§ = K¢, we have G = Gp in (??).
As in the relation (?7?), the bosonic coset (?7?) can be decomposed into a coset model and
su(M) currents. The coset model is known to have N’ = 1 superconformal symmetry [? ?
| and (??) is identified as the superconformal generator [? 7 ]. For M = 1, there is no
su(M) sector, and this is the A/ = 1 superconformal symmetry used in [? |. If we forget
about spin 1 gauge fields, then there is N' = 1 supersymmetry between spin s and spin
s — 1/2 gauge fields even with M # 1. Thus the N' = 1 supersymmetry structure in the
bosonic coset (??) maps nicely that in the gravity theory. Note, however, that the N’ =1
supersymmetry is generated by QQ/ =l = 9y, ® 1 in terms of (?7), and it is not a part of
N = 2n + 1 supersymmetry generated by Q. in (??). In other words, if we include both
the N = 1 generator Q=" and the V' = 2n + 1 generators Q’, then we do not have any
supersymmetry algebra as a consistent truncation up to spin 2 generators.

We can construct more higher spin operators in a similar way. In particular, one of
the spin 2 operator is given in terms of Sugawara energy-momentum tensor as in (77).

Before ending this section, we would like to summarize the results so far. We have
considered two coset models

(B1) The bosonic coset (??) with £k = N and the spectrum in (?7?).
(B2) The bosonic coset (??) with k = N + M, but several fermions decoupled.

Our conjecture is that the higher spin gravity with NV = 2n + 1 is dual to the model
(B1). This candidate is a natural extension of the n = 0 case in [? ], and support for
this conjecture is given by the match of one-loop partition function as shown in subsection
??. The model (B1) is not suitable for examining its enhanced symmetry, so we utilize the
other model (B2) for this purpose. The claim here is that the models (B1) and (B2) are
really the same, see (?7), namely they have the same spectrum, symmetry and so on, even
for finite N. However, we should say that the derivation is not well supported since we
have heavily relied on the bosonic level-rank duality in [? ? | which is not well understood
yet. In the next section we use the supersymmetric coset of the form (?7?) instead of (?7).
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We do this because the level-rank duality is well understood in the supersymmetric case
as in [? 7 ]. Moreover, we expect that it is easier to see the relation to superstring theory
with the supersymmetric coset.

4 The supersymmetric coset models

In this section we examine the supersymmetric coset (?7) at special levels k = N £ M,
and the Kazama-Suzuki model (??) with k = N + M. In the next subsection, we compute
the partition function of the coset (??) with k = N — M and large N, and show that the
result matches with the gravity partition function in (??) with M replaced by 2M and
with the contribution from some free fermions removed. In subsection 7?7, we first obtain
the relation between the cosets (??) with k = N — M and k = N + M by utilizing a
level-rank duality in [? ? ]. Then we show that these models with some free fermions
decoupled are related to the bosonic model (??) with & = N and M replaced by 2M,
see (77). With these relations and results for the bosonic coset, we can obtain symmetry
generators of the supersymmetric cosets (?7) at the specific levels. In subsection 77, we
show that the Kazama-Suzuki model (??) with k¥ = N + M has N' = 3 superconformal
symmetry even at finite V. Based on this finding, we conjecture that the critical level
model is dual to a superstring theory, and examine the duality by comparing BPS states
and marginal deformations in subsection 77.

4.1 Spectrum and partition functions

We examine the spectrum and the one-loop partition function of the supersymmetric coset
(7?). We take the large N limit with £ = N — M but keep M finite. As before we denote
the highest weights of su(L) by Az and m € Z,. Moreover, by NS we denote the sum of
identity and vector representations of so(2NM);, which are generated by bi-fundamental
free fermions ¥(® (@) Then the states of the coset are given by the decomposition

AN+M©9NSZZ(EB(AN+M7AN}W069AN+MW®WL (41)
AN,'N’L

At large N, m is fixed as in (?7), thus the states are labeled by (Anyar; An) in the large
N limit. As in the bosonic case, we consider the following spectrum as

H= @ HAN+M®7:LA?\7+Mv HAaninr = @ (AN AN) (4.2)
ANt M ANEQ
where  means that we take the sum over Ak, = (A%)".
In the 't Hooft limit with (??), the character of (A;E) can be computed as [? ]
M A (AL +H AT~ |E ~ |2 N) ~(N)E* 51/2,M | | p1/2,M
sty () = X3 (q)q= (N HNIEEIED S REDCEDY B (@B (@), (43)
o,v

where RX}? and Cg;)*\p* are introduced in (??) and B (¢) is defined in (??). The vacuum

character is

)2M2—1

00 2M?
%g@:mwwzﬁpgwﬁwv ('@ (4.4)
s=2
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From the spectrum we consider

s AL( Z bl/2 M (4.5)
2eQ

As shown in appendix 7?7, this expression can be reduced to
1 2 ,1/42M 1/4,2M
o (@) =M (@) @) B Y (0B (0). (4.6)

Here (zg)(q))M * is the contribution from M?2 spin 1/2 fermions, and it is removed as we
will discuss below. The large N limit of one-loop partition function of the coset (?7?) with
the spectrum (??) and with fermions decoupled is thus

2
sZerr(@) = @) Y [BY M @B )| - (4.7)
AL AT

This reproduces the one-loop partition function (??) for A/ = 2n+1 higher spin supergravity

= 2771 Let us stress here that the supersymmetric coset

where n is determined by M
(??) with parameter M is mapped to higher spin supergravity with U(2M) Chan-Paton

factor instead of U(M) as in the bosonic case.

4.2 Symmetry generators

In the previous subsection, we have computed the partition function for &k = N — M.
However, in that case the critical level factor appears in the denominator. For the analysis
of the symmetries of the coset, we find a map from the coset into the one with the critical
level k = N + M of su(N + M) in the numerator.

We start from the ' = 2 Grassmannian Kazama-Suzuki coset (?7). The coset (??) is
simply given by adding the su(M )4 n factor. Here we show that the relation between the
two conditions k = N 4+ M simply is given by a translation N — N + M. To see this, we
remember that the coset (?7?) is level-rank dual to [? 7 |

su(k + M)n @ so(2kM ),
su(k)N+mr @ su(M)nir ®u(l),

which is obtained by replacing N and k. If we use the condition K = N — M in this
expression and set N = N + M, we have

(4.8)

Su(N+M)N+M @SO(QNM)l

! (4.9)
SU(N) o O SU(M) 05 ©u(l)s

which is the same as (??) with N = N and k = N + M. Notice that the same factor
su(M)an—nr = su(M),5, 5, appears both in (?7) and (??). Therefore, adding the same
factor su(M)an—n = su(M),,, o5 we have a dual coset description as

Su(N+M)N+M @SO(2NM)1

= , (4.10)
SU(N)N+2M ©u(l)y
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which is the supersymmetric coset (??) with k = N + M and N = N. Since the factor
described by adjoint free fermions then appears in the numerator of the coset, it should
not be so difficult to construct generators of symmetry algebra. Indeed we can see this by
relating to the analysis of the bosonic case in the previous section, as done below.

In (?7), we assumed that the su(M )y currents in the left hand side cancel the su(M )y
in the denominator of (??) after using the level-rank duality with (??). However the factor
su(M)y in the denominator of (?7) does not appear in (??). Therefore, we may say that
the cancellation of the su(M) factor after applying the level-rank duality becomes more
transparent in these supersymmetric coset models.

At the level k = N + M, the su(N + M)y, currents can be described by free fermions
P \IJ(ai) , \II(M)

, VZ L ON (4.11)

) )

Since so(2NM); can be described by bi-fundamental free fermions (@ (@) e have in
total 4N M bi-fundamental fermions as

Pl | g gla) _ ) gaM+) _ @) | (4.12)

) Y

We can easily see that the coset is the same as the bosonic coset (??) with M replaced by
2M after decoupling free fermions W? , ¥u(l) (up to a normalization of the u(1) current).
Extending equation (?7), we thus have the relation

SU(N + QM)N su(N -+ QM)N+2M
su(V)nv @ u(l) veapr(vaon)y  SUN)Nvam © u(1) vonr(v2n)?
_su(N + M)nyp Dso(2NM),

- su(N)yranr @ u(l),

Free fermions decoupled

(4.13)

Free fermions decoupled

Thus the analysis from the previous section actually also applies here by just changing the
interpretation of half of the bi-fundamental fermions. For instance we can find out the
symmetry generators of the coset (?7) in this way. Moreover, the Hilbert space should be
H = @AN Han ®7:l/\7v with Ha, generated by the action of fermions other than W* pu)
to the state (0; Ay).

When we relate the model to the bosonic coset (??) with & = N, we decoupled M?
free fermions, WP, (1) The contribution from these free fermions to (??) is removed in
order to obtain (?7?), which reproduces the gravity partition function. This is consistent
since the bosonic coset (?7) with & = N is already shown to be dual to the higher spin
gravity in the previous section.

In addition to the two models (B1) and (B2) in the end of the previous section, we
now have two additional models as

(S1) The supersymemtric coset (??) with & = N — M and the spectrum (??). Moreover,
some fermions are decoupled.

(S2) The supersymmetric coset (?7) with k£ = N + M with even more fermions decoupled.

We propose that the model (S1) is another candidate for the CFT dual of the higher spin
theory with N = 2n+1 supersymmetry along with the model (B1). The model (S2) is again
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used for the study of enhanced symmetry, and it will be utilized to see the relation with
superstring theory as below. Our claim is that the models (S1) and (S2) are equivalent.
Since the level-rank duality in [? 7 | is better understood in the supersymmetric case,
we think the equivalence is more reliable than the relation between the models (B1) and
(B2). It is easy to relate (S2) to (B2) just by changing the interpretation of half of the free
fermions, so we may be able to say that the models (S1) and (B1) are actually the same
by applying the chain of relations.

4.3 N =3 enhanced supersymmetry

One of the aim of this paper is to find out a triality between 3d Vasiliev theory, superstring
theory and a 2d conformal model just like the ABJ triality in [? |. We have proposed
that the 3d Vasiliev theory introduced in section ?? is dual to the supersymmetric coset
(??) with k = N + M and with some fermions decoupled (or equally the bosonic coset
model (?7) with & = N). In the case of ABJ triality, only su(M) singlet combinations
of higher spin gauge fields are dual to string states. Therefore, it is natural to think that
a superstring theory is dual to the su(M) gauged version of the coset (?7), that is the
Kazama-Suzuki model (?7?).1°

In order to construct the Grassmannian coset (?7?), we simply introduce N' = 1 world-
sheet supersymmetry. However due to the Kazama-Suzuki construction [? ? ], the coset
actually has N = 2 enhanced superconformal symmetry. In this subsection, we would
like to show that the superconformal symmetry enhances from N = 2 to N’ = 3 for the
Grassmannian Kazama-Suzuki model (?7) with £ = N + M even with finite N (and with-
out decoupling fermions). The N = 3 superconformal symmetry quite restricts the target
space of dual string theory, which is of the form AdS3xMyz. In the next subsection we
will examine the relation between the Kazama-Suzuki model (??) with &k = N + M and
superstring theory on AdS3xM7; by comparing BPS states and marginal deformations.

The Grassmannian Kazama-Suzuki coset (??) with & = N + M has the central charge
of the simple form

¢— gNM. (4.14)

At this level the su(N+M )y s currents in the numerator can be described by free fermions
in the adjoint representation of su(N + M) as argued above. Thus the symmetry generators
are constructed by these free fermions in addition to ¥(® (@) coming from so(2NM);.
Moreover, they should have only regular OPEs with currents in the denominator. Defining
three sets of currents as

5o = @ P = gD ) =y ils g (4.15)
the su(N), su(M) and u(1) currents in the denominator are expressed as

Je +ja7 JP _’_jp7 ju(l) + (N—|- M)ju(l) = (N+ M)[ju(l) +ju(1)]7 (416)

10T this and the next subsections, we consider generic integer M since we compare the Kazama-Suzuki
model (??) not to higher spin theory, but to superstring theory.
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respectively. Here J¢, J?, and J"1 are defined in (??) and (??) and JuM) is defined in
the above equation.

Let us construct symmetry generators explicitly. Due to the Kazama-Suzuki construc-
tion [? 7 ], the model at least has N/ = 2 superconformal symmetry generated by a spin
1 R-current .J, two spin 3/2 superconformal currents G*, and a spin 2 energy momentum
tensor 1. The spin 1 current is

1 N o E
J = S8u (\If(“’)\ll(bj) - zp(‘”)zp(bj)> , (4.17)
which satisfies
c
with ¢ = 3NM/2 as in (??). The spin 3/2 currents are given by
1 1

Gt = 5a557jj(ai)¢(l3j) . G = 5ab5sz(m)w(bﬁ (4.19)

vN + M VN + M

where J(@  J(@) are defined in (??). The spin 2 generator is written in terms of the
Sugawara operators as

T=0F 30 1+ i) za: JOJY 4 zp: JPJP 4 26,56,;0 @D J ) 4 ) yu®) (4.20)
— S0 [$DO — oy @] STl - I ICARERICARER
_ 4(N1+M) %:(Jp + ) (TP 4 P — ﬁ(ju(l) W) 4 u)y
In particular, we have the following OPE as
GG (W)~ (22—6/3))3 (22 i(:i))? QT(wz) - 3J<w) : (4.21)

The above currents generating N/ = 2 superconformal symmetry exist even with generic
level k. Here we would like to show that there are additional currents at the specific level
k = N+ M, which are given by a spin 1/2 fermion ¥, two spin 1 currents J* and a spin 3/2
currents G2. Combined with the generators of the A = 2 superconformal symmetry, they
generate N' = 3 superconformal symmetry. The spin 1/2 generator is given by ¥ = gu),
and the extra spin 1 currents are

1 B 1
Jt = 5 ,57\1;(@1) (b5) . J =
N R v

in addition to J? = .J in (??). We find that last spin 3/2 generator is given by

8,505 W B (4.22)

3_; a1« .
&= D Za:‘l’ (Js =3 )+Zp:\1”’(J§ J”)] (4.23)

2]1\7]\/[ ) (ju(l) _ju(1)> .
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As shown in appendix 7?7, this superconformal generator satisfies

2¢/3 2T (w
(z—/w)3+ z—(w)

G3(2)G3(w) ~

(4.24)

Similarly we can show that the generators given above also lead to the remaining OPEs of

the N = 3 superalgebra given in appendix ?? by setting

1
V2

and c=3NM/2, k= NM.
The supercurrents of the coset (?7) are generically of the form as

_ L

G:I:
V2

(Gt +4iG?), J* (Jt+4J?) (4.25)

G[t*] ~ tp WD Tw D (1)) (4.26)

whose precise expression is given in (??). Here we use the notation in (??) as W(@(M+2) —
() g@M+0)) — (@) " and the u(2M) generator (tapr)? corresponds to the Chan-Paton
factor of higher spin gravity theory. In the model (?7), we assign the su(M) singlet con-
dition. Therefore only supercurrents with (top7)? = 0% @ 1py (6 = 0,1,2,3) are allowed,
where 0% (a = 1,2, 3) are the Pauli matrices and 0° = 1. The N’ = 3 supercharges G* are
associated with 0. Notice that the A" = 1 supercurrent G¥=" introduced in (??) is with
0% = 1, and they are different from those of A/ = 3 supercurrents.
Each N = 3 superconformal current

1 B
V2 Va2

generates N = 1 superconformal algebra as a subalgebra

G! (GY+G7), G? (Gt -G, G (4.27)

2¢/3 2T (w
(z —/w)3 + z—(w)

G(2)G(w) ~ (4.28)
with @ not summed over. Here ¢ and T are the central charge in (??) and the energy
momentum tensor in (??) for the Kazama-Suzuki model (??) with £k = N + M. On the
other hand, the A" = 1 supercharge GVN=! satisfies the OPE (??) with ¢p in (??) and Tp
n (??) for the bosonic Grassmannian model (??) or its dual form (??) with & = N. These
two models (??) and (??) differ in particular by free fermions, so we can see also in this
way that G* and GNV=1 are essentially different operators at finite N.

One may think that these four supercurrents would generate the small N' = 4 super-
conformal algebra. However, if we include both G® and GN=!, then the algebra does not
seem to close up to spin 2 generators.

4.4 Relation to superstring theory

In this subsection, we study chiral primaries of the coset and compare them to BPS states
from the dual string theory.!! The states of the coset are labeled by (Anyar, w; An, Ays,m),

1YWe assume that both N and M are very large in this subsection.
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where Az denotes a highest weight of su(L) as before. Moreover, we take w = 0,2 for the
NS sector and m € Z,,. The conformal weight for the state with (Anyar,w; An, Apr,m) is

b BN LGN (4.29)
where
L 2
Lk C"(AL) m
’ — h = —. 4
AL K + L 9 m 2/{[ ( 30)

Here C*(Ayp) is the quadratic Casimir of the representation A;. We do not have a general
formula for integer n, but it is easy to compute for a specific example by considering how
the denominator is embedded in the numerator, see, for instance [? ].

We have introduced fermions W@ W(@) for su(N+M )y 4 ar and (%) (@) for so(2N M) .
Moreover, R-current J? is written in terms of these fermions as J? = J in (??), and we
denote its eigenvalue as q. Here we look for chiral primaries which satisfies the BPS con-
dition h = q/2. See [? | for the representation theory of N' = 3 superconformal algebra.
We assume the form of chiral primary as (¥())P(4)(@))!|y), whose R-charge is given by
q= (p+1)/2. As before, we use the expression of Ay, by two Young diagrams as (A}, A%).
With the notation

[p;1] = ([p,0,...,0],[,0,...,0]), (I;p)=([0""1,1,0,...,0],[0P"%,1,0,...,0]), (4.31)

we set (An, Ay, m) = ([p;l], (I;p), (N 4+ M)(l — p)), where we can check that the selection
rules are satisfied, see [? |. More generic states will be mentioned later. Using the formulas
p(L = 1)(L +p) _ p(L+ (L —p)

CE([p,0,...,0]) = oL . CcE(ort,1,0,...,0) = o . (4.32)

and

ALJIAT
CH(Ap) = CH(AL) + CF(AL) + ’L|L‘L’ : (4.33)

we can compute the conformal weight as

L_ptl CV(pl)  CY((Lp) (N+MP(I-p? _p+l_q (4.34)
2 20N+ M) 2(N+M) 4NM(N+M)2 4 2’ ‘

which means that the corresponding states are chiral primaries.

Let us interpret these states in terms of dual gravity theories. The simplest ones are
with (p,l) = (1,0) and (0, 1), which may be called as |c,) with n = 0,1. Similarly we have
two simplest anti-chiral primaries |a,).'? Combining the anti-holomorphic sector, we have
eight states

len) @ 18p) s len) ®ag),  lag) ®@[2p),  an) @ |ay) -

12 Anti-chiral primaries are of the form as ((*?)?(¥(@))!|y). We should pair the state in the holomorphic
sector with that in the anti-holomorphic sector labeled by the same v.
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We would like to propose that their duals are given by scalar fields with dual conformal
weight (h, h) = (1/4,1/4) in the higher spin gravity introduced in section ??. For the dual
of the coset (?7), we have a (2M x 2M) matrix valued complex scalar field with a su(M)
invariant condition. Therefore we have four (or eight in the real counting) su(M) invariant
combinations and two of them are charged under the corresponding R-currents. Thus we
can identify the uncharged combinations as |c,) ® |ay), |a,) ® |¢,) and the charged ones as
|cy) ® &) and |ay) ® |ag).

In terms of higher spin theory, other chiral primary with generic (p,[) should correspond
to the bound state of (p + [) scalars. However, according to [? | (see [? | for the N =4
holography on AdSs), a multi-particle state in higher spin theory may be regarded as
a single-string state. As argued above, dual superstring theory may be on AdSzxMy,
and currently there are only three explicit candidates as My = (S3xS?xS1)/Zs [? ], and
M7 =SU(3)/U(1), SO(5)/SO(3) [? ]. For the latter two cases, space-time chiral primaries
have been already studied in [? ], and they were found to be labeled by two integers
g = (p+1)/2. Therefore, we can say from (??) that the BPS spectrum matches with the
one discussed in this subsection. Actually, we can easily see that there are many other
chiral primaries in our coset. Our conjecture is that they are dual to multi-string states,

but currently there is no strong evidence for the conjecture.

Now the model has three chiral primaries with ¢ = 1 for (p,l) = (2,0),(1,1),(0,2).
We can construct three marginal operators with A~ = 1 from them by acting N' = 3
supercurrents to construct the singlet of so(3) R-currents. The deformations by these
operators are exactly marginal, so the model has three moduli parameters, see, e.g., section
4 of [? ]. In order to relate to superstring theory, higher spin symmetry should be broken
by these marginal deformations. For the N' = 4 holography on AdS3, there is a marginal
deformation [? |, which was shown to break higher spin symmetry in section 5 of [? |.

In this section we have proposed two kinds of dualities. One is between the coset (77?)
with k = N 4+ M and with some fermions decoupled and higher spin gravity with extended
supersymmetry. The other is between the Grassmannian coset (?7) with k = N + M and
a superstring theory. The Kazama-Suzuki model is constructed by gauging a su(M) factor
and recovering the decoupled fermions from the other coset (?7). Therefore, we have a
new relation between superstring theory and higher spin gravity, but after assigning a kind
of U(M) invariant condition and adding boundary fermions to the higher spin gravity. It
was pointed out in [? ] that we can include the singlet condition by changing boundary
conditions of higher spin gauge fields. Moreover, it was argued in [? | that we need to
add extra fermions localized at the boundary to the higher spin gravity in order to have
a linear large N/ = 4 superconformal symmetry as an asymptotic symmetry. The linear
large N' = 4 symmetry is that of CFT dual to superstring theory on AdS3xS3xS3 xSt
Thus it looks natural to add boundary fermions to higher spin gravity so as to be dual to
a superstring theory.

13We would like to report several supports for the conjecture in a separate publication. See footnote 4 in
[? ] for a related issue.
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5 Higher spin gravity at A = 1/2

In this section we will discuss the higher spin gravity when A = 1/2, how a natural trun-
cation appears and extended supersymmetry at the linear level.

Let us first briefly remind ourselves of the N' = 2 higher spin supergravity from [?
]. The theory consists of scalar fields and fermions coupled to a gauge sector which is
described by a shs[A] & shs[A] Chern-Simons theory. The Lie algebra shs[A] is generated
by yo (o = 1,2) and k which anti-commutes with the y,. At A = 1 /2 the fundamental
commutator takes a particular simple form in

Yo, yg] = 2ieap(l — (1 — 2\)k) = 2ieqas - (5.1)
The generators of shs[A] can now be written as symmetrized products of (2s — 2) yq, V,(ns)g
(m < |s|) where the spin s = 1,3/2,2,5/2,.... Here 0 = + corresponds to whether we
choose to include a k (o = 4) or not (¢ = —). Further, we introduce Chan-Paton factors
by considering generators of the form

VT @ t, (5.2)

where t, are generators of gl(M). Note that Vo(l)Jr ® 1 = 1® 14 should be decoupled.

At A = 1/2 the operator k does not get generated by the basic commutator (77). As
described in [? | we thus have a special truncation for A = 1/2 via the automorphism taking
k — —k, with corresponding involutive symmetry ¢ taking C[W(l;‘)] = W(—l%), where W is
the general gauge field. Applying this to the case with GL(M)-extended symmetry (and
doing no other truncations i.e. @ = 8 = 0 in the terminology of [? ]), our generators are
VE+ @ ¢, ie. with no k.

This reduces our original ' = 2 supersymmetry generated by G o V3/2+ @ 1), +
V@2~ @1, to the N = 1 symmetry generated by the sum of the two generators G+ G~
i.e. by yo, ® t,. Finally, also the matter states should be reduced, and will only contain
fields with no k.

We thus have gl(M) extended N' = 1 higher spin supersymmetry where at first sight
we can maximally have an N' = 1 supersymmetry algebra.'* Including more than one
spin 3/2 generator will generically generate higher spin operators via (anti-)commutation
relations. It is, however, possible to find an extended supersymmetry algebra in certain
cases. As stated in [? | if we consider the case where M = 2P/ then we have a so(p)-
extended supersymmetry algebra, i.e. the generators form osp(p|2). To see this, let ¢!,
I =1,...,p be the Clifford elements generating gl(2p/ 2) with basic anti-commutator

{¢", 07} = 25" (5.3)

" For notation we call an algebra only consisting of spin one, spin 3/2 and the Virasoro generators for a
supersymmetry algebra. A superalgebra can have higher spin fields, and other spin two content. Further,
in this section we only consider what happens in the bulk, not the actual asymptotic symmetries which will
be discussed in the next section.
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The so(p) algebra is then generated by

M = (¢!, ¢7], (5.4)
and the global modes of the supercharges rotating under this group are

Qh=vya®¢, (5.5)

and the global modes of the stress-energy tensor is

Ty = ¢ {dor s} @ Las (56)
Indeed we see that
{QL. Q1) = 6" Tus + ieasM!’ (5.7)
by using that
(Yo ® ta,ys @t} = Top{tas to} + i€aplta, to) - (5.8)

5.1 D(2,1|a)

Let us briefly note the relation to the D(2, 1|«) algebra discovered in [? | for the case M = 2,
but which can be embedded for all even M-values. At A =1/2 we have a = A/(1 —\) =1
and D(2,1|1) is simply osp(4]2). The supercharges of this algebra however depend on the
existence k and osp(4]2) does not survive the projection. However, a sub-superalgebra
osp(2|2) (i.e. N'=2) does survive the projection, and it has the supercharges

wo(p) - we (00) 59)

which are ikGTt and kG~ in the notation of [? ] up to normalization.’> This is indeed
the so(2)-extended algebra that we found in the last section.

5.2 From so(p) to so(p + 1)-extended supersymmetry algebra

There is, however, a surprise when we consider the case M = 2, i.e. p = 2. Inside the
0sp(4/2) superalgebra we also have an osp(3|2) algebra which is preserved by our reduction.
To get this we simply need to add the generator

o @ ((1) _01> (5.10)

to the two generators in (??). In the notation of [? | this is ik(GT~ + G~T).

15\We have here multiplied the supercharges in [? ] with il;, which does not change the anti-commutators,
to get k independent operators.
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The proposal is now that this is a general feature, i.e. the osp(p|2) superalgebra of [?
] actually is a subalgebra of a osp(p 4 1|2) superalgebra. To see this consider gl(2?/?) in
the tensor representation where the generators are

@@z, §,=0,1,2,3. (5.11)
The p Clifford elements generating gl(2P/?) are

d=¢"=6’2  2220° L - -®1,, a=1,...,p/2, 6=1,2. (5.12)
N———

a—1

Indeed these fulfill (??) and the so(p) algebra is generated by

[, 07 espan{l®@ - @ 1R RLy®-- @1y, (5.13)
190100060 06002010 @ 1y6,,0, = 1,2} ,

for which we count p/2 +4(p42) = p(p—1)/2 elements. The idea is that we can add another
generator

Pl =0t .. @0 . (5.14)

Even with this generator we still have the relation (??) which ensures that the only spin
two generator generated by the supercharges y, ® ¢! with I =1,...,p+ 1 is the Virasoro
tensor. For the commutators of the ¢!s we now have p extra elements

[P, ¢7 " ep=span{lo®-- @ L@’ ®o® @ - © %5 = 1,2} (5.15)

which is a subalgebra and forms a dimension p irreducible representation of so(p). This
is similar to the decomposition so(p + 1) = adj(so(p)) + p and we thus expect this to
be so(p + 1). Finally, we need to check that the supercharges transform in the vector
representation of so(p + 1). Here we see that y, ® ¢PT! is not rotated by so(p), and
under the commutator with p it is taken to y, ® ¢?%, and finally the commutator with p
takes Yo ® ¢7% into y, ® ¢PT1. We thus have the global modes of a so(p + 1)-extended
supersymmetry algebra.

6 Orbifold CFT

In the earlier sections, we have suggested CFT duals of the higher spin supergravity at
A = 1/2 in terms of cosets at critical levels where a free fermion description is possible.
In this section, we will take different approach. We will start from the CFT dual to the
untruncated N' = 2 higher spin supergravity with M x M matrix valued fields and then
perform an orbifold truncation of this CFT dual to the anti-automorphism truncation by
¢ carried out on the bulk side in the last section.

We thus start from the modified coset Grassmannian CFT

SU(N + M)k D SO(QNM)l
SU(N) g B su(M )y ®u(l)y

x su(M)g+n (6.1)
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which we proposed in [? | to be dual to the N’ = 2 higher spin supergravity in the large
N limit with fixed 't Hooft parameter

N

=— 2
A N+kE+M (6.2)

On the bulk side we generally have a map which takes k— —kand A — 1— X and at
A = 1/2 this becomes the anti-automorphism (. On the CFT side, considering only the
Grassmannian coset, we generally have the level-rank duality exchanging & and N which
likewise takes the 't Hooft parameter A — 1 — A. However, on the bulk side we see that the
N = 2 supercharges are being exchanged by k — —k, whereas they are preserved under the
level-rank duality, see [? ]. We thus propose that on the CFT side the dual transformation
is given by level-rank duality together with conjugation and we will also denote this by (.
When k£ = N ie. A = 1/2 this becomes a symmetry of the theory, and to compare with
the bulk side we should consider the orbifold with respect to this Zs automorphism. Note
that £ = N is a non-critical level, but is special in the sense that the level-rank duality is
an automorphism.

6.1 Supersymmetry algebra reduction

In this subsection we will examine how the suggested automorphism acts on the supersym-
metry algebra.

Let us first consider the supercurrents. We use the vertex operator representation as
in [? ] for su(N+ M). We denote the basis of the root vectors in the su(V) direction by e;
with ¢ = 1,..., N, and in the su(M) direction by eyya with A =1,..., M.1% The weight
corresponding to the upper right diagonal in su(N + M) then take the form

at =e; — ENIA - (6.3)

We introduce k(N + M) free scalars ¢f, with I =1,...,N + M and K = 1,...,k having
OPEs

i ()05 (0) ~ 6" Sxcper In |2 (6.4)

We then have the following vertex operator representation of the currents in the off-
diagonal blocks of su(N + M) (in the notation from [? | where the generators of su(N + M)
are denoted t77)

J4 =Jt; nya = Zeia‘i’A'd’K = Zei%_wﬁw ; (6.5)
K K

T4 =Jinjai = Ze_i&Z’AwK - Ze_i(b%—’—wﬁwl ) (6.6)
K K

where co-cycles are suppressed. Of course, the corresponding Sugawara tensor can only be
the standard free scalar Virasoro tensor for k£ = 1, but we do not want to make calculations,
but just see the action of the level-rank duality like in [? |].

'Within this section we use the notation in [? ], which is actually different from the one used in the rest
of paper. With the notation we can easily borrow the results from the paper.
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We also need to bosonize the fermions, introducing M N free scalars

, . 1 :
A = VE+ Ne @0 | gy = T New? . (6.7)
Then the u(M) extended supercharges are (see [? ])
_. \/§ A4 < N+B
GT[t =2 I = === ) T Ok 6.8
[ N+A7N+B] ¢A m;e ( )
\/> B \/i - B N+A
Gt _ve - _ve —igpf —idhtigy 6.9
[tNtANtB] = k+Nw \/mge (6.9)

The level-rank duality acts by exchanging the fields d)A and qﬁN +4 with a sign change,
and transposing ¢} . We thus suggest the ¢ takes the form (with extra signs compared to
the level-rank duality)

Clof) =opil, (o) = —of . (6.10)
We then see that

C(GT[tn+an+s]) = G [tv+an+B] (6.11)

and in the orbifold we should only keep the sum
Gttnsan+B] + G [tN+aAN+B] (6.12)

which on the bulk side exactly correspond to the spin-3/2 operators independent of k.
Let us now consider the spin-one operators. Using that the su(M) currents in the
vertex operator representation has the form

N+A N+B
JtN+A,N+B Z €Z¢ —ioKk 1y, (6.13)

we see that the u(M) extended u(1) current has the form (being careful with signs)
J0= [tNJrA,NJrB] )\JtN+A N+B T )‘ ¢A¢B :
__ iR —¢N+B Ry . i =il
= )\Z.e’K e Wk —|—)\N.Z.eZ e "
7
1 . .
N2 Z eZ¢N+A —iox " + 5 Z AP (6.14)
(2

We see that at A = 1/2 we have

¢TIV tnsants]) = =TV [tvpanin] (6.15)

which fits perfectly with J(l)_[tN+A,N+B] being dual to %(1 — 2\ + 12:) ® tN+AN+B =
%l}: ® tn4+A,N+B on the bulk side. The current dual to 1® t, on the other hand takes the
form

J(1)+[tN+A,N+B] :JtN+A N+B+ : 7%4sz :

= Z eitx M emion —I-Z il emio7 (6.16)
i

and is invariant under ¢ as expected.
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6.2 Check of OPEs

We will now consider the OPEs of the supercurrents using the results of [? | (obtained
via the methods of [? 7 ? |) where these OPEs were successfully compared on both sides
of the duality. The OPEs of the the supercurrents for general A were in the large N limit
calculated to be

2A.

_ 2Cgab
+ ~Y
G ta]()GT[BJ(0) ~o3 75 + 3 (6.17)
+ Sach(2)+[tc] - fach(Q)i[tc] + aAab + %Achac + O(taa tb)
z
where
Agp = ML= N fapSTDF [t + (3 = M) far® — 2506%) TD 7 [t] (6.18)

and O(t,,tp) are derivative terms that can appear when choosing a normal ordering for the
non-linear term 32 A¢ A .. The current J@*[t.] is dual to VDT @t,, and J@+[1,] is the
stress-energy tensor up to a terms 3 go® (M =[¢,]7M~[t,]. The generators t, are those of
su(M) and fu¢ are the corresponding structure constants and s4,°t. = {tq,tp} and finally
Jab = trtaly.

Inserting the suggested supercharges Q! = GT[¢!] + G~ [¢!] we find using (??) and
(??) (ignoring the terms in O(t,,tp))

4e6t) 2A4140 — 2A 4541
I J ¢ ¢ ¢’
Q' (2)Q7(0) ~— 5 + = (6.19)
n 4(51JJ(2)+[]1M] + 8A¢I¢J — 8A¢J¢I + %AC&’AQSIC + %ACQSIA&]C
z
which gives
8kcgo™  JWH[MI] 4TI @ [1y,] + LoD M1
Q'(2)Q”(0) ~ 5+ Z[Q I L 2 M) (6.20)
Treg (100 Fore T [ta] J VT [te] + 5500415 T [ta] T~ [te])

z

For finite N, k the non-linear terms produced here would firstly give JM=JM~ terms
which are unwanted. Secondly, when the non-linear terms act on the supercurrents they
would generate spin 3/2 currents which are not of the Q' form, and these will in turn
generate currents of all spins. We thus do not get a supersymmetry algebra. However, if
we in the large N limit only keep operators that scales such that their central term goes
like N (as in [? ]), we can safely ignore the non-linear terms. In conclusion, in the large
N limit for M = 2P/2 we have an so(p + 1) extended supersymmetry algebra, and this is
invariant under ¢. Actually, we could also see this as a large N limit of Knizhnik’s so(N +1)
extended superconformal algebra [? |.
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6.3 State reduction

Finally, we will consider the coset states dual to the bulk matter fields. The level-rank
duality of the coset states was investigated in [? ]. Let us denote the states of the coset

su(N + M) @so(2NM);
SU(N)krnr @ su(M)grn @ u(l) NAr(N-+M)(N+M-+k)

, (6.21)

by (similar to section 7?7 above)
(AN wi An, Apg,m) (6.22)

The conformal dimension is found by summing the nominator factors and subtracting the
parts from the denominator:

Ap4N

for some integer level n. We will only consider the NS sector where w = 0,2 and the
selection rules then take the form

m = N|Ayia| — (N + M)|Ax| — N(N + M)a, (6.24)
m=—M|Anym|+ (N +M)|Ay| — M(N +M)b .

This defines a and b. Note here that m is here defined modulo NM (N + M)(N + M + k).
We also remember that we have two types of field identifications

T[(ANpar, @5 An, A, m)] =(0(Aya0), 0™ (w); o(Aw), Ay, m = M(N + M + )

JQ[(A]\H_M,W;AN,AM,WL)} I(U(AN+M),UN(W);AN,G(AM),WL—|—N(N+M+k)) ,
(6.25)

where o cycles the Dynkin indices, a;(c(A)) = a;—1(A), and exchanges w = 0, 2.
The level-rank duality, exchanging k£ and N in the coset, then acts as follows [? ]

(AN—i-Ma w3 AN7 AM, m) = (A}SV? Uu(w); A?\H—M? o (]\M)¢ m) 5 (626)
where we need to define u,v and m. v is determined as
v=—a mod (k,M) . (6.27)

We can now determine an integer s =0, ..., M/(k, M) — 1 (and the integer ¢) uniquely by
the equation

—ks/(k, M)+ Mt/(k,M) = (a+wv)/(k,M) . (6.28)
Then w is determined modulo 2 by

w=|Ansar| — |AN|+ (b — Na+ k(k + M)s = [Ansar| — [Ax| + k(k + M)s,  (6.29)
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Table 1.

Chiral state h superpartner h
(f,0;0,f,—N) A=l S (F20f-N) | A=
O2F fFN+M) [ =115 | 00fAN+M) |F2=4
Anti-chiral state h superpartner h
(£,0:0.£,N) | 3=% |5 (120N | HA=2
- = oF ~ 2
0.2/ f-N-M) | =3 | % | (0,0:f,f,-N-M) | 2> =4}

where we in the last equality used £k = N. Further, let a be the “a”

from the selection

rules of the level-rank dualized weight. Then a is determined by s as

a=a+(N+M+Ek)s. (6.30)

Finally, m is the determined from its selection rule, or alternatively compared to the
selection rule for m by

m—m

—_— = d (2)M 31
NiaE o ¢ med® (6-31)
where we have modulo M for M even, and modulo 2M for M odd.
At last, our ¢ should also contain conjugation
Cl(AN1ar,wi Ay, Apg,m)] = (A, 0 (w); Ay 0¥ (Aar), —12) (6.32)

We can now use this on the fundamental states found in [? |. Using (??) (without going
to the vertex operator representation) we see that these states have the supersymmetry
structure displayed in table ??. Using ¢ on these states, we see that it connects the

supermultiplets by taking A — 1 — A:

C[(f?ovoaf_a_N)] (0127f7f7_N_M)7
L0, 25 f, £, N + M)] =(f,0;0, f, N) .

(6.33)

In order to get the first equality, one has to use the field identifications (?7). We note that
the weight for the su(M) factor is kept invariant, which is good since this is the factor we
want to remove from the denominator, see (77).

To compare with the bulk side, we should apply ¢ on the left- and right-moving side at
the same time. Thus, for the fundamental fields, we should only keep linear combinations
such as

(f,0;0,f,—N)® (f,0;0, £, N) + (0,2 f, f, =N — M) ® (0,2; f, f, N + M) , (6.34)

and this directly corresponds to the k independent state on the bulk side.
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6.4 Partition function

A naive analysis on both sides of the duality gives a match of the partition function. On
the bulk side, we should constrain to states independent of k — both for the higher spin
fields and for the matter fields. This means that the partition function is the square root
of the one obtained in [? ], except for the spin-one factor, see section ??. On the CFT side
the same thing should be happening when we assume that ¢ does not change the fusion
rules and we leave out twisted section. This is so, since according to the analysis of [?
| the fusion of the different multiplets will reveal null vectors in such a way that we just
get products of infinite fusions of the fundamental states. When we remove some of these
states, we should simply remove the corresponding products from the partition function.

Note that the method used in this section was very different from the earlier section
and suggests that in the large N limit we have a relation like

su(N + M)y @ so(2N M),

su(N)nym @ su(M)an © a(1) Nar(N+M)yN+M
su(N' + M/2)nry pija @ so(N' M)

x su(M/2)an : 6.35

su(N') nry3nr2 © su(M/2)anr a2 © u(l)k (M/2)anr 10172 (6.35)

| X SU(M>2N/CE

Where the central charges will match in the large N limit if N’ = 2N. For finite N not even
the central charge will match, and corrections to this relation will certainly be necessary.

7 Conclusion and outlook

In this paper, we have proposed a duality between higher spin gravity with N' = p + 1
extended supersymmetry in [? | and the bosonic coset model (??) with £ = N and with
a non-diagonal modular invariant. In order to obtain support for the duality, we have
compared spectrum and symmetry. The partition function of the coset model (??7) with
k = N has been computed in (??) in the large N limit, and it reproduces the gravity
partition function in the form of (??). The symmetry generators of the coset model at
low spins have been constructed explicitly by making use of a (conjectured) relation (?7?).
They are compared with low spin gauge fields in the bulk theory. We can also relate the
bosonic model (??) with the supersymmetric form of the coset in (??) with k = N + M
and with fermions decoupled as in (??). In particular, we have computed the partition
function of the coset (?7) with k = N — M at the large N limit, and shown the agreement
with the gravity partition function (??) up to contributions from free fermions.

We also considered the truncation done in the higher spin gravity in detail and per-
formed a similar truncation on the CFT side to yield another dual theory in the large N
limit. Since this is a truncation by an automorphism, it would be interesting to investigate
the dual CFT as an orbifold model and to see how to obtain twisted sectors in the duality.
Further, also other truncations are possible on the gravity side at A = 1/2. Some of these
preserve the original N' = 2 duality, but reduce the matrix algebra of the Chan-Paton
factors to o(N) or usp(N). One can speculate that the duals are related to the remaining
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cosets in the Kazama-Suzuki table based on these bosonic algebras, i.e.

2N
N = 2 supercoset based on su(j\ofg@l)l(l) (7.1)
and
N
N = 2 supercoset based on sp(IV) (7.2)

su(N) @ u(l)

We will leave this for future work.

A special motivation for studying this duality is to find a relation between 3d higher
spin theory and superstring theory via 2d CFT just like the ABJ triality in [? ]. In order
to see relations to superstring theory, a su(M) factor in the supersymmetric form (?7) is
gauged, and this leads to the Grassmannian Kazama-Suzuki coset (??7). We have shown
that the coset with K = N+ M has N’ = 3 superconformal symmetry. With the large super-
symmetry, only three explicit candidates are known for the target space of dual superstring
theory, such as AdSgx Mz with M7 = (S3xS3xS1)/Zy, SU(3)/U(1) and SO(5)/SO(3). We
have checked the relation to the Kazama-Suzuki model by comparing BPS states and
marginal deformations for the latter two cases. For the first case, we would like to study
its spacetime chiral primaries and moduli parameters as a future work. Detailed investi-
gations on chiral primary states of critical level models would be also important, see [? ?
].

It is necessary to make the relation between superstring theory and the Kazama-Suzuki
model (??) with £ = N + M more concrete. We have shown that there are three moduli
parameters in the critical level model, and we would like to study the dependence of the
deformation parameters. In particular, we have to show that the higher spin symmetry
is broken by these marginal deformations, see [? ? |. The N' = 3 superconformal field
theories with superstring duals have not been specified yet. Even so, there are several works
on the closely related case, namely, the large N' = 4 holography [? ? ? ]|. For instance,
it is argued recently in [? | that corresponding brane configuration would be useful to
identify the dual CFT. There might be several N' = 3 superconformal field theories with a
superstring dual. We expect that one of them is connected by a marginal deformation to
the coset model (??) at the critical level. We would of course like to specify which N' =3
theory is connected to the coset model, however this seems to require a more elaborate
examination of non-BPS states.
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A Partition functions in the ’t Hooft limit

In this appendix we give detailed computations on the partition functions of the coset
models in the ’t Hooft limit.

A.1 The bosonic coset

As preparations we examine the properties of (super) Schur functions. Let us define Schur

functions s, () as

sa(z) =cha(X)= > [[Xi (A1)

TETabg jET

with Tab, as the Young tableau of shape o. Here we set X;; = ;41 and x = (21,22, ...).
According to [? ], we have a formula

H (1- xiyj)il = Z sa(®)sa(y), (A.2)
2,5=1 «

where the sum runs over all possible Young diagrams «. Introducing M sets z(4), y(4) we
have (see appendix C of [? ])

M %)
IT TT -yt =3 sala®, ..., a®)s,(y D, ..y 0D). (A.3)
A,B=14,j=1 o
Using
sa(®y) =Y y55(x)s,(y) (A.4)
By
repeatedly, we find
M
salzW, ey = 3" oy T saa@™), (A.5)
Q15 N A=1

where we have used (?7). Setting

A ; A _h4i

x§+)1 =¢"", yz(+% =g (A.6)

for all A = 1,...,M, the one-loop partition function for a bulk real scalar field can be
written as

M2
N 1 WM (N ph M~
Zscalar(q) = H W = ZBJ (Q)Boz7 (Q> . <A7)
i,j=0 @

Here B (q) was defined in (??).
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Defining skew Schur functions s, /5(x) = >_ c§, sy(2), we have a formula [? ]

Z Sp/w Sp /u ) H(l + ZiYj Z S t/fr 8>\/Tt (y) . (AS)
7]
Setting
T = (x(l)a cee 'CL‘(M)) ) y= (y(l)) cey y(M)) ) ’5:2 - yz(—l—i - q3/4+i ) (Ag)
we find

M ,M i S M 7]\4
ZBgfit VB2 M (q) = (H Z})) ZB?’{fﬁt BY5" () (A.10)
s=2

Bujs =
arrive at (?77) as we will see below.

Here we have defined Z cﬂvBh M The above formula plays an important role to

Next let us define super Schur functions

Sa(z|€) = schy (X) = Z H Xji(—1), (A.11)

TeSTab, j€T

as in (A.6) of [? |, where STab, denote the Young supertableau of shape a. Here
Xoigi = Tit1, AXoiv12i01 = it1 (A.12)

and £ = (£1,&2,...). The super Schur functions satisfy (see (A.8) of [? ])

A= zim) A = ¥i&) _ N~ (e
i 50 e — 2 selel)saluln). (A.13)

]

(e}

Using

sa(,yl6m) =Y, s3(x1€)sy (yln), (A.14)
Byy

repeatedly as above, we have

M
sa(a, . aMeW ey = N e T Saa @€ (A.15)
[e A FTIPNe3.Y) A=1
Setting
Eﬁ — gt dfi _ _qh+1/2+i, y2(+) — g+ m(f) qh+1/2+i (A.16)

forall A=1,..., M, we find
M?2

h4-1/2+i ~h+j h+izh+1/24j
Qo ™ " TE U Edma T T ) S M (ghig), (A7)

'Ho (1 — ghtigh+a)(1 — ght1l/2+igh+1/2+5)
7‘7.]:
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where Bi™ (¢) defined in (?7?).
With the help of (A.7) of [? ]

Sa(2]€) = sat (=€ — ), (A.18)
we have
Sa(®) = sa(z[0),  sat(§) = 5a(0] = ). (A.19)
With (?7), this leads to
—0) =) csp(x)s(f). (A.20)
By
Setting
xr = (x(l)a"'vx(M))7 5 = (6(1)77§(M))7 xif% - q i? 5 h+1/2+Z (A21)
we find
BEM(q) =" e, BRM (o) BET M (g) (A.22)
Bry
Using (?7?), we can show
z BY M@ B S (@) = Y S,y BY M (q)BY M (q) = Y e B (g) (A23)
70,6 ¥

as in (A.7) of [?7 ].
With the above preparations we can now derive (??) from (??) by closely following
the analysis in appendix A of [? |. We can show that

_1Eh+ET .
Yoot > O By 0By () (A.24)
v

=€
1ol 54 0r 4M 4M 4,M
:Z ¢ By @B (@BUM (@B (0).
ST

Here we have used |o| = S0 | |aa| when oy . oy, 18 non-zero. With (??) we find

M M IANHIAT @ 2] (N (N (41,6) 3/4,M 3/4,M
xXa (2) =o' (a) qﬂ; K i R o oo.aon Bl M (@B M (q), (A.25)
b T?’Y?

where we have utilized (??) and x}!(q) is defined in (??). Asin [? ? ] we assume

t ¢
RS\JZ,) = TALGITAT®T C(]é)l(’ty 6?207@") — 5Z¢l)t(5gr (A.26)

at the large N limit, where 7,43 are the restriction coefficients for gl(co). Using (C.33) of
(7 ] (see (3.59) of [? | for M =1)

BYM (g) ZWBV 2M ), (A.27)

we arrive at (??). For M = 1 the expression reproduces (3.20) of [? | except that the
Young diagrams are not transposed here. This is because we are using the dual expression
of the coset as in (77).
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A.2 The supersymmetric coset

Let us move to the one-loop partition function of the supersymmetric coset (?7). For the
case we need more properties of super Schur functions defined in (??). With (??) and (77?),

we obtain
S alel€)syuloln) = [T rs e S sy ol lole) (429
14 7] T

by repeating the analysis in [? ]. Using
t
Su/r(® ZcATsA 7€) = Y hipesn (€l = 2) = s/ (~€ — ), (A.29)
A
we find

5 el o) = [ {0 Y sy al€)sseymloln). - (A30)

5
Setting
z=@W, .2y oy =W,y =W, D)y =W, D)
w) =y =g gl =l = gt (A.31)
we have
B8 () = YV (@) B @B (A.32)
5
with BZ/J\/;[ > €3y By P and
0o 2M?
yM(g) = (H 25 (@)2) <q>) (25 (@)™ (2 ()™ . (A.33)
s=2

With the above properties we derive (?7) from (?7). We first focus on the M = 1 case
and then move to generic M # 1 case. As in the bosonic case, we obtain

_IEh+ET x
Soam 1 SO schgiy (U o)schigry: (Ui 12) (A.34)
=) v

_l@t]er]
= Z q 4 SCh((I)l)t/,yt (U3/4)SChEl/7Tt (u1/4)SCh(El)t/,Yt (u1/4)SCh(q>r)t/7Tt (US/4) .

=y

Here we have used sch,/5(Up) = 3_., 3, schy(Up). Defining

By (g) = clsche(Usa)schs (U 14) (A-35)
€,0
we have
Zsch(q>z) £/t t(Usyq)schy ) (U g) = Z Eﬁ) 1/42 . (A.36)
v
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With (?77?) we then arrive at

IANHAT 19N = 127] (N) (N) (4,6 51/4, 1/4,
sxh(@) = 3@ @ Y. g i R Ol o lo.om Bt (@B5 ().

OLO" .6
(A.37)
Under the assumption (?7?), this expression reduces to
1 [AL+]AT |2t~ |27 1/4,2, ~51/4,2
@ =30 @Y a T raerae B @Ba(@).  (A38)
PL,pr
Notice that
sa(ug) = ¢, (A.39)
where we have defined uy = (¢'%,...,¢"/%,0,0,...]0,0,...) with M non-zero entries.
Then we find
|Al| X 1yt
Zq TAlq>lBl/42 Z ca;lcei Sa(u )schg(U3/4)sch5(Z/{1/4) (A.40)
ol dle,s
! 1
Z Cé‘qﬂcg@asa(ué)sehe(u3/4)sch5(ul/4)
dlie,a,8
1/4,2
= Z c&plSCh@l (2/{1/4)sch5(u1/4) B (@),
il

which leads to (?7) with M = 1.
For generic M # 1, we can easily arrive at

[AY AT~ |2l — |27 -
SN @ =B @E @ > a T e Bt @B (@)

Bl,Pr
(A.41)
with
BUYM (g) = 3 e BHAM ()8 M (). (A.42)
€,0
Using
M
rag = _ ¢35y (ull), @V sa() = sa(u))y = D 0 o T saalug), (A43)
ol Q1,00 A=1
we obtain
Al —jeh .
Zq T ornaBi (@) = Y chpehsa(ul)BIM ()8 (g) (A.44)
®l e,
. Z 5@31/4 M 1/4,M(q) _ 311\{472M(Q) ,
o5

thus we finally have (??) also for M > 1.
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B Symmetry generators of coset models

B.1 Conventions for su(M) currents

With the decomposition (77?)
su(N + M) =su(N) @su(M)®u(l)® (N, M) & (N, M) (B.1)

the generators can be written as (to‘,tp,tu(l),t(“i),t(ai)). We adopt the following normal-
ization as

tr(tt%) = 098, tr(tPt7) = 677, (W) =1 tr(¢(@¢@)) = geagi - (B.2)

where the trace is taken over the fundamental representation of su(N + M). Using
(er7)kL = 01x07L, We may express

N M
1

(1) — M eii — N e , N B.3

NM(N 1 M) z_: 2 C0v0v) (B:3)

") = €a(N+7) > 1) = C(N+i)a - (B.4)

The nontrivial structure constants are given by

N+ M
NM
Zfa a7)(bj) _ 5bbt°‘ 525 pr(az)( 7)) — 5abtp UGS (B.6)

ifoPrjfeeT Z‘fll(l)(af)(f?j) — 5ab5m (B.5)

For the computation of operator products, it is useful to use the following formulas

ZfABCfDBC = (N + M)§AP (B.7)
B,C

Z fABCfCDE + ZfDBCfCEA + Z fEBCfCAD =0 (BS)
C c C

on the structure constants of su(N + M) and
1
Z tgbt?d ad(scz B N(Sagéccz (Bg)
on the generators of su(V).

B.2 N =1 superconformal generator of the dual coset
The coset (??7) with £ = N, that is

su(N)n @ su(N)y
su(N)N+m

(B.10)

has the central charge

(N?-1) M(3N + M)
2 (N+M)2N+M)’

cp = (B.11)
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and is known to have A/ = 1 enhanced supersymmetry [? ? ]. The A/ = 1 superconformal
current is explicitly constructed in [? ? ]. Here we summarize their results.

In the numerator of (?7), the sector of su(/N)y can be described by free fermions U
(a = 1,2,...,N? — 1), and the su(N)y currents are given by J& in (??). The su(N)y
currents in the numerator are generated by K% with OPEs

MG T if T (w)
(z - w)? |

K(2) K5 (w) ~ (B.12)

zZ—w
Then the sector of su(N)y4as in the denominator is generated by J{* + K. The energy
momentum tensor is given in terms of the Sugawara operators as

Tp = Ty 4 ™ — 1) (B.13)

1 1 1
= — o Jo - KO‘KO[ e « KCM « KC\{ .
4Nza:‘]1 S 2(N + M) za: 2(2N+M)Z(J1 RS+ KT

«

The N = 1 superconformal generator is constructed as [? ? |

M
3v/N(N + M)2N + M)

Gp=C) (qﬂjla - 32%&}(&) , C= (B.14)

The relative coefficient is fixed such that the generator has a regular OPE with the
su(N)n4as current in the denominator of (??). The overall coefficient C' is set to have

2¢p/3 2Tp(w)
(z—w)?  z-—w’

Gp(2)Gp(w) ~

(B.15)

which is the OPE for N’ = 1 superconformal generator.

B.3 N = 3 superconformal algebra

The N = 3 superconformal algebra is generated by the spin 2 energy momentum tensor
T(z), three spin 3/2 super currents G%(z), three spin 1 currents J%(z) and a spin 1/2
fermion ¥(z). The OPEs among them are (see, e.g., [? ])

T()T(w) ~ ¢ c_/i>4 (,ST—(Z;Q + iT_(lfU) : (B.16)
G(2)G(w) ~ 69 ( (22_0/3)3 + i{“ﬁ) + g ( (i‘]_c(z)é + ‘?ﬁ?) . (B.I7T)
J4(2)J" (w) ~ (Zk_éa;)Q + ie“;’cif}w) : (B.18)
T (2)G(w) ~ \/(iéibig;”) + ie“chzf]w) : (B.19)
W (2)G(w) ~ w (B.20)
B(2)T(w) ~ Z_lw. (B.21)
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B.4 OPE between an N = 3 superconformal generator

We would like to show that the generator G* in (?7) satisfies the operator product (?7).
Through this paper, we implicitly use the normal ordering as

(AB)(w) = —— 7{ @ () Bw), (B.22)

211 r—w

when two operators are inserted at the same point. Then we have

D05 =N P = ) ~ ”{“_Vw;” (B.23)
b ST — 2UF) + (JSIF) + () + 2M(OUT) — 2(J5)] (w)
and
D = 7)) O = ) ~ QJY(MU;” (B.24)
b ST 2RI 2TE) + (JEIE) + (1757) + 2N(@UPR) — 2(J55°)] (w)

zZ— W

Moreover we find
2N M
(z —w)?

[(ju(l)ju(l)) + (0O Lo A (@E O gub) Q(ju(l)ju(l))} (w).

(\I,H(l)(ju(l) _ ju(l)))(z)(gju(l)(ju(l) _ ju(l)))(w) ~ (B.25)

Z—w

It is useful to rewrite the energy momentum tensor in (??) as

1 az) 7(bj) . : 2 7 (1) ;u(1)
T=—— |26 :6:; —2 Y T ) PPy — = (Jul)u
4(N+M) 6ab6'5](‘]2 ‘]2 ) ;(J J ) ;(J J ) NM<J J )
1 5,505 N N (B
_ Z(gpu@) gypu@)y _ Zab®eg (a2) o (b)Y _ (a2) gy (b5)
S (U gyn)) — Jao [(qf w9y — (9u)y )} (B.26)
4 757' ar bj ar) ;. (bj
— S W( )iy — (9 )wam)} :
where we have defined as
T =3 wew g sae N pegtiy glan) (B.27)
a p

Jz(z_zi) _ Z 5&(1\1/@1«:2%\1;(5@') + Z \I;pq/(ﬁj)t%(sii )
P

(67

The formula in (??) is useful to arrive at this expression. With the following identity as
805 (S ID) = = ST ((JRIS) + MWW = 3 [(JI5) + N(0Pou?)]
o P
(N — %)+ (M- 5)

_ d 5,30 (U@ w®)) — QU g (B.2g)

=zl
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the expression (?7) can be reduced to

—# _ Qo a ay (e 3o (o Yo't e teY
T—4<N+M>§[ 2(JPJ8") — 2M(TOOT*) — 2(J°*) + (J5JS) + (5°5%)]
1
- = —2UJTPTIPY — 2N (TPHTPY — 2(JP 4P P yp 0P B.2
+4(N+M);[ (J{J) = 2N (WPOW?) = 2(J°5°) + (J§J) + (7°3))  (B.29)
5 - B 1
_ u(l) ju()y _ o ju@) ju@)y _ (su@)u@)y] = gu®) ggu)
g 2005 0) = (JHOJ0) = (a0 | S Down)
With the above equation we can show that the operator product of G in (??) is given by
(7?).
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