

GROTHENDIECK-TEICHMÜLLER AND BATALIN-VILKOVISKY

SERGEI MERKULOV AND THOMAS WILLWACHER

ABSTRACT. It is proven that, for any affine supermanifold M equipped with a constant odd symplectic structure, there is a universal action (up to homotopy) of the Grothendieck-Teichmüller Lie algebra \mathfrak{grt}_1 on the set of quantum BV structures (i. e. solutions of the quantum master equation) on M .

1. Introduction

The Grothendieck-Teichmüller group GRT_1 is a pro-unipotent group introduced by Drinfeld in [Dr]; we denote its Lie algebra by \mathfrak{grt}_1 . It is shown in this paper that, for any affine formal \mathbb{Z} -graded manifold M over a field \mathbb{K} equipped with a constant degree 1 symplectic structure ω , there is a universal action (up to homotopy) of the group GRT_1 on the set of quantum BV structures on M , that is, on the set of solutions, S ,

$$\hbar\Delta S + \frac{1}{2}\{S, S\} = 0,$$

of the quantum master equation on M (see [Sc] for an introduction into the geometry of the BV formalism). This action is induced by, in general, homotopy non-trivial L_∞ automorphisms of the corresponding dg Lie algebra $(\mathcal{O}_M[[\hbar]], \hbar\Delta, \{ , \})$, where \mathcal{O}_M is the ring of (formal) smooth functions M , and $\mathcal{O}_M[[\hbar]] := \mathcal{O}_M \otimes_{\mathbb{K}} \mathbb{K}[[\hbar]]$.

Our main technical tool is a version of the Kontsevich graph complex, $(GC_2[[\hbar]], d_\hbar)$ which controls universal deformations of $(\mathcal{O}_M[[\hbar]], \hbar\Delta, \{ , \})$ in the category of L_∞ algebras. Using the main result of [Wi] we show in Sect. 2 that

$$H^0(GC_2[[\hbar]], d_\hbar) \simeq \mathfrak{grt}_1.$$

In Sect. 3 we explain how to use this isomorphism of Lie algebras to define a universal homotopy action of \mathfrak{grt}_1 on the set of quantum BV structures on any affine odd symplectic manifold M .

2. A variant of the Kontsevich graph complex

2.1. From operads to Lie algebras. Let $\mathcal{P} = \{\mathcal{P}(n)\}_{n \geq 1}$ be an operad in the category of dg vector spaces with the partial compositions $\circ_i : \mathcal{P}(n) \otimes \mathcal{P}(m) \rightarrow \mathcal{P}(m+n-1)$, $1 \leq i \leq n$. Then the map

$$\begin{aligned} [,] : \quad \mathcal{P} \otimes \mathcal{P} &\longrightarrow \mathcal{P} \\ (a \in \mathcal{P}(n), b \in \mathcal{P}(m)) &\longrightarrow [a, b] := \sum_{i=1}^n a \circ_i b - (-1)^{|a||b|} \sum_{i=1}^m b \circ_i a \end{aligned}$$

makes the vector space $\mathcal{P} := \bigoplus_{n \geq 1} \mathcal{P}(n)$ into a dg Lie algebra [KM]; moreover, the bracket restricts to the subspace of invariants $\mathcal{P}^S := \bigoplus_{n \geq 1} \mathcal{P}(n)^{\mathbb{S}_n}$ making it into a dg Lie algebras as well.

2.2. An operad of graphs and the Kontsevich graph complex. For any integers $n \geq 1$ and $l \geq 0$ we denote by $\mathcal{G}_{n,l}$ a set of graphs¹, $\{\Gamma\}$, with n vertices and l edges such that (i) the vertices of Γ are labelled by elements of $[n] := \{1, \dots, n\}$, (ii) the set of edges, $E(\Gamma)$, is totally ordered up to an even permutations. For example, $\in \mathcal{G}_{2,1}$. The group \mathbb{Z}_2 acts freely on $\mathcal{G}_{n,l}$ by changes of the total ordering; its orbit is

¹A *graph* Γ is, by definition, a 1-dimensional CW-complex whose 0-cells are called *vertices* and 1-dimensional cells are called *edges*. The set of vertices of Γ is denoted by $V(\Gamma)$ and the set of edges by $E(\Gamma)$.

denoted by $\{\Gamma, \Gamma_{opp}\}$. Let $\mathbb{K}\langle G_{n,l} \rangle$ be the vector space over a field \mathbb{K} spanned by isomorphism classes, $[\Gamma]$, of elements of $G_{n,l}$ modulo the relation² $\Gamma_{opp} = -\Gamma$, and consider a \mathbb{Z} -graded \mathbb{S}_n -module,

$$Gra(n) := \bigoplus_{l=0}^{\infty} \mathbb{K}\langle G_{n,l} \rangle [l].$$

Note that graphs with two or more edges between any fixed pair of vertices do not contribute to $Gra(n)$ so that we could have assumed right from the beginning that the sets $G_{n,l}$ do not contain graphs with multiple edges. The \mathbb{S} -module, $Gra := \{Gra(n)\}_{n \geq 1}$, is naturally an operad with the operadic compositions given by

$$\begin{aligned} \circ_i : \quad Gra(n) \otimes Gra(m) &\longrightarrow \quad Gra(m+n-1) \\ \Gamma_1 \otimes \Gamma_2 &\longrightarrow \sum_{\Gamma \in G_{\Gamma_1, \Gamma_2}^i} (-1)^{\sigma_{\Gamma}} \Gamma \end{aligned}$$

where G_{Γ_1, Γ_2}^i is the subset of $G_{n+m-1, \#E(\Gamma_1)+\#E(\Gamma_2)}$ consisting of graphs, Γ , satisfying the condition: the full subgraph of Γ spanned by the vertices labeled by the set $\{i, i+1, \dots, i+m-1\}$ is isomorphic to Γ_2 and the quotient graph, Γ/Γ_2 , obtained by contracting that subgraph to a single vertex, is isomorphic to Γ_1 . The sign $(-1)^{\sigma_{\Gamma}}$ is determined by the equality

$$\bigwedge_{e \in E(\Gamma)} e = (-1)^{\sigma_{\Gamma}} \bigwedge_{e' \in E(\Gamma_1)} e' \wedge \bigwedge_{e'' \in E(\Gamma_2)} e''.$$

The unique element in $G_{1,0}$ serves as the unit element in the operad Gra . The associated Lie algebra of \mathbb{S} -invariants, $((Gra\{-2\})^{\mathbb{S}}, [\ , \])$ is denoted, following notations of [Wi], by fGC_2 . Its elements can be understood as graphs from $G_{n,l}$ but with labeling of vertices forgotten, e.g.

$$\bullet \text{---} \bullet = \frac{1}{2} \left(\begin{smallmatrix} 1 & 2 \\ \bullet & \bullet \end{smallmatrix} + \begin{smallmatrix} 2 & 1 \\ \bullet & \bullet \end{smallmatrix} \right) \in fGC_2.$$

It is easy to check that $\bullet \text{---} \bullet$ is a Maurer-Cartan element in the Lie algebra fGC_2 . Hence we get a dg Lie algebra,

$$(fGC_2, [\ , \], d) := [\bullet \text{---} \bullet, \]$$

whose dg subalgebra, GC_2 , spanned by connected graphs with at least trivalent vertices is called the *Kontsevich graph complex* [Ko1]. We refer to [Wi] for a detailed explanation of why studying the dg Lie subalgebra GC_2 rather than full Lie algebra fGC_2 should be enough for most purposes. The cohomology of GC_2 was partially computed in [Wi].

2.2.1. Theorem [Wi]. (i) $H^0(GC_2, d) \simeq \mathfrak{grt}_1$. (ii) For any negative integer i , $H^i(GC_2, d) = 0$.

This result implies that the Grothendieck-Teichmüller group GRT_1 acts on the set of Poisson structures on an arbitrary manifold.

We shall introduce next a new graph complex which is responsible for the action of GRT_1 on the set of quantum master functions on an arbitrary odd symplectic supermanifold.

2.3. A variant of the Kontsevich graph complex. The graph $\in fGC_2$ has degree -1 and satisfies

$$[\text{---} \bullet, \text{---} \bullet] = [\text{---} \bullet, \bullet \text{---} \bullet] = 0.$$

Let \hbar be a formal variable of degree 2 and consider the graph complex $fGC_2[[\hbar]] := fGC_2 \otimes \mathbb{K}[[\hbar]]$ with the differential

$$d_{\hbar} := d + \hbar \Delta, \quad \text{where} \quad \Delta := [\text{---} \bullet, \].$$

The subspace $GC_2[[\hbar]] \subset fGC_2[[\hbar]]$ is a subcomplex of $(fGC_2[[\hbar]], d_{\hbar})$.

2.3.1. Proposition. $H^0(GC_2[[\hbar]], d_{\hbar}) \simeq \mathfrak{grt}_1$.

²Abusing notations we identify from now an equivalence class $[\Gamma]$ with any of its representative Γ .

Proof. Consider a decreasing filtration of $\text{GC}_2[[\hbar]]$ by the powers in \hbar . The first term of the associated spectral sequence is

$$\mathcal{E}_1 = \bigoplus_{i \in \mathbb{Z}} \mathcal{E}_1^i, \quad \mathcal{E}_1^i = \bigoplus_{p \geq 0} H^{i-2p}(\text{GC}_2, d) \hbar^p$$

with the differential equal to $\hbar \Delta$. As $H^0(\text{GC}_2, d) \simeq \mathfrak{grt}_1$ and $H^{\leq -1}(\text{GC}_2, d) = 0$, we get the desired result. \square

2.4. Remark. Let σ be an element of \mathfrak{grt}_1 and let $\Gamma_\sigma^{(0)}$ be any cycle representing the cohomology class σ in the graph complex (GC_2, d) . Then one can construct a cycle,

$$(1) \quad \Gamma_\sigma^\hbar = \Gamma_\sigma^{(0)} + \Gamma_\sigma^{(1)} \hbar + \Gamma_\sigma^{(2)} \hbar^2 + \Gamma_\sigma^{(3)} \hbar^3 + \dots,$$

representing the cohomology class $\sigma \in \mathfrak{grt}_1$ in the complex $(\text{GC}_2[[\hbar]], d_\hbar)$ by the following induction:

1st step: As $d\Gamma_\sigma^{(0)} = 0$, we have $d(\Delta\Gamma_\sigma^{(0)}) = 0$. As $H^{-1}(\text{GC}_2, d) = 0$, there exists $\Gamma_\sigma^{(1)}$ of degree -2 such that $\Delta\Gamma_\sigma^{(0)} = -d\Gamma_\sigma^{(1)}$ and hence

$$(d + \hbar \Delta) \left(\Gamma_\sigma^{(0)} + \Gamma_\sigma^{(1)} \hbar \right) = 0 \bmod O(\hbar^2).$$

n-th step: Assume we have constructed a polynomial $\sum_{i=1}^n \Gamma_\sigma^{(i)} \hbar^i$ such that

$$(d + \hbar \Delta) \sum_{i=1}^n \Gamma_\sigma^{(i)} \hbar^i = 0 \bmod O(\hbar^{n+1}).$$

Then $d(\Delta\Gamma_\sigma^{(n)}) = 0$, and, as $H^{-2n-1}(\text{GC}_2, d) = 0$, there exists a graph $\Gamma_\sigma^{(n+1)}$ in GC_2 of degree $-2n-2$ such that $\Delta\Gamma_\sigma^{(n)} = -d\Gamma_\sigma^{(n+1)}$. Hence $(d + \hbar \Delta) \sum_{i=1}^{n+1} \Gamma_\sigma^{(i)} \hbar^i = 0 \bmod O(\hbar^{n+2})$.

It is these \hbar -dependent additions to Γ_σ^\hbar in Γ_σ^\hbar which make the action of GRT_1 on quantum master functions different from its action on Poisson structures.

3. Quantum BV structures on odd symplectic manifolds

3.1. On L_∞ automorphisms of L_∞ algebras. Let $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}^i$ be a \mathbb{Z} -graded Lie algebra admitting a bounded above complete Hausdorff filtration, $\mathfrak{g}^i = \mathfrak{g}_{(0)}^i \supset \mathfrak{g}_{(1)}^i \supset \mathfrak{g}_{(2)}^i \supset \dots$, and let $\mathcal{MC}(\mathfrak{g}) := \{\gamma \in \mathfrak{g}^1 \mid [\gamma, \gamma] = 0\}$ be the associated set of Maurer-Cartan elements. The group $G_{(1)} := \exp \mathfrak{g}_{(1)}^0$ acts naturally on $\mathcal{MC}(\mathfrak{g})$,

$$\begin{aligned} G_{(1)}^0 \times \mathcal{MC}(\mathfrak{g}) &\longrightarrow \mathcal{MC}(\mathfrak{g}) \\ (e^g, \gamma) &\longrightarrow e^{-g} \gamma e^g. \end{aligned}$$

We are interested in the particular case when \mathfrak{g} is the Lie algebra, $CE^\bullet(V, V)$, of coderivations

$$CE^\bullet(V, V) = (\text{Coder}(\odot^{\bullet \geq 1}(V[2])), [\ , \]), \quad CE^\bullet(V, V)_{(m)} := \text{Hom}(\odot^{\bullet \geq m+1}(V[2]), V[2]),$$

of the standard graded co-commutative coalgebra, $\odot^{\bullet \geq 1}(V[2])$, co-generated by a vector space V . Then the set $\mathcal{MC}(CE^\bullet(V, V))$ can be identified with the set of L_∞ structures³ on the space V . Any element $\gamma \in CE^\bullet(V, V)$ defines a differential, $d_\gamma := [\gamma, \]$ in $CE^\bullet(V, V)$, and any element $g \in \text{Ker } d_\gamma \cap CE^0(V, V)_{(1)}$ defines an automorphism of $\mathcal{MC}(CE^\bullet(V, V))$ which leaves the point γ invariant. Such an element e^g can be interpreted as a L_∞ automorphism of the L_∞ algebra (V, γ) . Moreover, if the cohomology class of g in $H(CE^\bullet(V, V), d_\gamma)$ is non-trivial, then this L_∞ automorphism is obviously homotopy non-trivial.

³In our grading conventions the degree of n -th L_∞ operation on V is equal to $3 - 2n$.

3.2. Quantum BV manifolds. Let M be a (formal) \mathbb{Z} -graded manifold equipped with an odd symplectic structure ω (of degree 1). There always exist so called Darboux coordinates, $(x^a, \psi_a)_{1 \leq a \leq n}$, on M such that $|\psi_a| = -|x^a| + 1$ and $\omega = \sum_a dx^a \wedge d\psi_a$. The odd symplectic structure makes, in the obvious way, the structure sheaf \mathcal{O}_M into a Lie algebra with brackets, $\{ , \}$, of degree -1 . A less obvious fact is that ω induces a degree -1 differential operator, Δ_ω , on the invertible sheaf of semidensities, $Ber(M)^{\frac{1}{2}}$ [Kh]. Any choice of a Darboux coordinate system on M defines an associated trivialization of the sheaf $Ber(M)^{\frac{1}{2}}$; if one denotes the associated basis section of $Ber(M)^{\frac{1}{2}}$ by $D_{x,\psi}$, then any semidensity D is of the form $f(x, \psi)D_{x,\psi}$ for some smooth function $f(x, \psi)$, and the operator Δ_ω is given by

$$\Delta_\omega(f(x, \psi)D_{x,\psi}) = \sum_{a=1}^n \frac{\partial^2 f}{\partial x^a \partial \psi_a} D_{x,\psi}.$$

Let \hbar be a formal parameter of degree 2. A *quantum master function* on M is an \hbar -dependent semidensity D which satisfies the equation

$$\Delta_\omega D = 0$$

and which admits, in some Darboux coordinate system, a form

$$D = e^{\frac{S}{\hbar}} D_{x,\psi},$$

for some $S \in \mathcal{O}_M[[\hbar]]$ of total degree 2. In the literature it is this formal power series in \hbar which is often called a quantum master function. Let us denote the set of all quantum master functions on M by $\mathcal{QM}(M)$. It is easy to check that the equation $\Delta_\omega D = 0$ is equivalent to the following one,

$$(2) \quad \hbar \Delta S + \frac{1}{2} \{S, S\} = 0,$$

where $\Delta := \sum_{a=1}^n \frac{\partial^2}{\partial x^a \partial \psi_a}$. This equation is often called the *quantum master equation*, while a triple $(M, \omega, S \in \mathcal{QM}(M))$ a *quantum BV manifold*.

Let us assume from now on that a particular Darboux coordinate system is fixed on M up to affine transformations⁴.

3.3. An action of GRT_1 on quantum master functions. The vector space $V := \mathcal{O}_M[[\hbar]]$ is a dg Lie algebra with the differential $\hbar \Delta$ and the Lie brackets $\{ , \}$. These data define a Maurer-Cartan element, $\gamma_{\mathcal{QM}} := \hbar \Delta \oplus \{ , \}$ in the Lie algebra $CE^\bullet(V, V)$.

The constant odd symplectic structure on M makes V into a representation,

$$\begin{array}{ccc} \rho: & \mathsf{Gra}(n) & \longrightarrow \mathsf{End}_V(n) = \mathrm{Hom}(V^{\otimes n}, V) \\ & \Gamma & \longrightarrow \Phi_\Gamma \end{array}$$

of the operad $\mathsf{Gra} := \{\mathsf{Gra}(n)\}_{n \geq 1}$ as follows:

$$\Phi_\Gamma(S_1, \dots, S_n) := \pi \left(\prod_{e \in E(\Gamma)} \Delta_e (S_1(x_{(1)}, \psi_{(1)}, \hbar) \otimes S_2(x_{(2)}, \psi_{(2)}, \hbar) \otimes \dots \otimes S_n(x_{(n)}, \psi_{(n)}, \hbar)) \right)$$

where, for an edge e connecting vertices labeled by integers i and j ,

$$\Delta_e = \sum_{a=1}^n \frac{\partial}{\partial x_{(i)}^a} \otimes \frac{\partial}{\partial \psi_{(j)a}} + \frac{\partial}{\partial \psi_{(i)a}} \otimes \frac{\partial}{\partial x_{(j)}^a}$$

and π is the multiplication map,

$$\begin{array}{ccc} \pi: & V^{\otimes n} & \longrightarrow V \\ & S_1 \otimes S_2 \otimes \dots \otimes S_n & \longrightarrow S_1 S_2 \cdots S_n. \end{array}$$

⁴This is not a serious loss of generality as any quantum master equation can be represented in the form (2). Our action of GRT_1 on $\mathcal{QM}(M)$ depends on the choice of an affine structure on M in exactly the same way as the classical Kontsevich's formula for a universal formality map [Ko2] depends on such a choice. A choice of an appropriate affine connection on M and methods of the paper [Do] can make our formulae for the GRT_1 action invariant under the group of symplectomorphisms of (M, ω) ; we do not address this *globalization* issue in the present note.

This representation induces in turn a morphism of dg Lie algebras,

$$(\mathbf{GC}_2[[\hbar]], [\ , \], d_\hbar) \longrightarrow (CE^\bullet(V, V), [\ , \], \delta := [\gamma_{\mathcal{QM}}, \]),$$

and hence a morphism of their cohomology groups,

$$\mathfrak{grt}_1 \simeq H^0(\mathbf{GC}_2[[\hbar]], d_\hbar) \longrightarrow H^0(CE^\bullet(V, V), \delta).$$

Let σ be an arbitrary element in \mathfrak{grt}_1 and let Γ_σ^\hbar be a cycle representing σ in the graph complex $(\mathbf{GC}_2[[\hbar]], d_\hbar)$. For any $u \in \mathbb{R}$ the adjoint action of $e^{u\Phi_{\Gamma_\sigma^\hbar}} \in G_{(1)}$ on $CE^\bullet(V, V)$ (see §3.1) can be interpreted as a L_∞ automorphism,

$$F^\sigma = \{F_n^\sigma : \odot^n V \longrightarrow V[2 - 2n]\}_{n \geq 1},$$

of the dg Lie algebra $(V, \hbar\Delta, \{ \ , \ \})$ with $F_1^\sigma = \text{Id}$. Hence, for any real analytic quantum master function $S \in \mathcal{QM}(M)$ and sufficiently small $u \in \mathbb{R}^+$, the series

$$S^\sigma := S + \sum_{n \geq 2} \frac{1}{n!} F_n^\sigma(S, \dots, S)$$

if convergent, gives again a quantum master function. This is the acclaimed homotopy action of GRT_1 on $\mathcal{QM}(M)$ for any affine odd symplectic manifold M .

3.4. Remark. In QFT one often works with quantum master functions S which are formal power series in the Darboux coordinates rather than real analytic functions. In that case one should view u as a degree 0 formal parameter so that the adjoint action of $e^{u\Phi_{\Gamma_\sigma^\hbar}} \in G_{(1)}$ on $C^\bullet(V, V)[[u]]$ gives a continuous (in the adic topology) L_∞ automorphism of the dg Lie algebra $(V[[u]], \hbar\Delta, \{ \ , \ \})$, and hence induces a transformation of master functions from $\mathcal{O}_M[[u, \hbar]]$.

REFERENCES

- [Do] V. Dolgushev, *Covariant and Equivariant Formality Theorems*, Adv. Math., Vol. **191**, 1 (2005) 147-177.
- [Dr] V. Drinfeld, *On quasitriangular quasi-Hopf algebras and a group closely connected with $\text{Gal}(\bar{Q}/Q)$* , Leningrad Math. J. **2**, No. 4 (1991), 829-860.
- [KM] M. Kapranov and Yu.I. Manin, *Modules and Morita theorem for operads*, Amer. J. Math. **123** (2001), no. 5, 811-838.
- [Kh] H. Khudaverdian, *Semidensities on odd symplectic supermanifolds*, Commun. Math. Phys. **247** (2004), 353-390.
- [Ko1] M. Kontsevich, *Formality Conjecture*, In: D. Sternheimer et al. (eds.), Deformation Theory and Symplectic Geometry, Kluwer 1997, 139-156.
- [Ko2] M. Kontsevich, *Deformation quantization of Poisson manifolds*, Lett. Math. Phys. **66** (2003), 157-216.
- [Sc] A. Schwarz, *Geometry of Batalin-Vilkovisky quantization*, Commun. Math. Phys. **155** (1993), 249-260.
- [Wi] T. Willwacher, *M. Kontsevich's graph complex and the Grothendieck-Teichmueller Lie algebra*, preprint arXiv:1009.1654.

SERGEI MERKULOV: DEPARTMENT OF MATHEMATICS, STOCKHOLM UNIVERSITY, 10691 STOCKHOLM, SWEDEN., CURRENT ADDRESS: MATHEMATICS RESEARCH UNIT, UNIVERSITY OF LUXEMBOURG, GRAND DUCHY OF LUXEMBOURG
E-mail address: sergei.merkulov@uni.lu

THOMAS WILLWACHER: DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY
E-mail address: t.willwacher@gmail.com