Estimation abilities of large numerosities in preschool children

Sandrine Mejias, Christine Schiltz

EMACS Unit, FLSHASE, University of Luxembourg, Luxembourg

Purpose—The purpose of this study was to examine numerical magnitude representations of 5- to 6-year old children at 3 different moments of kindergarten, considering children's early symbolic number knowledge as well as their socio-economic class.

Method—This study investigated estimation abilities of large numerosities using symbolic and non-symbolic output formats (numerical range: 8-to-64) as well as counting knowledge (numerical range: 1-to-12) in kindergarten during the end of the 2^{nd} grade (N = 42), the middle of the 3^{rd} grade (N = 29) and the end of the 3^{rd} grade (N = 32).

Results— We observed surprising symbolic and predominately non-symbolic estimation abilities at a very young age (from 5 y.o.), far beyond children's symbolic knowledge. Moreover, as soon as 2nd grade, early counting knowledge was linked to more precise symbolic and non-symbolic representations. Moreover, socio-economic class had no impact on numerical estimation and counting knowledge during 2nd grade of kindergarten, but did play a role in estimation only, in 3rd grade.

Conclusions—Our results support the view that numerical representations serve as building blocks for mathematical knowledge: the link between finer representations and counting knowledge is present very early in young children. Moreover, since this representation seemed to be sensitive to external components (such as socio-economic class) this implies that it can probably be targeted and refined through specific educational strategies.