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Abstract The vast majority of approaches make use of fea-
tures to track objects. In this paper, we address the tracking
problem with a tracking-by-registration strategy based on
direct methods. We propose a hierarchical strategy in terms
of image resolution and number of parameters estimated in
each resolution, that allows direct methods to be applied in
demanding real-time visual-tracking applications. We have
called this strategy the Hierarchical Multi-Parametric and
Multi-Resolution strategy (HMPMR). The Inverse Compo-
sition Image Alignment Algorithm (ICIA) is used as an image
registration technique and is extended to an HMPMR-ICIA.
The proposed strategy is tested with different datasets and
also with image data from real flight tests using an Unmanned
Aerial Vehicle, where the requirements of direct methods
are easily unsatisfied (e.g. vehicle vibrations). Results show
that using an HMPMR approach, it is possible to cope with
the efficiency problem and with the small motion constraint
of direct methods, conducting the tracking task at real-time
frame rates and obtaining a performance that is compara-
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ble to, or even better than, the one obtained with the other
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1 Introduction

The development of visual algorithms for Unmanned Aerial
Vehicles (UAVs) can be considered a challenging task. Real-
time requirements (e.g. for control tasks), outdoors opera-
tions (non-structured environments), vehicle vibrations, and
limited computational capacity on-board are some examples
of the problems found when working with UAVs. In the lit-
erature, different strategies have been presented to solve the
tracking problem in aerial images. Most of the strategies are
based on feature-based methods [10,32,33,43,48].

In the application of tracking on-board UAVs (see Fig. 1)
we have seen that the adopted feature-based strategies are
very sensitive to strong motions (e.g. vehicle vibrations and
strong 3D changes), being it difficult to strike a balance
between achieving real-time and accurate estimations (defin-
ing a specific number of good features to track without
increasing the processing time). Although multi-resolution
(MR) approaches [5] can help coping with strong and large
motion problems, constant vehicle vibrations, low computa-
tional capacity available on-board, and delays in the commu-
nication (when images are processed on the ground) make the
MR strategies insufficient to overcome these problems. Addi-
tionally, we have observed that when using feature-based
methods under strong motions, the accumulation of errors
makes the tracking algorithm fail after a few frames, affect-
ing and making on-line tests difficult.

Conversely, direct methods have the advantage that the
motion and the matching of the pixels are found without
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Fig. 1 Tracking on-board UAVs. Robust real-time tracking allows to
expand the vehicle’s capabilities, such as landing, visual inspection, or
coping with vulnerabilities of other on-board sensors (e.g. GPS drop-
outs)

intermediate steps using the intensity information of all the
pixels in the image template (i.e. the object to track). How-
ever, the drawbacks of direct methods are that they rely on
some constraints [22] (e.g. small frame-to-frame motions)
and that their speed is highly dependent on the number of
pixels in the template and the registration method used, being
it sometimes difficult to achieve real-time frame rates. That
is why in the majority of situations, feature-based methods
are preferable to direct methods.

For the application of tracking on-board UAVs, we pro-
pose to address the tracking problem with a tracking-by-
registration strategy [11], based on direct methods, where the
object of interest is tracked by iteratively registering pairs of
consecutive images. We propose to use the Inverse Compo-
sitional Image Alignment Algorithm (ICIA) [3] as an image
registration technique, to deal with the efficiency problem
of direct methods, but extending it in a hierarchical strategy
in terms of image resolution and number of parameters esti-
mated in each resolution: the Hierarchical Multi-Parametric
and Multi-Resolution strategy (HMPMR), to deal with the
small motion constraint of direct methods. Using this strategy
(HMPMR), the tracking task is improved in situations where
MR approaches are insufficient to cope with large frame-to-
frame motions without compromising the real-time operation
required in on-line applications.

In the literature, to the authors’ knowledge, the HMPMR
strategy has neither been used for tracking nor for on-line
tracking on-board autonomous vehicles. In [36], an HMPMR
strategy has been applied for frame-to-frame alignment in
image mosaicing. However, an important issue that we
address in this paper is the characterization of the HMPMR
strategy: how the selection of the multi-parametric structure
affects the performance of the algorithm, the definition of cri-

teria to select both MR and MP hierarchies, and an analysis
of advantages and limitations of using the HMPMR strategy,
in this case for visual tracking; and none of these aspects
have been addressed before.

Therefore, the main contributions of this paper are

– Casting [36] into an inverse compositional framework.
– Presenting a detailed analysis of the HMPMR strategy,

characterizing the different components of this framework
(image pyramid, influence of the combination of parame-
ters in the MR structure, criteria to select the MR and the
MP hierarchies).

– Proposing a confidence measurement of reliability of the
tracker based on the template image and the number of
parameters that can be estimated with this information.

– Extending the ICIA algorithm to an HMPMR-ICIA algo-
rithm.

– Applying this strategy to solve a challenging task: visual
tracking for aerial vehicles. Therefore, extending the use
of direct methods in real-time applications.

– Presenting a classification of the hierarchical approaches
found in the literature.

The paper is organized as follows: Sect. 2 presents a
description of related work and a classification of the different
hierarchical approaches found in the literature. In Sect. 3, the
general idea of the tracking-by-registration strategy, based
on direct methods, using the ICIA algorithm is presented.
The details of the proposed HMPMR strategy for tracking
and its configuration are presented in Sect. 4. In this sec-
tion, the HMPMR-ICIA algorithm is described. In Sect. 5
the HMPMR strategy is analyzed, and Sects. 6 and 7 present
results of the HMPMR-ICIA algorithm tracking different
templates. Section 8 deals with the discussion of the results;
and finally, in Sect. 9, conclusions and the direction of future
work are presented.

2 Related work

There are different ways the tracking task can be conducted.
Two common ways are based on image registration (tracking-
by-registration) and based on detection algorithms (tracking-
by-detection) [25]. In [11], the term tracking-by-registration
was introduced, and although tracking and registration (esti-
mating the transformation that aligns two images of the same
scene estimating pixel-to-pixel correspondence [50]) are usu-
ally seen as two different strategies, they can be used simul-
taneously for object tracking, in which case the object of
interest is tracked by iteratively registering pairs of consec-
utive images.

Image registration algorithms can be classified according
to the kind of information used: based on direct methods
or based on features. Feature-based approaches [44] extract
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local features (e.g. points) and track them by matching fea-
tures between frames. These methods rely on the detection
of distinguishable image features and the matching method
employed (e.g. such as RANSAC). They tend to be robust
to scale changes, rotations and translations, and to illumina-
tion variations. Conversely, direct methods [22], also called
pixel-based methods, estimate the transformation that aligns
(register) the images by minimizing an error measurement
that is based on the intensity values of the image.

In this paper, a tracking-by-registration algorithm based
on direct methods is used for tracking objects. The image
registration process consists in aligning two images: the ref-
erence image (that contains the object to track) and the cur-
rent image, by finding the transformation that best aligns
them. This transformation is normally found iteratively by
minimizing the sum of squared differences (SSD) between
the reference image and the current image [41] using differ-
ent minimization methods. Nonetheless, the gradient descent
optimization method (based on a first-order Taylor series
approximation of the SSD) is one of the most widely used
approaches because of its efficiency [4,15,28].

Gradient descent approaches can be classified depend-
ing on the update rule of the parameters. In [4], the differ-
ent approaches were classified as follows: forwards addi-
tive [28], forwards compositional [40], inverse additive [15],
and inverse compositional [3]. In the inverse compositional
approach (where the ICIA algorithm we use in our applica-
tion belongs to), the roles of the image and the template are
inverted, whereupon a more efficient algorithm is obtained
because the Jacobian of the warping function and the inver-
sion of the Hessian matrix are calculated once at the begin-
ning of the tracking task and every time the template image
changes (not in every iteration, as the forwards additive
approaches do).

Under large frame-to-frame motions, these image regis-
tration techniques require the use of hierarchical methods
to help finding the transformation that aligns the reference
and the current images. We have classified the different hier-
archical approaches found in the literature in five classes,
according to the kinds of hierarchies they have. Some of
these approaches use feature-based methods, while others
use direct methods. They can be classified as follows:

– The Multi-Resolution approach (MR): this is one of the
most widely used approaches. In this strategy, the same
motion model is estimated in each level of the image pyra-
mid (the MR pyramid). This scheme has been used for
different applications: for tracking planar objects [29], for
detecting and tracking moving objects [23], for registra-
tion [46], and for recovering scene structure [16], among
other applications [26].

– The Multi-Parametric approach (MP): in it, a hierarchy
of parameters is applied using the same resolution of the

image. In the different fields where this strategy has been
used, the hierarchy of 2D transformations has always been
employed. With this strategy, an initial registration is found
by first recovering the translation motion model, to reduce
the separation of the images; and then the estimation is
refined by increasing the complexity of the motion model
progressively [9,23,35].

– Multi-Resolution with priors (MRp): in this strategy,
before applying the MR approach, an initial estimation of
the parameters is obtained applying either an initial algo-
rithm [45] or information from additional sensors [21,38].

– The Hierarchical Multi-Parametric Multi-Resolution
approach (HMPMR): in this approach, different parame-
ters are estimated inside an MR pyramid. In [36], this strat-
egy is used for image mosaicing. They use an MP scheme
and an MR pyramid. The number of pixels employed in
the optimization process depends on the number of para-
meters estimated. In the case of translation, a region of
interest (ROI) of around 1

3 of the input image is used. For
the affine motion model, 2

3 of the image are used; and the
full image is used for the homography.

– Hierarchical Multi-Parametric Multi-Resolution with pri-
ors (HMPMRp): where an initial estimation of the motion
is obtained by either an initial algorithm or using additional
sensors, and then different parameters are estimated inside
an MR pyramid. An example of this strategy can be found
in [37] for building image mosaics, where the normalized
cross-correlation (NCC) method is used to find an initial
2D translation. This initial estimation is used as an ini-
tial estimation of a coarse-to-fine search of more complex
motion models in an MR pyramid. On the other hand, in
[12] the global motion from image sequences is estimated
by first finding the 2D translation using an n-step search
matching algorithm, and then using that estimation in an
MR pyramid to refine the estimation.

3 2-D tracking-by-registration based on direct methods

The goal of a 2D tracking-by-registration strategy, based on
direct methods, is to find the 2D position of an object in the
image plane in each frame of an image sequence, using the
intensity values of the object as visual features to estimate
the motion. Assuming that an initial position of the object
is known, that the motion between frames is small, that the
appearance of the object does not change over time (the direct
methods’ constraints [22]), and that the 3D displacement of
the object can be modeled by a 2D transformation (trans-
lation, affine, homography [17]); then the tracking task can
be formulated as an incremental image registration task, as
shown in Fig. 2.

A reference image (the object to track, T(0)) is defined
in the first frame (Fig. 2, Frame 0, upper-left image),
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Fig. 2 An example of a 2D
tracking-by-registration strategy.
The object to track is defined in
the first frame T(0) (red box,
ROI(0)). When a new frame is
analyzed, e.g. I(1) (upper-right
image), the motion W(1)

between T(0) and I(1)

(green/dashed arrow) is found
by an image registration
technique, assuming that an
initial estimation of the motion
Winit is known (yellow/solid
arrow). With W(1), the position
of the object in Frame 1 is found
(i.e. ROI(1)). Then, W(1) is
propagated to the next frame as
an initial estimation of the
motion in Frame 2
Winit =W(1). The process is
repeated in each frame, and
therefore the object is tracked
(color figure online)

W

W(3)

W

W(2)

Frame 0 I(0)

Template T(0)

W =Winit (0)

W

Initial position of is knownT(0)

W(1)

Frame 1 I(1)

Frame 3 ...I(3)

W =Winit (1)

W =Winit (2)

ROI(0)

ROI(0)

ROI(1)

ROI(1)

ROI(2) ROI(2)

ROI(3)

Frame 2 I(2)

either manually or automatically by detection algorithms.
This reference image corresponds to a sub-image or ROI(0)

(Region of Interest), called image template, defined in the
first frame I(0) (the subscript represents the number of the
frame).

When a new frame is analyzed I(1) (Fig. 2, Frame 1, upper-
right image), the motion W(1) between T(0) and the I(1)

(Fig. 2, Frame 1, green/dashed arrow) is found by an image
registration technique, assuming that an initial estimation of
the motion Winit is known (Fig. 2, Frame 1, yellow/solid
arrow). When an initial estimation is not known, this initial
estimation can be assumed as the identity matrix, assuming
that the frame-to-frame motion is small.

Therefore, the image registration algorithm is in charge
of estimating the incremental motion model �W, in every
iteration. Thus, the motion W(1) is estimated, and as a con-
sequence of this, the ROI(1) is found, i.e. the position of
the object to track in the current frame. Then, the estimated
motion W(1) (Fig. 2, Frame 1, green/dashed arrow) is propa-
gated to the next frame, as an initial estimation of the motion
Winit = W(1) (yellow/solid arrow, Fig. 2, Frame 2, bottom
left image). This process is repeated with each image of the
sequence.

The motion model W is a 3× 3 matrix (1) parameterized
by the vector of parameters p = (p1, . . . , pn)T in such a way
that W is the identity matrix when the parameters are equal
to zero.

x′ =W x =W(x;p)

W =
⎡
⎣

1+ p1 p2 p3

p4 1+ p5 p6

p7 p8 1

⎤
⎦ (1)

W models different 2D transformations, where each trans-
formation is a specialization of a more complex one [17]:

– Translation: has two degrees of freedom (DOF): p3 and
p6. They represent the position in the x and y axes in the
image plane, and p1, p2, p4, p5, p7 and p8 are equal to
zero.

– Rotation+Translation: is also known as 2D rigid body
transformation and has three DOF: the 2D position in the
image plane (p3, p6), and rotation (p2 = −p4, assuming
small rotations). p1, p5, p7 and p8 are equal to zero.

– Rotation+Translation+Scale: also known as similarity
transformation. This transformation has four DOF: the 2D
position in the image plane (p3, p6), rotation (p2 = −p4,
assuming small rotations), and scale (p1 = p5). p7 and p8

are equal to zero.
– Affine: this model has six DOF: p1…p6 (p7 and p8 are

equal to zero).
– Homography: This transformation has eight DOF (defined

up to scale value) and will be parameterized by eight para-
meters as shown in (1), although other parameterizations
can be used, as presented in [2,5].
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HMPMR strategy for real-time tracking 1287

Therefore, W is the motion model that will transform the
2D pixel coordinates x (where x = (x, y, 1)T) of the refer-
ence image T, into the 2D coordinates x′ = (k x ′, k y′, k)T

in the current image I. If W represents the homography, then
k = x p7 + y p8 + 1. Otherwise k = 1.

For the application of tracking on-board UAVs the
assumption of 2D motion models is sufficient: considering
that the tracking algorithm will be used for tracking planar
surfaces (for applications such as building inspection, heli-
pad for landing) or non-planar surfaces that can be assumed
planar when flying at high altitudes, as shown in [30].

The goal of the image registration technique consists
therefore in finding the vector of parameters p. The algo-
rithm used to find these parameters is the ICIA, proposed
in [3]. It is classified as Inverse Compositional in [4]. This
algorithm minimizes the Sum of Squared Differences (SSD),
as shown in (2), using a gradient descent approach.

∑
x

[T (W(x;�p))− I (W(x;p))]2 (2)

The increment of the parameters �p (see �W in Fig. 2)
is found after a first-order Taylor series expansion of (2):

�p = H−1
∑

x

[
∇T

∂W
∂p

]T

[I (W(x;p))− T (x)] (3)

where H is the approximation of the Hessian matrix, defined
as:

H =
∑

x

[
∇T

∂W
∂p

]T [
∇T

∂W
∂p

]
(4)

where ∇T = ( ∂T
∂x , ∂T

∂y ), is the gradient of the template that
is evaluated at W(x, 0) (i.e. when the template is defined);
and ∂W

∂p is the Jacobian of the transformation also evaluated
when the template image is defined (i.e. at (x, 0)).

Then, the motion model is updated as follows:

W(x;p)←W(x;p) ◦W(x;�p)−1 (5)

This algorithm iteratively estimates the increment in the
parameters of the motion model (�p), until stopping crite-
ria are reached, denoting the best local alignment solution.
In our implementation, we have defined three criteria: the
minimum is reached if the increment of the parameters is
below the following threshold ||�p|| ≤ 10−5, if the MAE
(mean absolute error) between T and I does not decrease
after a defined number of iterations (10 iterations), or if
the maximum number of iterations has been reached (100
iterations).

The key points of the ICIA algorithm, when compared
with the first proposed gradient descent-based registration:

the Lucas and Kanade (LK) approach [28], are the changes of
roles of images I and T in (2), and the way the motion model is
updated in (5). This change of roles makes the Hessian matrix
to be constant, calculated at the beginning of the tracking task,
thus making the ICIA algorithm a more efficient approach
than the LK one. This is the main reason why this image
registration approach is used in this paper.

4 The hierarchical multi-parametric and
multi-resolution strategy (HMPMR)

As mentioned in the previous section, an incremental image
registration algorithm can be used to track objects. If the
iterative ICIA algorithm is used, an efficient tracking can be
achieved using direct methods.

This iterative algorithm (the ICIA) relies on the assump-
tion that a previous estimation of the parameters of the motion
model is known and that after a linearization of the cost func-
tion (2) the algorithm iteratively estimates the increments of
the parameters of the motion model until stopping criteria are
reached. Nevertheless, this linearization is valid only when
the range of motion between frames is small. Concerning
tracking with cameras on-board aerial vehicles, as well as
regarding other applications, this constraint cannot always
be ensured (because of fast 3D motions, limited capacity on-
board, etc.).

In the literature, multi-resolution (MR) approaches were
proposed to help dealing with the small frame-to-frame
motion constraint of direct methods [5]. Images are down-
sampled creating an MR pyramid, and in each resolution level
the same motion model is estimated. The MR strategy sug-
gests that at low resolutions, the vector of motion is smaller
and long displacements can be better approximated, as was
pointed out in [5]. The higher the frame-to-frame motion is,
the bigger the number of levels the MR strategy requires to be
able to cope with the large displacement. Nevertheless, there
must be a compromise between the number of levels required
to overcome the large inter-frame motion and the amount of
information required to estimate the motion, because in prac-
tice, as pointed out in [41], “it is hard to use more than two
or three levels of a pyramid before important details start to
be blurred away”.

In Fig. 3, it can be seen that the maximum motion an MR
strategy can estimate (i.e. the maximum number of levels
the MR structure should have) is closely related with the
image information in each level. In the example shown in
Fig. 3, an MR pyramid with five levels is used to estimate
the homography motion model (8 parameters).

An intuitive analysis of Fig. 3 suggests that the information
at low resolutions, e.g. at levels 4 and 5, may not be good
enough in terms of quality and quantity for estimating the
eight parameters of the homography in those levels (in an
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Level 0 (highest resolution)
640x480 pixels

Level 3
80x60 pixels

...

5 Pyramid Levels

Template at Level 0
(highest resolution)

83x159 pixels

...

Template at Level 3
10x19 pixels

Level 4
40x30 pixels

Template at Level 4
(lowest resolution)

5x9 pixels

Template at Level 5
2x4 pixels

Level 5 (lowest resolution)
20x15 pixels
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Fig. 3 General idea of an MR strategy. Images are downsampled and
in each resolution level the same motion model is estimated. At low res-
olutions (e.g. levels 4 and 5), the information could be not good enough
(important details blurred away) to estimate a motion model with large
numbers of parameters (e.g. a homography, 8 parameters). In the plot,
it can be seen that there is a relation between the image information and

the number of parameters that can be estimated with that information,
which can be analyzed with the smallest eigenvalue criterion. As can be
seen in levels 4 and 5 H is close to be singular (its smallest eigenvalue is
close to 0), when the eight parameters of the homography are estimated
in those levels

MR strategy, the same motion model is estimated in each
level of the pyramid). As was said in [42]: sometimes “the
homography contains more free parameters than necessary,
in those cases, the algorithm suffers from slow convergence
and sometimes gets stuck in local minima”. This is why in
this paper we propose to estimate simple motion models at
low resolutions.

On the other hand in [39], a threshold in the smallest eigen-
value as a measurement of feature quality was proposed. In
this paper, we propose to use the smallest eigenvalue of the
Hessian (H) as a confidence measurement of the tracking
algorithm for estimating specific numbers of parameters with
the information available in a given resolution. In the plot
shown in the lower part of Fig. 3, it can be seen that if the
MR-ICIA algorithm is used, the smallest eigenvalues of H
in the fourth and the fifth levels of the pyramid are close
to zero, i.e. H is ill-conditioned in those levels. The qual-
ity of the visual information available in those levels is not

going to be sufficient to correctly estimate the eight para-
meters of the homography (the tracking algorithm requires a
well-conditioned H).

Therefore, from Fig. 3 it can be inferred that when only
an MR strategy is used, the low-resolution information could
be not sufficient to find a robust estimation of a motion
model, especially if it has large numbers of parameters (e.g.
a homography). Nonetheless, if less pyramid levels are con-
sidered to avoid the loss of information produced by the
low resolution, the reduction of levels in the pyramid will
cause a reduction in the range of motion that the algorithm
can tolerate. For this reason, for many applications, MR
approaches are sometimes not good enough to solve the
tracking problem in the presence of large frame-to-frame
motions, presenting an unstable behavior when estimating
complex motion models with large numbers of parameters,
especially when they are estimated in the low resolution
levels.
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HMPMR strategy for real-time tracking 1289

The aforementioned problem motivated the idea of includ-
ing the multi-parametric (MP) estimation of the motion
model inside the MR pyramid. We have called this strat-
egy the Multi-Parametric and Multi-Resolution strategy: the
HMPMR. The HMPMR approach allows to continue tak-
ing advantage of the low-resolution information to find large
ranges of motion, even when motion models with large num-
bers of parameters are required to be estimated in the highest
level of resolution.

4.1 The HMPMR strategy for tracking

The main objective of the HMPMR structure is to cope with
the deficiencies of the MR structure. It is focused on robustly
estimating complex motion models under large frame-to-
frame motions.

The HMPMR strategy makes use of two hierarchical struc-
tures: the multi-resolution (MR) structure, created by down-
sampling the images (Gaussian [1] or Laplacian [8]); and
the multi-parametric (MP) one, where for each MR level, a
specific motion model is recovered (different motion models
are estimated in each level).

The main idea of using simultaneously the MP and MR
structure is to use the low resolution levels to estimate simple
motion models (with a few parameters) and to increase the
complexity of the motion model with the resolution of the
image (i.e. the number of estimated parameters increases). By
doing this, we ensure to have a well-conditioned Hessian in
the lowest resolution levels. The values of the smallest eigen-
value of H increase, in comparison with the ones obtained
when a motion model with large numbers of parameters is
estimated in each level (i.e. when the MR approach is used).

The previous considerations can be confirmed using the
example shown in Fig. 3. For this example, Fig. 4 shows
the smallest eigenvalues of H when different configuration
of parameters is used in different resolution levels. In each
bar of the figure the upper number represents the number of
parameters estimated in that resolution, and the lower num-
ber corresponds to the value of the smallest eigenvalue of
H. In the figure, it can be seen that when the eight parame-
ters of the homography (blue/dark solid bars) are estimated

Level 0 Level 2 Level 3 Level 4 Level 5
0

5

10

15

20

25

MR levels

fo
eulavnegietsella

m
S

H

Level 1

8 8 8
8

8

8
2 8 8

8 2

6 2

4 2 3 2 2 21213 105

220 220 220

24 24 106

6 598 105

0.36 270 104

0.001 421 421

Fig. 4 Comparison of the smallest eigenvalues of H (upper number)
found for the images of Fig. 3, when different parameters are estimated
in each level (lower number)

in all the levels (using an MR-ICIA), then only the visual
information of levels 0–3 should be used to estimate the
homography motion model, because for levels 4 and 5 H
will be ill-conditioned (smallest eigenvalues are close to 0).
Conversely, it can be seen that a well-conditioned Hessian
is obtained when a few parameters (e.g. 2 parameters) are
estimated in the low resolution levels (e.g. levels 4 and 5)
using an HMPMR-ICIA strategy.

Therefore, as shown with the example of Fig. 3, using
the HMPMR strategy the range of motion that the tracking
algorithm can handle is increased compared with the one
handled when only an MR approach is used. This is due to the
fact that with the HMPMR structure more multi-resolution
levels can be used. In the example, the HMPMR structure
could use the five levels to estimate the homography at the
highest level of resolution.

The advantages of the HMPMR strategy are discussed and
tested later in Sect. 5.1. In that section, an analysis of how the
configuration of the MP structure affects the performance of
the tracking algorithm is presented.

– Definition of pyramid levels (pL)

The different multi-resolution levels (pL) are defined as
a function of the size of the ROI that defines the template
image T (i.e. the one that contains the object to track), in
such a way that in the lowest resolution level (i.e. the jmax

level), an image with no less than a defined number of pixels
(minPixels) will be used. Therefore, pL is defined as follows,
taking into account that the images are downsampled by a
factor of 2:

2pL = lowS

minPixels
(6)

where lowS represents the lowest size between the width and
height values of image T (the ROI that contains the object
of interest). On the other hand, minPixels is defined as the
minimum size the template must have in the lowest resolution
image, to have enough information to find the motion model
of that level (e.g. 5 pixels could be enough to estimate the
translation). Thus, with (6), the different levels of the MR
structure can be defined automatically and could be modified
on-line according to the size of the template in the current
image.

– Definition of motion models in the MP structure

The MP structure suggests an increase in the complexity
of the motion model as the resolution of the image increases.
It is defined according to the motion model selected at the
lowest level of the pyramid (the highest resolution level) W0

(where the superscript represents the level of the pyramid).
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In this level, W0 must be chosen as the best transformation
that represents the motion of the object in the image plane.
On the other hand, to ensure the detection of large frame-
to-frame motions, the translation motion model is chosen
for the highest level of the pyramid (the level that has the
lowest resolution image) W jmax (where jmax = pL−1). This
ensures a well-conditioned Hessian in the lowest resolution
level. Finally, the criterion to define the intermediate levels
is to select them in such a way that a smooth transition of
the parameters from the highest to the lowest level of the
pyramid is obtained (all these criteria are later discussed in
Sect. 5.1).

For example, if a camera is moving in the 3D space with
different rotations and translations, then the homography can
be chosen in W0 to represent the motion of an object in
the image plane; then assuming a hierarchical structure of
four levels, the following combination of parameters could
be used in the lower resolution levels:

W jmax =W3 = 2 parameters→ Lowest resolution

W( jmax−1) =W2 = 3 parameters

W( jmax−2) =W1 = 4 parameters

W( jmax−3) =W0 = 8 parameters→ Highest resolution.

The MP structure will be represented by the number of
parameters that define the motion model that will be esti-
mated in each multi-resolution level. Therefore, in the pre-
vious example, the MP configuration is in the form: 8-4-3-2.
The first number corresponds to the motion model W0 that
will be estimated in the lowest pyramidal level (highest res-
olution image), e.g. the homography. The last number corre-
sponds to the motion model W jmax that will be estimated in
the highest pyramidal level (lowest resolution image), e.g. the
translation; and the other numbers correspond to the motion
models estimated in the intermediate levels (the similarity
and the translation+rotation motion models).

– Propagation of parameters

An important part of the HMPMR structure is the prop-
agation of parameters inside the MR structure and among
frames. The parameters that are estimated in each level by
the image registration algorithm are used as an initial esti-
mation of the motion for the following levels, taking into
account that the images have been scaled by a factor of two,
as follows:

p j−1
i = p j

i for i = {1, 2, 4, 5}
p j−1

i = 2 p j
i for i = {3, 6}

p j−1
i = p j

i

2
for i = {7, 8}

(7)

Where the subscript i represents the parameter shown
in (1) and j represents the level of the pyramid, and j =
{ jmax, jmax − 1, . . . , 0} = {pL − 1, pL − 2, . . . , 0}.

On the other hand, in level 0, another kind of propagation
occurs from the lowest level of the pyramid (level 0) of the
previous image I(F−1), to the highest level of the pyramid
( j = jmax) of the new image I(F), where F represents the
number of the frame. This propagation is the basis of the
tracking-by-registration strategy, explained in Sect. 3.

The propagation is conducted as follows:

p jmax
i(F)
= p0

i(F−1)
for i = {1, 2, 4, 5}

p jmax
i(F)
=

p0
i(F−1)

s
for i = {3, 6}

p jmax
i(F)
= s p0

i(F−1)
for i = {7, 8}

(8)

where s = 2 jmax . This propagation of the parameters allows
to validate the linearization of (2) done by the image regis-
tration algorithm. Therefore, when a new image is analyzed,
using the motion model W(x;p) estimated in the previous
frame, the images T and I are close enough to find a minimum
in the alignment of the images.

4.2 The HMPMR-ICIA algorithm

Figure 5 shows the diagram of the HMPMR structure for
tracking using the ICIA algorithm, and Algorithm 1 describes
in more detail the different steps of the algorithm.

As input, the algorithm requires the information of I(0)

(where the subscript represents the number of frames), and
the x coordinates in I(0) (i.e. in the initial frame) of the
object to track. These coordinates can be found manually or
automatically, e.g using template matching approaches [31].
Additionally, the algorithm requires the definition of the lev-
els of the MR structure (pL), which are defined using (6);
and the definition of the different motion models in the MP
structure W j .

In general terms, the algorithm is based on two stages: the
initialization and the tracking stages.

In the initialization stage (steps 1–6, Algorithm 1), the ini-
tial frame I(0) is downsampled according to pL. Thus creates

the template image T j
(0) for each level (where j represents

the level of the MR pyramid), as shown in Fig. 5. Addition-
ally, in this initialization stage, for each level of the pyramid
the Hessian matrix H j

(0) and its inverse are calculated. These
steps, 1–6 of Algorithm 1, are carried out at the beginning
of the tracking task and every time the template image is
updated.

One of the advantages of the ICIA is that H is calculated in
the initialization stage and not in every frame. Hence, before
starting, it is possible to know if H is well-conditioned for
the kind of image to track and for the parameters chosen
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Fig. 5 Example of the
HMPMR-ICIA framework.
Images I(F) and T(0) are
downsampled to create the MR
structure. In each level, the ICIA
is applied to estimate the
parameters defined for that level
(the MP structure). When the
stopping conditions have been
reached, the parameters are
propagated to the next level. At
level j = 0, the most complex
defined motion model is
estimated (W0

(F)), and with it,
the object to track T(0) in image
I(F) is found. Finally, W0

(F) is
propagated to the highest level
of the pyramid of the next frame,
as initial guess of the motion

ICIA

I (W (x;p))2 2

update

-

Parameters found in the previous
frame are propagated to level W2

W0

in the new frame

W2

2x propagationpropagation

I (W (x;p))1 1

(4 param)
p

update

-

2x propagationpropagation

update

-

ICIA

Ij

W0

T j
(0)

I2
(1)

I1
(1)

I0
(1)

T2
(0)

T1
(0)

T0
(0)

ICIA

W1

(2 param)
p

I (W (x;p))0 0
W0

(8 param)
p

Tracking stage Initialization stage

Propagated as initial
guess to the next frame

for each level. This advantage could be especially useful in
an automatic update of the template, so that both the MP
and the MR structures of the tracker can change dynamically
during the tracking task based on the new information of H.
However, the discussion of this dynamic update strategy of
the template is out of the scope of this paper.

During the tracking stage, when a new image is analyzed
I(F) (e.g. I(1)), it is first downsampled to create the MR struc-
ture, as shown in Fig. 5 (tracking stage, left-dashed box). The
motion model at the highest level of the pyramid, e.g. W jmax

(1)

(lowest resolution) is initialized using (8), as shown in step
8 of Algorithm 1. Because this is the first frame analyzed in
the tracking stage, W jmax

(1) is the identity matrix.
Then, for each level of the pyramid, as illustrated in

Fig. 5, the HMPMR-ICIA algorithm is applied. The process
is repeated in the different levels of the pyramid. The com-
plexity of the motion model increases as the resolution of the
image increases. Therefore, at the lowest level of the pyramid
(i.e the one that has the image with the highest resolution),
the most complex motion model is estimated. With this infor-
mation, it is possible to determine the position of T(0) (i.e.
the object to track) in the current image, e.g. I(1) (steps 15–16
Algorithm 1).

Finally, the motion model found in this frame (e.g. W(1)) is
propagated as initial guess to the highest level of the pyramid

jmax of the next frame (e.g. I(2)), using (8). This propagation
of the parameters permits to validate the linearization of (2)
and permits that when a new frame is analyzed using the
estimation of W(F−1) in the previous frame as an initial esti-
mation of the motion in the current frame, images T(0) and
I(F) are close enough to each other to find a minimum.

5 Evaluation of the HMPMR strategy

Different tests have been conducted to evaluate the perfor-
mance of the HMPMR-ICIA algorithm. In these tests the
advantages of extending the ICIA algorithm with a HMPMR
framework are shown, especially under the presence of large
frame-to-frame motions. Qualitative and quantitative results
are presented.

In the tests different algorithms are used to compare the
performance of the HMPMR strategy. Some of those algo-
rithms are based on direct methods (test 1 and 2), and others
are based on features (test 2). The different configurations of
the ICIA algorithm (HMPMR-ICIA, MR-ICIA, ICIA) have
been implemented in C++, and the OpenCV libraries [7] have
been used for managing image data. On the other hand, the
KLT [6] feature-based tracking algorithm that is used is based
on the implementation of the tracker included in the OpenCV
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input : I(0),W j , pL , I(0), x
output: Transformation that tells where T(0) is located in I(F)

Initialization stage
1. Downsample I(0) according to pL and create T j

(0)
2. Initialize jmax = pL − 1
for j ← jmax to 0 do

3. Evaluate the gradient ∇T j
(0) =

(
∂Tj

(0)

∂x ,
∂T j

(0)

∂y , 1
)

4. Evaluate the Jacobian J j = ∂W j

∂p at (x, 0)

5. Compute the steepest descent images

SDI j (x) = ∇T(x)
j
(0)

∂W j

∂p
6. Compute the Hessian matrix and its inverse

H j =∑
x

[
SDI(x) jT

SDI(x) j
]
, and H j−1

end
Tracking stage
foreach new image I(F) do

7. Downsample I(F) according to pL to create I j
(F)

8. Initialize W jmax
(F) according to Equation (8). If it is the

first image, W jmax
(F) is the identity matrix

for j ← jmax to 0 do
repeat

foreach x in T(0) do
9. Warp W j

(F)(x; p) to find

I j (W j
(F)(x; p))

10. Compute
E j = [I j

(F)(W
j
(F)(x; p))− T j

(F)(x)]
11. Compute b j = b j + SDI(x) jT

E j

end

12. Compute �p j =H j−1
b j

13. Update the warp
W j

(F)(x; p)←W j
(F)(x; p) ◦W j

(F)(x;�p j )−1

until ||�p j || ≤ ε;
14. Propagate the parameters in W j (x; p) to the next level

using Equation (7)
end
15. Use W0

(F) to find the position of T(0) in I(F)

16. Draw results
end

Algorithm 1: HMPMR-ICIA tracking algorithm

libraries [7]. Additional functions were included to allow the
estimation of different motion models. The maximum num-
ber of features was defined as 200, a window size of 5 was
used, and different pyramid levels were used in the multi-
resolution structure of the algorithm. On the other hand, the
SIFT algorithm is based on the implementation developed
by Rob Hess [18,19]. The values of the different parameters
the algorithm requires correspond to the standard values that
come with the implementation of the algorithm.

5.1 Test 1: analysis of the MP hierarchy

In this test the selection of the MP structure of the HMPMR-
ICIA algorithm and its influence in the tracking results are

analyzed. Additionally, the performance of the HMPMR
strategy during a tracking task recovering simple and com-
plex motion models is evaluated. Different configurations of
the ICIA algorithm are compared: the proposed HMPMR-
ICIA, the ICIA algorithm without hierarchies, and the MR-
ICIA (all of them are based on direct methods).

In the image sequence used in the test, the object to track is
a flat symbol located on the ground. The size of the images is
640×480 pixels; and the size of the template is 115×125 pix-
els, so that according to (6) pL = 4, considering minPixels =
5. It is important to mention that the selected image sequence
contains large frame-to-frame motions (5, 10, and sometimes
>20 pixels), as can be seen in Fig. 6b, where the frame-to-
frame change in position of the generated ground truth data is
plotted. This characteristic makes this sequence challenging
from the visual-tracking point of view, especially if it is con-
sidered that the linearization of (2) is a good approximation
when the frame-to-frame motion is <1 pixel [22].

In this test, the algorithms are evaluated based on manu-
ally generated ground truth data (GT) in all the frames of the
sequence, as shown in Fig. 6a (the red cross in the upper-left
corner).

The GT data in each image (xgt(F)
) is transformed into the

coordinate system of the first frame (i.e. it is back-warped),
using the transformation found by the tracking algorithm
xbw(F) = W−1

(F)xgt(F)
. The accuracy of the motion model

found with the different tracking algorithms is evaluated by
measuring the Mean Absolute Error (MAE) of the upper-left
corner, as follows:

MAE = 1

n

n∑
F=1

ME(F)

ME(F) =
|xbw(F)

− xgt(0)
| + |ybw(F)

− ygt(0)
|

2
(9)

where ME is the mean error, n is the total number of frames of
the image sequence, xbw(F) and ybw(F) are the back-warped
coordinates of the GT point of each frame (F), and xgt (0)

and
ygt (0)

are the coordinates of the GT point in the first image
(in the frame where the tracking algorithm was initialized).

Based on the analysis of the ME of the corner’s coordi-
nates, the percentage of frames tracked by the different algo-
rithms is examined (TF). If ME(F) > 2 pixels, the tracker
is considered lost in that frame. This threshold was defined
assuming that the error by “clicking” the GT data is ±2 pix-
els.

In Figs. 7, 8, and 9, a collection of images that show
the performance of the tested algorithms is presented.
Figure 7 presents the results of the tracking task using the
ICIA algorithm without any hierarchy, recovering different
motion models with different numbers of parameters: eight
parameters (the homography, first row in the figure), six
parameters (the affine transformation, second row), and four
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Fig. 6 Ground Truth Data (GT). The upper-left corner of the template
is selected manually in all the frames of the sequence (a). In (b), the
frame-to-frame changes in position of the generated GT data are plotted.
This sequence contains large frame-to-frame motion, which sometimes
is higher that 20 pixels, as can be seen in (b)

ICIA 6

ICIA 8
541 emarF211 emarF2 emarF

ICIA 4

Fig. 7 ICIA results. The green box indicates the result of the tracking
task when recovering motion models with eight, six, and four parame-
ters. Without using any hierarchy, none of the tested configurations of
the ICIA was able to track the template because of the large motion of
the sequence (>5 pixels) (color figure online)

parameters (the similarity transformation, third row). The
green/light box indicates the result of the tracking task. As
can be seen in Fig. 7, the large frame-to-frame motion of this
sequence violates one of the main constraints of direct meth-
ods (small motion), and so the ICIA (without hierarchies)
was not able to track the template in more than three frames
in any of the tested configurations.

Figure 8 presents the results of the MR-ICIA. In this
configuration, the same number of parameters is found in
the four levels of the hierarchical structure. The first row

MR-ICIA 6-6-6-6

MR-ICIA 8-8-8-8
Frame 2 Frame 165 Frame 260

MR-ICIA 4-4-4-4

Fig. 8 MR-ICIA results. The green/light box indicates the result of the
tracking task when recovering eight, six, and four parameters. As can
be seen, none of the tested configurations of the MR-ICIA was able to
track the template in all the sequence (color figure online)

presents the results recovering the homography in the four
levels of the pyramid (8 parameters), and the second and
third rows present the results recovering the affine (6 parame-
ters) and the similarity transformation (4 parameters), respec-
tively. None of the tested configurations tracked the template
throughout the sequence.

In Fig. 9 the results of the tracking task using the HMPMR-
ICIA algorithm are presented. Different configurations of
parameters were tested with this algorithm to analyze the
behavior of the MP structure and to define a criterion to
select the motion models, especially under the presence of
large frame-to-frame motions. The configurations that were
tested allow to obtain different motion models in the highest
resolution level, such as the homography, the affine, and the
similarity transformations.

The first row of Fig. 9 shows the different configurations of
parameters that were able to track the template throughout the
sequence. The images correspond to the configuration shown
in bold letters (HMPMR-ICIA 8-6-4-2), although the other
configurations also obtained similar results when tracking
the template (i.e. the template was tracked in all the frames
of the sequence). The second row shows the configurations
that were not able to track the template in the sequence.

On the other hand, the analyses of the smallest eigenvalue
criteria for the selected template in this image sequence show
that although the Hessian H j was well-conditioned in all the
levels of all the tested configurations (smallest eigenvalues
>1) for estimating large and small numbers of parameters,
other factors such as the large frame-to-frame motion of this
sequence constrained the performance of the tracking algo-
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HMPMR-ICIA 8-8-6-6 / HMPMR-ICIA 8-6-4-4 / HMPMR-ICIA 8-6-4-3

HMPMR-ICIA 8-6-4-2 / HMPMR-ICIA 8-4-3-2 / HMPMR-ICIA 8-2-2-2

Frame 2 Frame 145 Frame 165 Frame 254 Frame 260 Frame 312

/ HMPMR-ICIA 6-4-3-2 / HMPMR-ICIA 6-3-2-2 / HMPMR-ICIA 6-2-2-2 / HMPMR-ICIA 4-3-2-2 / HMPMR-ICIA 4-4-3-2 / HMPMR-ICIA 4-2-2-2

/ HMPMR-ICIA 6-6-4-4 / HMPMR-ICIA 6-4-4-3 / HMPMR-ICIA 4-4-3-3 / HMPMR-ICIA 4-3-3-3

Fig. 9 HMPMR-ICIA results. The green/light box indicates the results
of the tracking task when recovering different configuration of parame-
ters in the pyramidal structure. As can be seen, the definition of the

MP structure affects the behavior of the tracking algorithm. Some of
the tested configurations are not able to track the template in all the
sequence (color figure online)
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Fig. 10 Comparison of the smallest eigenvalues of H with different
configurations of the ICIA: ICIA 8 without hierarchies (cyan/light
dashed), MR-ICIA 8-8-8-8 (blue/dark solid), and HMPMR-ICIA 8-
4-3-2 (red/dark solid) (color figure online)

rithms and this is why, for example, the MR-ICIA 4-4-4-4,
that estimated few parameters at low resolutions, was not
able to track the template either (as was shown in Fig. 7).

Figure 10 compares graphically the values of the smallest
eigenvalues of H j in some of the configurations of the ICIA
algorithm that were tested: the ICIA, cyan/dashed-light bars;
the MR-ICIA 8-8-8-8, blue/solid bars; and the HMPMR-
ICIA 8-4-3-2, red/dashed-dark bars.

In the figure, it can be seen that although the ICIA (without
hierarchies) had a well-conditioned hessian for estimating
the eight parameters of the homography (cyan/dashed-light
bars), the large frame-to-frame motion made the tracker algo-
rithm fail in the first two frames of the sequence (as was
shown in Fig. 7). Additionally, it can be seen that for the
selected template, estimating a large number of parameters
at low resolutions (e.g. Level 3, 8 parameters blue/solid-dark
bars) leads to an H j that is not as well conditioned as it is
when estimating only a few parameters (e.g. Level 3, 2 para-
meters, red/dashed-dark bars).

Therefore, using configurations that estimate the transla-
tion at the lowest resolution level, the probabilities of obtain-
ing a well-conditioned H j increase and also the probabilities
of overcoming the large frame-to-frame motion (reducing

the probabilities of being trapped in local minima), e.g. with
the HMPMR-ICIA 8-6-4-2 the template was tracked in the
image sequence (see Fig. 9, first row).

Figure 11 compares the optimization function of the algo-
rithms in the frame where the ICIA 8 (i.e. without hierar-
chies) failed (from Frame 2 to 3). It can be seen that because
of the large motion of the sequence the ICIA 8 (left plot)
did not converge (the frame-to-frame motion was ≈5 pix-
els). Conversely, the hierarchical structures of the MR-ICIA
8-8-8-8 (center plot) and the HMPMR-ICIA 8-4-3-2 (right
plot) make it possible to overcome this large motion and find
a minimum. Therefore, these algorithms tracked the template
in that frame.

Figure 11 also permits to analyze the hierarchical struc-
tures of the MR-ICIA (center plot) and the HMPMR-ICIA
(right plot). Taking into account that the same maximum
number of iterations is defined in all the algorithms, in the
plot of the center it can be seen that for the lowest resolu-
tion level (Level 3, blue/dark solid-squares line) the MR-
ICIA obtained an ME that was smaller than the one obtained
with the HMPMR-ICIA (right plot, Level 3, blue/dark solid-
squares line). This is because the MR-ICIA estimated eight
parameters in that level, modeling the motion of the object in
a better way than when only two parameters were estimated
with the HMPMR-ICIA. Nonetheless, as can be seen in the
plot on the right, as soon as the HMPMR-ICIA increases the
complexity of the motion model with the resolution of the
image, the obtained MEs are similar to the ones obtained with
the MR-ICIA (see right plot, Level 2, black/dark solid line),
with the advantage that less parameters have been estimated
and therefore reducing the possibilities of being trapped in
local minimum.

On the other hand, analyzing the optimization function
of the algorithms in the frame where the MR-ICIA 8-8-8-8
failed (Frame 110), in Fig. 12 it can be seen that the MR-ICIA
8-8-8-8 (right plot) was not able to overcome the large frame-
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Fig. 11 Comparison of the
optimization function from
Frames 2 to 3. Because of the
large motion of the sequence the
ICIA 8 (left plot) fell to a local
minimum. Conversely, the
hierarchical structures of the
MR-ICIA (center plot) and the
HMPMR-ICIA (right plot)
make it possible to overcome
this large motion and find a
minimum in that frame
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Fig. 12 Comparison of the optimization function from Frames 109 to
110. Because of the large inter-frame motion≈20 pixels, the MR-ICIA
(right plot) fell to a local minimum. Conversely, HMPMR-ICIA (left
plot) found a minimum in those frames

to-frame motion of the sequence (in Frame 110 the frame-
to-frame motion was ≈20 pixels). Therefore, the minimum
found in the lowest resolution level (Level 3), estimating
eight parameters, was similar to the one obtained when only
two parameters were estimated with the HMPMR-ICIA 8-4-
3-2 (see Level 3 in the plot).

However, when the motion model found in Level 3 is prop-
agated to the next level (i.e. Level 2), the MR-ICIA 8-8-8-8
was not able to improve the estimation of the parameters,
falling in a local minimum, as can be seen in the plot on the
right side of Fig. 12. On the contrary, as can be seen in the
plot on the left side of the figure, the HMPMR-ICIA 8-4-3-2
found a minimum thanks to the propagation of the two para-
meters from Level 3 to Level 2, that were well-estimated,
and also thanks to the fact that in Levels 3 and 2 only a few
parameters were estimated. This reduces the possibilities of
being trapped in local minima.

Table 1 shows the results of the analysis of accuracy con-
ducted to the three tested algorithms (HMPMR-ICIA, MR-
ICIA, and ICIA without hierarchies), using the ground truth
(GT) data shown in Fig. 6. The GT data are used to analyze

Table 1 Analysis of the results of accuracy conducted to the HMPMR-
ICIA, the MR-ICIA, and the ICIA without hierarchies, using the ground
truth (GT) data of Fig. 6

Algorithm MAE GT data Tracked frames TF (%)

ICIA 8 1.03× 105 0.96 (3 frames)

ICIA 6 6.1× 108 0.32 (1 frame)

ICIA 4 1.9× 88 0.32 (1 frame)

MR 8-8-8-8 4.11 34.7

MR 6-6-6-6 39.79 89.7

MR 4-4-4-4 7.6× 104 44.6

HMPMR 8-4-3-2 0.7454 100

HMPMR 8-6-4-2 0.7455 100

HMPMR 8-2-2-2 0.7501 100

HMPMR 8-6-4-3 62.034 80.385

HMPMR 8-8-6-6 35.046 80.385

HMPMR 8-6-4-4 2.08× 103 44.373

HMPMR 6-2-2-2 0.7576 100

HMPMR 6-4-3-2 0.7577 100

HMPMR 6-3-2-2 0.7572 100

HMPMR 6-6-4-4 96.80 44.69

HMPMR 6-4-4-3 126.62 80.38

HMPMR 4-3-2-2 0.8314 100

HMPMR 4-4-3-2 0.8317 100

HMPMR 4-2-2-2 0.8317 100

HMPMR 4-4-3-3 101.50 44.69

HMPMR 4-3-3-3 61.87 80.38

the recovered transformation (motion model). In Table 1 the
mean absolute error MAE of the upper-left corner of the
template is shown. Additionally, the percentage of tracked
frames (%TF) is presented.

In Table 1, it can be seen that none of the configura-
tions of the ICIA without hierarchies tracked the template in
more than three frames. Additionally, these configurations
obtained the highest MAE. On the other hand, with the MR-
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ICIA algorithm, it can be seen that the MR-ICIA 8-8-8-8
configuration was the one that tracked less frames (34 %),
but the one with the smallest error in the estimation of the
motion model (more degrees of freedom in the motion model
allow to have a better representation of the motion, but the
algorithm is more sensible to be trapped in a local minimum).
However, with the different evaluation criteria, it can be seen
that none of the configurations of the MR-ICIA tracked the
template in the sequence. This shows that a multi-resolution
hierarchy is not always sufficient to solve the tracking prob-
lem when large frame-to-frame motions are presented.

The last section of Table 1 shows the results obtained
with the different configurations of the HMPMR-ICIA. The
shadowed configurations correspond to the ones that tracked
the template throughout the sequence, overcoming the large
frame-to-frame motion of the sequence (TF = 100 %). It
can be seen that a common characteristic of these configu-
rations is that the translation motion model was estimated in
the lowest resolution level.

As was pointed out in [47], the ICIA gives good results
when the initial estimates is close to the global minimum.
In the first part of the sequence, an MR approach was suf-
ficient to satisfy this constraint (see Fig. 7). However, when
the frame-to-frame motion of the sequence increased, only
the HMPMR hierarchy was able to deal with the large motion
with configurations that estimated the translation (2 parame-
ters) in the lowest resolution level, as can be seen in Fig. 9,
first row.

Therefore, the results of this test indicate that by includ-
ing the MP structure, it was possible to track the template
throughout the sequence and to recover complex motion
models in the highest resolution level, which was not pos-
sible to achieve using only an MR structure.

5.2 Test 2: comparison with feature-based algorithms

In this test, the behavior of the HMPMR-ICIA algorithm
under perspective changes is analyzed. This test compares
different configurations of the HMPMR-ICIA recovering the
homography motion model (the most complex one being
considered) in the highest resolution level: 8-6-4-2, 8-4-3-
2, and 8-2-2-2. Additionally, the HMPMR-ICIA algorithm is
compared with three other algorithms: the MR-ICIA 8-8-8-8,
based on direct methods; and two feature-based algorithms,
the SIFT [27] and the pyramidal Lucas Kanade [6] (KLT)
algorithms.

In the image sequence used in the test, the front of a
“house” is used as a template image T (i.e. the object to
track). The size of the images is 320 × 240 pixels, and the
size of the template is 213 × 123 pixels, so that according
to (6) four pyramid levels are used. In this sequence, the
images contain constant changes in positions because of the
UAV vibrations, changes in the appearance of the object to

Ground Truth Points (GT)

Four GT points are selected in each image
to calculate a GT homography
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Fig. 13 Ground Truth Data. Four points (right images) of the possible
ten points (left image) are selected to calculate a ground truth homog-
raphy that relates points in the first frame to points in each frame of the
sequence

track (due to 3D movements), and loss of information when
the object goes out the field of view (FOV) of the camera.

Ground truth (GT) data are used to evaluate the perfor-
mance of the algorithms which is based on an analysis of
the parameters of the homography estimated by the tracking
algorithms. Figure 13 shows the GT data. As can be seen in
the image located on the left, ten different manually selected
GT points can be used. Nonetheless, taking into account that
due to the movements of the UAV the front of the “house”
goes out of the FOV of the camera, only four GT points
(Fig. 13, right images) well distributed over the template are
manually selected in each frame to calculate a ground truth
homography (xi

(F) = HGTxi
(0), for i = {1, 2, . . . , 10}). This

GT homography relates points in the first frame (Frame 0
where the template image was initialized) to points in each
frame of the sequence.

In Fig. 14, parameters p2 and p8 of the GT homography
(green/solid line) are compared with the ones obtained with
three different tested configurations of the HMPMR strat-
egy: the HMPMR-ICIA 8-6-4-2 (cyan/light solid line), the
HMPMR-ICIA 8-2-2-2 (red/dashed line), and the HMPMR-
ICIA 8-4-3-2 (blue/solid line).

In these figures, it can be seen that around Frame 660 and
Frame 887, the homographies recovered by the HMPMR-
ICIA 8-6-4-2 (cyan/light solid line) and the HMPMR-ICIA
8-2-2-2 (red/dashed line) configurations present a small devi-
ation from the ones estimated by the HMPMR-ICIA 8-4-3-2
(blue/solid line) and the GT data (green/solid line).

When a visual examination of the results was conducted,
this small deviation was very difficult to perceive. Nonethe-
less, the images shown in the right side of Fig. 14 clearly
show the small variation of the results. In these four images,
the template image that was selected in the first frame
(green/light lines) is overlapped with the back-warped tem-
plate in Frames 660 and 887 (black/dashed lines). The back-
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Fig. 14 Comparison of the estimated homography with GT data. Para-
meters p2 and p8 are compared with the ones obtained with a GT
homography (green/light-solid line). Small errors, that are not perceived
when analyzing the tracking results, are present in the HMPMR-ICIA
8-6-4-2 and HMPMR-ICIA 8-2-2-2 configurations (color figure online)

warped template is found by transforming Frames 660 and
887 into the coordinate system of the first frame using the
homography calculated by the different configurations of the
HMPMR-ICIA algorithm. If the estimated homography is
good, the black/dark dashed lines and the green/light solid
lines should coincide. However, analyzing these overlapped
images, it can be seen that there is a small deviation in the
homography that causes a slight difference between the tem-
plates.

This can also be seen analyzing the optimization function
in those frames. Figure 15 shows the mean error from Frame
886 to Frame 887, of the highest resolution level of the con-
figurations of the HMPMR structure that were tested. In the
plot it can be seen that because of the small number of para-
meters estimated in the intermediate levels (there was not a
smooth transition of the parameters), the HMPMR-ICIA 8-
2-2-2 configuration reached a minimum higher than the one
obtained with the other two configurations. That is why in this
frame the parameters of the HMPMR-ICIA 8-2-2-2 slightly
differ from the GT ones. This causes the slight difference

Iterations

AI
CI-

R
M

P
M

H 
E

M

Fig. 15 Comparison optimization function from Frame 886 to Frame
887. Because of the small number of parameters estimated in the inter-
mediate levels (there was not a smooth transition of the parameters), the
HMPMR-ICIA 8-2-2-2 configuration reached a minimum higher than
the one obtained with the other two configurations

between the template and the back-warped image shown in
the right side of Fig. 15.

These results permit to affirm that, although visually all the
tested configurations of the HMPMR that estimated the trans-
lation motion model at the lowest resolution level were able
to track the template, the best results were achieved with the
configuration HMPMR-ICIA 8-4-3-2 (blue/dark solid line in
Fig. 14), which progressively increases the complexity of the
motion model in the different levels using less numbers of
parameters, e.g. than the HMPMR-ICIA 8-6-4-2 configura-
tion. Therefore, it converges faster (as can be seen in Fig. 15,
green/light solid-dot line), avoiding the risk of being trapped
in local minima.

On the other hand, in following figures the performance
of the HMPMR-ICIA 8-4-3-2 algorithm is compared with
the performance of the MR-ICIA 8-8-8-8 algorithm, which
is also based on direct methods; and with the KLT and SIFT
algorithms, based on features. Figure 16 shows a collection
of images illustrating the performance of the algorithms.

In Fig. 16, it can be seen that the feature-based methods:
SIFT (first row) and KLT (second row), failed to track the
template, e.g. as seen in Frames 426, 669, and 1,000. The
direct method MR-ICIA (third row) failed in some frames
(e.g. in Frames 426 and 669). Whereas the HMPMR-ICIA
tracked the template in all the frames of the sequence (fourth
row).

Additionally, when comparing some of the parameters
estimated by each algorithm with the ones of the GT
homography, the same results are found. Figure 17 shows
the comparison among some of the parameters found by
the HMPMR-ICIA (blue/dark solid line), the MR-ICIA
(black/dark dashed-dot line), the KLT (red/dark dashed line),
the SIFT (cyan/light dashed line), and the HGT (green/light
solid line).

In Fig. 17, it can be seen that most of the time, the KLT
(red/dark dashed line) and the SIFT (cyan/light dashed line)
failed to detect a correct transformation, in spite of the differ-
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SIFT (feature-based method)
624 emarF0 emarF 0001 emarF966 emarF

KLT (feature-based method)

MR-ICIA 8 8 8 (direct method)- - -8

HMPMR-ICIA (direct method)8-4-3-2

Frame 513

Fig. 16 Comparison of tracking results. The polygons indicate the template found by the algorithms

ent features found (the KLT found an average of 85 features
and the SIFT found an average of 100 features). The parame-
ters recovered by the tested feature-based algorithms differ
from the ones of the HGT (green/light solid line).

With respect to the algorithms based on direct methods, in
Fig. 17 it can be seen that the MR-ICIA (black/dark dashed-
dot line) fails in some parts of the sequence (e.g. Frames 426
and 669), but because the position of the template in the fol-
lowing frames coincided with the wrong position estimated
by the MR-ICIA, the tracker recovered the template after
Frame 775. On the other hand, it can be seen that the values
of the parameters estimated by the HMPMR-ICIA algorithm
(blue/dark solid line) do have behavior and values that are
similar to the ones of the ground truth data (green/light solid
line).

Table 2 shows the average speed of the four algorithms.
From this table it can be seen that the KLT obtained the
fastest speed. This is why the KLT algorithm is one of the
most widely used approaches for tracking objects in aerial
images (due to its low computational cost; concerning this,
see [10,14]). The SIFT, on the other hand, was the slowest

one. This is due to the high computational overheads in the
different steps of the algorithm: e.g. the calculation of the
descriptor for each point, matching of points, etc. In the case
of the tested configurations of direct methods, it can be seen
that by adding the MP structure, the HMPMR strategy tracks
the template faster (16 FPS) than using only an MR strategy
(8 FPS), making it possible to reach real-time frame rate.

6 Public dataset tests

In this section, the proposed strategy is tested with the Zimer-
mmann’s database [49], which has available ground truth
data for each frame (≈12,000 frames). The sequences con-
tain images of three planar objects: a MOUSEPAD (M), a
TOWEL (T), and a PHONE (P). Although there are several
publicly available datasets with ground truth information, we
have found that this data set is the one that is best suited to
test our tracking algorithm: e.g. the kind of template used
is planar. Additionally, the kind of motions presented in the
sequences is appropriate for the objective of the experiments:
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Fig. 17 Comparison with HGT data. The parameters: p1, p3, p5, and p8 of the homography estimated with the tested algorithms are compared
with the ones obtained with the GT homography (green/light solid line) (color figure online)

to analyze the performance of the HMPMR-ICIA algorithm
under fast scale, perspective, and rotation changes; and also
under partial occlusions of the object; which are examples of
the motions encountered in our application (aerial images).

The same evaluation criteria shown in [49] are used to
analyze the performance of the algorithm: the average error
in object corners, expressed in percentage and normalized by
the actual size of the object upper edge; and the loss-of-locks
defined in [49], as the cases where the error was higher than
25 % in at least one of the corners. In those frames, the tracker
was reinitialized using the ground truth positions.

The HMPMR configurations used in these sequences were
created according to (6): HMPMR-ICIA 8-8-4-3-2-2, for
the M sequence; HMPMR-ICIA 8-8-4-2-2, for T and P
sequences. Taking into account that the template images are
big in the three sequences (≈500 × 400 pixels) and that the
number of pyramid levels is also high, to achieve real-time
frame rates, not all the pixels of the template in levels 0 and
1 were considered in the estimation of the motion model.

Figure 18 shows results of the tracking task conducted by
the HMPMR-ICIA algorithm. The first row shows the results

Table 2 Speed comparison feature-based methods and direct methods

Algorithm MP structure Frame rate (FPS)

KLT 27

SIFT 3

MR-ICIA 8-8-8-8 8

HMPMR-ICIA 8-4-3-2 16

of the MOUSEPAD (M) sequence, and the second and third
rows show the results of the TOWEL (T) and the PHONE
(P) sequences, respectively. As can be seen in Fig. 18, these
sequences contain strong motion blur (e.g. images in the
first and third rows); partial occlusions of the template (e.g.
first row images); template going partially out of sight (e.g.
images in the second and third rows); scale, rotation, and per-
spective changes; and repetitive structure of the object (e.g.
phone buttons), among other features.

Table 3 compares the results obtained with the proposed
HMPMR-ICIA algorithm with the results of state of the art
algorithms that were applied to these sequences, which were
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Fig. 18 Results of the HMPMR-ICIA applied to the Zimermman’s
database. The first row shows the results of the MOUSEPAD sequence;
the second and third rows show the results of the TOWEL and the

PHONE sequences, respectively. The sequences contain strong motion
blur, partial occlusions, and fast 3D changes (e.g. scale, rotation, per-
spective)

reported in [13,49] and [20]: NoSLLiP [49] (tracker formed
by a Number of Sequences of Learned Linear Predictors),
SIFT [27], Lucas-Kanade tracker [28], the ICIA [4] (called
IC in [49]), LLiP LS [24] (Learned Linear Predictors learned
by the Least Squares method), ML-ALPs [20] (Multilayer
Adaptive Linear Predictors), and ZSPs [13] (Ultra-fast track-
ing based on zero-shift points). Most of these algorithms
have been tested with the MOUSEPAD sequence which is
the longest one.

Comparing the results, in Table 3 it can be seen that the
performance of the HMPMR-ICIA in the different sequences
is comparable with that of state of the art algorithms. The
obtained number of loss-of-locks and the errors are low in
the three sequences. From this table, it can be seen that
when the SIFT is applied to the MP sequence, the frame
rate is slower and the number of loss-of-locks is higher than
the HMPMR-ICIA. On the other hand, it can also be seen
that using the HMPMR strategy, the results of the ICIA are
improved (this was also found when the SIFT and the ICIA
algorithms were tested with aerial images in Sect. 5.2).

On the other hand, Fig. 19 shows some of the images
where the HMPMR-ICIA failed, i.e. where loss-of-locks
were detected. In the M sequence the four loss-of-locks
detected correspond to situations with acute perspectives
after fast chaotic motions (see Fig. 19, first row). The num-

ber of loss-of-locks obtained by the HMPMR-ICIA in this
sequence (M) are smaller than the ones obtained by most
of the other algorithms. Additionally, Fig. 19, second row,
shows examples of the frames where the loss-of-locks count
increased for the P (on the right) and T (on the left) sequences.

With the P sequence, the loss-of-locks were found when
the object was inclined, in front of the camera producing
acute perspective effects in the image plane. In these cases,
the HMPMR-ICIA did not lose the template completely, but
the motion model was not the correct one. On the other hand,
the motions found in the T sequence are very similar to the
ones experienced in the application of tracking using cam-
eras on-board aerial vehicles. This sequence contains strong
motion blur (handheld camera), as can be seen in Fig. 19,
second row. Concerning this, the HMPMR-ICIA has shown
to be robust to this kind of perturbation, obtaining the lowest
loss-of-locks count of the algorithms that have been tested
with this sequence (see Table 3).

7 The HMPMR strategy applied on-board UAVs

The different tests described in the previous sections have
shown that the proposed HMPMR strategy is able to track
objects under different conditions, recovering low and large
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Table 3 Results Zimermman’s database

Method Object Frame rate
(fps)

Loss-of-locks
(–/–)

Error (%)

HMPMR-ICIA M 15.25 4/6,849 1.7

NoSLLiPa M 18.9 13/6,935 1.5

SIFTa M 0.5 281/6,935 1.4

LK (ICIA)a M 2.5 (25) 398/6,935 2.4

LLiP LSa M 24.4 1,083/6,935 6.3

LLiPLS 1/2a M 24.2 93/6,935 3.0

ZSPsb M – 92 –

ML-ALPsc M 17.2 1/6,945 2.1

HMPMR-ICIA T 16.8 1/3,203 1.1

NoSLLiPa T 21.8 5/3,229 2.1

ZSPsb T – 8 –

HMPMR-ICIA P 17.3 4/2,259 1.1

NoSLLiPa P 16.8 20/1,799 1.8

ALPsc P 96.7 10/2,299 1.2

ZSPsb P – 17 –

Comparison of the results of the HMPMR-ICIA applied to
Zimermman’s database [49] with the results reported in [13,49], and
[20]
a Results reported in [49]
b Results reported in [13]
c Results reported in [20]

numbers of parameters with a performance that is comparable
or even better than the one obtained with other algorithms. In
this section, the HMPMR-ICIA algorithm is used for tracking
planar templates on-board UAVs.

7.1 Test 1: performance during a landing task

In this test, the performance of the HMPMR-ICIA algorithm
under the visual conditions present in a vision-based land-
ing task (large frame-to-frame motions and rapid changes
in scale) is analyzed. The HMPMR-ICIA 8-4-3-2 algorithm
is used to track a planar template located on the ground,
which simulates the landing area. A UAV (a quadrotor) flies
over the landing area, and an on-board camera (USB cam-
era) placed in a downwards-looking configuration is used to
capture the images (of 640 × 480 pixels size). This image
sequence contains large frame-to-frame motions >10 pixels,
and rapid changes in scale (e.g. Fig. 20, Frame 696) com-
monly found during a landing task. In this test, the perfor-
mance of the HMPMR-ICIA algorithm is compared with the
KLT feature-based algorithm.

Figure 20 shows a collection of images that illustrate the
performance of the tracking algorithms. As can be seen in
the images, the template that is used allows the detection of
a large number of features, which helps the KLT to track
the template in almost all the sequence. However, in the final

part of the task (see Fig. 20, Frame 696), large frame-to-fame
motions (>20 pixels) make the KLT algorithm fail.

On the other hand, as can be seen in Fig. 20, the HMPMR-
ICIA algorithm was able to track the template in all the
sequence, in spite of the large frame-to-frame motion, vibra-
tions (due to the UAV’s movements), perspective changes
(e.g. Fig. 20, Frame 682), and scale changes (e.g. Fig. 20,
Frames 488 and 696), among other challenging factors.

In general terms, both algorithms performed well tracking
the helipad during the landing task, except for the final part
of the task where the KLT lost the template. The average
frame rates reached during the task were 22 FPS (KLT) and
17 FPS (HMPMR-ICIA). In light of this test, it is possible to
see that the performance and the speed reached by the direct
method (HMPMR-ICIA) are appropriate for vision-in-the-
loop applications.

7.2 Test 2: vision-based position estimation

In this test, vision-based position and orientation data of a
UAV estimated using a direct method (the HMPMR-ICIA 8-
4-3-2) and a feature-based method (the KLT) are analyzed.
The performance of the algorithms is examined compar-
ing the vision-based position estimations with the UAV’s
state estimation obtained from other on-board sensors (the
GPS/IMU). Both algorithms recover the homography at the
highest level of the pyramid.

Figure 21 shows the state of the UAV during the test
(green/light line) and some of the captured images. An on-
board camera (FireWire camera) placed in a downward-
looking configuration is used to capture the images (640 ×
480 pixels). The UAV (a helicopter) is flying over a heli-
pad following the trajectory described in Fig. 21: the UAV
moves to the left (the object in the image moves to the right,
see Frame 114), and then the helicopter moves forward (the
object seen in the image plane moves backward, see Frame
386).

A collection of images illustrating the results of the track-
ing task obtained by the HMPMR-ICIA (first row) and the
KLT algorithms (second row) is shown in Fig. 22. As can be
seen in Frames 224 and 384, the adverse conditions of the
task (constant vibrations) make the KLT algorithm unable to
track the template in all the frames of the sequence, whereas
the HMPMR-ICIA algorithm tracked the template properly
(see Fig. 22, first column).

The known dimensions of the helipad are used to define
the 3D coordinates of the helipad with respect to the world
reference frame located in its center. With these 3D posi-
tions and the 2D positions of the corners of the helipad
in the image plane recovered by the tracking algorithms
(the HMPMR-ICIA and the KLT), the homography is esti-
mated and decomposed [34], to recover the 3D motion of the
UAV. The vision-based positions are obtained with respect
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Fig. 19 Loss-of-locks of the HMPMR-ICIA. The first row shows the
results of the MOUSEPAD sequence; and the second and third rows
show the results of the TOWEL and the PHONE sequences, respectively

to the camera coordinate system shown in Fig. 21, and then
are transformed to the UAV coordinate system shown in
Fig. 21.

The different plots of Fig. 23 show the comparison of the
UAV’s position and orientation estimated by the GPS/IMU
sensors (green/light solid line) with the one calculated with
the data obtained with the tracking algorithms: the KLT
(red/dark dashed line) and the HMPMR-ICIA (blue/dark
solid line). In the plots, it can be seen that the homogra-
phy recovered by the KLT algorithm does not allow a good
reconstruction of the position and orientation of the UAV
(the KLT algorithm was unable to track the template in all
the frames). Conversely, the HMPMR-ICIA (blue/dark solid
line) algorithm not only tracked the template, but the position
and orientation estimations (blue/dark solid line) also show a
behavior that is similar to the one obtained by the GPS/IMU

sensors (green/light solid line). The RMSE (root mean square
error) for the estimations based on the HMPMR-ICIA are
[0.31, 0.25, 0.16 m] for the Xw, Yw, Zw axes, respectively;
and 1.7◦ for the yaw angle.

8 Discussion

Tests were conducted to analyze the performance of the
HMPMR-ICIA for tracking planar structures (or structures
that can be assumed to be planar) under the presence of large
frame-to-frame motion, scale and perspective changes. Dif-
ferent feature-based algorithms and different configurations
of the ICIA algorithm (a direct method) to estimate different
motion models were tested.

With the ICIA without hierarchies, the MR-ICIA, and
the feature-based algorithms, the template was not correctly
tracked in all the tested sequences. In this regard, we could see
that the well-known MR approach is sometimes not enough
to overcome frame-to-frame motions that are >5 pixels,
whereas a well-configured HMPMR strategy can deal with
larger motions >5 pixels, that can sometimes reach 30 pixels,
as was shown in Fig. 6b.

An important aspect of the proposed HMPMR strategy
is the selection of the MP hierarchy. In the tests, we have
presented an analysis of the distribution of parameters in the
MR structure and its influence in the tracking results. It has
been found that the most critical level is the one with the low-
est resolution image (the highest level). We have proved that
to have a well-conditioned Hessian, and to overcome large
motions taking advantage of low-resolution information, the
translation motion model should be estimated in this level.
On the other hand, in the highest resolution level the selected
motion model should be the one that describes the motion of
the object with the smallest numbers of parameters (in order

Frame 7

KLT

Frame 488 Frame 517 Frame 682 Frame 696
HMPMR-ICIA

Fig. 20 Comparison of tracking algorithms: the HMPMR-ICIA and the KLT. The performance of the algorithms is analyzed under the visual
conditions present in a vision-based landing task (e.g. large frame-to-frame motions and rapid changes in scale)
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Fig. 21 Flight test. A helicopter is flying over a helipad, and the
on-board camera is used to capture the images. On-board sensors
(GPS/IMU) are in charge of estimating the UAV’s state (green line) and
will be used to compare the vision-based results (color figure online)

to obtain a fast response and to avoid local minima), and in
the intermediate levels the parameters should be selected to
have a smooth transition of parameters between the lowest
and the highest levels of the pyramid.

One of the advantages of the ICIA algorithm, in terms of
efficiency, is that an important part of the algorithm (e.g. the
Hessian H j ) is calculated at the beginning of the tracking task
(when the template is selected). Taking advantage of this, the
eigenvalue analysis of H j can give an idea (i.e. a confidence

measurement), in advance, on whether the selected motion
model can be estimated with the available image information.
However, it cannot predict the behavior of the tracking algo-
rithm, because with the ICIA the hessian is pre-computed
(it depends on the selected template and not on the current
image). In the tests, it has been shown that the use of the
HMPMR structure improves the conditioning of H in the low-
est resolution levels (the smallest eigenvalues are bigger than
when only an MR structure was used). Additionally, it was
shown that when only an MR structure is used, the extra flex-
ibility in the motion model (having more parameters) in the
lower resolution levels sometimes leads to bad local image
warps, especially under lager frame-to-frame motions.

One limitation of the HMPMR strategy has to do with the
range of motion the algorithm can tolerate, which depends
on different factors. One of those is the size of the template.
When it is small, the MR structure cannot have many lev-
els, and therefore, the amount of inter-frame motion that
the algorithm can tolerate is reduced. Additionally, when the
frame-to-frame motion is so excessively large that it does not
permit the estimation of the two parameters in the lowest res-
olution level, then the HMPMR algorithm will be trapped in
a local minimum. In these cases, the incorporation of addi-
tional information (e.g. from other sensors) could help the
algorithm to converge to a minimum.

In this paper it has been shown that the inter-frame motion
plays an important role in the performance of the tracking
task, especially in the application of tracking on-board UAVs.
This information is not available in advance and is a critical
datum to determine, for example, the appropriate number of
levels of the MR structure. The selection of the number of
levels depends strongly on the image quality (as was previ-
ously mentioned) and therefore the maximum motion that
can be estimated is constrained by this relation. Nonetheless,

Fig. 22 Tracking results: flight
test. The first row shows the
results of the HMPMR-ICIA,
and the second row the ones of
the KLT. The KLT is unable to
track the template in all the
frames of the sequence, whereas
the HMPMR-ICIA algorithm
manages to perform the tracking
task

KLT

HMPMR-ICIA 8-4-3-2
Frame 0 Frame 224 Frame 384
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Fig. 23 Comparison of vision-based estimations with IMU/GPS data.
The UAV’s position and orientation estimated by the HMPMR-ICIA
algorithm (blue/dark solid line) present behaviors and values that are
similar to the ones obtained by the GPS/IMU sensors (green/light solid

line). The state recovered by the KLT algorithm (red/dark dashed line)
does not allow a good reconstruction of the position and orientation of
the UAV (color figure online)

we have shown that the adopted criteria to select the number
of multi-resolution levels, explained in Sect. 4.1, and the use
of the HMPMR strategy, permit to obtain a tracking algo-
rithm that tolerates larger frame-to-frame motions than the
ones tolerated by other algorithms, such as the KLT, the SIFT,
and the MR-ICA.

Another limitation of the tracking algorithm can be related
to the characteristics of the object to track, taking into account
that direct methods require texture information to align the
images. Additionally, the speed of the algorithm can be
another critical factor, if the size of the template is exceed-
ingly large it can make the algorithm run slowly, since direct
methods make a pixel by pixel search of the parameters, and
this search will be repeated in each level of the HMPMR
structure. Nonetheless, despite the amount of information
the algorithm analyzes, we have seen that in most of the tem-
plates, using the MP and MR strategies at the same time, a
robust real-time tracking algorithm can be obtained. Addi-
tionally, in Sect. 6 it has been shown that when the template
images are big and when the required number of pyramid
levels is large, using some of the pixel of the template in
the higher resolution levels (e.g. every 3 pixels), robust esti-
mations at real-time frame rates can still be obtained. It is
important to notice that the speed is also dependent on the
number of parameters estimated; this is why when estimat-
ing motion models with a lower number of parameters (e.g.

with the HMPMR), the speed of the algorithm is faster than
when using only an MR strategy.

Finally, results have shown that the HMPMR-ICIA can
be used in the application of tracking with cameras on-board
aerial vehicles, where the requirements of direct methods,
especially the small frame-to-frame motion constraint, are
easily unsatisfied, due to factors as vehicle vibrations, prob-
lems caused by outdoors operations, among others. However,
it has been shown that with the HMPMR-ICIA algorithm, it
is possible to obtain robust estimations under the presence
of large frame-to-frame motion, estimating both simple and
complex motion models, and that the information obtained
by the tracking algorithm (e.g. homography) can be used for
different vision-based applications on-board UAVs (e.g. pose
estimation for landing tasks).

Additional tests with different sequences and different
configuration of the HMPMR-ICIA algorithm are found in
[31], where the algorithm was applied to solve the tracking
problem in an aerial refueling task. The videos of the different
conducted tests can be seen in Online Resource 1.

9 Conclusions and future work

Previous works in visual tracking have often been based on
feature-based methods. In this paper, we have proposed to
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address the tracking task with a tracking-by-registration strat-
egy based on direct methods, taking into account that with
such methods robust motion estimations can be obtained (the
information of every pixel of the object is used to estimate the
motion). Nonetheless, the drawbacks of direct methods are
that they have good performances when the frame-to-frame
motion is small, and due to the amount of information that
direct methods have to evaluate, these kinds of methods are
mostly used in off-line applications.

Therefore, in this paper, we proposed to use the ICIA algo-
rithm to deal with the efficiency problem of direct methods
and also proposed to extend it with a hierarchical strategy
that combines a multi-parametric scheme inside a multi-
resolution pyramid (the HMPMR), which is in charge of deal-
ing with the small motion constraint of these methods (direct
methods have almost always used MR schemes to overcome
the small motion constraint). In the paper, a detailed analy-
sis of the HMPMR strategy is presented, characterizing the
different components of this framework such as the selection
of the MP and MR hierarchies.

The performance of the HMPMR-ICIA algorithm has
been compared with state of the art algorithms based both
on direct methods and feature-based methods. In the tests,
it has been shown that typical MR tracking approaches can
easily fail in the presence of partial occlusions and of strong
changes in position. It has also been shown that the per-
formance of a tracker based on direct methods is improved
when the MP and MR hierarchies are fused, making it able
to tolerate large and strong frame-to-frame motions. We have
also found that if the HMPMR strategy is adopted with the
ICIA algorithm, it is possible to obtain robust estimations
at real-time frame rates >16 FPS, even when estimating the
homography at the highest resolution level. Therefore with
the HMPMR-ICIA, we have been able to apply direct meth-
ods in a demanding real-time application: on-board UAVs,
where robust and real-time motion estimations are required to
develop vision-based control tasks (e.g. landing). Neverthe-
less, the HMPMR strategy can be extended to other applica-
tions (e.g. mosaicing, pose estimation, etc.), even using other
image registration algorithms [15,28].

In the paper, we have also proposed to use the smallest
eigenvalue of the Hessian as a way to measure if the selected
parameters in each level can be reliably estimated. With the
ICIA algorithm we can use this criterion only when the tem-
plate image is selected and every time it is updated, and not in
every image (in the ICIA, the hessian is constant). Therefore,
future work will focus on using the smallest eigenvalue crite-
rion to dynamically reconfigure the MP structure of the algo-
rithm every time the template is updated, and also will focus
on analyzing other criteria that permit to analyze the number
of parameters that can be reliably estimated in every image.

Future work will also focus on establishing criteria to
robustly identify when the tracking algorithm has failed or

when the object to track is out of the FOV of the camera, to be
able to resume the tracking task when the object reappears in
the scene. In this sense, machine learning approaches will be
explored for dealing with the recognition problem and also
for dealing with the adaptation stage that is required to tackle
occlusion problems.
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