UNIVERSITE DU
LUXEMBOURG

PhD-FSTC-2014-33
The Faculty of Sciences, Technology and Communication

DISSERTATION

Defense held on 02/09/2014 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITE DU LUXEMBOURG

EN INFORMATIQUE
by

Cesar DIAZ
Born on 21 April 1975 in Villavicencio, (Colombia)

ENERGY-EFFICIENT SCHEDULING IN GRID
COMPUTING AND RESOURCE ALLOCATION IN
OPPORTUNISTIC CLOUD COMPUTING: MODELS AND
ALGORITHMS

Dissertation defense committee

Dr Pascal Bouvry, dissertation supervisor
Professor, Université du Luxembourg

Dr Johnatan E. Pecero
Research Assistant, Université du Luxembourg

Dr Frederic Guinand, Chairman
Professor, Université du Havre, Le Havre, France

Dr Prof. Imed Kacem

Professor, Université Paul Verlaine, Metz, France.

Abstract

Resource allocation among Heterogenous Computing Systems (HCS) components,
such as cluster, grid, or cloud computing can be considered as a service. These
systems manage millions of computational resources to solve several difficult com-
putational problems. Resource allocation and scheduling among these systems are
still a hot topic for research purposes. A goal of this research is to find an effi-
cient use of these resources proposing a resource allocation and efficient scheduling
techniques. Firstly, the relevance of energy consumption in processing elements
as well as techniques and policies to support it are presented. It emphasizes in
resource allocation algorithms in opportunistic environments and low complexity
scheduling heuristics in grid computing environment. In particular, a series of
low complexity, scalable, and energy-efficient algorithms for scheduling in grid
computing and a resource allocation technique for opportunistic environment are
presented. The latest aforementioned technique was evaluated in an opportunistic
cloud environment. Three fast and energy-efficient batch mode scheduling novel
heuristics were designed, developed, and evaluated to produce fast tasks mapping
in HCS. To fully understand their capabilities and limitations, these aforemen-
tioned heuristics were studied and compared with a variety of system parameters
for their performance and scalability.

To Mery and Miguel

i

DECLARATION OF AUTHORSHIP

I, Cesar Diaz, declare that this thesis titled, “Energy-efficient scheduling in grid computing
and resource allocation in opportunistic cloud computing: models and algorithms” and the
work presented in it are my own.

I confirm that:

This work was done wholly while in candidature for a research degree at the University
of Luxembourg.

No part of this thesis has previously been submitted for a degree or any other qualifi-
cation at the University of Luxembourg, or any other institution.

Where I have consulted the published work of others, this is always clearly attributed.

Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

I have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have made clear
exactly what was done by others and what I have contributed myself.

Signed:

Date:

iii

v

Contents

1 Introduction 1
1.1 Motivations L e e e 2
1.2 Methodology« . 3
1.3 List of contributions oo 6
1.4 Dissertation outline L 6

2 Scheduling Heuristics 7
2.1 Imtroduction 7
2.2 Heterogeneous Computing Scheduling Heuristics 10

2.2.1 Related Work: low complexity scheduling heuristics 10
2.3 Resource Allocation 13
2.3.1 Related work: Resource Allocation in Opportunistic Cloud Environments 13

3 Low Complexity Heuristics 15
3.1 Problem Definition L 17
3.2 Low Computational Complexity Algorithms 18

3.2.1 Heuristic Min-Max-Min: 0 0. 19
3.2.2 Heuristic Max-Max-Min: 0 .. 20
3.2.3 Heuristic Mean-Max-Min 20
3.2.4 Computational Complexity 20
3.3 Evaluated Heuristics 21
3.3.1 Task Priority Algorithms 21
3.3.2 Min-min Algorithm 22
3.3.3 Computational Complexity 23
3.4 Numerical Example. o oo 23
3.5 Experimental Validation Lo 25
3.5.1 Evaluation Method 27
3.5.2 Experimental Setup o 29
3.6 Experimental Results. 30
3.6.1 Performance Ratio of the Approximation Factor 31
3.6.2 Performance Profile 38
3.6.3 Number of Best Solutions Found 38
3.6.4 Flowtime Comparison 38
3.6.5 Time and Memory 40
3.6.6 Summary 41

CONTENTS

3.7 Extra Experimentation Evaluating Energy Efficient

3.7.1
3.7.2

Energy Model
Experimental Evaluation
3.7.2.1 Experiments
3.722 Results

4 Opportunistic Cloud Computing

4.1 Desktop, Volunteer and Opportunistic Computing

4.1.1
4.1.2

Literature Review o
Desktop, Volunteer and Opportunistic Computing in the Cloud
4.1.2.1 Opportunistic, Desktop and Volunteer Computer Taxonomy

4.2 Energy Saving Strategies in Opportunistic Computing

5 UnaCloud Suite
5.1 UnaCloud: Opportunistic Cloud Computing Infrastructure as a Service

5.1.1

Benchmarking UnaCloud laaS
5.1.1.1 Benchmarking Literature Review
5.1.1.2 Experiments and Results
5.1.1.3 Parameter Tuning
5.1.1.4 Experimental methodology
5.1.1.5 Results
5.1.1.6 Summary

5.2 Building Platform as a Service for High Performance Computing over Oppor-
tunistic Cloud Computing oo

5.2.1
5.2.2

5.2.3

5.2.4

Related Work oo
UnaCloud Platform Architecture for HPC
5.2.2.1 UnaCloud PaaS Cloud Features
5.2.2.2 UnaCloud PaaS Components
Implementation
5.2.3.1 Parameter Tunning
Testing and Results o L
5.2.4.1 System response and run times
5.2.4.2 Sample application execution
5.2.4.3 Benchmarking 0.

6 Resource allocation algorithms in Opportunistic Cloud Computing
6.1 Energy-aware VM Allocation on An Opportunistic Cloud Infrastructure . . .

6.1.1

6.1.2

Energy-efficiency in an Opportunistic Cloud Environment
6.1.1.1 Parameter tunning,
6.1.1.2 Energy Model
Energy-Aware VM Allocation Strategies for the Opportunistic Cloud .
6.1.2.1 Custom Round Robin Allocation
6.1.2.2 1-D Bin Packing Allocation
6.1.2.3 Sorting VMs and PMs to Minimize the Use of PMs
6.1.2.4 Sorting VMs and PMs to Minimize the Use of PMs and Exe-

cuting VMs with Similar Execution Time on the Same PM .

vi

49
49
50
51
52
55

7
7
79
79
81
83
84
84
85

85

CONTENTS

6.1.3 Experimental Results 86
6.1.3.1 Workload 86
6.1.3.2 Experimental Scenarios 87
6.1.3.3 Algorithms Comparison 87
7 Conclusions and Perspectives 91
7.1 Summary e e e e e 91
7.2 Futureresearch lines 92
7.2.1 Advances in Cloud Computing 92

7.2.1.1 Future of the combination of Internet Of Things with Cloud
Computing 92
7.2.1.2 Future of the SmartGrids with Cloud Computing 93
References 95
Publications 115
List of Figures 116
List of Tables 117
List of Algorithms 119

vil

CONTENTS

viii

Chapter 1

Introduction

Contents
1.1 Motivations v v v v i i i e
1.2 Methodology o i i i e e e

1.3 List of contributions i e e e e e e e e e e

S O W N

1.4 Dissertation outline @ i i e e e

Heterogenous Computing Systems (HCS) such as cluster, grid or cloud, can employ thou-
sands or even millions of computational resources with different performance capabilities and
cost-effective to solve several difficult problems in multiple application domains in research
and industries. HCSs are widely used as powerful parallel and distributed platforms for ex-
ecuting applications requiring a large amount of computing power and/or data. Therefore,
an efficient use of the resources is a critical issue for performance guarantees.

HCS with a large number of computing resources incurs in huge amount of energy con-
sumption and this trend will continue without properly energy consumption optimization.
The optimization on the energy waste is a major concern of interest, especially on cloud data
centers. Since an efficient reduction in the consumption of energy brings benefits not only at
the business and system’s performance levels, but also at the social level by minimizing the
impact on the environment for example in the air quality, CO2 emission and climate change.
This issue forces HCS managers to adopt innovative ways to improve energy efficiency.

There is significant research effort addressing reduction of energy consumption of to-
day’s HCS systems. Engineers and researchers make advances in different aspects of the
domain to ensure increasing energy optimization. Practical approaches in many HCS facil-
ities, at present, adopt energy management measures at hardware levels. At this level HCS
managers look for energy saving solutions to installing low-power cooling devices and heat
sinks, low-power battery computers, using low-power processors, choosing products or devices
whose performance match their energy requirements, enhancing resource and infrastructure
maintenance, better components of the system even with green and clean energy suppliers,
deployment of specific technologies such as UPS, chillers, economizers.

Nowadays, compared with low-energy hardware saving approaches, low-energy software
based approaches are practical and commonly used. Focusing on solutions to the hardware
level as a first step in the optimization process of energy consumption is natural and central,

1. INTRODUCTION

however, it is well known that even with optimized hardware, poor software can lead to
important energy waste. HCS managers are looking for significant improvements in energy
efficiency, at present, on software based solutions. One of the main concern is to provide high
performance with low energy consumption, that is to provide energy efficiency. Researchers
are working on rethinking algorithms and applications, improving software design, developing
and implementing energy-aware resource allocation and scheduling policies. It is in this
context that this research work has been investigated.

This thesis concern the design, analysis and development of efficient heuristics dealing
with the resource management, specifically with the scheduling problem in HCS considering
performance and energy issues. This dissertation addresses the following main hypothesis:

o [f I take advantage of the heterogeneity resources of a HCS by designing efficient schedul-
ing strategies, it will reduce energy consumption without sacrificing the performance of
the system.

e If an application is designed with low-complexity, then energy savings will be obtained.

e If a resource allocation strategy considering resource consolidation is designed taking
advantage of busy or idle desktop resources, then the reduction of energy will be ob-
tained.

The first two hypothesis concern HCS based on Grid computing and the last hypothesis
mainly concern an opportunistic cloud-based infrastructure composed of private desktop com-
puting resources.

1.1 Motivations

Over the last years, HCS have become an increasingly important part of most business ap-
plications. These systems have been continuously upgrading to high performance computing
systems meeting the increasing demands of computational power by many scientific and in-
dustrial applications. These systems are also designed to satisfy variable pick loads and
most of HCS are overprovisioned. Unfortunately, this traditional practice in HCS of over-
provisioning the physical infrastructure has a very negative impact overall HCS efficiency
and therefore causes resource underutilization. Hundred or thousands of resources (mainly
servers) are idling most of the time (plugged in 24 hours a day but that are rarely utilized)
wasting considerable amount of energy, which in turn increases HCS operational costs and
electricity bills, raises social and environmental concerns, and decreases performance of the
system.

It is worth to notice the negative impact of energy consumption inefficiency. In terms
of monetary costs, the energy consumption of computing equipment (“67 billion kilowatt-
hours from the grid in 2010, according to Census Bureau figures reviewed by the Electric
Power Research Institute for The Times”!) is costly and runs to several thousands dollars
per year. The report to congress on server and data center energy efficiency by the U.S.
environmental protection agency ENERGY STAR program [137] estimated that the energy

!Taken from NewYork Times “Power, Pollution, and The Internet” by James Glanz. Published September
22, 2012

1.2 Methodology

used by the servers and data centers consumed about 61 billion kilowatt-hours in 2006 for
a total electricity cost of about $4.5 billion. System’s performance of HCS facilities is also
concerned with energy consumption. Heat dissipation due to the huge number of transistors
integrated into current processors architectures, which reaches to nearly one billion, has a
severe impact on the overall performance worsening system reliability resulting not only in
system performance degradation, but also in high energy bill for air-conditioning system
and heat removal devices. For example, the same report mention that a fully populated
rack of blade servers requires up to 20-25 kW of power to operate, and it is expected to
require an additional 20-25 kW of power for the cooling and power conversion equipment to
supports it. Finally, no less important and associated to the previous issues is the impact
that CO2 emissions due to energy consumption and heat dissipation may have on the society
and environment. Large-scale HCS systems are becoming big polluters. The CO2 emissions
attributable to HCS and large server farms are increasing, and it is comparable to the levels
produced by the global airline industry. The Uptime Institute [83] estimates that carbon
dioxide emissions will quadruple between 2010 and 2020. Air quality and climate change are
concerned by CO2 emissions having a big impact in life quality of society.

In this thesis, I focus on developing batch mode scheduling heuristics for HCSs to reduce
the energy consumption of the system without compromise the performance. Moreover, I
also focus on how some strategies in resource allocation for opportunistic environments may
reduce energy consumption.

1.2 Methodology

To know the real energy consumption of one physical machine, a wattmeter was connected
to one of the computers lab used by this research work. Figure 1.1 shows the behavior of
the CPU when is running a Java program which ensure 100% use of the cores during five
minutes. The processor has in total eight cores, four physical cores and four virtual cores.
The average energy value was measured during these time for each processor state.

As previously mentioned, the optimization of energy consumption can be handled across
different levels of the solution stack in hardware, software and system design [41, 128]. In
this research work, the main focus is on HCS management software by resource allocation
and scheduling policies. HCS management software tools can help to optimize energy con-
sumption as they facilitate the implementation of different policies throughout the HCS
and provide features like provisioning, monitoring, deployment, increase resource utilization,
workload management, resources heterogeneity exploitation and configuration management
that support system efficiency [128].

Scheduling algorithms and resource allocation strategies can be designed by using so-
phisticated frameworks [117]. The most common are approximation algorithms frameworks,
meta-heuristics frameworks, parallel frameworks. In modern HCS there is a variability in
the load increase because workloads are often very unstable. There is a necessary trade-off
between reacting as fast as possible to minimize the duration when the application underper-
forms because of insufficient resource capacities, and a slower approach to avoid situations
where the load has already decreased when computing resources become available. HCS man-
agers prefer simple mechanism than sophisticated implementations [63]. The main reasons for
such preference can be that the gains of using sophisticated approaches are low to be worth

1. INTRODUCTION

100

90 . —

80

70

60 -

50

Power(Watts)

=
20 Energy

30
20

10

0% 12.50% 25% 37.50% 50.00% 63% 75.00% 87.50% 100%
CPU % Use

Figure 1.1: Energy measured by a physical device.

the effort. Other possible reason is that implementing and evaluating these techniques is a
difficult exercise, this is the reason that real HCS rely on simpler techniques such that it can
be easy their adaptation and implementation into real HCS. In this dissertation, it is adopted
an approach based on designing very simple mechanisms. Regarding energy efficiency, so-
phisticated scheduling techniques need more computational time and effort to compute and
execute the planned schedule and it is translated to increase the energy consumption, this
thesis opted for low-complexity policies are designed in this research work.

In large HCS systems, different components of the computing facilities contribute to the
energy consumption. The main components, beside the building facilities, are CPU, memory
units, communication paths or networks, storage, and others. The optimization of energy
consumption should be done in all of these elements in a holistic approach. In Figure 1.2 shows
the energy consumption of the processor, following the same measuring setup of Figure 1.1,
it suffices to prove that the processor have the major part of the energy consumed by the
CPU, up to 50% of the total consumption. For this reason, in this thesis, the focus is on
processing elements, which is still one of the main resources that consumes a major part of
the total energy used by a computer system.

One of the methodologies used to validate the performance of the scheduling heuristics
proposed in this work is the approximation factor. It is also used to qualify the efficiency of
the scheduling algorithms. The approximation factor of a strategy is defined as the ratio of the
reference objective to the optimal one. As in most of real hard problems, it is difficult or even
almost impossible to determine the optimal solution, a lower bound of the target objective
is considered. The approximation factor allows to show that the computed solution obtained
by the evaluated heuristics does not exceed the optimal value for any problem instances by
more than a certain factor. The analysis is conducted as follows. First, the performance
ratio (i.e., relative error) of the approximation factor of each strategy under each metric is
evaluated. This is done relative to the best performing strategy for each metric. Thereafter,
the performance ratios to evaluate performance of the strategies is averaged, and show if
some strategies tend to dominate results in all of the test cases, with the expectation that it

chapter1/figures/EnergyMach.eps

1.2 Methodology

Energy

50
45
40

35

e=g=>Energy

Power(Watts)

0% 12.50% 25% 38% 50.00% 63% 75% 87.50% 100%

Figure 1.2: Energy measured by a program called intelR®power gadget 3.0. The program
provides the power consumption of the processor with a 20 seconds sample rate.

will also perform well under other conditions. For example, with different HCS configurations
and workloads. However, they do not show the negative effects of allowing a small portion of
the problem solutions to dominate the conclusions. To analyze the possible negative effects
of allowing a small portion of the problem instances with large deviation to dominate the
conclusions, and to help with the interpretation of the data generated by the benchmarking
process, it is also used performance profiles of the strategies. The performance profile is a non-
decreasing, piecewise constant function, which presents the probability that a performance
ratio is within a factor of the best ratio [53, 54]. The given function is the cumulative
distribution function. Strategies with large probability for smaller ratio are to be preferred.

The workload considered to evaluate our proposed scheduling heuristic is based on Fz-
pected Time to Compute model (ETC) presented by Ali et al. [8]. Each task is considered
as an indivisible unit of workload and must be processed completely in a single machine
without interruptions. The tasks waiting for its execution will be scheduled in a batch mode.
Batch mode scheduling strategies are used when jobs have to be scheduled after predefined
time intervals [26]. They are simple, powerful, and efficient in contrast to more sophisticated
schedulers that need longer execution time to compute the mapping. Moreover, these strate-
gies take advantage of using job and resource characteristics in deciding which job to assign
to which machine. All of the machines are idle and available at time zero, which is possible
by considering an advance reservation. To present the heterogeneity of tasks and machines,
a variety of ETC matrices are generated. The model is implemented by the coefficient-of-
variation (COV) based method [8] considering different machine and task heterogeneities. In
this model is consider the relation of the tasks and machines as well, by introduced consistency
scenarios.

Alternatively, to evaluate the resource allocation algorithms over opportunistic cloud en-
vironments, real workloads were considered.

chapter1/figures/EnergyProg.eps

1. INTRODUCTION

1.3 List of contributions
The major contributions contained in this PhD thesis include:

1. Three energy-aware low computational complexity scheduling algorithms are proposed,
designed, and evaluated to exploit the heterogeneity of the resources and applications
emphasize in performance, complexity, energy consumption, and scalability in HCS. The
algorithms are evaluated and compared with the best reported in the literature. The set
of experimental results shows that low computational complexity heuristics perform as
efficiently as known ones considering the makespan criterion, and outperform them in
terms of flowtime, runtime execution, memory used, and number of best solution found
criteria. Detail analysis show that low computational complexity heuristics are the best
performing heuristics in the original-consistency cases showing similar behavior in the
partial-consistency scenarios for makespan.

2. A policy for resource allocation modeling used by UnaGrid is proposed and evaluated
in order to reduce the energy consumption of the opportunistic grid environment. Una-
Grid is an opportunistic infrastructure developed and implemented at University of Los
Andes, whose main purpose is to provide a virtualization mechanism that guarantees
the properties aforementioned. Opportunistic grids are a good alternative to develop
high performance computing. Virtualization is a good approach in order to provide a
complete isolation between both environments computing and end-user ones.

3. An energy model based on the experimentation, first in opportunistic grid and cloud
environments is presented and validated.

4. Energy savings in resource allocation on an opportunistic infrastructure, specifically
for UnaCloud are presented. A new algorithm is proposed that is a variant of First-
Fit Decreasing, it places the VMs first on PMs already in use by a physical user.
The proposed algorithm have been validated against three well known state-of-the-art
heuristics. Different scenarios using real workload traces have been simulated.

1.4 Dissertation outline

The remainder of this document is organized as follows: This first part of the dissertation
starts with an introduction to services in Chapter 1. A brief exposition of scheduling and
resource allocation algorithms in opportunistic environment is presenting in Chapter 2. Chap-
ter 3 provides a detailed exposition of our proposed low complexity scheduling heuristics. A
detailed description of Opportunistic cloud computing, ranging from Desktop Computing to
Volunteer Computing is presented in Chapter 4. Chapter 5 describes the particular Infras-
tructure where the experiments were developed, furthermore, shows all the process and results
of the infrastructure benchmarking. Chapter 6 report some energy savings on a particular op-
portunistic cloud infrastructure focus on a consolidation algorithm with special policies. This
manuscript concludes the work presented during this dissertation in Chapter 7, presenting
also some future work.

Chapter 2

Scheduling Heuristics

Contents
2.1 Introductiont 7
2.2 Heterogeneous Computing Scheduling Heuristics 10
2.2.1 Related Work: low complexity scheduling heuristics 10
2.3 Resource Allocation v vt i v v i ittt 13

2.3.1 Related work: Resource Allocation in Opportunistic Cloud Environ-
ments e 13

2.1 Introduction

Resource allocation is the process to allocate resources in the appropriate way according to
an objective function. Scheduling can be understood in general as allocating resources over
time. The scheduler is a key component for performance guarantees. Its aim is to assign tasks
to computing resources considering system- and user-centric objectives and satisfying given
efficiency criteria, usually related to the total execution time, resource utilization, economic
cost, energy constraints, etc. The scheduling problem is NP-hard [82], even in the case of
homogeneous machine systems and applications without precedence constraints. Moreover,
reducing energy consumption for heterogenous computing systems can bring benefits such as
reducing operating costs, increasing system reliability, and environmental aspect. It is crucial
to search low computational complexity algorithms to schedule tasks, and/or energy-aware
resource allocation algorithms, to exploit the heterogeneity of the resources and applications.
Low overhead is one of the key issues for large-scale problems. There are some situations in
which only low complexity scheduling heuristic can be used, where the scheduling process is
performed during the execution of the allocated tasks.

Consider that m machines M; (j = 1, ...,m) have to process n tasks T; (i = 1, ...,n). Prob-
lems of allocating resources over time, or allocation of resources to tasks over given time
periods can be understood as scheduling problems. From now on we make the assumption
that each machine can process at most one task at a time and that each task can be processed

2. SCHEDULING HEURISTICS

on at most one machine at a time [73]. Scheduling problems can be classified, based on clas-
sification scheme introduced by Graham et al. [73], in three fields, machine environment
denoted by «, task characteristics denoted by 5 and optimality criteria denoted by ~.
Before define each field, the task data is specify. That is, i.) each T; consists of a number of
operations O1, ..., O, associated with each operation O;; there is a processing time p;; to
solve this operation and a set of machines p;; C {Mj, ..., M;,} where O;; may be processed,
usually, all p;; are one element sets (dedicated machines) or all ;; are equal to the set
of all machines (parallel machines) [29]; ii.) a release date r;, on which the first operation
of T; becomes available for processing; iii.) a due date d; by which T; should ideally be
completed; v.) a w;, indicating importance or weight and v.) a cost function f;(7) which
measures the cost of completing T; at time 7.

Machine environment: is characterized by a string a = ajas of two parameters, where
oy is characterized by four values: ag € {o, P,@Q, R}, o denote the empty symbol, if task T;
consists of only one operation that can be processed on any M; machine, the processing time
will be p;. If @y = o, it is a dedicated machine, p;1 = p;. If @y = P, this is identical parallel
machines, where the processing times are p;; = p; (i = 1,...,m); and if a; = Q, it is uniform
parallel machines, where processing times differ with a given speed factor= q; of machine
M;,(j = 1,...,m), pij = ¢;p;; S; the speed of the machine M; so under con}giitions stated

above, the speed factor is defined as ¢; = 1/s;, and the processing time p;; = #

Task characteristics: are specified by 5 C {f1,--- , s} which are defined as follows:
p1 € {pmitn,o}. If B; = pmin indicates that preemption (task splitting) is allowed. This

means that processing may be interrupted and resumed at a later time. If 81 = o No
preemption is allowed. [y € {res,resl,o}. If By = resl : the presence of only a single
resource is assumed. If By = res : the presence of s limited resources Rp(h = 1,---)

is assumed, each T} requires the use of 75,; units of R at all times during its execution.
B3 € {prec,tree,o}. If B3 = prec: describes precedence relations between the tasks. It is
derived from a directed acyclic graph G = {V, A} in arbitrary form, where V = {1,--- /n}
vertex corresponds with the tasks, and (j,k) € A, we write T; < T}, require that 7; must
be completed before T starts. If 53 = tree, then G is a rooted tree with an outdegree (all
arcs are directed towards a root) at most one for each vertex or indegree (all arcs are away
from a root) at most one for each vertex. If 53 = o : no precedence relation is specified.
Ba € {rj,o}. If By = r; : then release dates may be specified for each task. If 7; = 0 then
Bs = o. Bs € {m; <m,o}. If f5 = m; < W : with oy = J, a constant upper bound on
m; is specified. If S5 = o : no such bound is specified. B € {pij =1,p<p; <]3,0}. If
B¢ = pij = 1 : each operation has unit processing time. If 8 = p < p;; < D : constant
lower and upper bounds on p;; are specified. If 3 = o : aforementioned bounds are not
specified. (7 € {d;j,o}. If betay = d;, then a deadline d; is specified for each task Tj, i.e.
task T; must finish no later than time d;. Finally, in some scheduling problems, sets of tasks
must be grouped into batches. A batch is a set of tasks which must be processed jointly on
a machine. The completed time of all tasks in a batch is defined as equal to the completed
time of the batch. We can assume that this set-up time is the same for all batches and
sequence independent. Group the tasks into batches and schedule these batches are known
as a batching problem. There are two types, denoted by p-batching problems (where the
length of a batch is equal to the maximum of processing times of all tasks in the batch),
and s-batching problems (where the length of a batch is equal to the sum of processing times

2.1 Introduction

of all tasks in the batch). s € {p — batch,s — batch,o} corresponding the first two of each
aforementioned cases. If g = o : no batch problem is specified.

Optimality criteria: The third field v refers to the optimality criterion chosen. First,
let us denote by C; the completion time of task 7} (time that the task is completed), its
associated cost by f;(C;), and flowtime (time since the client submits a request until is
completed) by F; = C;j — r;. There are two types of total cost functions v € { fpaz, 2 fi}-

fmax:maw{fj (C]) ‘]:Lm} (21)
> fie {Z CwZTwZUjvzwa‘cjvzij}ijUj} (2.2)

The scheduling problem is minimize the total cost function showed in Eqgs. 2.1 and 2.2.
The most common objective functions are:

e makespan: known as well as schedule length Crqp = max{C; | j=1,--- ,n} defined
as the maximum completion time of the tasks.

total flowtime: F' =37 | F.

: A I B e)
e mean flowtime: "= 53" | F}.

o weighted (total) flowtime: F\, =37, w;F}.
e mean weighted flowtime: F,, = Ejflli“’;FJ
j=1"J

Other objective functions depend on due dates d; which are associated with tasks T;. We
can also compute for each task:

e the lateness L; = Cj — dj;

the tardiness T =max {0, C; — d;};

the earliness E; =max {0,d; — C;};

the absolute deviation D; =| C; —d; |;

the squared deviation (Cj — dj)Q;
0 if C; < dj}

the unit penalty U; = {1 otherwise

Figure 2.1 shows a possible schedule for n=3 tasks and m=1 machine. A scheduling
algorithm is procedure to construct a schedule from an input instance.

Other interpretation about scheduling problems could be classify in deterministic schedul-
ing problems, which no variable with a non-deterministic description appears. Alternatively,
stochastic scheduling models, which any variable with a probabilistic description appears.
Each, aforementioned, classification could be static or dynamic. Static, known as well as
offline, the entire input instance is known in advance and the goal usually is to give an effi-
cient algorithm that produces the optimum or near to optimum schedule. Dynamic, known
as well as online, in which some parameters are unknown in advance, just it is revealed to
the algorithm only when the task arrives, thus online algorithm at any time has to make
decisions based on the partial knowledge of the tasks that have arrived by that time; this
approach is even more realistic in many practical situations.

2. SCHEDULING HEURISTICS

T1 = R =]
r 1
T-lemmmmmm n =4 tasks
m = 2 machines
r2
T 33—
r3
LI POOOOOY
r 4
m_2 >
n st N | >
m >
- ‘ ‘ ‘ time
T_2 beginsinm_2 T_2 finishes T_3 and T_4 finishes

T_3 and T_4 begins
Flowtime
T3
|— Makespan

Figure 2.1: An example of a schedule

2.2 Heterogeneous Computing Scheduling Heuristics

For a complete state-of-the-art please refer to Technical report of Dong and Akl [56], they
presented not only a complete review of Grid scheduling algorithms but also they presented
the taxonomy of these as well as a good overview of the scheduling problem.

2.2.1 Related Work: low complexity scheduling heuristics

The scheduling heuristics related to HCS have drawn a great deal of attention. We present
the related work to the proposed research.

The Opportunistic Load Balancing heuristic assigns each task in an arbitrary order to
the next available machine regardless of the execution time for the task on that machine [66,
14]. This greedy heuristic tries to balance the load on the machines. However, it has poor
solutions, because it does not consider execution times. Minimum Execution Time assigns
each task to the machine with the lowest execution time of that task, without considering
machine’s availability [66, 14]. The Minimum Completion Time heuristic assigns each task
to the machine with the minimum expected completion time of the task. The heuristic tries
to improve the performance of the previously described heuristics.

Work Queue is a straightforward and adaptive scheduling algorithm for scheduling inde-
pendent tasks. The heuristic selects a task randomly and assigns it to the machine as soon
as it becomes available, that is a machine with minimum workload [76].

The well-known Min-min (Max-min, Min-max) algorithm works in two phases, starting
with a set of all unmapped tasks, the algorithm establishes the minimum (maximum) comple-

10

chapter3/figures/Example.eps

2.2 Heterogeneous Computing Scheduling Heuristics

tion time for the task, in the first phase. The task with the minimum (maximum) completion
time is selected and assigned to the corresponding machine [26]. The task is then removed
from the set and the process finishes when all of the tasks are mapped.

The Sufferage heuristic [112] computes for each task the difference between the second
earliest completion time (on a machine m;) and the earliest completion time (on a machine
m;) in the first step. This difference is called the sufferage value. In the second step, the
heuristic selects the task with the maximum sufferage value. Then, the task is assigned to the
corresponding machine with minimum completion time. The heuristic gives precedence to
those tasks with high sufferage value. Sufferage II and Sufferage X extend original Sufferage
heuristic [35].

Segmented Min-Min [167] sorts the tasks according to the ETCs. The tasks can be sorted
into ordered list by the average ETC, the minimum ETC, or the maximum ETC. Then, the
task list is partitioned into segments with the equal size. The segment of larger tasks is
scheduled first and the segmented of smaller tasks last. For each segment, Min-min is applied
locally to assign tasks to machines. Low complexity heuristics [OPTIM2011] differ from
Segmented Min-Min in that the heuristics do not partition the list. Moreover, scheduling
decisions in low complexity heuristics is guided by a Score Function. There is a kind of
similar work presented by Tabak et al. [33] improving Min-Min, Max-Min and Sufferage,
nevertheless, their application do not use Score Function. Ezzatti et al. [60] present an
efficient implementation of the Min-Min, their algorithm works in two phases: in the first
phase use radix exchange sort and in the second phase the normal min-min, their algorithm
present the same complexity of our heuristics. High Standard Deviation First [120] considers
the standard deviation of the expected execution time of a task as a selection criterion. The
task with the highest standard deviation must be assigned first for scheduling. Thereafter,
the second part of the Sufferage heuristic is applied.

The QoS guided Min-Min extends the Min-min algorithm. The algorithm takes into
account different levels of quality of service required by the tasks and provided by Grid
resources such as memory, cpu speed and bandwidth. The idea is to execute tasks requiring
high levels of QoS only on resources with high QoS, whereas a task requiring low levels of
QoS can be executed on resources with low or high QoS [77]. The tasks with high QoS levels
are mapped first, then the tasks with low QoS are considered. The priorities of tasks with
the same QoS level are set in the same way of the Min-min heuristic.

The Directed Acyclic Graph (DAG) mapping problem in HCS can be based on mapping
multiple groups of independent tasks [98]. The mapping process is performed during the ex-
ecution of the early mapped tasks. Some solutions use them to improve various algorithms.
The most important issue of these kind of solutions is taken into consideration the commu-
nication costs [15, 75]. Oliver et al [151] proposed two algorithms under a task graph or
DAG but involvement communication not only in network but also among processors, their
results shows the important overhead missing in works that have zero costs in communica-
tion, furthermore, scheduling the edges on the processors has an impact on the operating
techniques of scheduling heuristics. The heuristics proposed in [111] take advantage of task
heterogeneity. These heuristics are based on the idea of defining an order of task execution.
The authors proposed the Task Priority Diagram (TPD) technique. TPD is a precedence task
graph, based on a Hasse diagram that defines a partial order between tasks based on their
ETC values. TPD contains the information about the mapping sequence of tasks. The best

11

2. SCHEDULING HEURISTICS

heuristics proposed in [111] are based on TPD. The runtime of all of the above mentioned
algorithms is at least O(t?m).

Energy-aware scheduling heuristics in large scale computing has been studied from many
years ago, techniques as Dynamic Voltage Frequency Scaling (DVFS)[163, 165] (equivalently,
dynamic speed scaling, dynamic frequency scaling, dynamic voltage scaling) and Dynamic
Power Management (DPM) [22]. Power down mechanism focus on identifying the optimal
threshold times to transition to low-power modes during idle periods. Dynamic Frequency
Scaling (DFS) [106] already incorporated into many existing technology and commercial
processors as for example SpeedStep by Intel or LongHaul by VIA Technologies, enables
processors to dynamically changing its working voltage and speed without stopping or pausing
the execution of any instruction. DVFS reduces energy consumption of processors based on
the fact that power consumption in CMOS circuits has direct relation with frequency and
the square of the supplied voltage [96, 95]. DPM on the other hand, consolidates applications
on a minimum set of computing resources to maximize the number of resources that can be
powered down while maximizing utilization of the used ones. Machines are powered down
(i.e. inactive) when not used, and job placement decisions attempt to power a node back on
only when is absolutely necessary. These techniques have been used at the level of resource
manager including scheduling algorithms [92, 103, 130, 158]. Bilal et al [25] present a complete
survey focus on Green Data Center Networks, they based on a taxonomy presented in this
work concentrate on different network architectures (e.g. electrical, optical, and hybrid),
traffic (i.e. characterization and management), performance monitoring (i.e. for energy
efficiency), virtual machine placement, and experimentation techniques (e.g. simulation and
emulation).

Several work have been produced in the cloud scheduling field, Mezmaz et al. [118], for
instance, presented a new hybrid metaheuristic scheduling for cloud computing based on
parallel bi-objective and energy consumption. Alternatively, Marc Eduard [68] focus on high
availability and proposed some scheduling algorithms searching for an optimal allocation of
components on nodes in order to ensure a homogenous spread of component types on ev-
ery node. Some other research focus on cloud brokering using scheduling model, Simarro et
al. [110] proposes a modular broker architecture for optimal service deployment pricing, their
results show that users are benefited with 4% - 6% of their budget their service performance.
Multitask workflows on cloud platforms can be tackle using using Multi-Objective Schedul-
ing (MOS), Zhang et al. [170] proposes a new MOS scheme based on Vectorized Ordinal
Optimization (VOO) achieved problem scalability on any virtualized cloud platform.

There are some parallelization of scheduling heuristics and efficient use of graphics pro-
cessing units. In [65], the authors present a parallel Min-min algorithm for the GPU and the
CPU architectures. The algorithm parallelizes the search process used to find the best pair
task /machine that minimizes the completion time. Ref. [122] develops a parallel implemen-
tation on GPU for Min-min and Sufferage. The parallel implementation on GPU performs
the evaluation of the criteria proposed by each heuristic. That is, for each unassigned task,
the evaluation of the criteria for all machines is made in parallel on the GPU architecture,
building a vector that stores the identifier of the task, the best the value obtained for the
criteria, and the machine to get that value.

12

2.3 Resource Allocation

2.3 Resource Allocation

Hussain et al. [81] show a complete review on resource allocation in high performance dis-
tributed computing systems, their work focus on cluster computing, grid computing, and
cloud computing systems (see [81] for the complete bibliography).

2.3.1 Related work: Resource Allocation in Opportunistic Cloud Environ-
ments

The problem of VM allocation can be divided in two: the first part is admission of new
requests for VM provisioning and placing the VMs on hosts, whereas the second part is
optimization of current allocation of VMs. In this work we focus on the first part of the VM
allocation problem. This problem can be modeled as a bin-packing problem with variable
bin sizes [62].

The problem in its single-objective variant is a NP-hard problem, and thus is expensive
to compute with increasing numbers of PMs and VMs. Different heuristics and linear pro-
gramming based solutions are used for getting a near optimal solution. Several proposed
power-aware packing algorithms use a variant of First Fit Decreasing (FFD) heuristic to
reduce resource fragmentation. Static consolidation considers that resource utilization does
not change during execution and the number of reconfigurations depends solely of creation
and deletion of VMs. Dynamic VM management assumes that resource needs change over
time, and thus VMs can be moved during their execution in order to improve the optimality
placement, one framework that considers dynamic management of VMs is Snooze [62].

Verma et al. [161] modeled the VM workload placement as an instance of the one di-
mensional bin-packing problem and extended FFD to perform the placement. Li et al. [104]
proposed the EnaCloud framework and a modified version of the Best-Fit algorithm is im-
plemented.

Hermenier et al. [78] proposed Entropy. Entropy uses constraint programming to deter-
mine a global optimal solution, if one exists, based on a depth first search. The algorithm is
enhanced with FFD to lower the number of nodes used in a virtualized cluster.

Buyya et al. [32] presented simulation-driven results for a workload consolidation algo-
rithm based on a modified version of the Best Fit Decreasing algorithm. The algorithm
sorts all the VMs in decreasing order of current utilization and allocate each VM to a host
that provides the least increase of power consumption due to this allocation. This allows
leveraging heterogeneity of the nodes by choosing the most power-efficient ones. Beloglazov
and Buyya [20] proposed a resource management policy for virtualized cloud data centers.
The objective is to consolidate VMs leveraging live migration and switch off idle nodes to
minimize power consumption, while providing required Quality of Service.

Murtazaev and Oh [121] proposed a greedy algorithm called Sercon. It extends First-Fit
and Best-Fit heuristics by considering the minimization of number of VM migrations. The
algorithm first sorts the PMs according to the load by VMs in decreasing order. Then, it
takes the least loaded PM and sorts the current VMs on it in decreasing order of weights.
The algorithm tries to allocate them one-by-one on the first most loaded PMs, if not all VMs
can be placed on a different PM the operation is cancelled, such that only migrations which
lead to free PMs will be performed.

13

2. SCHEDULING HEURISTICS

Feller et al. [61] dealt with the workload consolidation problem and model it as an in-
stance of the multi-dimensional bin-packing problem. The authors proposed a nature-inspired
workload consolidation algorithm based on the Ant Colony Optimization framework. The
proposed algorithm outperforms FFD, however, at greater complexity.

Marshall et al. [113] propose a cloud infrastructure that combines on-demand allocation
of resources with opportunistic provisioning of cycles from idle cloud nodes to other pro-
cesses such as HTC (i.e. Condor) by deploying backfill VMs. They found that backfill VMs
contribute to an increase of the utilization of the IaaS from 37.5% to 100%.

Most of the related consolidation algorithms consider a pool of dedicated computing
resources. However, In our work [CCSA2013] differs from related state of the art since we deal
with an opportunistic cloud-based infrastructure. Bin packing strategies were been evaluated
in our work [CCSA2013]. Alternatively, strategies as turn on or turn off the computer labs
are evaluated by Ponciano and Brasileiro [134].

Failures, volatility (i.e., intermittent presence), and lack of trust are common character-
izes which define the platform where this opportunistic cloud infrastructure is developed,
because it is based on desktop and volunteer computing. Choi and Buyya [42] regard such
unstable situations and propose a new Group-based Adaptive Result Certification Mechanism
providing also dynamic scheduling algorithms according to its properties such as volunteering
service time, availability, and credibility.

14

Chapter 3

Low Complexity Heuristics

Contents
3.1 Problem Definition 000000, 17
3.2 Low Computational Complexity Algorithms 18
3.2.1 Heuristic Min-Max-Min: 19
3.2.2 Heuristic Max-Max-Min: L. 20
3.2.3 Heuristic Mean-Max-Min 20
3.2.4 Computational Complexity 20
3.3 Evaluated Heuristics 0000000 .. 21
3.3.1 Task Priority Algorithms 21
3.3.2 Min-min Algorithm o 22
3.3.3 Computational Complexity 23
3.4 Numerical Example 23
3.5 Experimental Validation, 25
3.5.1 Evaluation Method 27
3.5.2 Experimental Setup Lo 29
3.6 Experimental Results 30
3.6.1 Performance Ratio of the Approximation Factor 31
3.6.2 Performance Profile 38
3.6.3 Number of Best Solutions Found 38
3.6.4 Flowtime Comparison 38
3.6.5 Time and Memory 40
3.6.6 Summary L. 41
3.7 Extra Experimentation Evaluating Energy Efficient 42
3.71 Emergy Model 43
3.7.2 Experimental Evaluation 44

15

3. LOW COMPLEXITY HEURISTICS

Heterogeneous Computing Systems (HCS) are widely used as powerful parallel and dis-
tributed platforms for executing applications requiring a large amount of computing power or
data. In such systems, the heterogeneity is characterized by different hardware architectures,
operating systems, memory capacity, different application requirements and constraints. One
of the big challenges is to fully exploit heterogeneity, maximize the cost-effectiveness and per-
formance of the system.

Many HCS middleware components (e.g., naming, authentication, authorization, account-
ing, communication and scheduling) are affected by scaling. Scalability is one of the most
desired design goals for developers of HCS [155]. Three components are important: size,
geographical position, and administrative scalability [155, 125]. To take advantage of capa-
bilities of HCS, a scheduler allocates tasks to the available resources to optimize performance
objectives. Generally speaking, the scalability of a scheduler indicates its ability to make fast
mapping decisions with growing amount of work, and its capability to manage the increasing
number of resources in an efficient way.

The scheduler is a key component for performance guarantees. Its aim is to assign tasks
to computing resources considering system- and user-centric objectives and satisfying given
efficiency criteria, usually related to the total execution time, resource utilization, economic
cost, energy constraints, etc. The scheduling problem in HCS is NP-hard [82], even in ho-
mogeneous version without precedence constraints. Therefore, significant efforts for solving
the scheduling problem have been extensively developed and numerous methods have been
reported in the literature [82, 26, 111, 112, 120, 166, 109, 168, 169, 147, 79]. However, most
of them have a high computational complexity, which becomes a drawback when algorithms
are used in real systems. Efforts to reduce the computational complexity have been made to
cope with the aforementioned issues: parallelization of scheduling heuristics [133, 123, 124]
and efficient use of graphics processing units (GPUs) [65].

In the context of exascale computing paradigm, the scheduler deals with thousands of
resources, users, and tasks. Traditional techniques to support large HCS do not scale to the
largest system. These problems arise due to limitations of local resource manager scalability
and granularity [139]. The design of scheduling techniques that use resources efficiently is be-
coming increasingly important. Moreover, there exist scenarios in which only fast scheduling
heuristics with low computational complexity can be used. Especially, when the scheduling
process is online [111]. For example, when the HCS system is used as an application service
provider to respond to online computational requests. The tasks from the list or queue can be
scheduled in a batch mode to increase the system utilization ratio. Although time consum-
ing heuristics can achieve a shorter schedule length, the scheduling process would delay the
actual task completion. This delay becomes crucial if tasks have real-time constraints [111].
Therefore, low computational complexity and scalable scheduling heuristics are the preferred
choice in this scenario.

In our scheduling problem, tasks have no deadline and precedence constraints. A schedule
is evaluated by the schedule length or makespan. We address offline scheduling under consid-
eration of zero release times for the independent tasks. While real HCS systems exhibit online
behavior, it is known that tasks typically remain in batches or queues for a significant time.
Therefore, an offline scheduling strategy is beneficial for the efficient scheduling of current
batchs [140]. Moreover, many offline scheduling algorithms exhibit a good performance also
in the online case. Based on theoretical results, it is known that the performance bounds of

16

3.1 Problem Definition

offline scheduling strategies can be approximated for the online cases [149, 138, 79].

In this chapter, we will present the “low complexity heuristics” proposed by us in [OPTIM2011]
and we are specially interested in investigating the most important batch mode scheduling
heuristics that address the problem of scheduling independent tasks, producing fast and effi-
cient tasks mapping to HCS resources against our heuristics. Batch mode scheduling strate-
gies are simple, powerful, and efficient in contrast to more sophisticated schedulers that need
longer execution time to compute the mapping. We present a comprehensive performance
evaluation study using simulation of the following heuristics: the well-known Min-min [82, 26],
the best two Task Priority Diagram (TPD) based heuristics [111] founded in the literature,
and our three low computational complezity heuristics proposed in [OPTIM2011]. They use
tasks and resource characteristics for resource allocation. The heuristics are based on the
list scheduling approach. Tasks are sorted in a priority list, then the task with the highest
priority (i.e., at the top of the list) is scheduled first until the list is empty. The scheduling
decisions are based on a score function(see Section 3.2). The score function exploits resource
capabilities and task requirements by scheduling tasks to a computing resource that not only
minimizes the completion time, but also executes individual tasks faster by trying to balance
the load of the machines.

The main purpose of this chapter is to study and compare the performance and scala-
bility of the above mentioned heuristics with a variety of system parameters to fully under-
stand their capabilities and limitations. Our interest is to know whether proposed heuristics
outperform traditional and related approaches. In terms of performance, we consider the
optimization of schedule length or makespan, which is a system-centric measure representing
the utilization of a platform and the main flowtime, which is a (QoS) metric that the allows
to guarantee good response times.

To evaluate the performance of the studied algorithms, we analyze the results of numerous
simulations with variation of heterogeneity of resources and applications. We evaluate the
scalability by increasing the system and problem sizes, and consider task consistency. We
show that our low computational complexity strategies outperform known approaches in most
studied scenarios.

3.1 Problem Definition

We address the following scheduling problem: n computationally tasks T = {t1, ..., t,} must
be scheduled on a HCS composed of M = {my,...,m;,} machines, as they were defined in
Chapter 2. They are interconnected with high-speed links so network times are neglected.

Tasks are assumed to be independent. The independent tasks model typically arises
in HCS systems as grid or volunteer-based computing infrastructures, where independent
applications are submitted for execution [156]. It also arises in the case of Bag-of-Tasks
applications. They are used in a variety of scenarios, including Single-Program Multiple
Data applications used for multimedia processing, simulations fractal calculations, computa-
tional biology, parameter sweeps, and parallel domain decomposition of numerical models for
physical phenomena.

Each task is considered as an indivisible unit of workload and must be processed com-
pletely in a single machine without interruptions. From now on we make the assumption
that an estimate of the computational workload is known. The computational model that we

17

3. LOW COMPLEXITY HEURISTICS

consider is the Ezxpected Time to Compute model (ETC). The ETC matrix of size n x m is
well defined. Each element, ET'C[t;][m;] indicates the expected time to compute task ¢; on
machine m;. The ETC matrix for a given HCS system can be obtained from user supplied in-
formation, task profiling, experimental data, and analytical benchmarking [7, 70, 91, 93, 132].
Moreover, some existing batch schedulers handle such an information in a conservative way:
at a given time, all decisions are taken assuming that the available information is exact.
When an external event occurs, the scheduling process is restarted with the new state of the
system, without rescheduling of the already running jobs [59].

The scheduling problem can now be formulated as follows. Given a HCS system composed
of a set of m machines and a set of n tasks, any task is scheduled without preemption on
machine m; from time o(t;), with an execution time given by ETC(t;][m;]. The task t;
completes at time C; = o(t;) + ETC|t;][m;]. The objective is to minimize the maximum
completion time Cp,q, = maz(C;), known as makespan. Table 3.1 describes the variables
used in this section.

Name Description
n Number of tasks
m Number of machines
o(t;) The start time of task i
C; Completion time of task ¢

Cinaz Maximum completion time or makespan

Table 3.1: Variables

We focus on the analysis of scheduling systems, where all of the tasks are given and
processed in the same batch. A set of available and ready tasks will be executed up to the
completion of the last one. All tasks that arrive during this time interval will be processed
in the next batch. There are several general HCS or grid production systems in use whose
primary focus is task or job batching and resource scheduling, some examples are OAR [5],
TORQUE [6], Portable Batch System (PBS) [3], Load Sharing Facility (LSF) [4], Condor [2].

They are used as a job scheduler mechanism by several meta schedulers.

3.2 Low Computational Complexity Algorithms

This section describes our proposed low computational complexity heuristics Min-Max-Min,
Maz-Maz-Min, and Mean-Maz-Min [OPTIM2011]. These three heuristics are based on the
Min-min algorithm. The main idea is to avoid the loop of pairs of machine-task in the
Min-min algorithm corresponding to the first phase [OPTIM2011, 71]. One alternative is
to consider one task at a time to determine the task that should be scheduled next. The
three heuristics perform tasks sorting in a list by a predefined priority before scheduling as
Segmented Min-Min does. Thereafter, the tasks are selected from the list in constant time
without reordering, after each allocation. Once the order of the tasks is determined, the task
with the highest priority is selected and assigned to the machine that minimizes a predefined
score function. The score function considers not only the expected completion time, but also

18

3.2 Low Computational Complexity Algorithms

the execution time of tasks. The aim is to minimize the makespan and balance the load of
the system.

Framework 1 depicts the general structure of the heuristics. The heuristics start com-
puting the Priority of each of the task according to some objective (line 1). Thereafter, the
heuristics sort a list of tasks (line 2). The order of the tasks is not modified during the execu-
tion of the heuristics. Next, the heuristics allocate the tasks to the machines and determine
their starting date (main loop line 3). One task is scheduled at a time. The heuristics always
consider the task ¢; with the highest priority at the top of the list (line 4). Given a task, the
score function SF(t;,m;) Eq. (3.1) is evaluated for all the machines (lines 5 and 6). The
machine for which the value of the score function is optimized for task ¢; is selected for the
task allocation (line 8). The task is removed from L (line 9), then the list is updated (line 10)
and the main loop is restarted.

The score of each mapping event is calculated as in Eq. (3.1). For each machine m;;,

C;
N =
Zk:l Cik

where Cjy, is the completion time of the task ¢; on machine k and ET'C|t;][my] is the expected
time to compute a task ¢; on machine k. The first term of Eq. (3.1) aims to minimize the
completion time of the tasks t¢;, while the second term aims to assign the task to the fastest
machine or the machine on which the task takes the minimum expected time to complete. A
(lambda) is the weight parameter that tries to balance both aforementioned terms.

ETClti][m;]

SF(t;) = S, ETClt][ma]’

+(1—=X)

(3.1)

Algorithm 1: Framework 1 Low computational complexity heuristics

1 Compute Priority of each task t; € T according to some predefined objective;

2 Build the list L of the tasks sorted in a given order of Priority;
3 while L # 0 do

4 Select the task ¢; in the top of L;

5 for each machine m; do

6 L Evaluate Score Function SF(¢;);

7 Assign t; to the machine m; that minimize SF(¢;);

8 Remove task t; from L;

9 Update the list L;

The heuristics differ in the way used to compute the priorities. Minimum, mazimum, and
average expected time to complete the task are used. We presented three heuristics:

3.2.1 Heuristic Min-Max-Min:

is represented in Algorithm 2. The algorithm uses the minimum execution time of tasks to
determine the priority. Thereafter, the tasks are sorted in decreasing order of the execution
time and scheduled based on the minimum completion time.

19

3. LOW COMPLEXITY HEURISTICS

Algorithm 2: Min-Max-Min
1 forall the task t; do
2 \; for each machine m; do

L Select the minimum execution time for each task ¢;;

3

4 Sort the tasks in decreasing order of minimum execution time;

3.2.2 Heuristic Max-Max-Min:

described in Algorithm 3, uses the maximum execution time of tasks as a priority. The tasks
are sorted in decreasing order of their maximum execution time, and scheduled based on the
minimum completion time.

Algorithm 3: Max-Max-Min

1 forall the task t; do
2 \; for each machine m; do

3 L Select the maximum execution time for each task t;;

4 Sort the tasks in decreasing order of maximum execution time;

3.2.3 Heuristic Mean-Max-Min

represented by Algorithm 4, considers the average execution time of tasks as a priority. The
tasks are sorted in decreasing order and scheduled based on the minimum average completion
time.

Algorithm 4: Mean-Max-Min
1 forall the task t; do

2 for each machine m; do
3 L Compute the mean execution time for each task ¢;;
4 Sort the tasks in decreasing order of average execution time;

3.2.4 Computational Complexity

The computational complexity determines how efficiently the problem can be solved. To
compute the computational complexity of the Min-Max-Min, Mazx-Maz-Min, and Mean-Maz-
Min heuristics start computing the value of the priorities for the tasks, and the construction
of the sorted list, this have an overall cost of O(mn log n). The execution of the main loop
(lines 3 to 9) in Framework 1 has an overall cost of O(mn). Therefore, the asymptotic overall
cost of the heuristics is O(max(mn log n,mn)), that is, it require O(mn log n) running time,
which is less than one order of magnitude to the related Min-min approaches.

20

3.3 Evaluated Heuristics

3.3 Evaluated Heuristics

3.3.1 Task Priority Algorithms

Luo et al. [111] proposed a set of heuristics that exploit the task consistency to perform bet-
ter scheduling and mapping decisions. Most of them are based on the tasks execution order.
The rational inference is that a task requiring more computational effort is more critical to
be scheduled than a task with shorter computational requirements. The order defines the
priority between tasks. For that purpose, the authors proposed the Task Priority Diagram
(TPD) technique. TPD is a precedence task graph, based on a Hasse diagram that defines a
partial order of tasks using the ETC matrix [111]. TPD contains the information about the
mapping sequence of tasks. Lou et al. concluded that the heuristics TPD with support of
minCT-minCT (minimum completion time in the first phase, and minimum completion time
in the second phase) and TPD with support of minCT-minSD (minimum completion time
for every unmapped task in the first phase, and minimum standard deviation in the second
phase) perform as efficient as Min-min.

We follow the generic framework of the scheduling algorithm with TPD in the decreasing
order of task processing times as originally proposed in [111]. In this framework, the first
cycle is repeated until all of the tasks have been assigned. In each iteration, T is the set
of the unmapped tasks with maximal elements in the current TPD, represented by G. The
framework use the First-Mapping Step function which develop the respectives two algorithms
able to select a task ¢, from T" and map the task on machine m;, with a minimum completion
time or minimum standard deviation. After t; is mapped, node t; and its edges are removed
from G, and the set T, containing the elements of the new G’ is also updated.

Algorithm 5: Framework 2. TPD heuristic: Mapping Algorithm with TPD [111]

1 G = Hasse-Diagram-Generator(Ey,) {E is the input ETC matrix};
T' = {t'|t’ is a maximal element of G};

while 7" # () do

Fyj» =First-Mapping-Step(T");

map ty to m; and update the load on mj;

delete t;; and the edges of t; from G;

G=GaG",

T' = {t|t is a maximal element of the new G};

® I o ook W N

Following Luo et al. [111], Algorithm 6 and Algorithm 7 use the minimum completion
time to select the machine onto which the unscheduled tasks in 7" can be mapped (line 1 in
both algorithms). Based on this mapping, the second metric is used to select the best task
with its corresponding destination machine (line 2 in both algorithms). In Algorithm 6, the
task with the overall minimum completion time is selected and mapped to the corresponding
machine, while Algorithm 7 prefers the mapping step, that minimizes the standard deviation
of the system loads after update.

Luo et al [111] defined the current machine free-time vector as F = (f1,..., fm), which

21

3. LOW COMPLEXITY HEURISTICS

means that machine j is free after f; time-units for 1 < j < m [111]. The machine free-time
vector after update is F; j = (fi,..., fj + €ij, ..., fm), represents a mapping step where task 4
with expected time to compute e; is mapped to machine j.

Algorithm 6: First-Mapping-Step ({F;|t; € T,1 < j < m}, minCT-minCT) [111]
1 F = {Fyp|Fy =minCT({Fy|1 < j <m}), t; € T};

2 Fj; :minCT(?);

3 return Fj;;

Algorithm 7: First-Mapping-Step ({Fj;|t; € T,1 < j < m}, minCT-minSD) [111]
1 F = {Fy|Fy =minCT({F,[1 < j <m}), t; € T}

2 Iy :minSD(?);

3 return Fj;;

3.3.2 Min-min Algorithm

One of the most widely used batch scheduling heuristic in HCS is the min-min list scheduling
method [82]. A pseudocode of the Min-min heuristic is presented in Algorithm 8. The
min-min heuristic greedily picks the task that can be executed the soonest, considering the
current machine load. The heuristic works in two phases. In the first phase (lines 1 to 4),
it calculates the minimum completion time for every unscheduled task (the first min). In
the second phase, the task with the overall minimum is selected (line 6), and mapped in a
machine (line 7). The task is then removed (line 9) from the set of unscheduled tasks, and
the process is repeated until all tasks are mapped.

Algorithm 8: Min-min heuristic [82]
Data: The ETC matrix.

while T # O do

2 for each unmapped task t; € T do

[y

L Select the machine that gives the task its minimum completion time;

w

Build the list of tasks L adding this minimum founded;

Find the task ¢; € L with the minimum earliest completion time;
Assign task tj to the machine that gives the earliest completion time;
Update the ready time of each machine;

Delete the task t; from T

® N o oo

22

3.4 Numerical Example

3.3.3 Computational Complexity

In the following, for simplicity, we refer to TPD-minCT-minCT [111] algorithm as, Luo_1,
TPD-minCT-minSD [111] as Luo-2, Min-min [82] as m_m, and Min-Max-Min, Max-Max-
Min, Mean-Max-Min [SUPE2013] as Low_1, Low_2, and Low_3, respectively (Table 3.2).
This involves no loss of generality.

Table 3.2 summarizes the heuristics evaluated in this paper.
name used in this paper (in the experimental section). Second column presents the name
of the heuristics in the literature. Third column remarks the computational complexity of
each algorithm. Last column provides the reference where heuristics were introduced. It
is important to highlight that the main difference of low-complexity heuristics among all
evaluated heuristic is their simplicity to resolve big scheduling problems.

First column shows the

No. Name Complezity Reference
Luo_l | TPD-minCT-minCT | O (n*m) [111]
Luo-2 | TPD-minCT-minSD O (n*m) [111]

m_m Min-min O (n*m) [82]
Low_1 Min-Max-Min O (nmlogn) | [SUPE2013]
Low_2 Maz-Maz-Min O (nmlogn) | [SUPE2013]
Low_3 Mean-Maz-Min O (nmlogn) | [SUPE2013]

Table 3.2: Complexity of heuristics

3.4 Numerical Example

We illustrate the scheduling of the low computational complexity heuristics on a numerical
example, and compare them with the TPD-based heuristics and Min-min. Let us consider
the example reported in [111] with the ETC input matrix shown in Table 3.3. The instance
is composed of eight tasks and four machines.

Figure 3.1 shows the TPD graph generated by Luo_1 and Luo_2, (See [111] for more
information about the TPD graph). Table 3.4 shows the different task sequences computed
for each heuristic to map the tasks. The sequences generated by Luo_1 and Luo_2 are based
on the TPD as shown in Figure 3.1 from top to the bottom (¢7). m_m generates the sequence
using the TPD graph from the bottom to the top (tp). The task in the lower level of the TPD
graph has a higher priority for mapping. Low_1, Low_2, and Low_3 generate the sequences
according to ETC values used to define tasks’ priorities.

We observe the performance behavior of Low_1, Low_2, and Low_3 for different lambda
values in the interval [0, 1] (Figure 3.2). From the plot, we observe that the heuristics have
the best performance for lambda values in the interval [0.6, 0.9], the same values for the three
heuristics. We report the best makespan for lambda equal to 0.8.

Figure 3.3 depicts the optimal schedule computed using an exhaustive search algorithm.

The resulting schedules computed by the evaluated heuristics are depicted in Figures 3.4-
3.9. The makespan computed by Luo_1 is equal to 2350, Luo_2 obtains a makespan equal to

23

3. LOW COMPLEXITY HEURISTICS

Task No. mo my mo ms
to 2000.0 | 2200.0 | 2400.0 | 2600.0
ty 900.0 | 1100.0 | 1300.0 | 1500.0
to 950.0 | 1050.0 | 1350.0 | 1550.0
t3 980.0 | 1080.0 | 1330.0 | 1480.0
ty 600.0 | 700.0 | 800.0 | 1490.0
ts 550.0 | 1070.0 | 750.0 | 1000.0
tg 920.0 | 600.0 | 600.0 | 1000.0
tr 100.0 | 200.0 | 300.0 | 400.0

Table 3.3: ETC for running example
to

14 te

Figure 3.1: Task Priority Diagram TPD, which contains the information about the mapping
sequence of tasks and generated by Luo_1 and Luo_2.

2490, m_m computes a makespan of 3200 units of time, the makespan of Low_1 is equal to
2550, Low_2 and Low_3 compute a makespan equal to 2350 units of time.

We can notice that different sequences lead to different performance for the heuristics.
In the given example, due to the tasks’ priorities combined with the score function low
computational complerity heuristics perform as efficient as the related heuristics with the
TPD graph and outperform Min-min. From the numerical example, we can observe that the
low complexity heuristics do not need the TPD graph to compute a similar schedule than the
TPD-based heuristics, neither the first phase iteration than Min-min.

The error deviation from the optimal schedule is 33% for m_m, 16% for Low_1, 14% for
Luo_2, and 9% for Luo_1, Low_2 and Low_3. The performance behavior of the investigated
heuristics is validated in the experimental section.

24

3.5 Experimental Validation

Luo_.l | Luo.2 | m_m | Low_1 | Low_2 | Low_3
1o 1o & to to 1o
t2 i3 173 ta i3 t2
31 31 123 131 2 i3
i3 ts 2} 2} 31 51
t6 t2 i3 i3 2} 2
ts t6 31 14 l6 ts
21 21 2 143 14 l6
t7 t7 to & & t7

Table 3.4: Tasks’ sequence computed by each heuristic.

T
Low_1 —— _|

N
6000 Low.| —¥—
Low_3 —+—
5000 -
g 4000 .
£
S 3000 -
| | | N
e
2000 F i
1000 |- i
| | | |
0 0.2 0.4 0.6 0.8 1

Lambda values
Figure 3.2: Makespan for different lambda values computed by the low complexity heuristics.

3.5 Experimental Validation

In this section, we discuss how we conduct the qualitative analysis of proposed heuristics. To
provide a fair comparison, the assumptions and system parameters are kept the same in all
of the approaches.

We show that quiet simple schedulers Low_1, Low_2, and Low_3 with low complexity can
provide good performance for different scheduling scenarios and instances. We characterize
the best scenarios to which the low complexity heuristics outperform related approaches,
especially those scenarios where heterogeneity in machines and tasks is important. Note, that

25

3. LOW COMPLEXITY HEURISTICS

ms ts te
ms t1 ta
mi to i3
mo to tr
0 Crae = 2130

Figure 3.3: Optimal Schedule.

m3 t3 tr
mo 1 ts
mi to g ty4
mo to
0 Craz = 2350

Figure 3.4: Schedule computed by Luo_1.

ms ts t4
mo t1 tg
mq i3 to
mo to t7
0 Cmaz = 2490

Figure 3.5: Schedule computed by Luo_2.

the low complexity heuristics do not use the TPD technique to define the tasks sequences.
Besides the performance behavior it does not require additional management overhead such
as evaluating tasks priorities at each iteration of the heuristics.

26

3.5 Experimental Validation

ms t3

mo t4 to
mi t6 t2

mo |t 5 1

0 Crnaz = 3200

Figure 3.6: Schedule computed by m_m.

ms tr (3]
mo tg to
mq ty i3
mo ts to
0 Crnaz = 2550

Figure 3.7: Schedule computed by Low_1. The tasks are sorted by shortest execution time

first on each machine.

ms i3

mg |t7 to

0 Craz = 23950

Figure 3.8: Schedule computed by Low_2. The tasks are sorted by largest execution time

first on each machine.

3.5.1 Evaluation Method

To provide an effective guidance in choosing the best strategy, we perform an analysis of
makespan metric as in [111]. Makespan optimization criterion considers the largest comple-
tion time of any job in the system. It is applicable to compare different algorithms. However,
it does not depict the information about the efficiency of the scheduling algorithms and the

27

3. LOW COMPLEXITY HEURISTICS

ms tl

mo |t7 to

0 Craz = 2350

Figure 3.9: Schedule computed by Low_3. The tasks are sorted by the average execution

time of tasks.

schedule quality. We also use the approximation factor to qualify the efficiency of the schedul-
ing algorithms. The approximation factor of the strategy is defined as p = Cyaz/C 0y Where
C) 4 1s the optimal makespan. As we are, in general, not able to determine the optimal
makespan, in our experimental evaluation, we use the lower bound of the optimal makespan

C) . instead of the optimal makespan with:

C;knam > Cv’;knam = max {pmax7 Lzt mmj:ln;:(ETC[ti] [mj])}) (32)

where
Pmaz = MAxT {Min;—1..., (ETC[t;][m;])} . (3.3)

We show that the makespan obtained by algorithms does not exceed the optimal makespan
for any problem instances by more than a certain factor. This factor is called an approxima-
tion factor in the off-line case and used in the following analysis.

The analysis is conducted as follows. First, we evaluate the performance ratio ~ (relative
error) of the approximation factor of each strategy under each metric. This is done relative
to the best performing strategy for the metric, as follows:

strategy metric value

 best found metric value’ (34)

Thereafter, we average the performance ratios to evaluate performance of the strategies,
and show if some strategies tend to dominate results in all of the test cases, in average. Our
goal is to find a robust and well performing strategy under all of the test cases, with the
expectation that it will also perform well under other conditions. For example, with different
HCS configurations and workloads. This approach provides the mean relative errors. The
average values give us valuable conclusions. However, they do not show the negative effects
of allowing a small portion of the problem solutions to dominate the conclusions.

To analyze the possible negative effects of allowing a small portion of the problem in-

stances with large deviation to dominate the conclusions, and to help with the interpretation
of the data generated by the benchmarking process, we presented performance profiles of our

28

3.5 Experimental Validation

strategies.

The performance profile p(7) is a non-decreasing, piecewise constant function, which
presents the probability that a performance ratio ~ is within a factor 7 of the best ra-
tio [53, 54]. The function p (7) is the cumulative distribution function. Strategies with large
probability p (7) for smaller 7 are to be preferred. Moreover, three extra metrics are used to
compare heuristics in more details.

e The number of the best solutions found (B) It is the number of times a particular
algorithm obtains the shortest makespan.

e The number of best solutions found together with another heuristics (EB) It counts the
cases, where one heuristic found the shortest makespan together with at least one other
heuristic.

e The Percentage gain of the mean flowtime (%Gain) it shows how much the results of
one our low complexity heuristic is better or worst than the results obtained by Luo_1.

3.5.2 Experimental Setup

In this section, we present a common HCS trace-based simulation setup with an emphasis on
the representative workload and testing environment to obtain reproducible and comparable
results. However, while machines in real HCS (like computational grid) often exhibit differ-
ent forms of heterogeneity, such as different hardware, operating system, dynamic behavior,
software, many different types of tasks and other restrictions, the model of any study on
HCS scheduling must be an abstraction of reality to perform performance evaluation in a
repeatable and controllable manner [79]. On the other hand, key properties of HCS should
be observed to provide benefits for real deployments. Hence, we assume that the tasks ar-
rive at the system before the scheduling event and the scheduler knows the parameters of
all tasks. We consider that all of the machines are idle and available at time zero, which is
possible by considering an advance reservation. We assume that the resources are stable and
dedicated. This simplified model matches some real HCS deployments, and we consider that
the assumptions are reasonable. The evaluated algorithms may serve as a starting point for
algorithms that can be implemented in real HCS systems.

To provide a fair comparison, we use an experimental framework proposed in [111]. ETCs
(see Section 3.1) are used for performance assessment. To present the heterogeneity of tasks
and machines, a variety of ETC matrices are generated. Machine heterogeneity is represented
by a parameter called Vj,gchines- 1t leads to the variation of execution times of a given task
across the computing resources. Task heterogeneity is represented by a parameter called
Viesks- 1t represents the degree of variation among the execution time of tasks for a given
machine. The model is implemented by the coefficient-of-variation (COV) based method [8]
considering different machine and task heterogeneities.

The combinations of V,,uchines and Vigsks is used to characterize different HCS environ-
ments and computational tasks. For instance, low values of machine heterogeneity represent
computing systems composed of similar (almost homogeneous) computer resources. On the
contrary, computing systems integrated by resources of different types and capacities are
represented by high values of Vi, achines- Low values of Vi,sis parameter represents cases when

29

3. LOW COMPLEXITY HEURISTICS

tasks are almost homogeneous (i.e., when the computational requirements of tasks are quite
similar), with nearly the same execution times for a given machine. High values of Vs
parameter describes scenarios, in which applications are required to exhibit short and large
execution time. We also consider full-consistent, partial-consistent, and original-consistent
scenarios [111], which correspond to consistent, semi-consistent, and inconsistent scenarios
introduced in [8].

The full-consistent scenario implies that if a given machine m; executes task t; faster
than machine my, then machine m; executes all tasks faster than machine my. The original-
consistent scenario represents a case where machine m; may be faster than machine m;, for
some tasks and slower for others. Finally, the partial-consistent scenario consists of both of the
aforementioned scenarios, that is, it contains a consistent sub-matrix within inconsistent sub-
matrix. Moreover, the ETC matrix considers an overhead implied by moving the executable
code and data associated with each task.

To simulate different heterogeneous scenarios, we vary fiask, Viask, and Vinachine param-
eters. Vigsk, is within the range of [0.1, 1.1], Visachine is within the range of [0.1, 0.6], both
with the increment 0.1, sk is equal to 1000. Table 3.5 shows 16 combinations of tasks, and
machines that we use for evaluation. We have generated 144,000 instances (1000 for each
parameter combination, in total 48 combinations with three different tasks-machine sizes).
We have simulated heterogeneous computing systems composed of 16, 32, and 64 machines
and 512, 1024, and 2048 tasks.

Scenarios

‘ V;Eask ‘ Vmachine H ‘/task: ‘ Vmachine H V;Eask ‘ Vmachine

0.1 0.1 0.6 0.6 - -
0.2 0.1 0.7 0.6 0.6 0.2
0.3 0.1 0.8 0.6 0.6 0.3
0.4 0.1 0.9 0.6 0.6 0.4
0.5 0.1 1 0.6 0.6 0.5
0.6 0.1 1.1 0.6 - -

Table 3.5: 16 Heterogeneity scenarios.

We have executed the low complexity heuristics for A-values in the interval [0, 1] with
the increment 0.1. We report the best value for each instance. The complexity of Low_1,
Low_2, and Low_3 is slightly increased by a constant, which is still lower than the complexity
of related approaches.

3.6 Experimental Results

The primary goal of the experimental evaluation is to compare six heuristics: Luo_1, Luo_2,
m_m, and the low computational complexity heuristics Low_1, Low_2, and Low_3 (Table 3.2).
We also present the results regarding the approximation factor, and number of best solutions
found objectives. Following the general direction depicted in Luo et al. [111], we average the
simulation results using 1000 different ETCs of the same type.

30

3.6 Experimental Results

3.6.1 Performance Ratio of the Approximation Factor

Figure 3.10 shows the performance ratio (relative error) of the approximation factor. Fig-
ure 3.10(a) and Figure 3.10(b) show two representatives figures of the results for 512 tasks
scheduled on 16 machines. Figure 3.10(c) and Figure 3.10(d) show two representatives figures
of the results for 1024 tasks scheduled on 32 machines. Figure 3.10(e) and Figure 3.10(f) show
two representatives figures of the results for 2048 task scheduled on 64 machines.

We present the results of several scenarios: partial-consistent scenario with Vs = 1.1 and
Vinachine = 0.6 (1.1 x 0.6) (Figure 3.10a), with (0.4 x 0.1) (Figure 3.10c); original-consistent
scenario with (0.6 x 0.5) (Figure 3.10b), with (1.1 x 0.6) (Figure 3.10d), with (0.2 x 0.1)
(Figure 3.10e), and with (1.1 x 0.6) (Figure 3.10f).

31

3. LOW COMPLEXITY HEURISTICS

o | °
o
o
§
E o
0
e | — ©
o T o
i 3
; g
1 §
EQ? g
5 S

8 J j
o j T T j
<7 o b — —
T T T T T T
Luol Luo_2 m.m Lowl Low2 Low3
Heuristics

(a) partial-consistency with Vigsr, = 1.1 and
Vinachine = 0.6 for 512 x 16

o
v |
. |
- |
] ‘
[|
8 —
fin]
o
;
0 ! —_ —_ —_
== — — —
| =
.| =
g
T T T T T T
Luo_1 Luo_2 m_m Low 1 Low_2 Low_3
Heuristics

(c) partial-consistency with Viqsr = 0.4 and
Vinachine = 0.1 for 1024 x 32

3 g
3 8
iR

8)
h —
N !
El —
3
g
3

s

[©
g |
3
3| N T

o v
N E s N ——
8 | " |
= s s - -
s = 0
S 1 ——
T T T T T T
Luo_1 Luo_2 m_m Low_1 Low_2 Low_3
Heuristics

(e) original-consistency with Vigs, = 0.2 and
Vinachine = 0.1 for 2048 x 64.

o
o
]
N i
-
o I e
5 |
fir |
e -
. |
s R
T T T T T T
Luo_1 Luo_2 m_m Low_1 Low_2 Low_3
Heuristics

(b) original-consistency with Vigsk = 0.6
and Vipachine = 0.5 for 512 x 16

Error
14
L

IB=E!
N E

8
— 8 & &
o] — _— = ——
T T T T T T
Luo_1 Luo_2 m_m Low_1 Low_2 Low_3
Heuristics
(d) original-consistency with Viger = 1.1
and Vmachine = 0.6 for 1024 x 32.
s o
o
o | 8
3 i
o
o | °
: i
&
<
o 8
R
T —_— = =
S+ —— —— ——
T T T T T T
Luo_1 Luo_2 m_m Low_1 Low_2 Low_3
Heuristics

(f) original-consistency with Vigsr = 1.1 and
Vinachine = 0.6 for 2048 x 64.

Figure 3.10: Approximation factor error for makespan

32

chapter4/figures/new_instances/res_s_512x16_1.1_0.6_box_mksp.eps
chapter4/figures/new_instances/res_i_512x16_0.6_0.5_box_mksp.eps
chapter4/figures/new_instances/res_s_1024x32_0.4_0.1_box_mksp.eps
chapter4/figures/new_instances/res_i_1024x32_1.1_0.6_box_mksp.eps
chapter4/figures/new_instances/res_i_2048x64_0.2_0.1_box_mksp.eps
chapter4/figures/new_instances/res_i_2048x64_1.1_0.6_box_mksp.eps

3.6 Experimental Results

©
-
g °
w |
- 8 o
w |
AE) j
< |
S ' 1
. ° < :
; S .
: °
o
. — L =l
2 ; ° g -7 T
w H w "
: 8 ' E
S - & N _ |
1 =7 !
< E 48— ! a a a
- g‘ s s - 7 i‘ T
== | . . . = } ! ! !
‘ e = = ‘ 11—
2 - —— —— —— 2 - ——
T T T T T T T T T T T T
Luo_l Luo_2 m_m Lowl Low2 Low.3 Luo_l Luo_2 mm Lowl Low2 Low.3
Heuristics Heuristics
(a) (b)
@
o & °
0 °
@ o
g °
o 1B 8
- » °© @4
i o E
: 8
< 1 o 1
3 o :
o ! 8
5 5 T4 ‘ 8
SR 1 o — 1
- : N
R i | :
S L !
E 1
) E
- ; i
- -+ & 8 8 e ‘ . . .
= L f = | ° ° °
=V =3 = =——————
S - - =1~ - - =
T T T T T T T T T T T T
Luo_l Luo_2 m_m Lowl Low2 Low.3 Luo_l Luo_2 mm Lowl Low2 Low.3
Heuristics Heuristics
(c) (d)
°
5 8 @ g
8 - o
©
ER E E .
v °
) L. . R
- ' Al " -]
S : :
‘ § : 0
H OE !
1 g ‘ E
. - .
5 5 L
= ! = < '
w i w - 7 "
@ | . | g .
3 1 : T :
] — -
- o~
N
-4 & | 8 |
T = £+ & & —_ & & 8
S R =1 - - =
T T T T T T T T T T T T
Luo_l Luo_2 m_m Low1 Low2 Low.3 Luo_l Luo_2 mm Lowl Low2 Low.3
Heuristics Heuristics

(e)

(f)

Figure 3.11: Approximation factor error of original-consistency scenario considering high

machine heterogeneity (0.6) and high task heterogeneity. The task heterogeneity varies from
0.6 to 1.1 and the ETC matrix size is 512x16

33

chapter4/figures/new_instances/res_i_512x16_hihi_box_mksp.eps
chapter4/figures/new_instances/res_i_512x16_0.7_0.6_box_mksp.eps
chapter4/figures/new_instances/res_i_512x16_0.8_0.6_box_mksp.eps
chapter4/figures/new_instances/res_i_512x16_0.9_0.6_box_mksp.eps
chapter4/figures/new_instances/res_i_512x16_1_0.6_box_mksp.eps
chapter4/figures/new_instances/res_i_512x16_1.1_0.6_box_mksp.eps

3. LOW COMPLEXITY HEURISTICS

The Luo_2 heuristic has worst results in all of the scenarios and experiments. The results
are from 15% to 50% worst than the lower bound of the optimal solutions. The Luo_1, Low_1,
Low_2, and Low_3 heuristics produce high quality results that are from 1% to 30% from the
lower bound of the optimal solutions. Figure 3.10 (a) shows similar results for Luo_1, Low_1,
Low_2, and Low_3 heuristics that are better than m_m. Figure 3.10 (e) shows slightly better
results of Luo_1, compared m_m, Low_1, Low_2, and Low_3 heuristics. In all other scenarios
Low_1, Low_2, and Low_3 heuristics produce better results. The best behavior of Low_1,
Low_2, and Low_3 low computational complexity heuristics is in original-consistency cases,
which refers to the most generic and real scenarios [26]. It can be validated in Figure 3.11.
The figure depicts the results for the original-inconsistent instances This is mainly due to
the high heterogeneity of these instances. The benefit of exploiting the heterogeneity of the
applications and resources to maximize the performance of the system is more apparent. The
score function exploits resource capabilities and task requirements by scheduling tasks to a
machine that not only minimizes the completion time, but also executes individual tasks
faster. On the other hand, results of Low_1, Low_2, and Low_3 are improved with increasing
the size of the computing system from 16 to 64 machines (Figure 3.12 and Figure 3.13).
The low complexity heuristics show their better scalability compared with related heuristics
because of the low complexity feature and the score function.

34

3.6 Experimental Results

o °
v | o @
-
E 0 | 8
-
S : . N
: : °
< | i
E g) :
@
=5 —
& ' ° i o
1 = 1
.| B B |
- v '
: ~ i
i - '
7 — =
- o =
- - . ° ° o
‘ AR N R S . RN
T — B e == T _— e =3
s = - s -~ e e
T T T T T T T T T T T T
Luo_l Luo_2 m_m Low 1l Low2 Low.3 Luol Luo_2 m_m Low 1 Low2 Low.3
Heuristics Heuristics
(a) (b)
- @
- o al o
: °
o _|] o
- 8 g
g £ 8
=
-
2 ‘ £
! o j
1 ° !
: : H
3 ° ! o
; — p:l =
= = —
w w
o — 1 —
- ! ' . '
~ :
i g 1
-
- T
A 1
—— 1 8 L
—_ —— —— —— - - -
e | — — — — o o - - -
4 =
T T T T T T T T T T T T
Luo_l Luo_2 m_m Low 1l Low2 Low.3 luol Luo_2 m_m Low 1 Low2 Low.3
Heuristics Heuristics
(c) (d)
o o
8
° o
E 8 =7 °©
o
- 1
; o 8
| § . o
: 8 e 4 1]
5 S g l 8
] ! s E
= : ; o S
i 1 < |
1 : -
B g E
-
T ~]
i - o
e _
=" & & & = 8 8 8
° —— V) V4 o e_— e— ===
S - - - S —o —— —— ——
T T T T T T T T T T T T
Luo_l Luo_2 m_m Low 1l Low2 Low.3 Luol Luo_2 m_m Low 1 Low2 Low.3
Heuristics Heuristics

(e)

(f)

Figure 3.12: Approximation factor error of original-consistency scenario considering high
machine heterogeneity (0.6) and high task heterogeneity. The task heterogeneity varies from

0.6 to 1.1. The ETC matrix size is 1024x32

35

chapter4/figures/new_instances/res_i_1024x32_hihi_box_mksp.eps
chapter4/figures/new_instances/res_i_1024x32_0.7_0.6_box_mksp.eps
chapter4/figures/new_instances/res_i_1024x32_0.8_0.6_box_mksp.eps
chapter4/figures/new_instances/res_i_1024x32_0.9_0.6_box_mksp.eps
chapter4/figures/new_instances/res_i_1024x32_1_0.6_box_mksp.eps
chapter4/figures/new_instances/res_i_1024x32_1.1_0.6_box_mksp.eps

3. LOW COMPLEXITY HEURISTICS

14

16

15

14

.) L~
2 '] I3
& — e i 3
.| i i
i ' :
1 N |
! S .
] . — —]
- | ' i e 1
e - & & E=== - 4 & &
T _ e === T _— = =
s 4 T T T ° — o e o
3
T T T T T T T T T T T T
Luo_1 Luo_2 m_m Low_1 Low_2 Low_3 Luo_1 Luo_2 m_m Low_1 Low_2 Low_3
Heuristics Heuristics

(a)

(b)

16

Error

14

I
AU]““‘*WWMO

Error

18

16

14

12

8
1
E

= - - - === 8 . .
e e =4 —— — = ===
e —— — — S —o— —o— —o—
T T T T T T T T T T T T
Luol Luo_2 m_m Low 1 Low2 Low.3 Luo_l Luo_2 m_m Low 1l Low2 Low.3
Heuristics Heuristics
(c) (d)
< °
° 2 o
° o
% 4 ° @ ¢
8 j
E J o
o | ° © i °
=l ‘ ° - |
5 ‘ g 5
& E I ‘
= < 1 !
= - 1 !
o E o~ g '
- - i K
= -8 -8 -8 == —o— —o— —o—
S A — — — 2 5 o o
b= 4
T T T T T T T T T T T T
Luol Luo_2 m_m Low 1 Low2 Low.3 Luo_l Luo_2 m_m Low 1l Low2 Low.3
Heuristics Heuristics

()
Figure 3.13:

()

Approximation factor error of original-consistency scenario considering high

machine heterogeneity (0.6) and high task heterogeneity. The task heterogeneity varies from
0.6 to 1.1. The size of the ETC matrix is 2043‘36tasks and 64 machines

chapter4/figures/new_instances/res_i_2048x64_hihi_box_mksp.eps
chapter4/figures/new_instances/res_i_2048x64_0.7_0.6_box_mksp.eps
chapter4/figures/new_instances/res_i_2048x64_0.8_0.6_box_mksp.eps
chapter4/figures/new_instances/res_i_2048x64_0.9_0.6_box_mksp.eps
chapter4/figures/new_instances/res_i_2048x64_1_0.6_box_mksp.eps
chapter4/figures/new_instances/res_i_2048x64_1.1_0.6_box_mksp.eps

3.6 Experimental Results

Error Approximation Factor Error Approximation Factor
o o
© | ® _|
S S
o | o |
= =
< | <
S S
Heuristics Heuristics
~ —— Luo_1 ~ —— Luo_1
° Luo_2 ° Luo_2
m_m m_m
Low_1 Low_1
2 —B- Low_2 : —5- Low_2
S -~ -o--Low_3 S - -o--Low_3
T T T T T T T T T T
1.0 12 14 16 18 1.0 11 12 13 14
X X
(a) partial-consistency with Vigsk = 1.1 and (b) original-consistency with Vigsk = 0.6
Vinachine = 0.6 for 512 x 16 and Vinachine = 0.5 for 512 x 16
Error Approximation Factor Error Approximation Factor
o e od
) 7) 7
@ | @ _|
S S
©o _| © |
S S
g E
I £
< <
S o
Heuristics Heuristics
o~ —— Luo_1 o —+— Luo_1
° Luo_2 ° Luo_2
mm m_m
Low_1 Low_1
- Low_2 —&- Low_2
2 4 - -Low_3 S 4~ -o--Low_3
T T T T T T T T T T
1.0 1.2 14 16 18 1.0 12 14 16 18
x x
(c) partial-consistency with Vigqsr = 0.4 and (d) original-consistency with Vigsr = 1.1
Vinachine = 0.1 for 1024 x 32 and Vinachine = 0.6 for 1024 x 32
Error Approximation Factor Error Approximation Factor
o o
a1 52 = < T T e
o | o |
S S
o | o |
= =
< | <
S S
Heuristics Heuristics
~ —— Luo_1 ~ —— Luo_1
° Luo_2 ° Luo_2
m_m m_m
Low_1 Low_1
; —5- Low_2 —5- Low_2
S+ - -~ - Low_3 S -~ - Low_3
T T T T T T T T T T T T T T
1.00 1.02 1.04 1.06 1.08 1.10 112 114 1.0 12 14 16 18 2.0
X X
(e) original-consistency with Vigsr = 0.2 and (f) original-consistency with Vigsr, = 1.1 and
Vimachine = 0.1 for 2048 x 64 Vimachine = 0.6 for 2048 x 64

Figure 3.14: Performance profile of the approximation factor error

37

chapter4/figures/new_instances/res_s_512x16_1.1_0.6_mksp2.eps
chapter4/figures/new_instances/res_i_512x16_0.6_0.5_mksp2.eps
chapter4/figures/new_instances/res_s_1024x32_0.9_0.6_mksp2.eps
chapter4/figures/new_instances/res_i_1024x32_1.1_0.6_mksp2.eps
chapter4/figures/new_instances/res_i_2048x64_0.2_0.1_mksp2.eps
chapter4/figures/new_instances/res_i_2048x64_1.1_0.6_mksp2.eps

3. LOW COMPLEXITY HEURISTICS

3.6.2 Performance Profile

In this section, we present the performance profiles of the strategies to complement the
study of averages. Figure 3.14 shows the performance profiles of p, performance ratios =y
(see Section 3.5.1), in the interval 7 = [1, ..., 2] to provide objective information for analysis
of a test set. Strategies with large probability p(7) for smaller 7 are to be preferred. For
instance, in Figure 3.14(b), for heuristic Luo_1 p(1.05) = 0.8 and for heuristics Low_1, Low_2,
and Low_3 p(1.05) = 0.95 means that heuristic Luo_1 performed at most 5% worse than the
best strategy on 80% of instances considered and heuristics Low_1, Low_2, and Low_3 upon
95%. We show the results of the same scenarios as presented in Figure 3.10. We found small
discrepancies in the performance ratios on a substantial percentage of the problems. The
Luo_1, Low_1, Low_2, and Low_3 heuristics have the highest probability of being the better
strategies. The probability that they are the winners on a given problem within factors of
1.1 of the best solution is about 1. If we choose being within a factor of 1.01 as the scope
of our interest, then either Luo_1 or Low_3, would suffice with a probability 0.95. Luo_1
dominates other heuristics in partial-consistent scenarios with (0.4 x 0.1) (Figure 3.14c), and
the original-consistent scenarios with (0.2 x 0.1) (Figure 3.14e). The Low_1, Low_2, and
Low_3 heuristics dominate other heuristics in the original-consistent scenario with (1.1 x 0.6)
(Figure 3.14f). In other scenarios, the Luo_1, Low_1, Low_2, and Low_3 heuristics show the
similar results.

The higher values of Visks in the original-consistent scenarios, the better behavior of the
low computational complezity heuristics. They show better results compared to Luo_l in al-
most all original-consistent scenarios with the higher values of Vigsis and Vi gehine. Figure 3.17
validates the results.

3.6.3 Number of Best Solutions Found

Tables 3.6 and 3.7 present the evaluation results of the heuristics considering the number
of best solutions found (B), and the number of best solutions found together with another
heuristics (EB). They show the better behavior of low complexity heuristics in (512 x 16)
case study. For instance, heuristics Low_2 and Low_3 have the best solutions in 895 instances
of the Vigsks = 1.1 and Vipechines = 0.6 original-consistent scenario. Note that EB is the
complement to B results.

3.6.4 Flowtime Comparison

The most natural measure of the quality of service received by a client is the flowtime, which
is defined as the time since the client submits a request until it is completed. The flowtime is
closely related to the user experience, as it measures the amount of time an user has to wait
to get his jobs serviced [16] .

In this section, we compare one of our proposed low complexity heuristics with the best
heuristic reported in the literature, Luo_1, for the same case study (i.e., makespan) considering
the flowtime criterion. We only show the comparison results for Low_3 against Luo_1 because
results for Low_1 and Low_2 are comparable to Low_3.

We calculate the percentage of the gain (%Gain) of the mean flowtime (Eq. 3.5) obtained

38

3.6 Experimental Results

Viasks Heuristics
1 2 3 4 5 6
01 B 358 1 431 0 O 0
EB 203 0 203 0 7 7
06 B 226 0 28 0 O 0
EB 0 0O 0 0 746 746
07 B 172 0 4 0 0 0
EB 0 0 0 0 824 824
08 B 164 0 0 0 0 0
EB 0 0O 0 0 836 836
09 B 135 0 0 0 O 0
EB 0 0 0 0 865 865
1 B 112 0 0 0 0 0
EB 0 0O 0 0 888 &880
1.1 B 105 0 0 0 O 0
EB 0 0O 0 0 89 &89

Table 3.6: B and EB table, original-consistent ETCs with V,,achine = 0.6 for 512 x 16

Vinachines Heuristics
1 2 3 4 5 6
01 B 511 0 0 O O 0
EB 0O 0 0 0 489 489
02 B 381 0 2 0 0 0
EB 0O 0 O 0 617 617
03 B 349 0 5 0 O 0
EB 0O 0O O O 646 646
04 B 360 0 14 0 O 0
EB 0O 0O 0 0 626 626
05 B 295 0 15 0 O 0
EB 0O 0 0 0 69 690
06 B 226 0 28 0 O 0
EB 0O 0 0 0 746 1746

Table 3.7: B and EB table, original-consistent ETCs with Vj,s = 0.6 for 512 x 16

by Low_3 over Luo_1.

%Gain = (1 M) % 100. (3.5)

flowtimeryo1

39

3. LOW COMPLEXITY HEURISTICS

The positive number shows advantage of our Low_3 compared with Luo_1. Table 3.8 shows
the results for the percentage gain of the mean flowtime averaged over the 144 heterogeneous
scenarios and different consistencies (FC, PC, and OC refers to full, partial, and original
consistency respectively) for the three instances size: (a) 512 x 16, (b) 1024 x 32, and (c)
2048 x 64. Luo_1 is better if V,,4en is 0.1, in full-consistency scenario for 512 x 16, and
with increasing Vjqsks increases from 0.1 to 0.6. In all other scenarios, our low computational
complexity strategies outperform Luo_1 from 0.89% to 12.33%. In summary, 87% of the
results Low_3 (same to Low_1 and Low_2) is better than the results obtained by Luo-1 for
512 x 16. For 1024 x 32, approximately 90% of the results and for 2048 x 64 approximately
92% are better than the results obtained for heuristic Luo_1. The results show the best
scalability behavior of the low complexity heuristics against Luo_l.

012 x 16 1024 x 32 2048 x 64
FC | pC | oc | FC | PC | OC || FC | PC | OC
011 —-0.15 | 2.82 3.01 0.01 212 285 || 0.11 | 1.83 2.57
0.2 011 4.3 4.41 0.28 3.25 3.97 0.4 2.7 3.49
03| 053 | 533 | 5.38 062 | 3.89 | 465 || 0.73 | 3.11 | 4.37
041 097 | 6.26 | 6.58 1 4.1 567 || 1.10 | 3.39 | 4.84
0.5 14 7.3 7.66 136 | 615 | 648 || 1.39 | 4.83 | 5.39
0.6 1.7 853 | 9.09 146 | 6.87 | 747 || 1.33 | 5.02 | 6.54

0.1 || —0.89 | 0.79 1.03 || —0.56 | 0.5 0.66 || -0.28 | -0.48 | 0.33

V,, for V; = 0.6

—
? 0.2 || —0.66 | 1.58 1.81 —-0.37 | 1.35 1.52 || -0.15 | 0.41 1.23
g] 03] —049 | 2.05 227 || -0.23 | 1.84 2 -0.05 | 0.93 1.73
z 041 —0.36 | 2.35 257 || -0.13 | 1.60 235 || 0.01 | 1.29 2.07
2105 —024 | 2.61 284 || —0.05 | 1.89 2.62 || 0.07 | 1.59 2.34
= 0.6 || —0.15 | 2.82 3.01 0.01 2.12 286 || 0.11 | 1.83 2.6
©o | 0.6 1.7 8.53 9.09 1.46 6.87 747 || 1.33 | 5.02 6.54
? 0.7 2.04 | 9.46 9.88 1.82 7.98 844 || 1.58 | 6.27 7.63
g] 081 231 |10.27 | 10.57 || 2.06 8.94 9.28 1.84 | 7.43 8.54
z 09| 259 | 1098 | 11.22 || 2.31 9.88 | 10.11 || 2.09 | 8.53 9.39
; 1 2.75 11.6 | 11.78 || 2.58 10.7 | 10.76 || 2.26 | 9.46 | 10.13

1.1 3.01 | 12.12 | 12.33 282 | 11.30 | 11.54 || 2.45 | 10.31 | 10.91

Table 3.8: Percentage gain (%Gain) of the mean flow time for Low_3 over Luo_1.

3.6.5 Time and Memory

Due to the low complexity of low-complexity heuristics, the results of the scheduling time
calculation is efficient as well as the memory that each algorithm uses.

Time and memory used for all heuristics were measured for each size instance. Each
heuristic has been executed separately and the experiments are independent. Figure 3.15
shows the time results in milliseconds of these executions. The logarithmic scale was used to

40

3.6 Experimental Results

emphasize the results. As can be observed, low-complexity heuristics have better behavior.
The algorithms use less time to compute a schedule over all the set of instances. Figure 3.16
shows the memory used in MB to calculate each heuristic as well. We can observe in this
figure, that low-complexity heuristics outperform the related algorithms for all the sizes of
the instances and the gain in memory space is more important when the size of the instances
scales. The evaluated heuristics use much more memory when the instances scale because the
algorithms evaluate the completion time for the remaining tasks to be scheduled at each step
of the loop, furthermore, two of these evaluated heuristics, use TPD graph. On the contrary,
low-complexity heuristics have a good scalability and low overhead, memory use is reduced,
because each step of the algorithm only considers one task to be scheduled, the task with the
highest priority.

Heuristics

Luo_1
Luo_2

1le+06
|

]
@
[m]
B Low_1
(]
[m]

le+04
|

Time in ms (Log Scale)

1le+02
I

1e+00

512x16 1024x32 2048x64 4096x128 8192x256

instances

Figure 3.15: Time consumed for each heuristic.

3.6.6 Summary

We summarize results as follow. For full-consistency the instances present less heterogeneity;
the TPD based heuristics are able to construct a full TPD graph allowing to generate a good
sequences of task execution leading to good schedules. For partial and original consistency
the instances present more heterogeneity, then the low complexity heuristics are able to
exploit the heterogeneity to optimize the schedule, on the opposite the TPD based heuristics
construct a TPD graph composed of more independent tasks, hence the execution order of
tasks is harder to evaluate. Moreover, low complexity heuristics run faster and show good
scalability than related heuristics allowing them to be preferred in large-scale computing
systems.
Based on the analysis of the experiments results, we can conclude the following:

e Heuristics with TPD profit of the consistency for the first sorting arranged, that is
for full-consistency scenarios, but for original and partial scenarios the performance

41

chapter4/figures/Measure_Times4.eps

3. LOW COMPLEXITY HEURISTICS

Heuristics

1e+01 1le+02 1e+03
| |

Memory used in MB (Log Scale)

1e+00
|

le-01

512x16 1024x32 2048x64 4096x128 8192x256

instances

Figure 3.16: Memory used for each heuristic to calculate scheduling

decrease.

e low computational complexity heuristics are the best performing heuristics among the
heuristics in original-consistency cases showing similar behavior in partial-consistency
scenarios.

Therefore, for a practical mapping problem, Algorithm 9 generates the efficient results
considering makespan criterion.

Algorithm 9: Best performance heuristic

1 if ETC input is full-consistency case then

2 ‘ return Heuristic 1;

3 else

4 L return low computational complexity heuristics;

3.7 Extra Experimentation Evaluating Energy Efficient

For extra experimentation, we compare our proposed algorithms by analyzing the results
of numerous simulations featuring high heterogeneity of resources, and/or high heterogene-
ity of applications. Simulations studies are performed to compare these heuristics with the
well-known min-min [94, 82, 26]. The main objective of this extra experimental section is to
contribute to the optimization of energy consumption. The energy consumption of an idle re-
source at any given time is set using a minimum voltage based on the processor’s architecture.
we assume that energy is the amount of power used over a specific time interval [107]. Fur-

42

chapter4/figures/Measure_memory4.eps

3.7 Extra Experimentation Evaluating Energy Efficient

thermore, we consider that resources in the target system are incorporated with an effective
energy-saving mechanism for idle time slots [115, 101].

3.7.1 Energy Model

The energy model used in this work is derived from the power consumption model in digital
complementary metal-oxide semiconductor (CMOS) logic circuitry. The power consumption
of a CMOS-based microprocessor is defined to be the summation of capacitive power, which
is dissipated whenever active computations are carried out, short-circuit and leakage power
(static power dissipation). The capacitive power (P.) (dynamic power dissipation) is the most
significant factor of the power consumption. It is directly related to frequency and supply
voltage, and it is defined as [31, 102]:

P. = AC.;/V?f, (3.6)

where A is the number of switches per clock cycle, Ccyy denotes the effective charged ca-
pacitance, V' is the supply voltage, and f denotes the operational frequency. The relationship
between circuit delay (7y) and the supply voltage is approximated by (Eq. 3.7):

CofV

W Vi 7

Td X
where Cp, is the load capacitance, V, is the threshold voltage, and « is the velocity
saturation index which varies between one and two (a=2). Because the clock frequency is
proportional to the inverse of the circuit delay, the reduction of the supply voltage results
in reduction of the clock frequency. It would be not beneficial to reduce the CPU frequency
without also reducing the supply voltage, because in this case the energy per operation would
be constant.
The energy consumption of any machines in this paper is defined as:

E.— Y AC, VA FETCIM), (55)
=1

where M{i] represents a vector containing the machine m; where task ¢; is allocated, V;
is the supply voltage of the machine m;. On the other hand, the energy consumption during
idle time is defined as:

Eg:jé > ACVming I, (3.9)

j:1 ’Ldlejk EIDLESJ'

where IDLES]) is the set of idling slots on machine m, Vy,in; is the lowest supply voltage
on mj, and [is the amount of idling time for idlej;. Then the total energy consumption is

defined as:

E =E.+ E (3.10)

43

3. LOW COMPLEXITY HEURISTICS

3.7.2 Experimental Evaluation

We compare the proposed heuristics and the min-min heuristic by simulation using randomly
built ETCs. As we already mentioned, the ETC model used can be characterized by three
parameters [26, 8]: the first parameter is machine heterogeneity, on which, this time, we
can distinguish among low and high machine heterogeneities. The second parameter is task
heterogeneity, we can also distinguish among low and high task heterogeneities. And the
third parameter is the consistency. Table 3.9, shows the twelve combinations of heterogeneity
types (task and machines) and consistency classifications in the ETC model. The consistency
categories are named for the correspondent initial letter (f stands for full-consistent, p for
partial-consistent, o for original-consistent, lo stands for low heterogeneity and hi for high
heterogeneity). Hence, a matrix named f_lolo corresponds to a full-consistent scenario with
low task heterogeneity and low machine heterogeneity.

Consistency
full-consistent | partial-consistent | original-consistent
f-lolo p-lolo o-lolo
f-lohi p-lohi o-lohi
f-hilo p-hilo o-hilo
f-hihi p-hihi o-hihi

Table 3.9: Consistency and heterogeneity combinations in the ETC model

3.7.2.1 Experiments

For the generation of these ETC matrices we have used the coefficient of variation based
method (COV) introduced in [8]. To simulate different heterogenous computing environments
we have changed the parameters pigsk, Viask and Vipachine, Which represent the mean task
execution time, the task heterogeneity, and the machine heterogeneity, respectively as we
define previously. The value of Vi,e is larger for a higher task heterogeneity. The value of
Vinachine 18 larger for a higher machine heterogeneity. We have used the following parameters:
Viask and Viaenine €qual to 0.1 for low case respectively and 0.6 for high case, and 456 = 100.
The heterogeneous ranges were chosen to reflect the fact that in real situations there is more
variability across the execution time for different tasks on a given machine than that across
the execution time for a single task on different machines [111].

As we are considering batch mode algorithms, we assume in both cases that all tasks
have arrived to the system before the scheduling event. Furthermore, we consider that all
the machines are idle or available at time zero, this can be possible by considering advance
reservation. We have generated 1200 instances, 100 for each twelve cases to evaluate the
performance of the heuristics. We have generated instances with 512 tasks in size to be
scheduled on 16 machines. Additionally, we have considered different voltages for the ma-
chines. We randomly assigned these voltages to machines by choosing among three different
set. The first set considers 1.95 and 0.8 Volts for maximum or active state and minimum or
idle state, respectively. The second set is 1.75 Volts at maximum state and 0.9 Volts at idle

44

3.7 Extra Experimentation Evaluating Energy Efficient

state. Finally, the last set considers 1.6 Volts at maximum level and 0.7 Volts at idle level.

3.7.2.2 Results

The results for the algorithms are depicted from Figure 3.18 to 3.20. We show normalized
values of makespan, flowtime and energy for each heuristic against min-min for A-Score-
Function-values in the interval [0, 1]. The normalized data were generated by dividing the
results for each heuristic by the maximum result computed by these heuristics. We only
show the curves for the high task and high machine heterogeneity for the three different
scenarios which are the most significant results. The legends m-m n_-mksp, m-m n_flow and
m-m n_energy in the figures stand for makespan, flowtime and energy of min-min.

We can observe from these figures that the proposed heuristics follow the same per-
formance behavior according to the scenarios. Relative values range are biggest for the
full-consistent instances than partial-consistent and original-consistent. The results clearly
demonstrate that energy efficiency is the best for the full-consistent instances. It may be
related to the fact, that the makespan has worse results. However, for value of A = 0.8 the
proposed heuristics can perform as well as min-min for all the three considered metrics. We
can also observe that the proposed algorithms can improve makespan and flowtime results for
lambda for partial-consistent and original-consistent instances. Interestingly, if the instance
is more original-consistent, our algorithms performs better. The benefit of exploiting the
heterogeneity of the applications and resources to maximize the performance of the system
and energy is more apparent. This is mainly because these instances are the ones presenting
the highest original-consistency and heterogeneity. In terms of flowtime, all the heuristics are
as efficient as min-min, however, the proposed heuristics have lower complexity.

45

3. LOW COMPLEXITY HEURISTICS

Error Approximation Factor

Error Approximation Factor

o o
a0 T T F e
o @
S @ 4
© ©
s <
= =
= =
I [
pug| <
S o
Heuristics Heuristics
o~ —— Luo_1 o —+— Luo_1
° Luo_2 ° Luo_2
mm m_m
Low_1 Low_1
—&- Low_2 ; —&- Low_2
o Wi ~ o | ./ -
2 -~ - Low_3 S+ - - Low_3
T T T T T T T T T T T T
1.0 11 12 13 14 15 16 1.0 11 12 13 14 15 16
x x
(a) (b)
Error Approximation Factor Error Approximation Factor
o o
S S+ e
o @
S @ 4
© ©
s 7 <
= =
= =
I [
pug| <
S o
Heuristics Heuristics
o~ —— Luo_1 o~ —+— Luo_1
° Luo_2 ° Luo_2
mm m_m
Low_1 Low_1
& Low_2 —&- Low_2
o ‘ o | 7 -
2 -~ - Low_3 S+ - - Low_3
T T T T T T T T T T T T
1.0 11 1.2 13 14 15 16 1.0 12 14 16 18
x x
(c) (d)
Error Approximation Factor Error Approximation Factor
o o
B e T e = e e
o @
S @ 4
© ©
s <
= =
= =
I [
pug| <
S o
Heuristics Heuristics
g - —— Luo_1 g , —+— Luo_1
Luo_2 Luo_2
mm m_m
Low_1 Low_1
& Low_2 —&- Low_2
S — - o | -
24 - Low_3 S - - Low_3
T T T T T T T T T T T T
1.0 11 12 13 14 15 16 17 1.0 1.2 14 16 18

Figure 3.17: Performance profile of the approximation factor error. The scenario is original-
consistency considering high machine heterogeneity (0.6) and high task heterogeneity. The
task heterogeneity varies from 0.6 to 1.1 and Zféw ETC matrix size is 512x16

chapter4/figures/new_instances/res_i_512x16_0.7_0.6_mksp2.eps
chapter4/figures/new_instances/res_i_512x16_0.7_0.6_mksp2.eps
chapter4/figures/new_instances/res_i_512x16_0.8_0.6_mksp2.eps
chapter4/figures/new_instances/res_i_512x16_0.9_0.6_mksp2.eps
chapter4/figures/new_instances/res_i_512x16_1_0.6_mksp2.eps
chapter4/figures/new_instances/res_i_512x16_1.1_0.6_mksp2.eps

3.7 Extra Experimentation Evaluating Energy Efficient

MinMin min MinMax min MinMean min

S 4 -] - S 4 -
5 3 5
e » e e
N N b N
B ® =l Of 10— 01010 = 0= 0 = g:= 0= 0 =- O El
S o | ol-0—0-0-0-0-0-.0"0-0-0 5 o 5 o
b o . i o G S
2 2 2
g . g g
o o o
E M E E
: o | o) : o |
T ° . T ° T ©
§ § §
& @ &
z S z S z S
- - -
8 8 8
E] E] E]
5] 3 3
. Wetics L. Wetics . Wetics
g o j—— makespan g o —— makespan g o —— makespan
E > flowtime H > flowtime H - flowtime
E = energy b || E + energy reb || E - energy_rch
5 o memnmksl| & o memmmksl| 5 o mem n_mksy
z = m-mn fow || 2 = m-mn fow || 2 -5 i

o | - m-mn_rch o - m-mn_rc o | -

S S S

T T
0.0 02 0.4 06 0.8 10 12 0.0 02 0.4 06 0.8 10 12 0.0 02 0.4 06 0.8 10 12
Lambda Lambda Lambda

Figure 3.18: Relative performances of the schedules produced

f-hihi instances.

by different heuristics in the

MinMin min MinMax min MinMean min
=N 2 =N .
3 3 3
g g g
> > >
8 8 8
2 o | 2 o g o |0
[} =} =} °
2 2 2
& & &
o o o
E E E
£ o | : o : o | e
T ° T ° T ° \
< < ~ < .
g ° - g . ° g ~ e
2 -0 O TTBggio g z a 000 8= e gigig a 00 9T Cgig.- -
H 0= 000 0=gg-9—87 0 H 0= 0= 0 0= 0TT@—grgizg-8< O H 0= 0= 0 0 TT@—@igizgizg—87 0
s < s < s <
Z o 7 2 o 2 o 7
S S S
2 2 2
]]]
© © ©
. Vetrics E Vetrics . Vetrics
3 o |[—— makespan g © |[—— makespan g © |~ makespan
2 o flowtime 3 o flowtime 3 o flowtime
£ + energy_rch E + energy_rch E + energy_rch
g o=~ m-m n_mks g o=~ m-m n_mks g o=~ m-m n_mksj
z = m-mn fow || 2 = m-mn fow || 2 =~ m-m n_flow
o ~- m-mn_rch o ~- m-mn_rch o ~- m-mn_rch
S s s
T T
0.0 02 04 06 08 10 12 0.0 02 04 06 08 10 12 0.0 02 04 06 08 10 12
Lambda Lambda Lambda

Figure 3.19: Relative performances of the schedules produced

p-hihi instances.

by different heuristics in the

MinMin min MinMax min MinMean min
| 2 |
3 5 5
8 8 8
N N N
8 8 8
2 o | 2 o 2 o |
i 3 i 3 i 3
2 2 2
s s s
o o o
E E E
: o R : o
T ° T ° T °
< < <
§ § §
g g g
@ @ @
L L L
3 < 3 < 3 <
= o 7 Z o = o 7
S S S
@ @ @
]]]
© © ©
. Vetrics £ Vetrics . Vetrics
3 o |[—— makespan g © g © |[—— makespan
3 o flowtime E T = flowtime
£ « energyrcb || E £ - energy_rch
5 o m-mnmksd| 5 5 o m-m n_mksy
2 o memnfow || 2 2 - m-mn_flow
o <~ m-mn_rcb) o <~ m-mn_rcb
3 3 3
T T
00 02 04 06 08 10 12 00 02 04 06 08 10 12 00 02 04 06 08 10 12
Lambda Lambda Lambda

Figure 3.20: Relative performances of the schedules produced by different heuristics in the

o-hihi.

47

chapter4/figures/res_c_512x16_hihi_MinMin_min.eps
chapter4/figures/res_c_512x16_hihi_MinMax_min.eps
chapter4/figures/res_c_512x16_hihi_MinMean_min.eps
chapter4/figures/res_s_512x16_hihi_MinMin_min.eps
chapter4/figures/res_s_512x16_hihi_MinMax_min.eps
chapter4/figures/res_s_512x16_hihi_MinMean_min.eps
chapter4/figures/res_i_512x16_hihi_MinMin_min.eps
chapter4/figures/res_i_512x16_hihi_MinMax_min.eps
chapter4/figures/res_i_512x16_hihi_MinMean_min.eps

3. LOW COMPLEXITY HEURISTICS

48

Chapter 4

Opportunistic Cloud Computing

Contents
4.1 Desktop, Volunteer and Opportunistic Computing 49
4.1.1 Literature Review 50
4.1.2 Desktop, Volunteer and Opportunistic Computing in the Cloud . . . 51
4.2 Energy Saving Strategies in Opportunistic Computing 55

4.1 Desktop, Volunteer and Opportunistic Computing

Large-scale computing platforms and current networking technology enable sharing, selec-
tion, and aggregation of highly heterogeneous resources for solving complex real problems.
Opportunistic computing are distributed platforms built out of the available resources of
an existing hardware platform that harvest the computing power of non-dedicated resources
when they are idle. They are mainly built using two approaches: (1) a computing node will
run a program that will provide access to a set of resources of the host in a limited manner,
this is what is done in the BOINC [10] project for example and (2) running on each host two
environments side-by-side, one for the user of the machine and one for the computing tasks.
For this approach isolation of both environments is critical, the use of virtualization is hence
a promising approach.

According to HPC top500 list [157], Latin-American countries do not provide enough
dedicated clustering infrastructure compared to the United States or Europe. Dedicated
clusters are expensive, so to provide HPC computing facilities, these countries could use
the current resources that universities or companies provide. In the event of universities,
computer rooms are a good approach to take advantage of. In the case of Latin-America, it’s
easy to find computer rooms adding more than 5,000 cores, but very hard to find dedicated
clusters for research adding more than 200 cores; so an opportunistic computing infrastructure
could be a good approach. To implement this approach some issues need to be investigated
beforehand, like the impact on energy consumption, isolation of the end-user (e.g. the human
user currently using the hardware) and computing (i.e. the cluster task) environments and
the division of resources between these two environments keeping in mind that end-users

49

4. OPPORTUNISTIC CLOUD COMPUTING

have priority over any computing environment. To exploit the existence of opportunistic
computing, it is important to provide quality of service mechanism for both categories of
users, considering transparency for end users, by defining patterns for sharing resources.
Moreover, energy is an important and expensive resource that allows the proper functioning
of HPC. So, it is essential to provide a mechanism that is also energy efficient.

Virtual machines are a natural solution to provide a complete isolation between both
environments computing and end-user ones. The main purpose is to provide a virtualization
mechanism that guarantees the properties mentioned above. It must be taken into account
that hardware resources must be shared between these two environments in such a way that
both kinds of users have the amount of resources needed to perform their tasks. However,
the energy efficiency of using virtualization on opportunistic infrastructures to provide a high
performance computing environments is still in doubt.

4.1.1 Literature Review

Opportunistic grids is one of the particular implementation of the opportunistic computing.
They are used to optimize idle time of desktop machines to perform high performance, high
throughput computing [34, 64, 44]. Projects such as Worm [150], Condor [108], GIMPSs
[142], SETI@home [11], Distributed.net [114], BOINC [10] are some samples that exploit
capabilities of unused computing resources around the world for executing single-purpose
application. Worm and Condor exploit idle resources available in an organization. GIMPSs
and SETI@home use volunteer computing resources through Internet. Distribiuted.net and
BOINC support the execution of multiple-purpose applications over an Internet infrastruc-
ture whose resources are managed by a central organization, this last is also the middleware
used by SETI@home project [11]. Condor-G [67], InteGrade [72] and Bayaniham .NET [145]
allow the aggregation of idle or dedicated resources available in different administrative do-
mains through grid middleware. A common characteristic of all these projects is that, the
execution of any grid application is on the physical resources. XtremWeb [69], OurGrid
[12], SharedGrid [13], BOINC-CernVM [30], LCH@home [40] execute grid applications in a
virtualized environment, Cloud@Home [51] reuse “domestic” computing resources to build
voluntary contributors Clouds, “anyone can experience the power of Cloud Computing, both
actively providing his/her own resources and services, and passively submitting his/her appli-
cations” [51]. A virtual machine is executed on each desktop computer. Bio-UnaGrid [162]
facilitates the automatic execution of intensive-computing workflows that require the use of
existing application suites and distributed computing infrastructures. The infrastructure is
a dedicated cluster and a computer lab.

Several approaches have been proposed to reduce power consumption in computer systems
by improving the environment where they are deployed, as well as a better design at the hard-
ware and software level. Concerning the deployment environment, the entire infrastructure
is considered, mainly including the cooling system of computing resources. Regarding the
hardware, researchers are developing more economic computers in terms of energy efficiency.
Recently, new hardware designs, for example, next generation memory solutions and solid
state drive, are emerging to improve both the computing speed and the energy consumption
in computer resources. On the infrastructure software side, developers are designing more
efficient algorithms avoiding excessive processing [18, 49].

Other common techniques used to save energy in large scale computing systems are based

50

4.1 Desktop, Volunteer and Opportunistic Computing

on power down mechanisms such as Dynamic Voltage Frequency Scaling (DVFS) [165] (equiv-
alently, dynamic speed scaling, dynamic frequency scaling, dynamic voltage scaling) and Dy-
namic Power Management (DPM) [22]. Power down mechanism focus on identifying the
optimal threshold times to transition to low-power modes during idle periods. Dynamic Fre-
quency Scaling (DFS) already incorporated into many existing technology and commercial
processors as for example SpeedStep by Intel or LongHaul by VIA Technologies, enables pro-
cessors to dynamically changing its working voltage and speed without stopping or pausing
the execution of any instruction. DVFS reduces energy consumption of processors based on
the fact that power consumption in CMOS circuits has direct relation with frequency and
the square of the supplied voltage. DPM on the other hand, consolidates applications on a
minimum set of computing resources to maximize the number of resources that can be pow-
ered down while maximizing utilization of the used ones. Machines are powered down (i.e.
inactive) when not used, and job placement decisions attempt to power a node back on only
when is absolutely necessary. These techniques have been used at the level of resource man-
ager including scheduling algorithms [92, 95, 96, 103, 118, 130] (see [158] and the references
given there for more details).

Different works deal with energy efficiency issues in clusters and Grids. Orgirie et al. [127]
propose a set of green policies to reduce the global energy consumption of a large scale
experimental grid based on a model where users need to reserve resources and the resources
are dedicated to the user during the reservation period. Lammie et al. [100] explore energy
and performance trade-offs in the scheduling of grid workloads on large clusters. The authors
analyze the effect of automated node scaling, CPU frequency scaling, and job assignment.
Da Costa et al. [43] present a framework based on three components: an ON/OFF model
based on an energy-aware resource infrastructure, a resource management system adapted for
energy efficiency and a trust delegation component to assume network presence of sleeping
nodes. Ponciano and Brasileiro [135] investigate energy-aware scheduling, sleeping and wake-
up strategies in opportunistic grids. Sleeping strategies are employed to reduce the energy
consumption of the grid during idleness periods; wake-up strategies are employed to choose
a set of resources to fulfill a workload demand; and scheduling strategies are employed to
decide which tasks to schedule to the available machines.

The energy consumption of under-utilized resources accounts for an important amount of
the actual energy use in large scale distributed systems. In this context, resource consolidation
through virtualization is an effective way to increase resource utilization and in turn reduces
power consumption [101, 21, 97, 148]. The virtualization technology allows to create several
VMs on a physical resource, and, therefore, reduces the amount of hardware in use and
improve the utilization of the resources as below explained .

4.1.2 Desktop, Volunteer and Opportunistic Computing in the Cloud

Opportunistic computing and the well-known Desktop Grids and Volunteer Computing Sys-
tems (DGVCSs) are approaches of distributed systems aimed at the provision of large scale
computing infrastructures, by taking advantage of non dedicated resources, most of them
desktop computers presenting low levels of use. Those computers are available through Inter-
net or Intranet environments, They have partial availability, they are highly heterogeneous,
and they are part of independent administrative domains. They also have allowed the shar-
ing of distributed computing resources, even though those resources are being used for end

o1

4. OPPORTUNISTIC CLOUD COMPUTING

users who should not experiment a significant reduction in the quality of service perceived.
Furthermore, they offer a high return on investment for applications from a wide range
of scientific domains (including computational biology, climate prediction, and high-energy
physics). This strategy made the aggregation of millions of volunteer distributed computing
resources possible, representing an effective solution to support e-science projects.

4.1.2.1 Opportunistic, Desktop and Volunteer Computer Taxonomy

After a careful analysis of some Opportunistic and DGVCSs projects, we have identified
several characteristics which allow us to better study and classify them (a completed work is
presented in [36]). These characteristics make it possible to understand the differences not
only at a functional level but also on the kind of additional services they may provide. This
section presents a summary of Opportunistic, Desktop and Volunteer Computer taxonomy
organized around the main characteristics, which differentiate the presented projects: level
of scalability, architecture, type of resource provider, scope of the supported applications,
supported application models, platforms, portability, granularity for adding resources, license
type, ability to specify the desired resources, ease of use and resource usage model.

o Scalability. It can be classified by Local Area Networks (LAN) or Internet. For LANs
are looking to lever the computational resources in an organization or institution; in
this case, the computing resources regularly belong to a single administrative domain,
enabling to have a more stable and reliable connectivity, reduces risks associated to
security issues and offers a high degree of control over the computing resources that are
part of the system. Alternatively, for Internet looks for anonymous geographically dis-
tributed computational resources and deals with low-bandwidth communications issues
(firewall, NAT, dynamic addressing, etc.), malicious resources and intrusion-related
problems, which imply high security risks, unreliable communications and reduced re-
source availability. Although DGVCSs for LANs gain some benefits as a greater control
over the shared resources as well as an availability and security improvement, they are
limited to only use the available resources within an organization or institution. This
is why the DGVCSs for the Internet are an option to group computational capabilities
to the level of thousands or even millions of computers connected over the Internet; the
price to pay: security, reliability and a reduced availability.

e Architecture. The different components are regularly organized using a centralized
or distributed approach. A centralized organization uses the well-known client/server
model, where there are users, resources providers and servers. Distributed organizations
may be classified into two sub categories, those using a peer-to-peer scheme and those
using a hierarchical approach. In a peer-to-peer organization, clients and resource
providers do exist, but there is not a centralized server. In hierarchical approach,
resource providers are organized in such a way that one system may send a work request
to other system with available resources.

o Type of resource provider. There are two types of resource providers: voluntary and
institutional. Systems with voluntary providers get their computing capabilities from
computing whose owners/end users decide voluntarily to donate their underutilized

52

4.1 Desktop, Volunteer and Opportunistic Computing

computing resources. These systems take advantage of underutilized computing re-
sources while company staff performs daily activities. If the provider is institutional, it
have greater control, allowing relaxed security policies.

Purpose. Single-purpose, that consist in share their computing capabilities to solve a
single specific problem. They are regularly administered by a single organization and
are looking to lever the most available resources in environments such as the Inter-
net. General purpose, that support applications for the resolution of different types
of problems; they are regularly administered by several organizations, called virtual
organizations, looking to solve different problems through the deployment of multiple
applications. General purpose DGVCSs can be found in both corporate environments
and the Internet. In the design of general purpose DGVCSs should be account adequate
levels of portability to guarantee the system, can deploy various types of applications,
as well as implementing facilities and tools to allow different virtual organizations to
manage their applications. These systems must also implement mechanisms to ensure
appropriate use of the computing resources, avoiding a single organization to seize all
the computing resources that can be levered by the system.

Application model. According to the applications to be executed, it can be grouped into
two main categories: the master/slave model consisting of independent tasks and the
parallel programming model which requires communication between processes within a
task. In the master/slave model, a master process (server) sends a set of independent
tasks to a set of slave processes. The master waits for each slave to execute the job
and send back its result. The master receives the results and should have more tasks
it assigns a new task to the slave. Tasks running on every slave are totally indepen-
dent (no communication needed) and can be executed in parallel on different slaves.
Execution of a workflow in which each element or workflow task can be run indepen-
dently also belongs to this category. In this case, itOs required the use of a tool that
facilitates the synchronization between the different independent tasks of the workflow.
In the parallel programming model, multiple processes cooperate to execute a common
task. Such cooperation is achieved by means of communication using different parallel
programming paradigms such as MPI (Message Passing Interface) [152], PVM (Parallel
Virtual Machine) [154] or BSP (Bulk Synchronous Parallel) [159]. In these schemes,
a task is carried out through the execution of several processes running on different
computers. In such applications, priority should be given to different issues such as
synchronization between processes, message passing, remote access to memory, delays
in communications, among others. These systems are much more complex than those
based on a client/server model because they have to deal with the aforementioned is-
sues on platforms not intended to do so (shared resources, Internet scale, unpredictable
availability, etc.)

Platform. Depending on the platform used by resource providers to take advantage of
idle computing resources, it can be classified into middleware based, Web-based, and
virtualization-based. Middleware based is characterized by the need of installing a spe-
cific middleware on the resource providersO operating system. This middleware allows
DGVCSs applications to be executed onto the resource provider system. Additionally,
it provides management, security, configuration and accounting mechanisms, as well as

93

4. OPPORTUNISTIC CLOUD COMPUTING

tools to control the level of intrusion to end users. In Web-based, applications must be
developed in Java and made available as part of a Web page. Resource providers access
that Web page through a regular browser and execute the code as an applet. Once ex-
ecuted, task results are typically returned to a server or to a centralized storage system
for analysis. Finally, virtualization-based consists to use virtual machines to facilitate
and expedite the installation, configuration and deployment of the applications required
to take advantage of idle processing resources as well as to increase their portability.
In these DGVCSs, resource-providers regularly have installed a virtualization tool such
as VMware [164], Virtual Box (Sun Microsystems, Inc.), KVM (Kernel-based Virtual
Machine) [19], Xen [17] or Hyper-v (Microsoft). Resources are configured, so they
implement specific sharing policies and an image of a virtual machine containing all
the software (O.S., libraries, middleware and applications) required to execute in the
DGVCS context is locally stored. Once configured, the virtual machine runs based on
configured parameters and it begins to form part of the system to execute the different
tasks.

e Portability. It is related to the deployment capacity on the different operating system,
that resource providers may have.The amount of available resources is limited only to
those resources that use the operating system on which the software works. On the
contrary, There are independent from the operating system, they are able to group
together more computing resources using one of these strategies: 1) to use a language
that is independent from the operating system, such as Java; 2) to create and compile
the source code for each of the operating systems on which it is expected to work; and
3) to use virtualization tools to allow to run on a particular virtualization software,
rather than onto a specific operating system.

o Granularity of resource aggregation. It could be individual or cluster aggregation. On
individual aggregation, each computing machine is considered an independent resource
provider, and the tasks are sending to each one of those resource providers. On the
other hand, on cluster aggregation, the basic element is a pool of resources. Each pool
regularly has a central element that receives the tasks and identifies the computers that
are available to run them. Once a task is finished, its results are returned to the pool.

e License. Taking into account the type of licensing, it can be classified as proprietary or
Open Source.

e Specification of resources. It opens two categories, those that allow users the specifi-
cation of the required resources for the execution of their tasks, and those offering the
same type of resources regardless the kind of jobs to be executed. In the first category,
the specification is often expressed by a command or a file. When sending a job, the
user specifies the required resources and the scheduler uses this information to select
the resources to be assigned. This ensures a task run at a resource provider that has
the required capabilities.

o Usability from user perspective. A DGVCS growth can be associated with the facility
provided for the installation of the system agents in resource providers; this facility
allows that sometimes millions of users can be part of the system. Some agents may

54

4.2 Energy Saving Strategies in Opportunistic Computing

require experts in information technology (IT) to perform the deployment and configu-
ration of the agent on resources, limiting the scalability of the system in environments
such as the Internet. On the other hand, there exist general public oriented DGVCSs,
which donOt need any IT knowledge to configure a resource to be part of them. We
identify three categories: when it is necessary IT staff, when it is just requiring some
IT knowledge, and for conventional users.

e Resource usage model. Taking into account the form as it is planned and achieved the
resource clustering, it can be classified into permanent and controlled. In permanent,
resources are concurrently shared between tasks and end-user tasks. By the correct
assignment of priorities, it takes advantage of exclusively idle or underutilized capabili-
ties. On controlled, resources are used according to a policy defined by resource owners.
Several mechanisms are implemented to enforce those policies: to use resources only
when the screen saver is activated, to use configuration templates to define conditions
to allow resource usage (i.e. based on a processor, RAM or disk activity level), to de-
fine time windows (i.e. resource usage is authorized only at nights), to analyze usage
patterns, etc.

4.2 Enmnergy Saving Strategies in Opportunistic Computing

In recent years, several approaches have been proposed to analyze and reduce power con-
sumption in computer systems through better design of both the hardware and the software
as well as by improving the environment where they are deployed. Virtualization technologies
have been used in data centers by different reasons, one of them is energy consumption sav-
ing. Different analyses have shown than virtualization technologies allow reducing the energy
consumption by more than 30% [136] and depending on the energy optimization techniques,
the virtualization technologies, and the application and operating systems executed on virtual
machines, this percentage may vary [105]. In conventional computing clusters, the energy
consumption is mainly based on the consumption of servers and cooling systems. In desktops
grids, the energy consumption is based on the consumptions of the desktops machines used
to execute the grid tasks, cooling consumption is not kept into account due to desktops ma-
chines are regularly available in large open spaces. Few efforts have been developed to analyze
the energy consumption in opportunistic grids. From the energy consumption point of view,
most of desktops grids select the resources to execute grid tasks using an algorithm that keep
into account only the best physical resource to execute the jobs without having in mind the
energy consumption used to execute the tasks. Around the Condor project an effort [108]
have been developed to analyze the energy consumption of a Condor cluster, and how to
optimize the energy consumption when desktops used to execute the grid tasks are selected.
A more detailed and general project, termed DEGISCO, have been proposed in [146]. This
DEGISCO proposal wants to look several aspects of energy consumption and computational
performance of different desktops grids around the world, however at the moment of this
publication; the project is in its initial phase. Ponciano et al. [134] show some strategies in
opportunistic grids to save energy, they evaluated three strategies under opportunistic envi-
ronment, sleeping, wake-up and scheduling strategies, their results surpassing 80% reduction
in energy consumption in a scenario when the contention for resources in the grid was low.

95

4. OPPORTUNISTIC CLOUD COMPUTING

The technique of use task consolidation to save energy is not new. Hsu et al. [80] presented
one that aims to optimize energy consumption of virtual cluster in cloud data center, their
simulation results show that, this technique, can reduce power consumption up to 17% in
managing task consolidation for cloud systems.

56

Chapter 5

UnaCloud Suite

Contents
5.1 UnaCloud: Opportunistic Cloud Computing Infrastructure as a
SErvice . . v v v v i e e e e e e e e e e e e e e e e e 57
5.1.1 Benchmarking UnaCloud IaaS 59
5.2 Building Platform as a Service for High Performance Computing
over Opportunistic Cloud Computing 66
5.2.1 Related Work Lo 67
5.2.2 UnaCloud Platform Architecture for HPC 67
5.2.3 Implementation o 71
5.24 Testing and Results 0oL 71

In this chapter will introduce UnaCloud Suite by UnaCloud IaaS and UnaCloud PaaS
from University of los Andes. These TaaS and PaaS were the environments where the re-
source allocation experiments were developed. This chapter is taken from different of our
publications [CCGrid2013], [CCSA2013], and [ICA3PP2013], for a complete description of
UnaCloud, please refer to these papers.

5.1 UnaCloud: Opportunistic Cloud Computing Infrastruc-
ture as a Service

We consider an opportunistic based cloud infrastructure called UnaCloud [143]. UnaCloud
infrastructure is an open source implementation that combines the main features and advan-
tages of cloud computing and those already provided by desktop grid and volunteer computing
systems (DGVCSs) [38]. UnaCloud uses a commodity and non-dedicated underlying infras-
tructure, implementing opportunistic design concepts to provide computational resources
such as CPU, RAM and storage, while profiting from the unused capabilities of desktop
computer laboratories. The aim of UnaCloud is to support an Infrastructure-as-a-Service
(TaaS) cloud computing service model. This effort is aimed at the provision of computing
infrastructures for the development of e-Science projects and to support computing related
activities.

o7

5. UNACLOUD SUITE

IaaS Model

Type II Hypervisor

UnaCloud Clients

N

Q

Q

@ Operating System
&

&

Desktop
Computers

UnaCloud Server

Administrator

IaaS-Grid user

Figure 5.1: UnaCloud deployment architecture.

Although its goal is to use all of the computers on campus, UnaCloud currently has access
to three computer labs with 109 desktop computers, whose aggregate capabilities may deliver
up to 592 processing cores (70 PMs have four cores each and 39 PMs with eight cores), 572
GB of RAM, 8 TB of storage and 1TB of shared storage in a Network Attached Storage
(NAS). Resources are shared by applications from different research groups at the univer-
sity, through the use and deployment of Customized Virtual Clusters (CVCs). A CVC is a
collection of interconnected physical desktops computers, each one executing a single virtual
machine (VM) with low priority as a background process. Each VM can take advantage of
the unused capabilities while students do their daily activities on the computers. The VM is
a template created and personalized by each research group, specifying the operating system,
software, applications and middleware they require. Thereafter, UnaCloud is in charge of
configuring the complete CVC on a group of specified desktops. Finally, users deploy CVCs
on demand through the UnaCloud web portal. Figure 5.1 shows the deployment architecture
of UnaCloud, where the UnaCloud Server and the UnaCloud Clients are the main compo-
nents. The UnaCloud Server is in charge of processing user requests made through the web
portal, and it usually communicates with the necessary UnaCloud clients to satisfy the re-
quirements. The UnaCloud client is executed on each desktop and is in charge of initiating,
restarting or stopping VMs.

58

chapter8/figures/CloudComputing2011.eps

5.1 UnaCloud: Opportunistic Cloud Computing Infrastructure as a Service

5.1.1 Benchmarking UnaCloud IaaS

This chapter presents the performance evaluation of the opportunistic laaS UnaCloud using
HPL and IOzone. Part of this work have been publishing in [CCGrid2014].

Cloud computing has the possibility to offer on demand, flexible access to appropriate
amounts of computation, memory, and storage resources. One of the three service models
that composes Cloud Computing is Infrastructure-as-a-Service. The (US) National Institute
of Standard Technology (NIST)! defines 1aaS: “The capability provided to the consumer is to
provision processing, storage, networks, and other fundamental computing resources where the
consumer is able to deploy and run arbitrary software, which can include operating systems
and applications” [116], in other words, acquisition and management of physical resources.
These resources are provisioned on-demand, that is, when they needed, for the time as they
needed, and paying just as they consumed, allowing them expand and contract the available
resources. Elasticity, multi-tenancy, reliability, among others are the challenges coming from
this service. Nevertheless, the most important characteristic, from user’s perspective, of laaS
clouds is good performance, therefore, it is necessary to use one tool that help to get this
approach.

Benchmarking is one of the best approaches able to verify that system’s performance
gets the requirements. Benchmarking computer systems is the process of evaluating their
performance and other non-functional characteristics with the purpose of comparing them
with other systems or with industry-agreed standards. The nature of a benchmark depends
strongly on the intended use of the results.

Benchmarking support process in different situations e.g. use in system design, tuning
and operation, use in training, and most common to validate assumptions and models. As
Keyvalya Dixit [74, Ch. 9] defines, there are three types of popular benchmarks: kernel,
synthetic, and application. Kernel is based on the empirical observation of ”10% of the code
uses 80% of the CPU resources”, Synthetic is based on instruction mix, and Application refers
to the user’s own application program [74, Ch. 9].

Tosup et al [88] present specific elements to benchmarking the IaaS Cloud. Based on
these elements, we associated our work as follows: Our System Under Test (SUT) is Un-
aCloud TaaS [143], the cloud infrastructure built under an opportunistic environment over
an university campus. The workload is defined by the characteristic resource to be stressed
(e.g. Through CPU-intensive jobs), the job arrival pattern (one of uniform, increasing, and
bursty), and the job durations. Our experiments (our benchmarking process) lead to results
with high statistical confidence, evolving complex workloads that represent multi-tenancy sce-
narios, on domain-specific scenarios, and on a combination of traditional and cloud-specific
metrics.

This information helps to improve the performance of the service in this case of IaaS or
tuning their applications to better utilize the performance of existing machines.

In this work, we present a performance analysis of our IaaS opportunistic cloud, to help
at users be able to easily compare systems, to us identify best-practices and lower costs,
and to show the performance in one specific kind of cloud under opportunistic environment.
We analyze in this study the performance and the Input/Output velocity of two widespread

!See http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

99

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

5. UNACLOUD SUITE

virtualization frameworks, namely Virtual Box and VMware ESXi, running a single VM
instance and compare them over an opportunistic cloud environment.

Following the architecture proposed by [88] we describe the generic architecture for Una-
Cloud IaaS benchmarking below:

Benchmark Description: We present two types of benchmarking, to analyze the per-
formance and I/0 of the system, as it will be explained in Section 5.1.1.2 we cover the
following scenarios, 10, 20 and 40 VM size clusters, over two hypervisors in different
zone times reflecting the quantity of users of the system.

Workload Description: We used HPL to analyze performance and 10Zone to analyze
Input/Output.

Workload generator and submitter (policy): A control system is in charge of made
several runs for each scenario. To do so, this control system uses a service to run
programs over the overlying infrastructure. The system has the ability to manage
custom program execution lifecycle.

Allocation (policy) The allocation process is done using a FCFS over the available
resources. The selection process first uses the physical machines that have an end user
on it.

Provisioning (policy) The TaaS deploys the requested resources using the allocation
process results. This provisioning is done individually by an IaaS agent running over
each physical resource.

Monitoring & Logging (policy) All information is recollected on a central database and
a shared file system. Over the DB, we store the usage and monitor information of
physical resources. Over the shared file system, we store the results of each execution.

Results analysis € Modeling Finally, the results are gathered and processed using tools
like Matlab, R and custom java programs.

Alternatively, we will consider the “spin-up” time (to be denoted later) defined as the
time taken for an instance to:

Find and reserve an available server,
create a new virtual machine instance on it,

deploy the application code and the data necessary to run the application onto the
recently created virtual machine,

start the application,

5.1.1.1 Benchmarking Literature Review

Brebner et al. [27] show that the use of a benchmark have two main goals, first is to aid in
the design of middleware, and second to evaluate the performance of a middleware. In our

60

5.1 UnaCloud: Opportunistic Cloud Computing Infrastructure as a Service

work we use for both, evaluate the performance to show to our customers and re-design the
middleware if this is necessary.

A benchmark has two major components, as Sawyer proposes in his chapter “Doing Your
Own Benchmark” [74, Ch. 11], the workload specification and the measurement specification.

Extra metrics about how measure the IaaS Cloud as introducing Iosup et al [88] have
been investigated in different works, for instance, variability, that refers to the performance
characteristics of a cloud may vary over time as a result, for example, changes that are not
discussed with the users [87]. Other feature, that could be measure is the elasticity, the
ability to scale resources on demand up and down [28], but, as explained by Islam et al. [90],
it is more “a property” of a platform using time and cost as its components and elasticity
can be measured with respect of its response to different applications with certain QoS.

In grid computing, several works have been presented to evaluate performance, for in-
stance adequate approaches must combine appropriate performance metrics, realistic work-
loads, and flexible tools for workload generation, submission and analysis as presented in [89].
Two of those previous authors presented a framework for performance evaluation using syn-
thetic workloads for generation and submission, named GrenchMark [85].

High Performance Linpack (HPL) is a software package developed by Dongarra et al. [57]
that solves a random dense linear system in double precision arithmetic on distributed-
memory computers. HPL is a kernel benchmark that analyst performance as it was defined
by the Standard Performance Evaluation Corporation (SPEC) in [74, Ch. 9]. Besides, other
studies, based on HPL, shown performance fluctuations over cloud-based systems as EC2 and
Eucalyptus [58]. Filesystem benchmarks as 10zone (C), generates and measures a variety of
file operations than tests Input/Output performance [126]. CCMPerf benchmarking tool is
a model based benchmarking that allows developers and end-users of the Corba Component
Model (CCM) middleware to evaluate the overhead that CCM implementations impose above
and beyond the CORBA implementation, as well as to model interaction scenarios between
CCM components [99].

Nowadays, in cloud computing, different performance evaluation have being presented in
the literature, Iosup et al. [86] show a very detailed performance analysis about many tasks
scientific computing over four very-known cloud service providers. Alternatively, Dong et
al. [55] show a performance evaluation of a particular dedicated cloud computing platform
in their campus in Southeast University. Our work evaluate the performance of a particu-
lar campus cloud platform as well, but it is with “the service model”" of an opportunistic
Infrastructure as a Service.

5.1.1.2 Experiments and Results

In order to make valid overall performance judgments, our evaluations based on quantification
are not only focus on providing a comprehensive representation of UnaCloud IaaS, even more,
the understanding of the inevitable dependencies between measurements.

We use a small and fixed suite of measurements to make simple and human comprehension
feasible comparisons,, we use as metrics: performance (timestamps with system utilization)
taken from HPL benchmark and resource consumption data taken from 10zone. We also

!See http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf for definition of service
models in the cloud.

61

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

5. UNACLOUD SUITE

measure our “spin-up” time in UnaCloud and it is in the rank of 8min. to 12min.
If the synthetic workload captures the right characteristics, the behavior of the synthetic
workload and the real application will be similar.

5.1.1.3 Parameter Tuning

For measuring the impact of virtualization over the benchmarks, we use a private and man-
aged infrastructure of 4 physical machines with Core 2 Duo processors and 4GB RAM. Each
machine has dual boot to mirror the production infrastructure of UnaCloud. One boot op-
tion has Windows 7 as operating system; over this we install VMware Workstation 8 and
VBox 4.3. Over each hypervisor we mount an identical (same installation procedure) virtual
machine created from scratch. This virtual machine has Debian 7 as SO and all software
requirements to run the benchmarks. The second boot option, on physical machines, has
an identical configuration of operating system and software as the VMs created on each
hypervisor.

Next, the test to measure the impact of PM end users over jobs running over the UnaCloud
strategy, we made several tests running benchmarks of different configurations on production
environment. For each test we measure the % of the physical machines as the relation of
PMs with end user over the cluster size (henceforth, User %). The production environment
of UnaCloud is composed by 65 Intel Core i5 and 8GB machines. Each machine boots on
Win 7 OS and has Virtual Box 4.3 and VMware Workstation 8 hypervisors. UnaCloud has
the capability to deploy cluster on VBox and VMware hypervisors.

The second test uses 1 core and 1 GB per virtual machine. Several tests were made using
10, 20 and 40 VMs per cluster. For each test we store the % of end users over the used PMs.
The tests were run over two weeks (all day time) to ensure a good coverage on User %.

5.1.1.4 Experimental methodology

Several tests were made to measure system performance under different scenarios. One set of
tests aims to compare the performance and impact of each hypervisor over the Cloud User.
A second set of test measures the impact of physical machine users over the virtual machine
tasks.

To measure the degradation of performance perceived by UnaCloud users we ran the
lozone and HPL over a test infrastructure composed by 4 physical machines. Over this PMs
we install 3 clusters: a cluster over the PMs, another running over VMware Workstation
VMs, and finally one running over VirtualBox VMs. Each cluster has Debian 7 as SO and
was configured to run the benchmarks (this includes OpenMPI, HPL, I0zone and GotoBlas).

Finally a set of tests were made to determine the impact of real end users over the tasks
running on opportunistic VMs. To do this, we set clusters of 10, 20 and 40 VMs that ran
HPL and I0zone benchmarks over UnaCloud production environment. Several tests were ran,
ensuring that each possible scenario was cover. For these tests we measure the percentage
of end users using the PMs while each test is running. To do so, the system reports every
minute which PMs has users or not. At the end of the tests, we take the start and end time
of each tests and look into the reports, the amount of them with users and those that don’t.

62

5.1 UnaCloud: Opportunistic Cloud Computing Infrastructure as a Service

The user ’s percentage is presented on Eq. 5.1

total ReportsWithEndU ser

User% =
sers Total Reports

x 100 (5.1)

where totalReports represents the amount of reports that were made while the test were
running and totalReports WithEndUser represents the amount of reports which doesn’t have
an end user from totalReports.

5.1.1.5 Results

In this section we present the results for each set of tests. The results are presented for
processing and storage intensive tasks.

Baseline Performance Comparison:

A test infrastructure was setup to make a baseline comparison of each hypervisor per-
formance. It was made on a test infrastructure, due to the administrative impositions to
do it over the UnaCloud production environment. The results are show on Fig. 5.2. The
results shows a high impact on perceived performance, showing that for HPL tasks, it is
recommendable to use physical machines and not to virtualize.

Virtualization degradation

Perfarmance (GFlops)

Wi Wi are

Hypervisar

Figure 5.2: Virtualization degradation of HPL benchmark.

Cloud User Impact:

Finally, a set of tests were made to determine the impact of end-user activities on virtual
clusters running over UnaCloud. To do so, we ran several tests that measures the platform
performance under real scenarios. The executions were made over three weeks, on each
execution we measure the amount of end-users using the underlying physical infrastructure.

Results are showing on Fig. 5.3. As can be seen, the impact of Users % (the amount of
physical machines with user over the total of virtual machines on the cluster) does not affect
the cluster performance. Each point measures the performance for one test, the variability
on test with the same User % can be explained taking into account that we do not present
averaged values, due to the difficulty on getting representative samples for each user %.

63

chapter8/Chapter9/figures/baselineComparison.eps

5. UNACLOUD SUITE

120

H
100 [y

80

60T 4

GHops

40

o 10 20 30 40 50 60 70 80 o0 100
Users %

=WBLOD VYiwvarelld VB20 VYmware20 [OVBI0 ‘YMwaredd

Figure 5.3: End user impact over opportunistic cloud users, HPL. Banchmark.

These results also show that, when the cluster size increases, it is more difficult to get
a high Users %. This is because the periods of high usage on computer labs are short in
comparison with benchmark execution times.

IOzone: One inherent limit to the usage of virtualization in any environment resides
in the huge overhead induced on I/O operations. Thus, we present the results of the IOZone
benchmark in Figures 5.4 over the opportunistic cloud environment. We chose a typical
measure of 64MB file size and 1MB record size over the experimental spectrum of the 10zone.
The Boxplots representation were chosen because its good form to show the significance
difference of the data due of User% and each value coming from one machine of the system,
these values are stochastic moreover when the space of the sample increase (i.e. 10, 20, and
40 VMs). The different User% reflects the variability of the opportunistic environment. We
show in each figures the speed, in kB/sec, to write, rewrite, read, and reread 64MB files with
1MB record size in UnaCloud IaasS.

Fig. 5.4(a) shows how is the behavior of the opportunistic environment taken as a basis
comparison the User% in 0, we can observe that the difference with User% in 70.21 for
VMware is not too significative, it is reflect the good performance of Input/Output measures
in an opportunistic environment. Similar behavior show Figs. 5.4(c) and (e) for 20 and 40
VMs respectively and User% in 77.37 and 76.71 respectively. Fig. 5.4(b) shows the same
comparison of Fig. 5.4(a) but for other hypervisor, Virtual Box. Taken as a basis comparison
the User% in 0 as before, we can observe a similar response with User% in 40.55, this shows a
better performance of Virtual Box in opportunistic environment than VMware. Figs. 5.4(d)
and (f) show, as a basis comparison, User% in 0 against User% in 55.16, and User% in 2.46
against User% in 51.34 respectively, for 20 and 40 Virtual Box VMs respectively. Those

64

chapter8/Chapter9/figures/userImpact.eps

5.1 UnaCloud: Opportunistic Cloud Computing Infrastructure as a Service

10zone Metric by user's percentage for 10 Vms

10zone Metric by user's percentage for 10 Vms

©
8 — —
% - - : -
E e . S |
p— 1 T ? :
| 3
3 o
2
3
3 T - -
L : 9
. ?
© F3
8 2
2
g ¥ = 8
g o == $ o I
=3 2 8 ;
g 34 o 3 g
©)
©
g | ©
3 8
& S |
3
—_— «
s °
8
¢
F3 - —
- : —r—-
. 8
?
o N) o of v) ! = ¢ o " ! of 0 ! o
B o o o ! o o g o X S g E <
& P o & o & o & o & o & © & o°
« / R\ A @ J R A o« / » & v & >
& & & & R & & & & ‘@’ &b & &
S & & S &
B & < & < & < &

(a) I0zone results for 10 VMs with VMware.

10zone Metric by user's percentage for 20 VMs

(b) I0zone results for 10 VMs with Virtual
Box.

10zone Metric by user's percentage for 20 VMs

Qg
g - - —
37 — — E3 :
S - ' L :
& = T = g | —
8 : °
? : =e
I =
3 T T T
8 - T] j ;
' © : ; ' :
; g . : :
37 ! :
g ° < - :
3 o . .
3 1 o
o - 9 :
8 = ° 3 4
8 g = ° g s ;
2 2 ; o s %
€ g - €3 =
S .
© o |
3 © o |
7 o ? 4 -
& S
&
_—
© . B3
Q —_ o
3+ —
2 S ===
- ° 8 = ==
2
o o]
o N) ! of !) !) ! ! N) Y g N
) & o o & 9 o s & 8 &° S & o &
& A% @ P S ® & o & e F e 8
B J " & ; ;& J o Y & bl & S 5@ v
& & & & & & @ & & & &
B & < & R & < &

(c) IOzone results for 20 VMs with VMware.

10zone Metric by user's percentage for 40 VMs

(d) I0zone results for 20 VMs with Virtual
Box.

10zone Metric by user's percentage for 40 VMs

o
2?4 -_— T = T °© -
8 = @ = | g | [
- : ; kS ; : ; :
= - M v ‘
s ‘ OHE
& ; -
? : ; - - .
8 - : © : : : :
; & — ! L :
o : i — :
o : S 4
© © ¥
&
? o —
o & 8 ° ;
8 < - - 2 :
2 = e 8 : ; °
3 - .) ° g %
¥ 9 - o X i T
8 ; ° ° [
o o o
o 2 H
< &
2?4 o 0 &
&
8 —
_—] =]
8 o : F3 - &
¢ [3
2 o 8 o
o N " ! o N o ! " \ 0 Y] N N
S S ¢ ST ST S U S o <"
& A & Ao & © g & o N o ® 2 N b «o"@
RN & ¢y & & & @ & g &
B o & & § & o < & & &

(e) I0zone results for 40 VMs with VMware.

(f) IOzone results for 40 VMs with Virtual
Box.

Figure 5.4: IOzone results for each configuration. 10, 20, and 40 VMs, two User%, and two
hypervisors. file size=64MB, record size=1MB.
65

chapter8/Chapter9/figures/10_Vms_vmware.eps
chapter8/Chapter9/figures/10_Vms_Vbox.eps
chapter8/Chapter9/figures/20_Vms_vmware.eps
chapter8/Chapter9/figures/20_Vms_Vbox.eps
chapter8/Chapter9/figures/40_Vms_vmware.eps
chapter8/Chapter9/figures/40_Vms_Vbox.eps

5. UNACLOUD SUITE

figures show the same aforementioned behavior. Furthermore, an interesting result we can
observe from Fig. 5.4(f), the performance on I0zone follows the same behavior when user% is
different to 0 against bigger user% value, this means that the I/O velocity have not significant
change when is an user or when are 20 users, showing its robustness. Nevertheless, if we
are evaluating the overall performance of Input/Output characteristics between hypervisors,
VMware has better performance than Virtual Box, its values outperform 10 times approx.
(e.g. 6e06 KB/sec for VMware while for Virtual Box is 5e06).

5.1.1.6 Summary

Tests show an important difference between Virtual Box and VMware hypervisors. We sum-
marize the results from two points of view:

e CPU intensive view: Overall performance of HPL benchmark shows an average of
10% of increase when using VBox over VMware clusters. In general, the results are
not affected by the amount of end users on the underlying infrastructure for both
hypervisors.

e In other hand, IOzone benchmark results show a relevant difference on I/O performance
between VBox and VMware. Although the performance impact of users on VBox is
lower over VMware results, we can see that VMware performance is better for all tests.
So we can conclude that VMware hypervisor has a better I/O performance according
to I0zone benchmark.

e Aditionally, we can observe also that VBox is more robust than VMware to manage
User% in the system for I0zone benchmark.

According to the results, we recommend using VBox for CPU intensive application. In
contrast the best choice to run I/O intensive task are VMware Workstation hypervisor.
These results are based on an opportunistic use of the available resources, applying a resource
sharing policy between end users and cloud users.

5.2 Building Platform as a Service for High Performance Com-
puting over Opportunistic Cloud Computing

Opportunistic computing is a sustainable alternative to satisfy the growing demand of com-
puting resources. In this section, we introduce a novel cloud platform for developing high
performance computing applications over an opportunistic environment. We consider a cloud-
based opportunistic infrastructure called UnaCloud [143] over this, the new platform as a ser-
vice has being developed (UnaCloud PaaS). UnaCloud PaaS is a cloud computing platform
oriented to use of opportunistic [aaS to deploy high performance applications. UnaCloud
PaaS offers multipurpose platforms for low IT knowledge HPC users, that wants to use an
opportunistic infrastructures to deploy and run specific applications. It is created to facilitate
the complexity of opportunistic desktop based infrastructures to run applications.

Taking advantage of unused resources opportunistically, we present the main character-
istics of UnaCloud PaaS as well as each of its components defined. UnaCloud PaaS can be

66

5.2 Building Platform as a Service for High Performance Computing over
Opportunistic Cloud Computing

deploy two platform types: Condor and MPI. Each platform is specified by a set of roles. A
role is a set of homogenous machines regarding software, operating system and configuration.
To show the performance of the platforms, we conduct several experiments, measuring
system response time and execution time of running platforms as well as one sample applica-
tion execution called Gromacs. Furthermore a set of test, using a well know benchmark, were
made in one of the platforms. Our experimental settings reflect the need of an opportunistic
aware PaaS for the execution of successful platforms over opportunistic infrastructures.

5.2.1 Related Work

On the field of PaaS implementations for HPC we can find many solutions. Manjrasoft(c)presents
Aneka [160], a solution to develop .NET applications using multiple programming models,
and run them over hybrid infrastructures. Microsoft Windows Azure [119] offers an entire
set of services on a platform for application development and deployment over Microsoft
datacenters. It provides APIs, libraries and services for solving specific application prob-
lems like storage, cache, application synchronization, scalability and resource acquisition.
MagosCloud [45] offers an opportunistic PaaS for web 2.0 services. It is focused on develop-
ers and offers a declarative way to express platforms and requirements over a XML schema.
Amazon offers special HPC cloud VMs [9] with high performance hardware instances in their
data centers. Amazon also [84] offers an Elastic Map Reduce service to execute Map Reduce
workflows over a managed and scalable infrastructure. The FEFF Project [141] makes an
offer to deploy and manage platforms for spectroscopy analysis and material science software.
These clusters are deployed over Amazon EC2.

Sabalcore [144] is a commercial solution for HPC that allows to deploy custom virtual
clusters over their specialized infrastructures. It offers solutions stacks and software for
engineering modeling, financial simulations, energy computations and more. ViteraaS [52]
propose a PaaS model for running HPC programs. ViteraaS is a virtual cluster management
tool, which allows users to deploy on-demand virtual clusters of various sizes. The objective
of Viteraa$S is to simplify the creation/deletion of virtual HPC clusters and job submission.

Unlike the commercial and academic PaaS models implementations, UnaCloud PaaS is
specially designed to use opportunistic infrastructures to deploy managed platforms for scien-
tific computations. UnaCloud PaaS makes use of UnaCloud IaaS opportunistic infrastructure
to deploy customized virtual clusters (CVC) over it. Once this CVCs are deployed, UnaCloud
PaaS configures them to execute and manage user applications.

5.2.2 UnaCloud Platform Architecture for HPC

UnaCloud PaaS is a Platform-as-a-Service implementation that provides managed and scal-
able platforms to deploy HPC applications over opportunistic infrastructures. It uses Una-
Cloud IaaS services to deploy and manage virtual clusters over the available infrastructure.
Once these clusters are deployed, UnaCloud PaaS configure and installs all software and
configuration requirements to build platforms for user program executions. Each execution
is accomplished, managed and monitored. Each platform execution runs on a virtualized
environment that is completely isolated from other executions.

A platform, in UnaCloud PaaS, is defined as a set of machines that are configured at
hardware, operating system, network and software levels, and they are offered as a scalable

67

5. UNACLOUD SUITE

and managed service for application executions. UnaCloud PaaS uses the concept of role.
Each role is defined by its main module (which identifies the platform type), its size and a
set of software modules. A software module is a collection of configurations and programs
that are applied and installed on a virtual machine to satisfy a requirement. Each module
have a set of input parameters, whose values are established by the system and users. For
example, currently at UnaCloud PaaS there are two main modules: Condor and OpenMPI.
Those modules are used by two platform types that can be deployed: Condor (BoT) and
MPI. Also, there is a set of software modules that can be applied to a platform role before its
execution. For example an user can choose to add Gromacs [23] to a MPI platform. Across
these modules, an user can add software dependencies required by its application or program.
An user can also add files to a platform execution. A file can be chosen from the local machine
where the user is consuming the PaaS services.

Finally a platform execution has a list of commands that are executed on specific environ-
ments. The content and environment of a command is defined by the user. The environment
refers to the shared folder where the command is executed and the multiplicity of the com-
mand.

5.2.2.1 UnaCloud PaaS Cloud Features

The characteristics of UnaCloud PaaS are summarized below:

o Fault tolerance: One of the most important feature needed to successful deploy plat-
forms and applications over opportunistic infrastructures is the fault tolerance. Una-
Cloud PaaS provides a component that led the failures of the platform called Failure
manager and it is described later.

e Efficiency: Through the opportunistic environment, UnaCloud PaaS provides a frame-
work for developing distributed application taking advantage of the share utilization of
the machine by its service oriented architecture.

e Usability: UnaCloud PaaS provides Web interfaces, whose operation is almost intuitive
for a basic IT knowledge. Additionally it provides an API to access UnaCloud PaaS
services from other applications.

o self-service: The design of UnaCloud PaaS permits to users consumes unilaterally plat-
form resources by a self-service model.

e Broad Network Access: UnaCloud PaaS provides platform executions services that
are available over internet and are consumed through standard secure remote access
mechanisms like https and ssh.

o On-demand services customization: UnaCloud PaaS provides ways to customize exe-
cution environments required on demand by end-users using the API Client component
defined in the following sections. This customization is able to meet large scale com-
putational requirements.

e Scalability: UnaCloud PaaS uses an opportunistic commodity horizontal scaling infras-
tructure service that is based on a private cloud deployment model.

68

5.2 Building Platform as a Service for High Performance Computing over
Opportunistic Cloud Computing

Paas Layer APl Layer
pr= ==

\Wieb Web Failum ap|
Fidal Services Mareger [Cliert
_______ i
|

\Tf laad Serdiom

laas Laver l

Figure 5.5: UnaCloud PaaS component diagram.

e [nteroperability: UnaCloud PaaS is based in loose coupling and interoperability services
operating over highly heterogeneous, distributed and non-dedicated infrastructures.

e Fxtensiblity: Based on open source tools, UnaCloud PaaS is broadly diffused in order
to facilitate its extensibility.

e Security: UnaCloud uses authentication, authorization, confidentiality and non-repudiation
mechanisms to secure the PaaS model deployment. Also, each platform runs on an iso-
lated virtualized environment.

o Measured service: UnaCloud PaaS records and reports, by logs, all events regarding
platform executions. It also takes traceability of used resources and the operations over
them.

5.2.2.2 TUnaCloud PaaS Components

Figure 5.5 shows the component structure of UnaCloud PaaS. It is divided in three major
layers. IaaS layer, which provides infrastructure services. Currently the IaaS layer is provided
by UnaCloud IaaS. API layer, that provides a specification to implement a web service client
and it is connected to one of the two interfaces of PaaS layer. And finally, a PaaS layer, it
is the main module of UnaCloud PaaS. It provides services to deploy and manage platforms
from two interfaces: a web user interface and web services. The web services are consumed by
an API layer as above mentioned. This provides abstract access to UnaCloud PaaS features
due of its service oriented architecture.
Each UnaCloud PaaS component is described below.

+ Web Portal: is the main way of access to UnaCloud PaaS services. It provides a set of

pages and web forms to manage all system entities. It also provides a set of forms to
deploy and manage platform executions.

69

chapter8/figures/PaaS3.eps

. UNACLOUD SUITE

Web Services: is a component that exposes the platform execution services and opera-
tions through Web Services. This component only exposes services to start, manage and
stop platform executions. System administration should be done through web portal.

API Client: it is a component specification that offers an abstraction to web services. It
facilitates the complexity of the use of web services, so the user can consume UnaCloud
PaaS operations in terms of objects and methods, and not by complex web services.

User manager: It is in charge of user account management. It includes passwords,
user permissions and user traceability. This component is used by other components
to check user permissions and limits before any resource or security related action.

Node connector: It allows the server to connect to the PaaS nodes. It uses standard
mechanisms like SSH as tunnel to execute remote commands on each node. The main
purpose of this component is to execute remote commands on deployed clusters.

Platform manager: This is the main component of the system. It is in charge of
coordinate and orchestrate all other component to deploy cloud platforms. It has the
logic to deploy, manage and control the platform executions. It is also in charge of
storing a historic log of all deployed platforms.

Node monitor: This component is in charge of monitoring all node instances of all
running platforms to determine if there is a node with a hardware failure. If so, it reports
it to the Failure manager. The monitoring process involves taking running commands
SO ids and check for process health. When a running VM cannot be accessed, it is
marked as failed and sent to Failure Manager

Failure manager: It is the component which have the algorithms and business logic
to recover a platform execution after a failure on one of its components. It uses the
platform manager to orchestrate this process. The recovery process depends on deployed
platform. It include checkpointing and platform restart thecniques.

Node Configurator: This component configures and manage configuration settings for
the platform nodes. It implements an interface between the external configuration
manager and UnaCloud PaaS. A node configuration is specified by a set of modules
and parameters that are used to install and configure software and tools.

IaaS connector: This component connects to the underlying infrastructure provider
to deploy and manage virtual machines. This component get the information of VM
deployment retrieved after a cluster start operation on the underlying IaaS system and
transform it into a UnaCloud PaaS managed object.

PaaS node: This last component is mounted on every virtual machine used by UnaCloud
PaaS. It contains some basic configurations to be compatible with Node connector and
Configurator components. It is composed by an SSH server and a configurator manager
client.

70

5.2 Building Platform as a Service for High Performance Computing over
Opportunistic Cloud Computing

5.2.3 Implementation

The implementation takes the design and architectural decisions of UnaCloud to provide the
following services to end users:

1. Platform deployments: Two platforms are offered to end users: Condor and OpenMPI.
These platforms can be consumed by a web interface that allows the customization
of each platform. Some software modules are offered to be added to the platforms:
Gromacs, Blast, High Performance Linpack and Java.

2. Platform execution monitoring: Platform executions are monitored, so it is restored in
failure cases. Also, the program execution is checked so, at successful termination the
user is notified about the results.

3. Platform execution management: The user can stop and pause running executions.

4. User folder management: The user can manage its user folder to add, move and delete
files that can be used on platform deployments.

5. PaaS management: Finally, the implementation offers a way to manage all configura-
tions, entities and services of UnaCloud PaaS. It can add and delete software modules,
platforms, files, users and more.

5.2.3.1 Parameter Tunning

To achieve the implementation, it was used UnaCloud ITaaS infrastructure. UnaCloud laaS has
been deployed in three computer laboratories at Universidad de los Andes. Each laboratory
has 35 computers with Intel Core i5 (3.01GHz) processors, 8GB of RAM and Windows 7 as
their main operating system. In addition, UnaCloud Servers (PaaS and IaaS) were deployed
on virtual machines running on a server, which is located in the data center (for availability
reasons).

A set of tests was made to measure system response time and execution time of running
platforms varying the number of virtual machines for each platform software. For each
configuration, we ran an executable with an exact duration of 60 seconds.

UnaCloud PaaS was tested using an MPI application with production dataset inputs
provided by the Department of Chemical Engineering at University of Los Andes. The appli-
cation executes a Molecular Dynamics simulation using the GROMACS [23] package of the
transmembrane domain from the Outer membrane protein A (OmpA) of Escherichia coli.
The purpose of the simulation is to calculate the annihilation free energy of the transmem-
brane domain by coupling the intramolecular interactions of the protein in vacuo. The same
simulation is executed varying the number of virtual machines and the number of cores per
VM.

5.2.4 Testing and Results

A set of tests was made to evaluate the performance of the proposed PaaS solution according
to the objectives of the present work.

71

5. UNACLOUD SUITE

Platform | Modules | VMs | VM Start | Config. Run
time (s) | time (s) | time (s)
MPI - 1 60 90 83
MPI - 2 60 100 104
MPI - 4 61 111 81
MPI - 8 61 137 99
MPI - 16 60 208 99
MPI - 32 60 271 99
MPI Gromacs 1 55 330 89
MPI Gromacs 2 60 325 100
MPI Gromacs 4 60 352 85
MPI Gromacs 8 80 414 110
MPI Gromacs 16 70 463 90
MPI Gromacs 32 61 518 105
Condor - 1 90 111 136
Condor - 2 110 137 116
Condor - 4 120 156 151
Condor - 8 121 163 151
Condor - 16 120 207 131
Condor - 32 121 298 144

Table 5.1: System Response Times

5.2.4.1 System response and run times

As aforementioned, several platform executions were launched varying the number of virtual
machines of the main role and the platform software modules.

In Table 5.1 we can see the virtual machines start time, configuration time and run time,
in seconds, of different platforms varying its total size. We can see that virtual machines
starts in the same time, independently of the size. However, condor platforms take about
the double to start its VMs. It is because this platform has two roles (master/slave), in
contrast to MPI platforms that have one (exec). On MPI cases it has a mean error of +30
seconds, it was due the fact that each 60 seconds the platforms are inquired to determine if
the executables have finished. On condor cases the error is about +60 seconds because there
is a time expended on queue management.

In Figure 5.6 we present the configuration time for each platform setup as the number of
VMs is increased. A linear regression and the Pearson product-moment correlation coefficient
(R2) is shown for each setup. We can conclude that configuration time is linear dependent
with the size of the platform.

72

5.2 Building Platform as a Service for High Performance Computing over
Opportunistic Cloud Computing

Cores | VMs | Cores/VM | Gflops | ns/day | T(h)
1 1 1 4.84 0.89 8.06
2 1 5.39 1.00 7.30
) 1 8.52 1.58 4.59
10 10 1 7.97 1.47 4.88
15 15 1 11.12 2.06 3.61
20 20 1 11.18 2.07 3.65
2 1 2 9.02 1.67 4.31
4 2 2 7.41 1.37 5.27
10 5 2 11.84 2.19 3.34
20 10 2 10.9 2.2 3.99
30 15 2 9.93 1.84 3.93
40 20 2 10.02 1.85 3.99
4 1 4 11.19 2.07 3.48
8 4 7.58 1.40 5.26
20 4 770 1.43 5.07
40 10 4 5.27 0.98 8.00
60 15 4 5.07 0.94 9.15
80 20 4 5.79 1.07 17.15

Table 5.2: Gromacs Simulation Results

73

5. UNACLOUD SUITE

R?=0.9158
500

400

R*=0.98

2
200
R?=0.9746
100

o 4 8 12 16 20 24 28 32
Virtual machines

Setup time (s)
w
&
s

> MPI Gromacs Condor ——Linear (MPI) Linear (Gromacs) Linear (Condor)

Figure 5.6: Configuration time of different platforms varying the amount of VMs

5.2.4.2 Sample application execution

Several executions were made varying the amount of VMs and cores per VM. It was measured
the execution time (T) in hours, the amount of nanoseconds of simulation per day and
the Gflops obtained from each test. Every test was executed 3 times, the mean values are
presented on Table 5.2. In total, the tests takes 12 days of human execution time and more
than 374 days of machine time. Without a system to manage those platform executions it
could be impossible to run all these tests. Thank to our failure recovery algorithms and
strategies, these test could be executed on a reasonable time.

5.2.4.3 Benchmarking

Finally a set of tests were made to measure the performance of one of the platforms, MPI
platform. We use the High-Performance Linpack Benchmark implementation provided by
the Innovative Computing Laboratory of the University of Tennessee. We use OpenMPI to
run it in parallel. As implementation of the Basic Linear Algebra Subprograms is was used
GotoBLAS2 [39] provided by the Texas Advanced Computing Center.

Several tests were made varying the number of VMs and the amount of cores per VM.
Figure 5.7 shows the result. As we can see, there is not a despicable potential that can be
farmed from UnaCloud opportunistic infrastructure.

74

chapter8/figures/set.eps

5.2 Building Platform as a Service for High Performance Computing over
Opportunistic Cloud Computing

120

80

Gflops

60
40

20

o] 5 10 15 20 25 30
Virtual machines

1 core 2 cores 4 cores

Figure 5.7: Cluster Gflops varying the number of VMs and the cores per VM

75

chapter8/figures/bench.eps

5. UNACLOUD SUITE

76

Chapter 6

Resource allocation algorithms in
Opportunistic Cloud Computing

Contents
6.1 Energy-aware VM Allocation on An Opportunistic Cloud Infras-
tructure Lo e e e e e e 77
6.1.1 Energy-efficiency in an Opportunistic Cloud Environment 79

6.1.2 Energy-Aware VM Allocation Strategies for the Opportunistic Cloud 83
6.1.3 Experimental Results 86

6.1 Energy-aware VM Allocation on An Opportunistic Cloud
Infrastructure

With the increasing demand of computing resources needed by large-scale applications on
science, research and industry, the energy consumption of large-scale distributed systems has
increased dramatically. Energy consumption is one of the biggest issues in most of these
systems raising monetary, and system performance concerns. Cloud computing, based on
virtualization technologies, appears as a new alternative to supply on demand the resources
required by the applications. Virtualization is a mechanism to abstract the hardware and
system resources of physical servers. Virtualization technology is a solution to provide a
complete isolation to consolidate servers onto a larger virtualized system that uses their
resources to the fullest, reducing costs, and energy footprint. It is one of the most effective
ways to reduce capital expenditures. Considering the salient features of virtualization and
regarding that cloud computing mostly rely on this technology, cloud is an inherently energy-
efficient computing model [148, 101].

Cloud computing has emerged as one of the most important transformational trends in
research and business for enabling on-demand services that include applications, computing,
storage, networking from a common pool of different resources. Cloud computing makes
these resources easier to use, and typically cloud delivers the services over the internet. It

7

6. RESOURCE ALLOCATION ALGORITHMS IN OPPORTUNISTIC
CLOUD COMPUTING

is composed of virtualized resources that are allocated to represent a single unified image of
computing resources. Some benefits of the cloud include economies of scale, cost reductions
on technology infrastructure and capital costs, flexibility, elasticity, self-service and metering,
management services, increased collaboration services, energy efficiency among others.

There are different kind of cloud deployment models: public, private, community, hybrid.
Public clouds refer to a set of services, interfaces and resources owned and operated by a third
party for use by other companies. The resources are dynamically provisioned from an off-site
third-party provider, and are based on a pay-as-you-go model. A private cloud is a virtualized
group of servers operated solely for a single organization. Private clouds can be more cost
effective for companies that already own a lot of computing resources. Some benefits of
private cloud services are data security, reliability concerns and corporate governance. A
community cloud is a model where the cloud infrastructure is shared by several organizations
and supports a specific community with joint concerns. The hybrid cloud model refers to the
combination of a private cloud with strategic use of public cloud services.

The most common models for delivering cloud services are: Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS). The TaaS model de-
livers computing services including hardware, networking, storage, and memory. PaaS is a
combination of infrastructure, middleware and development tools that can be used to de-
velop, deploy, manage and run a software solution on a cloud platform. In the SaaS model,
users access on-demand applications software and databases.

We consider a private cloud that implements an IaaS model on the computing resources
of an university. The TaaS model is oriented to the to the provision of computing resources
for the development of scientific projects and to support related activities (i.e., to execute
applications such as BLAST, Hmmer or Gromacs). It uses a commodity underlying infras-
tructure implementing opportunistic design concepts to provide computational resources such
as CPU, RAM and Storage, while profiting from the unused capabilities of desktop computer
laboratories in a non-intrusive manner offering some of the most important advantages of
cloud computing, as for example up-front investment elimination and the appearance of in-
finite resources available on demand. The private cloud, called UnaCloud [143], is able to
deploy, manage and deliver opportunistic laaS model based on preexisting, non-dedicated
and (almost) homogeneous computing resources of computer laboratories. UnaCloud differs
from other existing private cloud implementations since it is deployed on the shared comput-
ing resources with physical users (e.g., students in the university), while most of the private
clouds are deployed on dedicated computing resources. UnaCloud also differs from volun-
teer, opportunistic grid systems, and community clouds in which private computer owners
donate a portion of their idle computing resources to be used by anyone inside a community
for supporting a specific project. Due to the large amount of available computing resources
on a campus university, the investigated private cloud represents an economically attractive
solution for deploying a cloud model avoiding not only the underutilization of non-dedicated
computing resources, but also financial investments in hardware and maintenance costs as-
sociated.

Although Unacloud may aggregate desktops from independent individuals it is meant to
work with machines within a computer laboratory, where each laboratory is managed by a
single administrator. It gives UnaCloud several advantages in terms of homogeneity, control
and risk of failures. In our tests, a computer laboratory with 35 machines presents a maximum

78

6.1 Energy-aware VM Allocation on An Opportunistic Cloud Infrastructure

of two failures a day. Besides, UnaCloud has been used to run Bag of Tasks applications,
with many short-lived jobs, making unnecessary to deal with checkpoints and fault tolerance
issues [37].

Regardless of the fact that UnaCloud offers the performance capability of deploying Vir-
tual Machines (VMs) in a sustainable way by using idle resources opportunistically, it lacks
of energy saving consideration during the placement of the VMs. UnaCloud implements a
random placement of VMs to the idle resources of the Physical Machines (PMs) leading to
suboptimal resources allocation reducing the gain on energy consumption. Therefore, we aim
to investigate energy savings on UnaCloud that can serve as a basis to related opportunistic
private cloud models.

Recent trends in the development of new hardware, such as low power energy efficient
CPUs, multicore machines, low computer monitors, have mitigated energy consumption to a
certain degree on cloud infrastructures. Software based approaches are also a solution to op-
timize energy consumption. Techniques such as Dynamic Voltage and Frequency Scaling and
Dynamic Power Management have been extensively studied and deployed to make the Cloud
infrastructure components power efficient [163, 24]. The consolidation of VMs to reduce the
number of underutilized or over-loading computing resources, and shutting down the unused
resources or to transition parts into a lower power state is another efficient energy saving
strategy. This technique is enabled by virtualization technologies that facilitate the running
of several VMs on a single resource concurrently. Several approaches to consolidate VMs
have been proposed, however most of these algorithms target dedicated resources, however,
in our work we consider shared resources with physical users.

We consider, in this chapter, the consolidation of VMs through efficient VM allocation.
That is, given a set of VMs and a set of PMs resources the aim is to find the best mapping of
VMs to a minimum set of computing resources already in use according to constraints on VMs
and resources provided by the PMs to optimize the Energy Consumption Rate (ECR) of the
considered private cloud. We investigate four consolidation heuristics. Three of the heuristics
rely on classical bin-packing algorithms, and one is an ad hoc (opportunistic) consolidation
algorithm proposed in [50], that place VMs first on PMs already in use by a physical user.
We empirically evaluate these heuristics on real workload traces. We use cloud workloads
based on real production traces collected from the archives of UnaCloud. The traces have
been collected during one year. Real UnaCloud scenarios provide a realistic VMs stream for
performance evaluation based on simulations of VMs consolidation algorithms. We present
results obtained by simulations, while the ultimate goal is to implement the best strategy on
UnaCloud. The main reason is that UnaCloud is a production cloud infrastructure already
in use making it difficult the implementation for testing the algorithms. However, based on
the generated results a work in progress is considering the implementation on UnaCloud.

6.1.1 Energy-efficiency in an Opportunistic Cloud Environment
6.1.1.1 Parameter tunning

UnaCloud aggregates computing resources of desktop-based computer laboratories. Those
desktop computers can be modeled as a Set of Physical Machines (SPMs) each one with
some hardware specifications including CPU cores, RAM memory, hard disk and networking.
Researchers require the execution of a Set of Virtual Machines (SVMs) each one requiring a

79

6. RESOURCE ALLOCATION ALGORITHMS IN OPPORTUNISTIC
CLOUD COMPUTING

Elnn
=

20
g
Q@
' &0 y= 45 34130155

2=

5 . R?=0.9761
-
5

60
W
=
s)
E 50 I{
[
c |
S 40

0 20 40 60 80 100
CPU Usage (%)

Raw data measures —®—Nean

Figure 6.1: Desktop Computer energy consumption. f(z) = y(x) = 45.3412%-1651

minimum hardware specification. Due to opportunistic environment, we assume that there
are two states (idle and busy) of a PM to be selected to deploy a VM, and according to its
state the ECR and the estimated execution time of a VM executing a CPU-intensive task
can change.

To analyze the relation between the CPU usage and the ECR consumed by a PM, exper-
imental tests of a previous and recent work [37] show that the CPU usage and ECR are not
directly proportional. Figure 6.1 shows the function f(x) (based on a regression calculated
on experimental tests) that allows to estimate the ECR of a PM according to its CPU usage.
Here we present CPU usage as the percentage provided by the operating system which is in
aggregation of the utilization across all cores of the CPU.

Table 6.1 provides the ECRs required to execute a VM according to the state of the PM.
We assume that a VM will execute a CPU-intensive task during a 7 time. While the VM is in
execution the ECR of the PM will increase to f(z), where f(z) is a real function that returns
the ECR of a PM given its CPU usage percentage. The idle state represents a turned on PM
without any user (a student, administrative, etc.) using it while the VM is in execution. The
busy state represents a turned on PM with an user using it and a VM in execution.

When the physical machine is in idle state, the ECR consumed by the VMs is equal to
the difference between f(x) and f(0), where f(0) is the ECR consumed by the PM while is
in idle state and f(x) is the ECR when a virtual machine is in execution (by number of cores
required from VMs determining the CPU usage). In the busy state, the ECR consumed by
the VMs is equal to the difference among f(x) + ECRpon, and ECRyser, where ECRyoN
is the ECR of the monitor when there is a user using the PM, and FC R, s, is the mean ECR
of a physical machine when there is a user using it and there is not a VM in execution. In
busy state the execution time of the VM takes more time because there is an user consuming

80

chapter10/figures/graphCPU.eps

6.1 Energy-aware VM Allocation on An Opportunistic Cloud Infrastructure

Computer Execution ECR for an intensive CPU Task

state with VM (ECR with VM - without VM)
1 (idle) T f(x)— f(0)
2 (busy) Llforze X T f(z) + ECRyon — ECRyser

Table 6.1: ECR used by a VM executing a CPU-intensive task.

Computer Execution Mean ECR
state time (W)

1 (idle) T f(z) —47
2 (busy) 0.1 X Tyser + 7 fx) +20—87

Table 6.2: Experimental results of energy consumption

computational resources (and competing by the resources required by the VM), therefore the
execution time of the VM can be calculated as 100/L free X T, Where Ly, is the percentage
of CPU dedicated to the virtual machine and 7 is the estimated running time (provided on
demand when a VM is requested) of the VM. We assume that the execution time of an
opportunistic CPU intensive task is linearly proportional to the amount of processor used in
the PM that is running it. To estimate the percentage of CPU used by users of the PMs,
during daylight working hours we executed different tests that show that the CPU utilization
does not exceed 10% on average [38]. That is L fyce = 90%.

To estimate the ECR on different states, the results of Table 6.1 can be completed with
the function f(x) depicted in Figure 6.1. Additional parameters such as ECRyon and
ECRysgr were calculated using specific tests. In tests using a commodity desktop computer,
the ECRyron was equal to 20W and the ECRysgr was equal to 87TW [38].

7 is the sum of Tyser and Tppee if Tyger is less than 7. 74, is given by the time of the PM
with an user when it is executing VMs and 7y,¢. is the rest of the time to finish the VM,
Eq 6.1 shows the relation of the execution time of the VM when there is an user in the PM.

__ _100 __ 10
T = mTuser + Tfree = 9 Tuser T Tfree

1.1 X Tyser + T — Tuser = 0.1 X Tyser + T

(6.1)

Table 6.2 shows that from the energy consumption point of view, the best desktop PMs
to deploy a VM are those in a busy state.

6.1.1.2 Energy Model

In this section we show a mathematical description to calculate the ECR required for exe-
cuting a SVM on an opportunistic cloud infrastructure.

Once the consolidation process has finished, the program calculates the power consump-
tion. Pfo"¢(t) is the power of a core i at time ¢ that belongs to a PM. Eq 6.2 shows how is

81

6. RESOURCE ALLOCATION ALGORITHMS IN OPPORTUNISTIC
CLOUD COMPUTING

defined this power.

PEre(t) = si(t) - (1= () P04 (1) o) (6.2)
PideC and PPorkC are power consumed in idle and work state of the core. s;(t)
denotes if the core is on or not at time ¢ as s;(t) = 1 and s;(¢t) = 0 respectively. y;(t) denotes if
the core is working or not at time ¢t. When a core is on, without working, consumes Pi’dlec but
if the core is on and working, it consume Pl-“"”kc. The model assumes that power consumption

of all system components is essentially constant regardless of the machine activity.
The power consumption of a PM is denoted by P]m“h(t) as Eq. 6.3 shows.

where

P]mach(t) = 2(t) - ((1 — w;(t)) Pj@'dleM + o, (t)P]workM(t)) (6.3)

where P}dleM and P;f”wkM are power consumed in idle and busy states of the PM. z;(t)
denotes different states of the PM as Eq. 6.4 shows. The value of z;(t) = 1.1 refers to the
extra power consumption because of competing by the resources required as aforementioned.
w;(t) denotes if the core is working or not at time t. Hence, power consumed by machine
have direct relation to power consumed by core.

1 if mach is on
zj(t) =4q 1.1 if mach is on and user (6.4)
0 otherwise

We assume that P]?CHEM is the sum of delec of all cores belong to machine j and is the

same when machine is in idle state.
Figure 1 as Eq. 6.5 shows.

ijgrkM is calculated from the equation resulted from

V.
lo Jma 2
P]’IUOT‘]CM(t) — V x] (t) (810 Vjini >/ (65)

Jini
where z;(t) is taken from Figure 1 as Eq. 6.6 shows. We have specific homogeneous

machines with a behavior as it shows in Figure 1 and related with Eq.6.5, we can deduce
Vi = 45.341 and if Vj,,,, = 97 we have PPo8M (t) = 45.341;(¢)0-165.

int Jmazx

_ T u_c

;(t) x 100 (6.6)

_C

Where T _u_c refers to Total used cores and T _c¢ refers to Total cores. As we assumed for
PJ?CHEM , we assume the power when a PM j is at full charge, it is when all the cores are
working, therefore we can deduce:

P;CHEM _ ZZT-C PiidleC
ijach(tm(w) — ijorkM(tmax) = PiworkC x T ¢ (6.7)
P;uorkM(t) = pPcore LT wy_c
J E o

Now, from equations 6.5 and 6.7 we can conclude:

P@dleM =V .
Pznach _ S (68)
jmaz - ‘/}maz

82

6.1 Energy-aware VM Allocation on An Opportunistic Cloud Infrastructure

To calculate the energy consumed by a PM, once the placement process has finished, we
sort all the VMs assigned to each machine by execution time (et) in descending order:

T1 > T9 (6.9)

where 7 denotes the biggest execution time of VM in the machine assigned and 7o the
next execution time in descending order. Using equation 6.10 we can calculate the energy
consumed by a PM

T v—1
Ej= Y P(m) - (k= mhrr) + PP () - (7r) (6.10)
k=1
where T v refers to total of VMs assigned to a PM j. The total energy consumed by the
system is denoted as Ejyq (see Eq. 6.11)

T-m
Eiotar = Z Ej (611)
J
where T_m refers to the total PMs in the system.

6.1.2 Energy-Aware VM Allocation Strategies for the Opportunistic Cloud

Resource allocation and scheduling techniques can be used in opportunistic cloud solutions
to minimize the ECR or maximize the performance offered to researchers. To minimize
the ECR, the resource allocation techniques should try to use a minimum Set of Physical
Machines (SPMs) in busy state to execute the Set of Virtual Machines (SVMs) required by
researchers, however this strategy regularly increases the execution time of the meta-task
(the execution of a SVM). To maximize the performance provided to researchers the resource
optimization and scheduling techniques should try to assign to each PM (preferably in idle,
hibernated or turned off state) only one VM, this strategy decreases the penalty caused by
the execution of multiple VMs on the same PM, and increases the ECR, of the opportunistic
solution due to more PMs are in execution. In this section three different energy-aware
resource optimization techniques, for using in opportunistic cloud solutions, are introduced.
These techniques take into account requirements of VMs and PMs. For VMs we take into
account requirements associated to the number of CPU cores requested and the execution
time; and for PMs requirements associated to CPU cores available and the status of the PM.
The resource allocation algorithms were defined considering the following assumptions and
goals:

e Reduce the ECR required to execute a metatask (SVMs).

e Several VMs can be executed on a PM.

e The assignation of VMs to PMs is made in batch mode.

e There are enough CPU cores to supports the CPU requirements of the SVC.

o It is better to assign a VM to a PM with an user (busy state) or to a PM (with available
cores) that is already executing another VM (busy state).

83

6. RESOURCE ALLOCATION ALGORITHMS IN OPPORTUNISTIC
CLOUD COMPUTING

e Physical machines are homogeneous.

6.1.2.1 Custom Round Robin Allocation

The simplest algorithm used to assign the execution of SVMs to SPMs is the Round Robin
algorithm customized. Algorithm 10 shows that the SVM is received in an arbitrary order
and each VM is assigned to a PM (also using an arbitrary order) if the physical machine has
enough available CPU cores to its execution.

Algorithm 10: Custom Round Robin Algorithm

1 forall the VMs VM, do

Set the VMs;

forall the PMs PM; do

\; if PM;.available_cores > V M;.cores then

(S, SNV V)

L assign V. M; to PM;;

This algorithm is very easy to implement, however, it does not consider the state of the
PM where a VM is executed, selecting randomly PMs in busy, idle, hibernated or turned
off state, which may increase the number of PMs required to execute the SVM. The goal of
using a minimum number of PMs to execute the SVM is not keep into account. Additionally
some VMs with low CPU requirements may be initially assigned to PMs with large CPU
capabilities, and then VMs with large CPU requirements may not be executed, and so queued
until the execution of the next batch scheduling process.

6.1.2.2 1-D Bin Packing Allocation

UnaCloud usually executes VMs to run CPU-intensive applications. Therefore, we consider
that the VMs consolidation problem is constrained by a single resource, in this case all the
VMs are CPU bound, then the problem corresponds to the one dimensional bin packing
problem with different bin capacity (i.e., different number of cores per PM).

The most popular and used heuristics to deal with the one dimensional bin packing prob-
lem are First-Fit, First-Fit Decreasing and Best-Fit algorithms [129]. These heuristics use a
greedy weight function applied to the items such that every item is assigned a single value.
In case of First-Fit Decreasing and Best-Fit algorithms the items are sorted and then placed
sequentially into a decreasing order. The heuristics, specially First-Fit Decreasing, are best
known to be very effective both in theory with performance guarantees and in practice. The
worst-case behaviors of these algorithms and their average behavior over practical instances
have been studied [153]. Results show that the algorithms have performance guarantees
d + 0, where d is the number of resource dimensions and ¢ is some constant < 1. Several
systems have implemented variants of the three heuristics. Therefore, we consider them to
be evaluated in the context of UnaCloud.

84

6.1 Energy-aware VM Allocation on An Opportunistic Cloud Infrastructure

6.1.2.3 Sorting VMs and PMs to Minimize the Use of PMs

To minimize the ECR rate used by the opportunistic cloud, the consolidation strategies
should try to place the VMs first on a PM in a busy state (i.e., with a VM already assigned
on it or with a physical user) that satisfies the VM requirements rather than placing the VM
on a PM in a different state. In [50] we proposed a packing algorithm that prioritizes the
deployment of VMs on PMs already in use. The algorithm (Algorithm 11), called Sorting
in [50], is a variant of First-Fit Decreasing.

Algorithm 11: Sorting VMs and PMs to minimize the use of PMs

1 Sorting VMs and PMs;
2 forall the VMs VM,; do

3 Set the VMs;
4 forall the PMs PM; do
5 if PMj.available_cores > V M;.cores then

=]

assign VM; to PM;;
re-order PMs;

The algorithm starts by sorting the set of VMs and PMs. VMs are sorted in decreasing
order of required cores and estimated running time. PMs are sorted by three attributes: (1)
PMs that already have virtual machines running on them, (2) PMs in busy state (an user
is using them), and (3) PMs with more available CPU cores. Then, VMs are placed on the
PMs in a First-Fit policy. After a VM is placed on a PM the ordered list of the PMs is
sorted again. The attributes used to sort PMs allow that PMs with a VM already assigned
or in a busy state have priority over the others, hence reducing the ECR rate as described in
Section 6.1.1.

6.1.2.4 Sorting VMs and PMs to Minimize the Use of PMs and Executing VMs
with Similar Execution Time on the Same PM

Although the algorithm proposed in the previous section reduce the ECR required to execute
the SVM, we identified that if VMs with similar execution times are executed on the same
PMs the ECR required to execute the SVM is lower. This is due to every PMs used to
executed the SVM will execute tasks at peak capacity during a similar period of time, which
according to Figure 6.1, allows to have a minimum number of PMs executing VMs during
similar execution times.

As a comparison example, supposing that there are 2 PMs (PM; and PM5) each one with
8 cores available and three VMs (VM;, VM, and V Ms3) with different execution times (10
hours, 1 hour and 10.5 hours respectively) each one requiring 4 CPU cores to be executed.
The algorithm described in the previous section would select PM; to execute VM, (during
10 hours) and V My (during 1 hour); and PMs to execute VM3 (during 10.5 hours). This
implies that only during 1 hour there will be 1 PM running at 100% of its CPU capacity.
With the algorithm proposed in this section, V M; and V M3 would be executed on PMy,
and V M, would be executed on PMs. With this new strategy 1 PM will be running at 100%

85

6. RESOURCE ALLOCATION ALGORITHMS IN OPPORTUNISTIC
CLOUD COMPUTING

of its capacity during 10 hours, which reduces the ECR required to execute the SVM. The
algorithm proposed to achieve this assignation is the Algorithm 12.

Algorithm 12: Executing VMs with Similar Execution Time within same PM

1 Sorting VMs and PMs;

2 forall the PMs PM; do

3 Set the PMs;

4 forall the VMs VM, do

5 Set the VMs for all PMs;

6 if 'V M;.assigned and PM;.available_cores > V M;.cores then
7 taskl = V M;;

8 repeat

9 assign taskl to PM;;

10 if PM; still have cores then

11 L assigns VMs with similar execution time;
12 until PM; have available cores and 'taskI;

In Algorithm 12, PMs are sorted using the same three attributes of Algorithm 11. VMs
are sorted by the number of cores required and by the execution time in descending form
(line 1). All of the PMs are processed (line 2) and all of the VMs are processed (line 4)
for each PM. Once a VM pending of execution that requires a number of cores inferior or
equal to the available cores of the current PM is found (line 6). Then, VM is assigned to
the current PM (line 9) and then if the current PM still have available CPU cores (line 10),
the next unassigned VM with similar execution time is selected and assigned to the current
PM (line 11), while the PM has available cores and there are not VMs that can be executed
within PM (line 13).

Next section presents the evaluation comparison of First-Fit, First-Fit Decreasing, Best-
Fit, and Sorting using UnaCloud scenarios.

6.1.3 Experimental Results

This section presents the empirical evaluation of the investigated consolidation algorithms.
The aim is to gain a first insight into the performance of the algorithms on different real
scenarios before implementing the best one on UnaCloud.

UnaCloud currently has access to three computer labs with 109 desktop computers, whose
aggregated capabilities may deliver up to 592 processing cores (70 PMs have four cores each
and 39 PMs with eight cores), 572 GB of RAM, 8 TB of storage and 1TB of shared storage
in a Network Attached Storage (NAS).

6.1.3.1 Workload

In order to provide performance comparison, we use workloads based on real VMs production
traces. Real UnaCloud scenarios provide a realistic VMs stream for performance evaluation

86

6.1 Energy-aware VM Allocation on An Opportunistic Cloud Infrastructure

based on simulations of VMs allocation algorithms. Besides, traces from the archives of
UnaCloud are used. The traces have been collected during one year. The total number of
VMs in the workload requested during the year is up to 9800 each one requiring either 1, 2,
3,4, 6, or 8 cores, 1, 2, 3, 4, 6, or 8 GB of RAM, and 20 GB of storage.

In order to estimate the energy consumed by a given placement, we use the information
provided in Section 6.1.1. The VMs are also characterized by different time periods from 45
minutes up to 43200 minutes (= 720 h), the time requested by users on demand to execute
VMs. The ECR rate values represent the power drawn by the PMs at the utilization given
by the placement over the execution time. We assume that when a PM does not have a VM
assigned to it and an user is not working on it the PM can be turned off. Hence, no energy
is consumed by the PM and is not included in the computation of the total ECR rate.

6.1.3.2 Experimental Scenarios

Different scenarios have been generated as follows. We consider that a given percentage of
PMs has an user working on it. To simulate the scenarios and generate the instances used by
the consolidation algorithms, we vary the percentage from 0% up to 50% with the increment
10%. We randomly assign an user to a PM and we generate 30 instances for each scenario.
The number of VMs to be placed on the PMs varies from 40 up to 130 with the increment
10. We generate 30 instances at random for each size from the real traces and we used them
as workloads for all the simulations discussed below. The maximum number of cores on each
size is up to the total available physical cores in order to support the worst packing scenario,
in which all the PMs run at least one VM. We assume that a physical user utilizes a PM
during 60 minutes up to 240 minutes. We randomly assign the time of the physical user
working on the PM (uniformly in the interval [60, 240]).

6.1.3.3 Algorithms Comparison

We measured the amount of provisioned PMs, and the ECR rate of the placement for ev-
ery algorithm. We report average results. The objective is to explore the behavior of the
investigated heuristics and the gain of the opportunistic environment.

Figures 6.2 shows the number of PMs used by each of the heuristics to place all the VMs
and Figures 6.3 presents the ECR rate for the considered scenarios.

As we can see in Figure 6.2 the Sorting heuristic utilizes important lower amount of
PMs yielding to superior average PM optimization and significant ECR lower consumption.
Considering the extreme scenarios, that is, assuming 0% and 50% of PMs with an user, the
heuristic optimizes up to 41% more than First-Fit and First-Fit decreasing, and 36% more
than Best-Fit when there are no physical users in the PMs. When 50% of the PMs are in an
busy state Sorting requires 30% on average less PMs than the related heuristics. The main
reason that Sorting needs more PMs in the second scenario is that it places the VMs to a
maximum number of PMs in a busy state.

We can observe that Sorting gains significant energy saving (i.e. low ECR) regarding
the related heuristics. The average gain of ECR by Sorting when no users are assigned to
PMs is up to 38% regarding First-Fit, up to 34% concerning First-Fit Decreasing, and up
to 35% with respect to Best-Fit. For the second scenario whit 50% of busy PMs all the
investigated heuristics gain more energy than in the first scenario with all the PMs in an idle

87

6. RESOURCE ALLOCATION ALGORITHMS IN OPPORTUNISTIC
CLOUD COMPUTING

state. These results highlight the benefits and advantages of an opportunistic cloud, in this
case UnaCloud, as a sustainable infrastructure.

The average ECR gain of Sorting is more important regarding related heuristics than in
the first scenario. Sorting optimizes 48% more energy than First-Fit, it can gain up to 45%
regarding First-Fit Decreasing, and up to 46% more than Best-Fit. The results highlight that
prioritizing busy PMs to place the VMS is a good saving energy option to consolidate VMs.

It can be observed that First-Fit utilizes more PMs (approx. 4%) in the opportunistic
environment to consolidate the VMs than Best-Fit in almost all the scenarios, however the
ECR rate is lower than Best-Fit. We consider that it is due to the fact that First-Fit uses
more PMs in an idle state than Best-Fit, nevertheless for a shorter time of period than
Best-Fit, hence the ECR rate is less than Best-Fit.

88

6.1 Energy-aware VM Allocation

on An Opportunistic Cloud Infrastructure

Amount of PMs Used

Amount of PMs Used

Amount of PMs Used

0% users in the machines

Heuristics
B First-Fit
= First-Fit Decreasing
S — & Best-Fit
O Sorting

<
. {
o | %
~
<
S
o Ll Ll
40 50 60 70 80 90 100 110 120
Amount of VMs
(a)
20% users in the machines
Heuristics
= First-Fit
B First—Fit Decreasing
0@ Best—Fit
< _ O Sorting
==}
=
) h
<o
~
<
S
o Ll Ll
40 50 60 70 80 90 100 110 120
Amount of VMs
(c)
40% users in the machines
Heuristics
M First-Fit
® First—Fit Decreasing
O Best-Fit
O Sorting
[==
=B
= { %
«©
<
=3
o
N
o Ll Ll Ll
40 50 60 70 80 90 100 110 120

Amount of VMs

(e)

130

130

130

Amount of PMs Used

Amount of PMs Used

Amount of PMs Used

80

60

40

20

80

60

40

20

100

80

60

40

20

ooom

ooom

ooom

10% users in the machines

Heuristics
First—Fit

First—Fit Decreasing
Best—Fit

Sorting

40 50 60 70 80 90 100 110 120

Amount of VMs
(b)

30% users in the machines

%I% %

100

Heuristics
First—Fit
First—Fit Decreasing
Best—Fit
Sorting

40 50 60 70 80 90 110 120

Amount of VMs
(d)

50% users in the machines

Heuristics
First—Fit

First—Fit Decreasing
Best—Fit

Sorting

40 50 60 70 80 90 100 110 120

Amount of VMs

()

Figure 6.2: Number of PMs to place the VMs

89

130

130

130

chapter10/figures/pms0_sd_TPMsU.eps
chapter10/figures/pms10_sd_TPMsU.eps
chapter10/figures/pms20_sd_TPMsU.eps
chapter10/figures/pms30_sd_TPMsU.eps
chapter10/figures/pms40_sd_TPMsU.eps
chapter10/figures/pms50_sd_TPMsU.eps

6. RESOURCE ALLOCATION ALGORITHMS IN OPPORTUNISTIC
CLOUD COMPUTING

KWh)

Energy Consumption (

Energy Consumption (=kWh)

KWh)

Energy Consumption (

120

100

80

60

40

120

100

80

60

40

20

100

80

60

40

20

0% users in the machines

10% users in the machines

8—_p
/n t4
o 4 I
Q
o
=
= -
=
=~
o
=
o
= o
& o a @ o]
- g o O o
2
o] i=
o
o / o
>
=4 8 Q
2 — 8 ®
L /u ©
o] ° b
= o
o Heuristics - N Heuristics
o —=— First-Fit ° —=— First-Fit
° e First-Fit Decreasin, o First-Fit Decreasin,
Best-Fit Best-Fit
54 Sorting 54 Sorting
T T T T T T T T T T
40 60 80 100 120 40 60 80 100 120
Amount of VMs Amount of VMs
(a) (b)
20% users in the machines 30% users in the machines
o
o
=
z
[o
L 3
=
;% a
g o & ° °©
S R o
2
< o]
o o
o o
>
=4
I} o
c o
L
- °
= = i<
Heuristics - Heuristics
o —=— First-Fit N —&— First-Fit
o First—Fit Decreasing - e First—Fit Decreasing
Best-Fit o e Best-Fit
& Sorting N & Sorting
T T T T T T T T T T
40 60 80 100 120 40 60 80 100 120
Amount of VMs Amount of VMs
(c) (d)
40% users in the machines 50% users in the machines
o
S
= o
)
=
o
=
=3
b= o
g 8T A o
E a °
2 3 °
o
o
-3 Q ©
< —a
2 3
L / ©
o o
¥ o]
& Heuristics ° o Heuristics
—=— First-Fit —=— First-Fit
" o First-Fit Decreasin, - o First-Fit Decreasin
@ Best-Fit © Best-Fit
54 Sorting Q 54 Sorting
T T T T T T T T T T
40 60 80 100 120 40 60 80 100 120

Amount of VMs

()

Amount of VMs

(f)

90
Figure 6.3: Total ECR consumed.

chapter10/figures/pms0_Ener.eps
chapter10/figures/pms10_Ener.eps
chapter10/figures/pms20_Ener.eps
chapter10/figures/pms30_Ener.eps
chapter10/figures/pms40_Ener.eps
chapter10/figures/pms50_Ener.eps

Chapter 7

Conclusions and Perspectives

Contents
7.1 SUMMATY . & v v v v vttt et e e e e e e e e e e e e e e e e e e e 91
7.2 Futureresearch lines, 92

7.2.1 Advances in Cloud Computing 92

7.1 Summary

In this thesis, we studied two different problems, the scheduling problem over grid comput-
ing and the resource allocation problem over opportunistic cloud computing. For the first
problem, we did not only tackle the problem from two different perspectives, performance
and energy consumption, but also reduced the complexity of the proposed algorithms. We
compared, our proposed algorithms, with the best scheduling algorithms founded in the litera-
ture. Concerning resource allocation problem, we tackled the problem from two perspectives,
opportunistic environment and energy consumption. Moreover, we used two environments
grid and cloud to evaluate our resource allocation algorithms. We also compared, our re-
source allocation algorithms, with the most common used in the literature. A selection of
such solutions is carefully done.
The major contributions contained in this PhD thesis are:

e We presented a state of the art in scheduling heuristics and resource allocation for
opportunistic environments (including grid and cloud computing).

e We proposed and evaluated low computational complexity algorithms in the context of
their performance and scalability in HCS. The algorithms are evaluated and compared
with the best reported in the literature. The set of experimental results shows that low
computational complexity heuristics perform as efficiently as known ones considering
the makespan criterion, and outperform them in terms of number of best solution found
criteria. Detail analysis show that low computational complexity heuristics are the best
performing heuristics in the original-consistency cases showing similar behavior in the
partial-consistency scenarios. Moreover, these low computational complexity heuristics
have significant good scalability and efficiency

91

7. CONCLUSIONS AND PERSPECTIVES

e We presented a description of Opportunistic cloud computing, ranging from Desktop
Computing to Volunteer Computing.

e We described a particular Opportunistic cloud infrastructure, named UnaCloud, where
the experiments were developed.

e We assessed UnaCloud infrastructure by a complete benchmarking, measuring perfor-
mance and storage. Also we presented UnaCloud as PaaS.

e We presented and validated an energy model based on the experimentation, first in
opportunistic grid then in opportunistic cloud environments.

e We addressed energy savings on an opportunistic infrastructure, specifically for Una-
Cloud. We proposed a new resource allocation algorithm that is a variant of First-Fit
Decreasing. The proposed algorithm was validated against three well known state-of-
the-art heuristics. We have simulated different scenarios using real workload traces.
The results showed that the opportunistic infrastructure seems to be a good option as
a sustainable computing on demand infrastructure.

7.2 Future research lines

As a future work, we are planning to enhance our low complexity heuristic to be fault tolerant,
furthermore, we would like to test them in a real Grid or Cloud computing environment.

There are still some open issues in opportunistic environments that we would like to
address in the future. We are planing to consider communication issues and heterogeneity of
resources during the placement of VMs, the problem can be modeled as a multi-dimensional
packing problem. Moreover, interoperability is a big issue that we are going to tackle.

We want continue the evolution of our opportunistic infrastructure, not only as PaaS and
IaaS, but also as SaaS and why not Business orchestration.

7.2.1 Advances in Cloud Computing

There are several research in all components to make the Cloud accessible, flexible, elastic,
pervasive, ubiquitous, interoperable, portable, multi-tenant, etc,.

At this time, the last buzzword is with BigData due to the increase of content in the
web as social networks, the technology to digital storage has been improved, the quantity of
information is huge, not only for scientific reasons, that it was a gap at the beginning, now
all kind of information is in the web.

7.2.1.1 Future of the combination of Internet Of Things with Cloud Computing

Ubiquitous cloud computing refers to use of Internet resources at any place and any time
for any objectives. Today, people can access the Internet from anywhere by fixed or wireless
networks. New challenges for implement services in the cloud has been impacted with a new
research environment that leverages software and services being provided on user demand.
The IoT is a natural extension of the Internet. The foundation of the IoT is radio-frequency
identification (RFID). This enables the discovery of tagged objects and mobile devices by

92

7.2 Future research lines

browsing an IP address or searching for a database entry. In the future all objects on Earth
be radio-tagged, ranging from a milk cartoon to a truck container to a jumbo jet.Computers
identify and manage all tagged objects in the same way humans do. Now the machines
need services (e.g. think and understanding), a complete new kind of applications will be
developed for satisfying users’ need, with IoT technology arriving to the market, the services
offered will multiply. The IoT system will improve our quality of life and make society cleaner
and more secure.

7.2.1.2 Future of the SmartGrids with Cloud Computing

A smart grid includes an intelligent monitoring system that keeps track of all electricity
flowing in the system as well as it can be distributed to each new micro grid created. Smart
meters, consist in a digital upgrade of current utility meters and capacity to get more variables
from the power grid, track energy usage in real time so that both the customer and the utility
company know how much is being used at any given time or in real time. Energy is paid
for using “time of day” pricing, meaning electricity will cost more at peak times of use. In a
combination of Cloud Computing with IoT the commodity for manage energy could be the
best. For instance, when power is least expensive the user can allow the smart grid to turn
on selected home appliances such as washing machines or factory processes that can run at
arbitrary hours. At peak times, when the cost of energy is higher, it could turn off selected
appliances to reduce demand, all of this in a remote way.

93

7. CONCLUSIONS AND PERSPECTIVES

94

References

[ICA3PP2013] 57

2]

[3]

[10]

[11]

Condor high throughput computing, 2011. Available online at
http://www.cs.wisc.edu/condor/. Cited August 2011. 18

Openpbs, 2012. Available online at http://www.mcs.anl.gov/research/projects/openpbs/. Cited
November 2012. 18

Lsf - load sharing facility, 2013. Available online at http://www.vub.ac.be/BFUCC/LSF/.
Cited January 2013. 18

Oar resource management system for high performance computing, 2013. Available
online at http://oar.imag.fr. Cited January 2013. 18

Torque resource manager, 2013. Available online at
http://www.adaptivecomputing.com /products/open-source/torque. Cited January 2013. 18

Abdulla Al-Qawasmeh, Anthony A. Maciejewski, Haonan Wang, Jay Smith,
Howard Jay Siegel, and Jerry Potter. Statistical measures for quantifying task and
machine heterogeneities. The Journal of Supercomputing, 57(1):34-50, 2011. 18

S. Ali, H. J. Siegel, M. Maheswaran, and D. Hensgen. Representing task and ma-
chine heterogeneities for heterogeneous computing systems. Journal of Science and
Engineering, 3(3):195-207, 2000. 5, 29, 30, 44

Amazon. High Performance Computing on AWS.
http://aws.amazon.com/hpc-applications/, 2013. [Online; accessed July-2013]. 67

David P. Anderson. Boinc: A system for public-resource computing and storage. In Pro-
ceedings of the 5th IEEE/ACM International Workshop on Grid Computing, GRID ’04,
pages 4-10, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2256-
4. doi: 10.1109/GRID.2004.14. URL http://dx.doi.org/10.1109/GRID.2004.14.
49, 50

David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.
Seti@home: an experiment in public-resource computing. Commun. ACM, 45(11):
56-61, November 2002. ISSN 0001-0782. doi: 10.1145/581571.581573. URL
http://doi.acm.org/10.1145/581571.581573. 50

95

http://aws.amazon.com/hpc-applications/
http://dx.doi.org/10.1109/GRID.2004.14
http://doi.acm.org/10.1145/581571.581573

REFERENCES

[12]

[13]

[15]

[16]

[17]

[21]

Nazareno Andrade, Walfredo Cirne, Francisco Brasileiro, and Paulo Roisenberg. Our-
grid: An approach to easily assemble grids with equitable resource sharing. In Dror
Feitelson, Larry Rudolph, and Uwe Schwiegelshohn, editors, Job Scheduling Strategies
for Parallel Processing, volume 2862 of Lecture Notes in Computer Science, pages 61-86.
Springer Berlin Heidelberg, 2003. ISBN 978-3-540-20405-3. doi: 10.1007/10968987_4.
URL http://dx.doi.org/10.1007/10968987_4. 50

Cosimo Anglano, Massimo Canonico, and Marco Guazzone. The sharegrid peer-to-peer
desktop grid: Infrastructure, applications, and performance evaluation. J. Grid Com-
put., 8(4):543-570, December 2010. ISSN 1570-7873. doi: 10.1007/s10723-010-9162-z.
URL http://dx.doi.org/10.1007/s10723-010-9162-z. 50

R. Armstrong, D. Hensgen, and T. Kidd. The relative performance of various mapping
algorithms is independent of sizable variances in run-time predictions. In Heterogeneous
Computing Workshop, 1998. (HCW 98) Proceedings. 1998 Seventh, pages 79 —87, mar
1998. doi: 10.1109/HCW.1998.666547. 10

E. Bampis, F. Guinand, and D. Trystram. Some models for scheduling parallel programs
with communication delays. Discrete Applied Mathematics, 72(1-2):5-24, 1997. 11

Nikhil Bansal. Algorithms for Flow Time Scheduling. PhD thesis, School of Computer
Science, Carnegie Mellon University, 2003. 38

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Har-
ris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen
and the art of virtualization. SIGOPS Oper. Syst. Rev., 37(5):164-177,
October 2003. ISSN 0163-5980. doi: 10.1145/1165389.945462. URL
http://doi.acm.org.proxy.bnl.1lu/10.1145/1165389.945462. 54

Luiz André Barroso and Urs Holzle. The case for energy-proportional computing.
Computer, 40(12):33-37, December 2007. ISSN 0018-9162. doi: 10.1109/MC.2007.443.
URL http://dx.doi.org/10.1109/MC.2007.443. 50

Fabrice Bellard. Qemu, a fast and portable dynamic translator. In Pro-
ceedings of the Annual Conference on USENIX Annual Technical Conference,
ATEC °’05, pages 41-41, Berkeley, CA, USA, 2005. USENIX Association. URL
http://dl.acm.org/citation.cfm. 54

Anton Beloglazov and Rajkumar Buyya. Energy efficient allocation of virtual ma-
chines in cloud data centers. In Proceedings of the 2010 10th IEEE/ACM Interna-
tional Conference on Cluster, Cloud and Grid Computing, CCGRID ’10, pages 577—
578, Washington, DC, USA, 2010. IEEE Computer Society. ISBN 978-0-7695-4039-9.
doi: 10.1109/CCGRID.2010.45. URL http://dx.doi.org/10.1109/CCGRID.2010.45
13

Anton Beloglazov, Rajkumar Buyya, Young Choon Lee, and Albert Y.
Zomaya. A taxonomy and survey of energy-efficient data centers and
cloud computing systems. Advances in Computers, 82:47-111, 2011. URL
http://dblp.uni-trier.de/db/journals/ac/ac82.html#BeloglazovBLZ11. 51

96

http://dx.doi.org/10.1007/10968987_4
http://dx.doi.org/10.1007/s10723-010-9162-z
http://doi.acm.org.proxy.bnl.lu/10.1145/1165389.945462
http://dx.doi.org/10.1109/MC.2007.443
http://dl.acm.org/citation.cfm
http://dx.doi.org/10.1109/CCGRID.2010.45
http://dblp.uni-trier.de/db/journals/ac/ac82.html#BeloglazovBLZ11

REFERENCES

[22]

[23]

[24]

[25]

[26]

[28]

[29]

[30]

L. Benini, A. Bogliolo, and G. De Micheli. A survey of design techniques for system-
level dynamic power management. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 8(3):299-316, 2000. ISSN 1063-8210. doi: 10.1109/92.845896. 12, 51

H.J.C. Berendsen, D. van der Spoel, and R. van Drunen. Gromacs: A message-
passing parallel molecular dynamics implementation. Computer Physics Communica-
tions, 91(3):43 — 56, 1995. ISSN 0010-4655. doi: 10.1016/0010-4655(95)00042-E. URL
http://www.sciencedirect.com/science/article/pii/001046559500042E. 68, 71

Kashif Bilal, SameeU. Khan, SajjadA. Madani, Khizar Hayat, Majidl. Khan, Nasro
Min-Allah, Joanna Kolodziej, Lizhe Wang, Sherali Zeadally, and Dan Chen. A survey
on green communications using adaptive link rate. Cluster Computing, 16(3):575-589,
2013. ISSN 1386-7857. 79

Kashif Bilal, Saif Ur Rehman Malik, Osman Khalid, Abdul Hameed, Enrique Alvarez,
Vidura Wijaysekara, Rizwana Irfan, Sarjan Shrestha, Debjyoti Dwivedy, Mazhar Ali,
Usman Shahid Khan, Assad Abbas, Nauman Jalil, and Samee U. Khan. A taxonomy
and survey on green data center networks. Future Generation Computer Systems, 36(0):
189 — 208, 2014. ISSN 0167-739X. doi: http://dx.doi.org/10.1016/j.future.2013.07.006.
URL http://www.sciencedirect.com/science/article/pii/S0167739X13001519.
Special Section: Intelligent Big Data Processing Special Section: Behavior Data Se-
curity Issues in Network Information Propagation Special Section: Energy-efficiency
in Large Distributed Computing Architectures Special Section: eScience Infrastructure
and Applications. 12

Tracy D. Braun, Howard Jay Siegel, Noah Beck, Lasislau L. B6loni, Muthucumara Ma-
heswaran, Albert I. Reuther, James P. Robertson, Mitchell D. Theys, Bin Yao, Debra
Hensgen, and Richard F. Freund. A comparison of eleven static heuristics for mapping
a class of independent tasks onto heterogeneous distributed computing systems. J.
Parallel Distrib. Comput., 61:810-837, 2001. 5, 11, 16, 17, 34, 42, 44

Paul Brebner, Emmanuel Cecchet, Julie Marguerite, Petr Tma, Octavian Ciuhandu,
Bruno Dufour, Lieven Eeckhout, Stphane Frenot, Arvind S. Krishna, John Murphy,
and Clark Verbrugge. Middleware benchmarking: approaches, results, experiences.
Concurrency and Computation: Practice and Ezxperience, 17(15):179 — 185, 2005. ISSN
1532-0634. doi: 10.1002/cpe.918. URL http://dx.doi.org/10.1002/cpe.918. 60

Paul C. Brebner. Is your cloud elastic enough?: performance mod-
elling the elasticity of infrastructure as a service (iaas) cloud applications.
In Proceedings of the 3rd ACM/SPEC International Conference on Perfor-
mance FEngineering, ICPE ’12, pages 263-266, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1202-8. doi: 10.1145/2188286.2188334. URL
http://doi.acm.org.proxy.bnl.1lu/10.1145/2188286.2188334. 61

Peter Brucker. Scheduling Algorithms. Springer, Berlin, Germany, 5th edition, 2007.
ISBN 978-3-540-69515-8. 8

P. Bunci, C. Aguado Sanchez, J. Blomer, L. Franco, A. Harutyunian, P. Mato, and
Y Yao. Cernvimm a virtual software appliance for lhc applications. J. of Physics., 219

97

http://www.sciencedirect.com/science/article/pii/001046559500042E
http://www.sciencedirect.com/science/article/pii/S0167739X13001519
http://dx.doi.org/10.1002/cpe.918
http://doi.acm.org.proxy.bnl.lu/10.1145/2188286.2188334

REFERENCES

[35]

[36]

[37]

(4):43 — 53, December 2010. ISSN 1742-6588. doi: 10.1088/1742-6596,/219/4,/042003.
50

T.D. Burd, T.A. Pering, A.J. Stratakos, and R.W. Brodersen. A dynamic voltage scaled
microprocessor system. IEEE J. Solid-State Circuits, 35(11):1571-1580, 2000. 43

Rajkumar Buyya, Anton Beloglazov, and Jemal H. Abawajy. Energy-efficient manage-
ment of data center resources for cloud computing: A vision, architectural elements,
and open challenges. In Proceedings of the 2010 International Conference on Paral-
lel and Distributed Processing Techniques and Applications (PDPTA), pages 6-20, Las
Vegas, USA, July 2010. CSREA Press. 13

B. Barla Cambazoglu, E. Kartal Tabak, and Cevdet Aykanat. Improving the perfor-
mance of independenttask assignment heuristics minmin,maxmin and sufferage. IEEFE
Transactions on Parallel and Distributed Systems, 25(5):1244-1256, 2014. ISSN 1045-
9219. doi: http://doi.ieeecomputersociety.org/10.1109/TPDS.2013.107. 11

M. C. Cardoso and F. M. Costa. Mpi support on opportunistic grids based
on the integrade middleware. Concurrency and Computation: Practice and FEax-
perience, 22(3):343-357, 2010. ISSN 1532-0634. doi: 10.1002/cpe.1479. URL
http://dx.doi.org/10.1002/cpe.1479. 50

H. Casanova, D. Zagorodnov, F. Berman, and A. Legrand. Heuristics for scheduling
parameter sweep applications in grid environments. In Proc. of the 9th Heterogeneous
Computing Workshop, pages 349-363, USA, 2000. 11

Harold Castro, Eduardo Rosales, and Mario Villamizar. Desktop grids and volunteer
computing systems. In Nikolaos Preve, editor, Computational and Data Grids: Prin-
ciples, Applications and Design, pages 1-30. IGI Global, 2012. ISBN 9781613501146.
doi: 10.4018/978-1-61350-113-9. 52

Harold Castro, Mario Villamizar, German Sotelo, CesarO. Diaz, JohnatanE. Pecero,
and Pascal Bouvry. Green flexible opportunistic computing with task consolidation
and virtualization. Cluster Computing, 16(3):545-557, 2013. ISSN 1386-7857. doi:
10.1007/s10586-012-0222-y. URL http://dx.doi.org/10.1007/s10586-012-0222~y.
79, 80

Harold Castro, Mario Villamizar, German Sotelo, Cesar O. Diaz, Johnatan E. Pecero,
Pascal Bouvry, and Samee U. Khan. Gfog: Green and flexible opportunistic grids. In
Samee U. Khan, Lizhe Wang, and Albert Y. Zomaya, editors, Scalable Computing and
Communications, Theory and Practice. Wiley&Sons, Forthcomming. 57, 81

Texas Advanced Computer Center. Gotoblas2.
http://www.tacc.utexas.edu/tacc-projects/gotoblas2/, 2013. [Online; ac-
cessed 28-January-2013]. 74

CERN. Ladron Hadron Collector. http://lhcathome.web.cern.ch/LHCathome/,
2011. [Online; accessed 01-November-2012]. 50

98

http://dx.doi.org/10.1002/cpe.1479
http://dx.doi.org/10.1007/s10586-012-0222-y
http://www.tacc.utexas.edu/tacc-projects/gotoblas2/
http://lhcathome.web.cern.ch/LHCathome/

REFERENCES

[41]

[42]

[43]

[44]

[45]

Hui Chen, Bing Luo, and Weisong Shi. Anole: A case for energy-aware mobile ap-
plication design. In Parallel Processing Workshops (ICPPW), 2012 41st International
Conference on, pages 232-238, Sept 2012. doi: 10.1109/ICPPW.2012.34. 3

SungJin Choi and Rajkumar Buyya. Group-based adaptive result certification mech-
anism in desktop grids. Future Generation Computer Systems, 26(5):776 — 786,
2010. ISSN 0167-739X. doi: http://dx.doi.org/10.1016/j.future.2009.05.025. URL
http://www.sciencedirect.com/science/article/pii/S0167739X09000557. 14

G. Da Costa, J.-P. Gelas, Y. Georgiou, L. Lefevre, A.-C. Orgerie, J. Pierson, O. Richard,
and K. Sharma. The green-net framework: Energy efficiency in large scale distributed
systems. In Parallel Distributed Processing, 2009. IPDPS 2009. IEEE International
Symposium on, pages 1-8, May 2009. doi: 10.1109/IPDPS.2009.5160975. 51

Raphael de Aquino Gomes and Fbio M. Costa. An approach to enhance the effi-
ciency of opportunistic grids. Concurrency and Computation: Practice and Expe-
rience, 23(17):2092 — 2106, 2011. ISSN 1532-0634. doi: 10.1002/cpe.1707. URL
http://dx.doi.org/10.1002/cpe.1707. 50

J.Y. De la Pava Torres and C. Jimenez-Guarin. Magoscloud secure: A secure, highly
scalable platform for services in an opportunistic environment. In High Performance
Computing and Simulation (HPCS), 2012 Intl. Conf. on, pages 53-59, 2012. doi: 10.
1109/HPCSim.2012.6266890. 67

[OPTIM2011] C. O. Diaz, M. Guzek, J. E. Pecero, G. Danoy, P. Bouvry, and S. U. Khan.

Energy-aware fast scheduling heuristics in heterogeneous computing systems. In HPCS,
2011 Int. Conference, pages 478 —484, july 2011. doi: 10.1109/HPCSim.2011.5999863.
11, 17, 18, 119

[CCGrid2014] Cesar O. Diaz, Johnatan E. Pecero, Pascal Bouvry, German Sotelo, Mario

Villamizar, and Harold Castro. Performance evaluation of an iaas opportunistic cloud
computing. In Cluster, Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM
International Symposium on, pages 546-547, May 2014. doi: 10.1109/CCGrid.2014.116.
59

[SUPE2013] CesarO. Diaz, JohnatanE. Pecero, and Pascal Bouvry. Scalable, low complexity,

[50]

and fast greedy scheduling heuristics for highly heterogeneous distributed computing
systems. The Journal of Supercomputing, pages 1-17, 2013. ISSN 0920-8542. doi:
10.1007/s11227-013-1038-0. URL http://dx.doi.org/10.1007/s11227-013-1038-0.
23

C.0. Diaz, M. Guzek, J.E. Pecero, P. Bouvry, and S.U. Khan. Scalable and energy-
efficient scheduling techniques for large-scale systems. In Computer and Information
Technology (CIT), 2011 IEEFE 11th International Conference on, pages 641-647, Aug
2011. doi: 10.1109/CIT.2011.106. 50

C.0. Diaz, H. Castro, M. Villamizar, J.E. Pecero, and P. Bouvry. Energy-aware vm
allocation on an opportunistic cloud infrastructure. In Proceedings of the 2013 13th
IEEE/ACM Int. Symposium CCGRID, pages 663-670. IEEE Computer Society, 2013.
doi: 10.1109/CCGrid.2013.96. 79, 85

99

http://www.sciencedirect.com/science/article/pii/S0167739X09000557
http://dx.doi.org/10.1002/cpe.1707
http://dx.doi.org/10.1007/s11227-013-1038-0

REFERENCES

[51]

[58]

Salvatore Distefano, Vincenzo D. Cunsolo, Antonio Puliafito, and Marco Scarpa. Clou-
dathome: A new enhanced computing paradigm. In Furth Borko and Armando Es-
calante, editors, Handbook of Cloud Computing, pages 575-594. Springer US, 2010.
ISBN 978-1-4419-6523-3. doi: 10.1007/978-1-4419-6524-0. 50

F. Doelitzscher, M. Held, C. Reich, and A. Sulistio. Viteraas: Virtual cluster as a
service. In IEEFE Int. Conf. (CloudCom), pages 652657, 2011. doi: 10.1109/CloudCom.
2011.101. 67

Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with
performance profiles. Mathematical Programming, 91(2):201-213, 2002. 5, 29

Elizabeth D. Dolan, Jorge J. Moré, and Todd S. Munson. Optimality measures for
performance profiles. SIAM J. on Optimization, 16(3):891-909, March 2006. ISSN
1052-6234. doi: 10.1137/040608015. 5, 29

Fang Dong, Junzhou Luo, Jiahui Jin, Yanhao Wang, and Yanmin Zhu. Performance
evaluation and analysis of seu cloud computing platform. In Systems, Man, and Cy-
bernetics (SMC), 2012 IEEE International Conference on, pages 1455-1460, 2012. doi:
10.1109/ICSMC.2012.6377940. 61

Fangpeng Dong and Selim G. Akl. Technical report no. 2006-504 scheduling al-
gorithms for grid computing: State of the art and open problems, 2006. URL
http://research.cs.queensu.ca/home/akl/techreports/GridComputing.pdf. 10

Jack J. Dongarra, Piotr Luszczek, and Antoine Petitet. The linpack bench-
mark: past, present and future. Concurrency and Computation: Practice and
Ezperience, 15(9):803-820, 2003. ISSN 1532-0634. doi: 10.1002/cpe.728. URL
http://dx.doi.org/10.1002/cpe.728. 61

Y. El-Khamra, Hyunjoo Kim, S. Jha, and M. Parashar. Exploring the performance
fluctuations of hpc workloads on clouds. In Cloud Computing Technology and Science
(CloudCom), 2010 IEEE Second International Conference on, pages 383-387, 2010.
doi: 10.1109/CloudCom.2010.84. 61

Lionel Eyraud. A pragmatic analysis of scheduling environments on new computing
platforms. Int. J. High Perform. Comput. Appl., 20(4):507-516, November 2006. 18

Pablo Ezzatti, Martin Pedemonte, and Alvaro Martin. An efficient implementa-
tion of the min-min heuristic. ~Computers & Operations Research, 40(11):2670 —
2676, 2013. ISSN 0305-0548. doi: http://dx.doi.org/10.1016/j.cor.2013.05.014. URL
http://www.sciencedirect.com/science/article/pii/S0305054813001433. 11

Fugen Feller, Louis Rilling, and Christine Morin. Energy-aware ant colony based work-
load placement in clouds. In Proceedings of the 2011 IEEE/ACM 12th Int. GRID,
pages 26-33, Washington, DC, USA, September 2011. IEEE Computer Society. 14

Eugen Feller, Louis Rilling, and Christine Morin. Snooze: A scalable and autonomic
virtual machine management framework for private clouds. In Proceedings of the 2012

100

http://research.cs.queensu.ca/home/akl/techreports/GridComputing.pdf
http://dx.doi.org/10.1002/cpe.728
http://www.sciencedirect.com/science/article/pii/S0305054813001433

REFERENCES

[64]

[65]

[67]

[70]

[71]

12th IEEE/ACM Int. Symposium CCGRID, pages 482-489, Washington, DC, USA,
May 2012. IEEE Computer Society. ISBN 978-0-7695-4691-9. 13

Hector Fernandez, Corina Stratan, and Guillaume Pierre. Robust performance
control for web applications in the cloud. In jth International Conference on
Cloud Computing and Services Science, Barcelona, Espagne, April 2014. URL
http://hal.inria.fr/hal-01006607. Best paper award. 3

Marcelo Finger, Germano C. Bezerra, and Danilo R. Conde. Resource use pattern
analysis for predicting resource availability in opportunistic grids. Concurrency and
Computation: Practice and Ezperience, 22(3):295-313, 2010. ISSN 1532-0634. doi:
10.1002/cpe.1478. URL http://dx.doi.org/10.1002/cpe.1478. 50

Pinel Frederic, Dorronsoro Bernabe, and Bouvry Pascal. Solving very large instances
of the scheduling of independent tasks problem on the gpu. Journal of Parallel and
Distributed Computing, pages 1-8, 2012. ISSN 0743-7315. doi: 10.1016/j.jpdc.2012.02.
018. Available online 9 March 2012. 12, 16

R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman, D. Hensgen,
E. Keith, T. Kidd, M. Kussow, J. D. Lima, F. Mirabile, L.. Moore, B. Rust, and H. J.
Siegel. Scheduling resources in multi-user, heterogeneous, computing environments
with smartnet. In Proceedings of the Seventh Heterogeneous Computing Workshop,
HCW 98, pages 184-199, Washington, DC, USA, 1998. IEEE Computer Society. ISBN
0-8186-8365-1. 10

James Frey, Todd Tannenbaum, Miron Livny, lan Foster, and Steven Tuecke. Condor-
g: A computation management agent for multi-institutional grids. Cluster Com-
puting, 5(3):237-246, 2002. ISSN 1386-7857. doi: 10.1023/A:1015617019423. URL
http://dx.doi.org/10.1023/A%3A1015617019423. 50

Marc Eduard Frincu. Scheduling highly available applications on cloud en-
vironments. Future Generation Computer Systems, 32(0):138 — 153, 2014.
ISSN 0167-739X. doi: http://dx.doi.org/10.1016/j.future.2012.05.017. URL
http://www.sciencedirect.com/science/article/pii/S0167739X12001136. Spe-
cial Section: The Management of Cloud Systems, Special Section: Cyber-Physical
Society and Special Section: Special Issue on Exploiting Semantic Technologies with
Particularization on Linked Data over Grid and Cloud Architectures. 12

Cecile Germain, Vincent Neri, Gilles Fedak, and Franck Cappello. Xtremweb: Building
an experimental platform for global computing. In Rajkumar Buyya and Mark Baker,
editors, Grid Computing N GRID 2000, volume 1971 of Lecture Notes in Computer
Science, pages 91-101. Springer Berlin Heidelberg, 2000. ISBN 978-3-540-41403-2. doi:
10.1007/3-540-44444-0_9. URL http://dx.doi.org/10.1007/3-540-44444-0_9. 50

Arif Ghafoor and Jaehyung Yang. A distributed heterogeneous supercomputing man-
agement system. IEEE Computer, 26(6):78-86, June 1993. 18

Arnaud Giersch, Yves Robert, and Frédéric Vivien. Scheduling tasks sharing files on
heterogeneous master-slave platforms. J. Syst. Archit., 52:88-104, 2006. 18

101

http://hal.inria.fr/hal-01006607
http://dx.doi.org/10.1002/cpe.1478
http://dx.doi.org/10.1023/A%3A1015617019423
http://www.sciencedirect.com/science/article/pii/S0167739X12001136
http://dx.doi.org/10.1007/3-540-44444-0_9

REFERENCES

[72]

[82]

Andrei Goldchleger, Fabio Kon, Alfredo Goldman, Marcelo Finger, and Germano Capis-
trano Bezerra. Integrade object-oriented grid middleware leveraging the idle com-
puting power of desktop machines: Research articles. Concurr. Comput. : Pract.
Ezper., 16(5):449-459, April 2004. ISSN 1532-0626. doi: 10.1002/cpe.v16:5. URL
http://dx.doi.org/10.1002/cpe.v16:5. 50

R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey. Annals of
discrete mathematics, 5(2):287-326, 1979. doi: 10.1016/S0167-5060(08)70356-X. 8

Jim Gray. The Benchmark Handbook for Database and Transaction systems. Morgan
Kaufmann, ACM SIGMOD Anthology, 2nd edition, 1993. ISBN 1-55860-292-5. 59, 61

Frederic Guinand, Aziz Moukrim, and Eric Sanlaville. Sensitivity analysis of scheduling
uect trees on two processors. Parallel Computing, 30(1):103-120, 2004. doi: DOLI:
10.1016/S0167-8191(03)00091-7. 11

Torben Hagerup. Allocating independent tasks to parallel processors: An experimental
study. Journal of Parallel and Distributed Computing, 47(2):185-197, 1997. 10

XiaoShan He, XianHe Sun, and Gregor von Laszewski. Qos guided min-min heuristic
for grid task scheduling. J. Comput. Sci. Technol., 18(4):442-451, July 2003. ISSN
1000-9000. 11

Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and Julia Lawall.
Entropy: a consolidation manager for clusters. In Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS international conference on Virtual execution environments, VEE *09,
pages 41-50, New York, NY, USA, March 2009. ACM. ISBN 978-1-60558-375-4. 13

Adan Hirales-Carbajal, Andrei Tchernykh, Ramin Yahyapour, JoseLuis Gonzalez-
Garcia, Thomas Roblitz, and JuanManuel Ramirez-Alcaraz. Multiple workflow schedul-
ing strategies with user run time estimates on a grid. Journal of Grid Comput-
ing, 10(2):325-346, 2012. ISSN 1570-7873. doi: 10.1007/s10723-012-9215-6. URL
http://dx.doi.org/10.1007/s10723-012-9215-6. 16, 17, 29

Ching-Hsien Hsu, Shih-Chang Chen, Chih-Chun Lee, Hsi-Ya Chang, Kuan-Chou Lai,
Kuan-Ching Li, and Chunming Rong. Energy-aware task consolidation technique for
cloud computing. In Cloud Computing Technology and Science (CloudCom), 2011 IEEE
Third International Conference on, pages 115-121, Nov 2011. doi: 10.1109/CloudCom.
2011.25. 56

H. Hussain, S. U. R. Malik, A. Hameed, S. U. Khan, G. Bickler, N. Min-Allah, M. B.
Qureshi, L. Zhang, W. Yongji, N. Ghani, J. Kolodziej, A. Y. Zomaya, C. Xu, Pavan
Balaji, A. Vishnu, F. Pinel, J. E. Pecero, D. Kliazovich, P. Bouvry, H. Li, L. Wang,
D. Chen, and A. Rayes. A survey on resource allocation in high performance dis-
tributed computing systems. Parallel Computing, 39:709-736, 11/2013 2014. URL
http://www.sciencedirect.com/science/article/pii/S016781911300121X. 13

Oscar H. Ibarra and Chul E. Kim. Heuristic algorithms for scheduling independent
tasks on nonidentical processors. J. ACM, 24:280-289, 1977. 7, 16, 17, 22, 23, 42, 119

102

http://dx.doi.org/10.1002/cpe.v16:5
http://dx.doi.org/10.1007/s10723-012-9215-6
http://www.sciencedirect.com/science/article/pii/S016781911300121X

REFERENCES

[83] Uptime Institute. 2013 data center industrie survey, 2014. URL
http://uptimeinstitute.com/images/stories/DataCenterSurvey_assets/uptime-institute-:

3

[84] A. Iordache, C. Morin, N. Parlavantzas, E. Feller, and P. Riteau. Resilin: Elastic
mapreduce over multiple clouds. In 13th IEEE/ACM CCGrid, pages 261-268, 2013.
doi: 10.1109/CCGrid.2013.48. 67

[85] A.Iosup and D. Epema. Grenchmark: A framework for analyzing, testing, and compar-
ing grids. In Cluster Computing and the Grid, 2006. CCGRID 06. Sixth IEEE Interna-
tional Symposium on, volume 1, pages 313-320, 2006. doi: 10.1109/CCGRID.2006.49.
61

[86] A. Iosup, S. Ostermann, M.N. Yigitbasi, R. Prodan, T. Fahringer, and D. H J Epema.
Performance analysis of cloud computing services for many-tasks scientific computing.
Parallel and Distributed Systems, IEEE Transactions on, 22(6):931-945, 2011. ISSN
1045-9219. doi: 10.1109/TPDS.2011.66. 61

[87] A. Iosup, N. Yigitbasi, and D. Epema. On the performance variability of production
cloud services. In Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM
International Symposium on, pages 104-113, 2011. doi: 10.1109/CCGrid.2011.22. 61

[88] Alexandru Iosup. Iaas cloud benchmarking: approaches, challenges, and ex-
perience. In Proceedings of the 2013 international workshop on Hot top-
ics in cloud services, HotTopiCS 13, pages 1-2, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-2051-1. doi: 10.1145/2462307.2462309. URL
http://doi.acm.org.proxy.bnl.1lu/10.1145/2462307.2462309. 59, 60, 61

[89] Alexandru Iosup, DickH.J. Epema, Carsten Franke, Alexander Papaspyrou, Lars Sch-
ley, Baiyi Song, and Ramin Yahyapour. On grid performance evaluation using synthetic
workloads. In Eitan Frachtenberg and Uwe Schwiegelshohn, editors, Job Scheduling
Strategies for Parallel Processing, volume 4376 of Lecture Notes in Computer Science,
pages 232-255. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-71034-9. 61

[90] Sadeka Islam, Kevin Lee, Alan Fekete, and Anna Liu. How a consumer can mea-
sure elasticity for cloud platforms. In Proceedings of the 3rd ACM/SPEC Interna-
tional Conference on Performance Engineering, ICPE 12, pages 85-96, New York,
NY, USA, 2012. ACM. ISBN 978-1-4503-1202-8. doi: 10.1145/2188286.2188301. URL
http://doi.acm.org.proxy.bnl.1lu/10.1145/2188286.2188301. 61

[91] Michael A. Iverson, Fiisun Ozgiiner, and Lee Potter. Statistical prediction of task
execution times through analytic benchmarking for scheduling in a heterogeneous envi-
ronment. [EEE Trans. Comput., 48(12):1374-1379, December 1999. ISSN 0018-9340.
18

[92] S.U. Khan and I. Ahmad. A Cooperative Game Theoretical Technique for Joint Opti-
mization of Energy Consumption and Response Time in Computational Grids. IEEE
Trans on Parallel and Distributed Systems, 20(3):346-360, 2009. 12, 51

103

http://uptimeinstitute.com/images/stories/DataCenterSurvey_assets/uptime-institute-2013-data-center-survey.pdf
http://doi.acm.org.proxy.bnl.lu/10.1145/2462307.2462309
http://doi.acm.org.proxy.bnl.lu/10.1145/2188286.2188301

REFERENCES

[93]

[96]

[98]

[99]

[100]

[101]

[102]

[103]

Ashfaq A. Khokhar, Viktor K. Prasanna, Muhammad E. Shaaban, and Cho-Li Wang.
Heterogeneous computing: Challenges and opportunities. IEEE Computer, 26(6):18—
27, June 1993. 18

Jong-Kook Kim, Howard Jay Siegel, Anthony A. Maciejewski, and Rudolf Eigenmann.
Dynamic resource management in energy constrained heterogeneous computing systems
using voltage scaling. IEEE Transactions on Parallel and Distributed Systems, 19:1445—
1457, 2008. 42, 104

Jong-Kook Kim, Howard Jay Siegel, Anthony A. Maciejewski, and Rudolf Eigenmann.
Dynamic resource management in energy constrained heterogeneous computing systems
using voltage scaling. In IEEFE Transactions on Parallel and Distributed Systems Kim
et al. [94], pages 1445-1457. 12, 51

Kyong Hoon Kim, R. Buyya, and Jong Kim. Power aware scheduling of bag-of-tasks
applications with deadline constraints on dvs-enabled clusters. In Cluster Computing
and the Grid, 2007. CCGRID 2007. Seventh IEEE International Symposium on, pages
541-548, May 2007. doi: 10.1109/CCGRID.2007.85. 12, 51

Kyong Hoon Kim, Anton Beloglazov, and Rajkumar Buyya. Power-aware provisioning
of virtual machines for real-time cloud services. Concurr. Comput. : Pract. Exper.,
23(13):1491-1505, September 2011. ISSN 1532-0626. doi: 10.1002/cpe.1712. URL
http://dx.doi.org/10.1002/cpe.1712. 51

J. Kolodziej, S. U. Khan, and F. Xhafa. Genetic algorithms for energy-aware scheduling
in computational grids. In Proceedings of the 6th IEEE International Conference on
P2P, Parallel, Grid, Cloud, and Internet Computing, 3SPGCIC, pages 17-24, Barcelona,
ES, 2011. 11

A.S. Krishna, B. Natarajan, A. Gokhale, D.C. Schmidt, N. Wang, and G. Thaker.
Ccmperf: a benchmarking tool for corba component model implementations. In Real-

Time and Embedded Technology and Applications Symposium, 2004. Proceedings. RTAS
2004. 10th IEEE, pages 140-147, 2004. doi: 10.1109/RTTAS.2004.1317258. 61

M. Lammie, P. Brenner, and D. Thain. Scheduling grid workloads on multicore clus-
ters to minimize energy and maximize performance. In Grid Computing, 2009 10th
IEEE/ACM International Conference on, pages 145-152, Oct 2009. doi: 10.1109/
GRID.2009.5353071. 51

Young Lee and Albert Zomaya. Energy efficient utilization of resources in cloud com-
puting systems. The Journal of Supercomputing, pages 1-13, 2010. 43, 51, 77

Young Choon Lee and Albert Y. Zomaya. Minimizing energy consumption for
precedence-constrained applications using dynamic voltage scaling. In 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, pages 92-99, 2009. 43

Young Choon Lee and A.Y. Zomaya. Energy conscious scheduling for distributed
computing systems under different operating conditions. Parallel and Distributed
Systems, IEEE Transactions on, 22(8):1374-1381, Aug 2011. ISSN 1045-9219. doi:
10.1109/TPDS.2010.208. 12, 51

104

http://dx.doi.org/10.1002/cpe.1712

REFERENCES

[104]

[105]

[106]

[107]

108

[109]

[110]

[111]

[112]

[113]

Bo Li, Jianxin Li, Jinpeng Huai, Tianyu Wo, Qin Li, and Liang Zhong. Enacloud: An
energy-saving application live placement approach for cloud computing environments.
In IEEE CLOUD’09, pages 17-24, Bangalore, India, September 2009. IEEE. 13

Xiaofei Liao, Liting Hu, and Hai Jin. Energy optimization schemes in cluster
withEvirtual machines. Cluster Computing, 13(2):113-126, 2010. ISSN 1386-7857. doi:
10.1007/s10586-009-0110-2. URL http://dx.doi.org/10.1007/s10586-009-0110-2.
55

Min Yeol Lim, Vincent W. Freeh, and David K. Lowenthal. Adaptive, transparent
frequency and voltage scaling of communication phases in mpi programs. In Pro-
ceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC06, New York,
NY, USA, 2006. ACM. ISBN 0-7695-2700-0. doi: 10.1145/1188455.1188567. URL
http://doi.acm.org/10.1145/1188455.1188567. 12

Peder Lindberg, James Leingang, Daniel Lysaker, Samee Ullah Khan, and Juan Li.
Comparison and analysis of eight scheduling heuristics for the optimization of energy
consumption and makespan in large-scale distributed systems. The Journal of Super-
computing, 53, 2010. 42

M.J. Litzkow, M. Livny, and M.W. Mutka. Condor-a hunter of idle workstations. In
Distributed Computing Systems, 1988., 8th International Conference on, pages 104—
111, Jun 1988. doi: 10.1109/DCS.1988.12507. 50, 55

H. Liu, A. Abraham, and A. E Hassanien. Scheduling jobs on computational grids
using a fuzzy particle swarm optimization algorithm. Future Gener. Comput. Syst., 26:
1336-1343, 2010. 16

Jose Luis Lucas-Simarro, Rafael Moreno-Vozmediano, Ruben S. Montero, and Ig-
nacio M. Llorente. Scheduling strategies for optimal service deployment across
multiple clouds. Future Generation Computer Systems, 29(6):1431 — 1441, 2013.
ISSN 0167-739X. doi: http://dx.doi.org/10.1016/j.future.2012.01.007. URL
http://www.sciencedirect.com/science/article/pii/S0167739X12000192. In-
cluding Special sections: High Performance Computing in the Cloud; Resource Dis-
covery Mechanisms for P2P Systems. 12

Ping Luo, Kevin Lii, and Zhongzhi Shi. A revisit of fast greedy heuristics for mapping
a class of independent tasks onto heterogeneous computing systems. J. Parallel Distrib.
Comput., 67:695-714, 2007. 11, 12, 16, 17, 21, 22, 23, 27, 29, 30, 44, 119

Muthucumaru Maheswaran, Shoukat Ali, Howard Jay Siegel, Debra Hensgen, and
Richard F. Freund. Dynamic matching and scheduling of a class of independent tasks
onto heterogeneous computing systems. In Proceedings of the FEighth Heterogeneous
Computing Workshop, HCW ’99, pages 30-44, Washington, DC, USA, 1999. ISBN
0-7695-0107-9. 11, 16

P. Marshall, K. Keahey, and T. Freeman. Improving utilization of infrastructure clouds.
In Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM International
Symposium on, pages 205-214, May 2011. doi: 10.1109/CCGrid.2011.56. 14

105

http://dx.doi.org/10.1007/s10586-009-0110-2
http://doi.acm.org/10.1145/1188455.1188567
http://www.sciencedirect.com/science/article/pii/S0167739X12000192

REFERENCES

[114] Joseph McLean. Distributed.Net and United Devices Join Forces.
http://www.distributed.net/images/d/d2/20001127_-_PR_-_United_Devices_Alliance.pdf,
2000. [Online; accessed 25-September-2012]. 50

[115] David Meisner, Brian T. Gold, and Thomas F. Wenisch. Powernap: eliminating server
idle power. SIGPLAN Not., 44:205-216, 2009. 43

[116] Peter M. Mell and Timothy Grance. Sp 800-145. the nist definition of cloud computing.
Technical report, Gaithersburg, MD, United States, 2011. 59

[117] Racem Mellouli, Cherif Sadfi, Chengbin Chu, and Imed Kacem. Identical parallel-
machine scheduling under availability constraints to minimize the sum of com-
pletion times. European Journal of Operational Research, 197(3):1150 — 1165,
2009. ISSN 0377-2217. doi: http://dx.doi.org/10.1016/j.ejor.2008.03.043. URL
http://www.sciencedirect.com/science/article/pii/S037722170800307X. 3

[118] M. Mezmaz, N. Melab, Y. Kessaci, Y. C. Lee, E. G. Talbi, A. Y. Zomaya,
and D. Tuyttens. A parallel bi-objective hybrid metaheuristic for energy-aware
scheduling for cloud computing systems. J. Parallel Distrib. Comput., 71(11):1497—
1508, November 2011. ISSN 0743-7315. doi: 10.1016/j.jpdc.2011.04.007. URL
http://dx.doi.org/10.1016/j.jpdc.2011.04.007. 12, 51

[119] Microsoft. Windows Azure. http://www.windowsazure.com/, 2013. [Online; accessed
21-January-2013]. 67

[120] E. U. Munir, J. Li, S. Shi, Z. Zou, and Q. Rasool. A performance study of task
scheduling heuristics in hc environment. In Hoai An Le Thi, Pascal Bouvry, and Tao
Pham Dinh, editors, Modelling, Computation and Optimization in Information Systems
and Management Sciences, volume 14 of Communications in Computer and Informa-
tion Science, pages 214-223. Springer Berlin Heidelberg, 2008. 11, 16

[121] Aziz Murtazaev and Sangyoon. Oh. Sercon: Server Consolidation Algorithm using Live
Migration of Virtual Machines for Green Computing. IETE Technical Review, 28(3):
212-231, 2011. doi: 10.4103/0256-4602.81230. 13

[122] Sergio Nesmachnow and Mauro Canabé. Gpu implementations of scheduling heuris-
tics for heterogeneous computing environments. In Proceedings of the X VII Congreso
Argentino de Ciencias de la Computacion, pages 1563-1570, 2011. 12

[123] Sergio Nesmachnow, Enrique Alba, and Héctor Cancela. Scheduling in heterogeneous
computing and grid environments using a parallel chc evolutionary algorithm. Compu-
tational Intelligence, 28(2):131-155, 2012. 16

[124] Sergio Nesmachnow, Héctor Cancela, and Enrique Alba. A parallel micro evolutionary
algorithm for heterogeneous computing and grid scheduling. Appl. Soft Comput., 12
(2):626-639, 2012. 16

[125] B. Clifford Neuman. Scale in distributed systems. In Readings in Distributed Computing
Systems, pages 463-489, Los Alamitos, CA, USA, 1994. IEEE CS Press. 16

106

http://www.distributed.net/images/d/d2/20001127_-_PR_-_United_Devices_Alliance.pdf
http://www.sciencedirect.com/science/article/pii/S037722170800307X
http://dx.doi.org/10.1016/j.jpdc.2011.04.007
http://www.windowsazure.com/

REFERENCES

[126]

[127]

[128]

[129]

[130]

William D. Norcott. 10zone Filesystem Benchmark. http://www.iozone.org/, 2006.
[Online; accessed 01-May-2013]. 61

A .-C. Orgerie, L. Lefevre, and J.-P. Gelas. Save watts in your grid: Green strategies for
energy-aware framework in large scale distributed systems. In Parallel and Distributed
Systems, 2008. ICPADS ’08. 14th IEEE International Conference on, pages 171-178,
Dec 2008. doi: 10.1109/ICPADS.2008.97. 51

Anne-Cecile Orgerie, Marcos Dias de Assuncao, and Laurent Lefevre. A survey on
techniques for improving the energy efficiency of large-scale distributed systems. ACM
Comput. Surv., 46(4):47:1-47:31, March 2014. ISSN 0360-0300. doi: 10.1145/2532637.
URL http://doi.acm.org.proxy.bnl.1lu/10.1145/2532637. 3

R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder. Heuristics for vector bin packing,
2011. URL http://research.microsoft.com/pubs/147927/VBPackingESA11.pdf.
[Online; accessed 20-July-2013]. 84

J.E. Pecero, P. Bouvry, H.J.F. Huacuja, and S.U. Khan. A multi-objective grasp algo-
rithm for joint optimization of energy consumption and schedule length of precedence-
constrained applications. In Dependable, Autonomic and Secure Computing (DASC),
2011 IEEE Ninth International Conference on, pages 510 —517, dec. 2011. doi:
10.1109/DASC.2011.97. 12, 51

[CCSA2013] JohnatanE. Pecero, CesarO. Diaz, Harold Castro, Mario Villamizar, German

[132]

[133]

[134]

135

Sotelo, and Pascal Bouvry. Energy savings on a cloud-based opportunistic infrastruc-
ture. In AlessioR. Lomuscio, Surya Nepal, Fabio Patrizi, Boualem Benatallah, and
Ivona Brandic, editors, Service-Oriented Computing - ICSOC 2018 Workshops, vol-
ume 8377 of Lecture Notes in Computer Science, pages 366-378. Springer International
Publishing, 2014. ISBN 978-3-319-06858-9. doi: 10.1007/978-3-319-06859-6-32. URL
http://dx.doi.org/10.1007/978-3-319-06859-6-32. 14, 57

Frédéric Pinel, Johnatan E. Pecero, Pascal Bouvry, and Samee Ullah Khan. A review
on task performance prediction in multi-core based systems. In CIT, pages 615-620.
IEEE Computer Society, 2011. ISBN 978-0-7695-4388-8. 18

Frederic Pinel, Bernabe Dorronsoro, Johnatan E. Pecero, Pascal Bouvry, and Samee U.
Khan. A two-phase heuristic for the energy-efficient scheduling of independent tasks
on computational grids. Cluster Computing, pages 1-13, 2012. ISSN 1386-7857. doi:
10.1007/s10586-012-0207-x. 16

L. Ponciano and F. Brasileiro. On the impact of energy-saving strategies in opportunis-
tic grids. In Grid Computing (GRID), 2010 11th IEEE/ACM International Conference
on, pages 282-289, Oct 2010. doi: 10.1109/GRID.2010.5698003. 14, 55

L. Ponciano and F. Brasileiro. On the impact of energy-saving strategies in opportunis-

tic grids. In Grid Computing (GRID), 2010 11th IEEE/ACM International Conference
on, pages 282-289, Oct 2010. doi: 10.1109/GRID.2010.5698003. 51

107

http://www.iozone.org/
http://doi.acm.org.proxy.bnl.lu/10.1145/2532637
http://research.microsoft.com/pubs/147927/VBPackingESA11.pdf
http://dx.doi.org/10.1007/978-3-319-06859-6-32

REFERENCES

[136] M. Pretorius, M. Ghassemian, and C. Ierotheou. An investigation into energy efficiency
of data centre virtualisation. In P2P, Parallel, Grid, Cloud and Internet Computing
(8PGCIC), 2010 International Conference on, pages 157-163, Nov 2010. doi: 10.1109/
3PGCIC.2010.28. 55

[137] Energy-Star Program. Report to congress on server and data
center energy efficiency: Public law 109- 431, 2007. URL
http://www.energystar.gov/ia/partners/prod_development/downloads\/EPA_Datacenter_Report_
2

[138] Ariel Quezada-Pina, Andrei Tchernykh, José Luis Gonzilez-Garcia, Adan Hirales-
Carbajal, Juan Manuel Ramirez-Alcaraz, Uwe Schwiegelshohn, Ramin Yahyapour, and
Vanessa Miranda-Lépez. Adaptive parallel job scheduling with resource admissible al-
location on two-level hierarchical grids. Future Generation Comp. Syst., 28(7):965-976,
2012. 17

[139] Toan Raicu, Ian Foster, Mike Wilde, Zhao Zhang, Kamil Iskra, Peter Beckman, Yong
Zhao, Alex Szalay, Alok Choudhary, Philip Little, Christopher Moretti, Amitabh
Chaudhary, and Douglas Thain. Middleware support for many-task computing. Clus-
ter Computing, 13(3):291-314, September 2010. ISSN 1386-7857. doi: 10.1007/
s10586-010-0132-9. 16

[140] J.M. Ramirez-Alcaraz, A. Tchernykh, R. Yahyapour, U. Schwiegelshohn, A. Quezada-
Pina, J.L. Gonzalez-Garcia, and A. Hirales-Carbajal. Job allocation strategies with

user run time estimates for online scheduling in hierarchical grids. J. Grid Comput., 9
(1):95-116, 2011. ISSN 1570-7873. 16

[141] John J. Rehr, Joshua J. Kas, Fernando D. Vila, Micah P. Prange, and Kevin
Jorissen. Parameter-free calculations of x-ray spectra with feff9”. Phys.
Chem. Chem. Phys., 12:5503-5513, 2010. doi: 10.1039/B926434E. URL
http://dx.doi.org/10.1039/B926434E. 67

[142] Mersenne Research. GIMPS Great Internet Mersenne Prime Search.
http://www.mersenne.org, 1996. [Online; accessed 20-September-2012]. 50

[143] Eduardo Rosales, Harold Castro, and Mario Villamizar. Unacloud: Opportunistic
cloud computing infrastructure as a service. In Cloud Computing 2011: The Second
International Conference on Cloud Computing, GRIDs, and Virtualization, pages 187—
194. TARIA, 2011. ISBN 978-1-61208-153-3. 57, 59, 66, 78

[144] SabalcoreComputing. Sabalcore Home. http://www.sabalcore.com/, 2013. [Online;
accessed 21-January-2013]. 67

[145] Luis F. G. Sarmenta, Sandra J. V. Chua, Paul Echevarria, Jose M. Mendoza, Rene-
Russelle Santos, Stanley Tan, and Richard Lozada. Bayanihan computing .net: Grid
computing with xml web services. In Proceedings of the 2nd IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid, CCGRID ’02, pages 434—,
Washington, DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1582-7. URL
http://dl.acm.org/citation.cfm?id=872748.873229. 50

108

http://www.energystar.gov/ia/partners/prod_development/downloads\ /EPA_Datacenter_Report_Congress_Final1.pdf
http://dx.doi.org/10.1039/B926434E
http://www.mersenne.org
http://www.sabalcore.com/
http://dl.acm.org/citation.cfm?id=872748.873229

REFERENCES

[146]

[147)

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

B. Schott and A. Emmen. Green methodologies in desktop-grid. In Computer Science
and Information Technology (IMCSIT), Proceedings of the 2010 International Multi-
conference on, pages 671-676, Oct 2010. 55

U. Schwiegelshohn, A. Tchernykh, and R. Yahyapour. Online scheduling in grids. In
Parallel and Distributed Processing, 2008. IPDPS 2008. IEEFE International Symposium
on, pages 1-10, 2008. doi: 10.1109/IPDPS.2008.4536273. 16

Mohsen Sharifi, Hadi Salimi, and Mahsa Najafzadeh. Power-efficient distributed
scheduling of virtual machines using workload-aware consolidation techniques. The
Journal of Supercomputing, 61(1):46-66, 2011. ISSN 0920-8542. doi: 10.1007/
s11227-011-0658-5. 51, 77

David B. Shmoys, Joel Wein, and David P. Williamson. Scheduling parallel machines
on-line. STAM J. Comput., 24(6):1313-1331, December 1995. ISSN 0097-5397. 17

John F. Shoch and Jon A. Hupp. The “wormO programs-early experience with a
distributed computation. Commun. ACM, 25(3):172-180, March 1982. ISSN 0001-0782.
doi: 10.1145/358453.358455. URL http://doi.acm.org/10.1145/358453.358455. 50

Oliver Sinnen, Leonel Augusto Sousa, and Frode Eika Sandnes. Toward a realistic task
scheduling model. IEEE Transactions on Parallel and Distributed Systems, 17(3):263—
275, 2006. ISSN 1045-9219. doi: http://doi.iececomputersociety.org/10.1109/TPDS.
2006.40. 11

Mark Snir, Steve Otto, Steven Huss-Lederman, David Walker, and jack Dongarra. MPI
The Complete Reference. The MIT Press, Cambridge, MA, USA, 1998. ISBN 0-262-
69215-5. 53

Mark Stillwell, David Schanzenbach, Frédéric Vivien, and Henri Casanova. Resource
allocation algorithms for virtualized service hosting platforms. J. Parallel Distrib. Com-
put., 70(9):962-974, September 2010. 84

V. S. Sunderam. Pvm: A framework for parallel distributed computing. Con-
currency: Pract. Exper., 2(4):315-339, November 1990. ISSN 1040-3108. doi:
10.1002/cpe.4330020404. URL http://dx.doi.org/10.1002/cpe.4330020404. 53

Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems: Principles and
Paradigms. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 2001. ISBN
0130888931. 16

Andrei Tchernykh, Johnatan E. Pecero, Aritz Barrondo, and Elisa

Schaeffer. Adaptive energy efficient scheduling in peer-to-peer desk-
top grids. Future Generation Computer Systems, (0):—, 2013. ISSN
0167-739X. doi: http://dx.doi.org/10.1016/j.future.2013.07.011. URL

http://www.sciencedirect.com/science/article/pii/S0167739X13001568.
17

Top500. Top 500 supercomputer sites. http://www.top500.org/, 2010. 49

109

http://doi.acm.org/10.1145/358453.358455
http://dx.doi.org/10.1002/cpe.4330020404
http://www.sciencedirect.com/science/article/pii/S0167739X13001568

REFERENCES

[158]

[159]

[160]

[161]

[162]

163]

[164]

[165]

[166]

[167]

GiorgioLuigi Valentini, Walter Lassonde, SameeUllah Khan, Nasro Min-Allah, Saj-
jadA. Madani, Juan Li, Limin Zhang, Lizhe Wang, Nasir Ghani, Joanna Kolodziej,
Hongxiang Li, AlbertY. Zomaya, Cheng-Zhong Xu, Pavan Balaji, Abhinav Vishnu,
Fredric Pinel, JohnatanE. Pecero, Dzmitry Kliazovich, and Pascal Bouvry. An
overview of energy efficiency techniques in cluster computing systems. Cluster Com-
puting, 16(1):3-15, 2013. ISSN 1386-7857. doi: 10.1007/s10586-011-0171-x. URL
http://dx.doi.org/10.1007/s10586-011-0171-x. 12, 51

Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM,
33(8):103-111, August 1990. ISSN 0001-0782. doi: 10.1145/79173.79181. URL

http://doi.acm.org.proxy.bnl.1lu/10.1145/79173.79181. 53

Christian Vecchiola, Xingchen Chu, and Rajkumar Buyya. Aneka: A software platform
for .net-based cloud computing. CoRR, abs/0907.4622, 2009. 67

Akshat Verma, Puneet Ahuja, and Anindya Neogi. pmapper: power and migration
cost aware application placement in virtualized systems. In Proceedings of the 9th
ACM/IFIP/USENIX International Conference on Middleware, pages 243-264, New
York, NY, USA, December 2008. Springer-Verlag New York, Inc. ISBN 3-540-89855-7.
13

M. J. Villamizar Cano, H. E. Castro Barrera, D. Mendez Lopez, S. Restrepo Restrepo,
and Rodriguez Rojas L. M. Bio-unagrid: Easing bioinformatics workflow execution
using loni pipeline and a virtual desktop grid. In Proceedings of the Sth International
Conference on Bioinformatics, Biocomputational Systems and Biotechnologies, pages
4-10, Washington, DC, USA, 2011. XPS Xpert Publishing Services. ISBN 978-1-61208-
137-3. URL http://www.iaria.org/conferences2011/BIOTECHNO11.html. 50

Lizhe Wang, Samee U. Khan, Dan Chen, Joanna Kolodziej, Rajiv Ranjan, Cheng-
zhong Xu, and Albert Zomaya. Energy-aware parallel task scheduling in a cluster.
Future Generation Computer Systems, 29(7):1661 — 1670, 2013. ISSN 0167-739X. 12,
79

Brian Ward. The book of VMuware: The complete Guide to VMuware Workstation.
William Pollock, San Francisco, CA, USA, 1st edition, 2002. ISBN 1-886411-72-7. 54

Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling for reduced
cpu energy. USENIX SYMP. OPERATING, pages 1323, 1994. 12, 51

Min-You Wu and Wei Shu. A high-performance mapping algorithm for heterogeneous
computing systems. In Proceedings of the 15th International Parallel & Distributed
Processing Symposium, IPDPS’01, pages 74—, Washington, DC, USA, 2001. IEEE Com-
puter Society. ISBN 0-7695-0990-8. 16

Min-You Wu, Wei Shu, and Hong Zhang. Segmented min-min: A static mapping
algorithm for meta-tasks on heterogeneous computing systems. In Proceedings of the
9th Heterogeneous Computing Workshop, HCW 00, pages 375-385, Washington, DC,
USA, 2000. IEEE Computer Society. 11

110

http://dx.doi.org/10.1007/s10586-011-0171-x
http://doi.acm.org.proxy.bnl.lu/10.1145/79173.79181
http://www.iaria.org/conferences2011/BIOTECHNO11.html

REFERENCES

[168] F. Xhafa and A. Abraham. Computational models and heuristic methods for grid
scheduling problems. Future Gener. Comput. Syst., 26:608-621, April 2010. 16

[169] A. YarKhan and J. Dongarra. Experiments with scheduling using simulated annealing
in a grid environment. In Proceedings of the Third Int Workshop on Grid Computing,
GRID 02, pages 232242, London, UK, 2002. Springer-Verlag. 16

[170] Fan Zhang, Junwei Cao, Keqin Li, Samee U. Khan, and Kai Hwang. Multi-objective
scheduling of many tasks in cloud platforms. Future Generation Computer Systems, (0):
—, 2013. ISSN 0167-739X. doi: http://dx.doi.org/10.1016/j.future.2013.09.006. URL
http://www.sciencedirect.com/science/article/pii/S0167739X13001854. 12

111

http://www.sciencedirect.com/science/article/pii/S0167739X13001854

REFERENCES

112

Publications

[ClusC2012] Harold Castro, Mario Villamizar, German Sotelo, Cesar O. Diaz, Johnatan E.
Pecero and Pascal Bouvry. Green flexible opportunistic computing with task consolidation
and virtualization. Journal of Cluster Computing. V16, n3. Springer US. issn:1386-7857.
Pages 545-557. 2012.

[SUPE2013] Cesar O. Diaz, Johnatan E. Pecero, and Pascal Bouvry. Scalable, low complez-
ity, and fast greedy scheduling heuristics for highly heterogeneous distributed computing
systems. The Journal of Supercomputing. Springer US. issn:0920-8542. Pages 1-17. 2013.
23

[FGCS2014] Cesar O. Diaz, Johnatan E. Pecero, German Sotelo, Harold Castro, Andrei Tch-
ernykh, and Pascal Bouvry. Energy-Aware Resource Provisioning for HPC Applications
on an Opportunistic PaaS Cloud. Special Issue on New Trends in Data-Aware Schedul-
ing and Resource Provisioning in Modern HPC Systems. Future Generation Computer
Systems, FGCS. Invited extended version.

[COR2014] Cesar O. Diaz, Johnatan E. Pecero, Pascal Bouvry, and Andrei Tchernykh. Fast
and Scalable Heuristics for Independent Tasks Scheduling on Heterogeneous Computing
Platforms. Computer & Operations Research. ELSEVIER. In Progress.

[SCAL13] Harold Castro, Mario Villamizar, German Sotelo, Cesar O. Diaz, Johnatan E.
Pecero, Pascal Bouvry and Samee U. Khan. GFOG: Green and Flexible Opportunistic
Grids. Eds. Samee U. Khan, Albert Y. Zomaya and Lizhe Wang. Scalable Computing
and Communications, Theory and Practice. Wiley&Sons. isbn:9781118162651.
Pages 365-386. 2013

[ICA3PP2013] German A. Sotelo, Cesar O. Diaz, Mario Villamizar, Harold Castro, Johnatan
E. Pecero, and Pascal Bouvry. Building Platform as a Service for High Performance
Computing over an Opportunistic Cloud Computing. Eds. Kolodziej, Joanna and Mar-
tino, Beniamino and Talia, Domenico and Xiong, Kaiqi Algorithms and Architec-
tures for Parallel Processing. Springer International Publishing Lecture Notes in
Computer Science, LNCS V. 8285. isbn:978-3-319-03858-2. Pages 380-389. 2013 57

[CCSA2013] Johnatan E. Pecero, Cesar O. Diaz, Harold Castro, Mario Villamizar, German
Sotelo, and Pascal Bouvry. Energy Savings on a Cloud-Based Opportunistic Infrastruc-
ture Eds. Alessio R. Lomuscio, Surya Nepal, Fabio Patrizi, Boualem Benatallah, and
Ivona Brandic, Service-Oriented Computing - ICSOC 2013 Workshops. Springer

113

PUBLICATIONS

International Publishing Lecture Notes in Computer Science, LNCS V. 8377. isbn:978-
3-319-06858-9. Pages 366-378. 2014 14, 57

[IAIT2012] Mateusz Guzek, Cesar Diaz, Johnatan E. Pecero, Pascal Bouvry, and Albert Y.
Zomaya. Impact of Voltage Levels Number for Energy-Aware Bi-objective DAG Schedul-
ing for Multi-processors Systems. Eds. Borworn Papasratorn, Nipon Charoenkitkarn,
Kittichai Lavangnananda, Wichian Chutimaskul, and Vajirasak Vanijja. Advances in
Information Technology. Springer Berlin Heidelberg. Communications in Computer
and Information Science. isbn:978-3-642-35075-7. Pages 70-80.2012

[CCGrid2013] Cesar O. Diaz, Harold Castro, Mario Villamizar, Johnatan E. Pecero and
Pascal Bouvry. Energy-aware VM Allocation on an Opportunistic Cloud Infrastructure.
In proceedings of the 13th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid). Pages 663-670. Delft, Netherlands. 2013 57

[CIT11] Harold Castro, German Sotelo, Cesar O. Diaz and Pascal Bouvry. Green Flezible
Opportunistic Computing with Virtualization. In proceedings of the IEEE 11th Inter-

national Conference on Computer and Information Technology. Pages 629-634. Paphos,
Cyprus. 2011

[SCAL2011] Cesar O. Diaz, Mateusz Guzek, Johnatan E. Pecero and Pascal Bouvry. Scal-
able and Energy-FEfficient Scheduling Techniques for Large-Scale Systems. In proceedings
of the IEEE 11th International Conference on Computer and Information Technology.
Pages 641-647. Paphos, Cyprus. 2011

[OPTIM2011] Cesar O. Diaz, Mateusz Guzek, Johnatan E. Pecero, Gregoire Danoy, Pascal
Bouvry and Samee U. Khan. Energy-aware fast scheduling heuristics in heterogeneous
computing systems. In proceedings of the International Conference on High Performance
Computing and Simulation (HPCS). Pages 478-484. Istanbul, Turkey. 2011 11, 17, 18,
119

[CCGrid2014] Cesar O. Diaz, Johnatan E. Pecero, Pascal Bouvry, German Sotelo, Mario
Villamizar and Harold Castro. Performance Evaluation of an IaaS Opportunistic Cloud
Computing In proceedings of the 14th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), 2014. Pages 546 - 547. Chicago, IL, USA. 2014
59

[CCGrid2013-Poster| Cesar O. Diaz, Harold Castro, Mario Villamizar, Johnatan E.
Pecero, and Pascal Bouvry. 13th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, CCGrid 2013. May, 2013. Delft, Netherlands. Available in
http://www.pds.ewi.tudelft.nl/fileadmin/pds/conferences/ccgrid2013/files/documents/poster

114

http://www.pds.ewi.tudelft.nl/fileadmin/pds/conferences/ccgrid2013/files/documents/posters/25_ccgrid2013_posters_Energy-aware_VM_Allocation_and_Scheduling_on_An_Opportunistic_Cloud_Environment.pdf

List of Figures

1.1
1.2

2.1

3.1

3.2
3.3
3.4
3.5
3.6
3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14
3.15
3.16

Energy measured by a physical device.

Energy measured by the intel program.. L. 5
An example of a schedule L 10

Task Priority Diagram TPD, which contains the information about the map-

ping sequence of tasks and generated by Luo_1 and Luo 2. 24
Makespan for different lambda values computed by the low complexity heuristics. 25
Optimal Schedule. 26
Schedule computed by Luo_1. 26
Schedule computed by Luo_2. oo 26
Schedule computed by mm. Lo Lo 27

Schedule computed by Low_1. The tasks are sorted by shortest execution time
first on each machine. 27

Schedule computed by Low_2. The tasks are sorted by largest execution time
first on each machine. 27

Schedule computed by Low_3. The tasks are sorted by the average execution
time of tasks. 28

Approximation factor error for makespan 32

Approximation factor error of original-consistency scenario considering high
machine heterogeneity (0.6) and high task heterogeneity. The task hetero-
geneity varies from 0.6 to 1.1 and the ETC matrix size is 512x16 33

Approximation factor error of original-consistency scenario considering high
machine heterogeneity (0.6) and high task heterogeneity. The task hetero-
geneity varies from 0.6 to 1.1. The ETC matrix size is 1024x32 35
Approximation factor error of original-consistency scenario considering high

machine heterogeneity (0.6) and high task heterogeneity. The task hetero-
geneity varies from 0.6 to 1.1. The size of the ETC matrix is 2048 tasks and

64 machines 36
Performance profile of the approximation factor error 37
Time consumed for each heuristic. 41
Memory used for each heuristic to calculate scheduling 42

115

LIST OF FIGURES

3.17 Performance profile of the approximation factor error. The scenario is original-
consistency considering high machine heterogeneity (0.6) and high task het-
erogeneity. The task heterogeneity varies from 0.6 to 1.1 and the ETC matrix
Size 18 D12X16 e e e e

3.18 Relative performances of the schedules produced by different heuristics in the
f-hihi instances. L

3.19 Relative performances of the schedules produced by different heuristics in the
p-hihi instances. L

3.20 Relative performances of the schedules produced by different heuristics in the
o-hihi. L e

5.1 UnaCloud deployment architecture.
5.2 Virtualization degradation of HPL benchmark.
5.3 End user impact over opportunistic cloud users, HPL Banchmark.
5.4 T1Ozone results for each configuration. 10, 20, and 40 VMs, two User%, and

two hypervisors. file size=64MB, record size=1IMB.
5.5 UnaCloud PaaS component diagram.
5.6 Configuration time of different platforms varying the amount of VMs
5.7 Cluster Gflops varying the number of VMs and the cores per VM

6.1 Desktop Computer energy consumption. f(z) = y(z) = 45.3412%1650 |
6.2 Number of PMs to place the VMs
6.3 Total ECR consumed.

116

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

5.1
5.2

6.1
6.2

Variables e e
Complexity of heuristics
ETC for running example L Lo o
Tasks’ sequence computed by each heuristic.
16 Heterogeneity scenarios. L o oo
B and EB table, original-consistent ETCs with V,,4chine = 0.6 for 512 x 16 . .
B and EB table, original-consistent ETCs with Vi, = 0.6 for 512 x 16
Percentage gain (%Gain) of the mean flow time for Low_3 over Luo_1.

Consistency and heterogeneity combinations in the ETC model

System Response Times e
Gromacs Simulation Resultso

ECR used by a VM executing a CPU-intensive task.
Experimental results of energy consumption

117

LIST OF TABLES

118

List of Algorithms

© 00 N O Ot W N+

Framework of the low complexity heuristics 19
First low complexity heuristic proposed [OPTIM2011] 20
Second low complexity heuristic proposed [OPTIM2011] 20
Third low complexity heuristic proposed [OPTIM2011] 20
Framework of the TPD heuristics [111] 21
First TPD algorithm minCT-minCT [111]. 22
Second TPD algorithm minCT-min-SD [111] 22
Min-min heuristic [82]o 22
Best performance heuristic L L 42
Custom Round Robin Algorithm 84
Sorting VMs and PMs to minimize the use of PMs 85
Executing VMs with Similar Execution Time within same PM 86

119

	page de garde thèse Diaz Final
	thesis2-2
	1 Introduction
	1 Introduction
	1.1 Motivations

	1 Introduction
	1.2 Methodology

	1 Introduction
	1.3 List of contributions
	1.4 Dissertation outline

	2 Scheduling Heuristics
	2.1 Introduction

	2 Scheduling Heuristics
	2.2 Heterogeneous Computing Scheduling Heuristics
	2.2.1 Related Work: low complexity scheduling heuristics

	2 Scheduling Heuristics
	2.3 Resource Allocation
	2.3.1 Related work: Resource Allocation in Opportunistic Cloud Environments

	3 Low Complexity Heuristics
	3 Low Complexity Heuristics
	3.1 Problem Definition

	3 Low Complexity Heuristics
	3.2 Low Computational Complexity Algorithms

	3 Low Complexity Heuristics
	3.2 Low Computational Complexity Algorithms
	3.2.1 Heuristic Min-Max-Min:

	3 Low Complexity Heuristics
	3.2 Low Computational Complexity Algorithms
	3.2.2 Heuristic Max-Max-Min:
	3.2.3 Heuristic Mean-Max-Min
	3.2.4 Computational Complexity

	3 Low Complexity Heuristics
	3.3 Evaluated Heuristics
	3.3.1 Task Priority Algorithms

	3 Low Complexity Heuristics
	3.3 Evaluated Heuristics
	3.3.2 Min-min Algorithm

	3 Low Complexity Heuristics
	3.3 Evaluated Heuristics
	3.3.3 Computational Complexity

	3.4 Numerical Example

	3 Low Complexity Heuristics
	3.5 Experimental Validation

	3 Low Complexity Heuristics
	3.5 Experimental Validation
	3.5.1 Evaluation Method

	3 Low Complexity Heuristics
	3.5 Experimental Validation
	3.5.2 Experimental Setup

	3 Low Complexity Heuristics
	3.6 Experimental Results

	3 Low Complexity Heuristics
	3.6 Experimental Results
	3.6.1 Performance Ratio of the Approximation Factor

	3 Low Complexity Heuristics
	3.6 Experimental Results
	3.6.2 Performance Profile
	3.6.3 Number of Best Solutions Found
	3.6.4 Flowtime Comparison

	3 Low Complexity Heuristics
	3.6 Experimental Results
	3.6.5 Time and Memory

	3 Low Complexity Heuristics
	3.6 Experimental Results
	3.6.6 Summary

	3 Low Complexity Heuristics
	3.7 Extra Experimentation Evaluating Energy Efficient

	3 Low Complexity Heuristics
	3.7 Extra Experimentation Evaluating Energy Efficient
	3.7.1 Energy Model

	3 Low Complexity Heuristics
	3.7 Extra Experimentation Evaluating Energy Efficient
	3.7.2 Experimental Evaluation
	3.7.2.1 Experiments

	3 Low Complexity Heuristics
	3.7 Extra Experimentation Evaluating Energy Efficient
	3.7.2 Experimental Evaluation
	3.7.2.2 Results

	4 Opportunistic Cloud Computing
	4.1 Desktop, Volunteer and Opportunistic Computing

	4 Opportunistic Cloud Computing
	4.1 Desktop, Volunteer and Opportunistic Computing
	4.1.1 Literature Review

	4 Opportunistic Cloud Computing
	4.1 Desktop, Volunteer and Opportunistic Computing
	4.1.2 Desktop, Volunteer and Opportunistic Computing in the Cloud

	4 Opportunistic Cloud Computing
	4.1 Desktop, Volunteer and Opportunistic Computing
	4.1.2 Desktop, Volunteer and Opportunistic Computing in the Cloud
	4.1.2.1 Opportunistic, Desktop and Volunteer Computer Taxonomy

	4 Opportunistic Cloud Computing
	4.2 Energy Saving Strategies in Opportunistic Computing

	5 UnaCloud Suite
	5.1 UnaCloud: Opportunistic Cloud Computing Infrastructure as a Service

	5 UnaCloud Suite
	5.1 UnaCloud: Opportunistic Cloud Computing Infrastructure as a Service
	5.1.1 Benchmarking UnaCloud IaaS

	5 UnaCloud Suite
	5.1 UnaCloud: Opportunistic Cloud Computing Infrastructure as a Service
	5.1.1 Benchmarking UnaCloud IaaS
	5.1.1.1 Benchmarking Literature Review

	5 UnaCloud Suite
	5.1 UnaCloud: Opportunistic Cloud Computing Infrastructure as a Service
	5.1.1 Benchmarking UnaCloud IaaS
	5.1.1.2 Experiments and Results

	5 UnaCloud Suite
	5.1 UnaCloud: Opportunistic Cloud Computing Infrastructure as a Service
	5.1.1 Benchmarking UnaCloud IaaS
	5.1.1.3 Parameter Tuning
	5.1.1.4 Experimental methodology

	5 UnaCloud Suite
	5.1 UnaCloud: Opportunistic Cloud Computing Infrastructure as a Service
	5.1.1 Benchmarking UnaCloud IaaS
	5.1.1.5 Results

	5 UnaCloud Suite
	5.1 UnaCloud: Opportunistic Cloud Computing Infrastructure as a Service
	5.1.1 Benchmarking UnaCloud IaaS
	5.1.1.6 Summary

	5.2 Building Platform as a Service for High Performance Computing over Opportunistic Cloud Computing

	5 UnaCloud Suite
	5.2 Building Platform as a Service for High Performance Computing over Opportunistic Cloud Computing
	5.2.1 Related Work
	5.2.2 UnaCloud Platform Architecture for HPC

	5 UnaCloud Suite
	5.2 Building Platform as a Service for High Performance Computing over Opportunistic Cloud Computing
	5.2.2 UnaCloud Platform Architecture for HPC
	5.2.2.1 UnaCloud PaaS Cloud Features

	5 UnaCloud Suite
	5.2 Building Platform as a Service for High Performance Computing over Opportunistic Cloud Computing
	5.2.2 UnaCloud Platform Architecture for HPC
	5.2.2.2 UnaCloud PaaS Components

	5 UnaCloud Suite
	5.2 Building Platform as a Service for High Performance Computing over Opportunistic Cloud Computing
	5.2.3 Implementation
	5.2.3.1 Parameter Tunning

	5.2.4 Testing and Results

	5 UnaCloud Suite
	5.2 Building Platform as a Service for High Performance Computing over Opportunistic Cloud Computing
	5.2.4 Testing and Results
	5.2.4.1 System response and run times

	5 UnaCloud Suite
	5.2 Building Platform as a Service for High Performance Computing over Opportunistic Cloud Computing
	5.2.4 Testing and Results
	5.2.4.2 Sample application execution
	5.2.4.3 Benchmarking

	6 Resource allocation algorithms in Opportunistic Cloud Computing
	6.1 Energy-aware VM Allocation on An Opportunistic Cloud Infrastructure

	6 Resource allocation algorithms in Opportunistic Cloud Computing
	6.1 Energy-aware VM Allocation on An Opportunistic Cloud Infrastructure
	6.1.1 Energy-efficiency in an Opportunistic Cloud Environment
	6.1.1.1 Parameter tunning

	6 Resource allocation algorithms in Opportunistic Cloud Computing
	6.1 Energy-aware VM Allocation on An Opportunistic Cloud Infrastructure
	6.1.1 Energy-efficiency in an Opportunistic Cloud Environment
	6.1.1.2 Energy Model

	6 Resource allocation algorithms in Opportunistic Cloud Computing
	6.1 Energy-aware VM Allocation on An Opportunistic Cloud Infrastructure
	6.1.2 Energy-Aware VM Allocation Strategies for the Opportunistic Cloud

	6 Resource allocation algorithms in Opportunistic Cloud Computing
	6.1 Energy-aware VM Allocation on An Opportunistic Cloud Infrastructure
	6.1.2 Energy-Aware VM Allocation Strategies for the Opportunistic Cloud
	6.1.2.1 Custom Round Robin Allocation
	6.1.2.2 1-D Bin Packing Allocation

	6 Resource allocation algorithms in Opportunistic Cloud Computing
	6.1 Energy-aware VM Allocation on An Opportunistic Cloud Infrastructure
	6.1.2 Energy-Aware VM Allocation Strategies for the Opportunistic Cloud
	6.1.2.3 Sorting VMs and PMs to Minimize the Use of PMs
	6.1.2.4 Sorting VMs and PMs to Minimize the Use of PMs and Executing VMs with Similar Execution Time on the Same PM

	6 Resource allocation algorithms in Opportunistic Cloud Computing
	6.1 Energy-aware VM Allocation on An Opportunistic Cloud Infrastructure
	6.1.3 Experimental Results
	6.1.3.1 Workload

	6 Resource allocation algorithms in Opportunistic Cloud Computing
	6.1 Energy-aware VM Allocation on An Opportunistic Cloud Infrastructure
	6.1.3 Experimental Results
	6.1.3.2 Experimental Scenarios
	6.1.3.3 Algorithms Comparison

	7 Conclusions and Perspectives
	7.1 Summary

	7 Conclusions and Perspectives
	7.2 Future research lines
	7.2.1 Advances in Cloud Computing
	7.2.1.1 Future of the combination of Internet Of Things with Cloud Computing

	7 Conclusions and Perspectives
	7.2 Future research lines
	7.2.1 Advances in Cloud Computing
	7.2.1.2 Future of the SmartGrids with Cloud Computing

	References
	Publications
	List of Figures
	List of Tables
	List of Algorithms

