978-1-4799-3503-1/14/$31.00 ©2014 IEEE

2014 Twelfth Annual Conference on Privacy, Security and Trust (PST)

Distributed Searchable Symmetric Encryption

Christoph Bosch*, Andreas Peter*, Bram Leenders*, Hoon Wei Limf, Qiang Tangi,
Huaxiong WangT, Pieter Hartel*, and Willem Jonker™*
* CTIT, University of Twente, The Netherlands
{c.boesch, a.peter, pieter.hartel, willem. jonker}@utwente.nl
b.c.leenders@student.utwente.nl
T CCRG, Nanyang Technological University, Singapore
{hoonwei, hxwang}@ntu.edu.sg
1 APSIA, SnT, University of Luxembourg
giang.tang@uni.lu

Abstract—Searchable Symmetric Encryption (SSE) allows a
client to store encrypted data on a storage provider in such
a way, that the client is able to search and retrieve the data
selectively without the storage provider learning the contents of
the data or the words being searched for. Practical SSE schemes
usually leak (sensitive) information during or after a query (e.g.,
the search pattern). Secure schemes on the other hand are not
practical, namely they are neither efficient in the computational
search complexity, nor scalable with large data sets. To achieve
efficiency and security at the same time, we introduce the concept
of distributed SSE (DSSE), which uses a query proxy in addition
to the storage provider.

We give a construction that combines an inverted index
approach (for efficiency) with scrambling functions used in
private information retrieval (PIR) (for security). The proposed
scheme, which is entirely based on XOR operations and pseudo-
random functions, is efficient and does not leak the search pattern.
For instance, a secure search in an index over one million
documents and 500 keywords is executed in less than 1 second.

Keywords—Searchable Encryption, Search Pattern Hiding,
Practical Efficiency, Semi-Honest Model

I. INTRODUCTION

Searchable Symmetric Encryption (SSE) allows a client
to outsource data in encrypted form to a semi-honest
server/storage provider (like a cloud provider), such that the
encrypted data remains searchable without decrypting and
without the server learning the contents of the data or the
words being searched for. In most cases this is achieved by
introducing a searchable encrypted index, which is stored
together with the encrypted data (e.g., documents) on a server.
To enable the server to query the data, the client creates a
trapdoor which allows the server to do the search on behalf
of the client. Practical SSE schemes try to make this search
process as efficient as possible, which usually comes at the cost
of leaking (sensitive) information, such as the search pattern,
i.e., the information if two trapdoors were generated for the
same keyword [11].

Over the last decade there has been active research in
SSE [6]-[8], [11], [12], [15], [16], [18], [25]-[27]. The ma-
jority of the schemes has a search complexity which is linear

Part of this work was done while the first author was at Nanyang Tech-
nological University, Singapore. Andreas Peter is supported by the THeCS
project as part of the Dutch national program COMMIT.

330

in the number of documents stored on the server, since one
index per document has to be searched. Some schemes allow
a more efficient search, e.g., by using an inverted index [11],
[15], [16], [27], which is an index per distinct keyword in
the database. This reduces the search complexity to (at least)
the number of distinct keywords in the document collection.
However, the reduced complexity usually comes at the cost of
reduced security.

A limitation of most previous SSE schemes is the leakage
of the search pattern [16]. Revealing the search pattern in
SSE schemes is a serious problem, as it allows an attacker
to perform statistical analysis on the occurrence frequency of
each query. This allows an attacker to gain knowledge on
the underlying plaintext keywords, rendering the encryption
scheme less useful (as is convincingly demonstrated by Liu
et al. [20]). The problem of leaking the search pattern is not
only recognized in the setting of SSE, but also in the setting
of predicate encryption [25].

Kantarcioglu and Clifton [17] were the first to prove that in
a single server setting, a cryptographically secure SSE scheme
needs to process the whole database per query to protect
sensitive information (including the search pattern), thus being
inefficient in practice. The authors propose the use of a fully
trusted party (a trusted hardware module [1], [2] in their case)
to make a cryptographically secure SSE scheme efficient and
sketch a construction for relational databases.

To obtain more efficient SSE schemes or to realize more
complex queries than just keyword queries, a common ap-
proach is to split the server into a semi-honest storage provider
and a semi-honest (query) proxy [5], [6], [10], [23], [24], [28],
[29]. Unfortunately, also all of these schemes leak the search
pattern.

In this paper we propose an efficient construction of an
SSE scheme in the above setting that also hides the search
pattern. The main idea behind our construction is to distribute
the search on the encrypted data to the storage provider and the
query proxy. Therefore, we call our new scheme a distributed
Searchable Symmetric Encryption (DSSE) scheme. Our new
DSSE scheme achieves its efficiency due to distributed com-
putation and the use of efficient primitives like XOR and
pseudo-random functions only. We use an inverted index,
which is a common approach to reduce the search complexity

in databases. The ordinary use of an inverted index directly
leaks the search pattern. To hide the search pattern, we make
use of techniques used in oblivious RAM [14], [21], [22]
(ORAM) and private information retrieval [3], [9] (PIR), which
solve this problem by continuously re-shuffling the index as it
is being accessed. In this way, neither the storage provider nor
the query proxy can tell which record was accessed and thus
the search pattern of the scheme remains hidden.

We make the following contributions:

1) We formally define the concept of DSSE and its
security (Section II).

2) We propose a simple and efficient search pattern
hiding DSSE construction (Section III).

3) We prove the security of our DSSE scheme in the
semi-honest model and show that it only leaks the
access pattern and nothing more (Section IV).

4) We implement the core components of our scheme
and analyse its performance (Section V).

5) We discuss the security implications of colluding
servers, and propose a highly efficient SSE construc-
tion resulting from such a collusion (Section VI).

6) We prove adaptive semantic security for the SSE
scheme, as defined by Curtmola et al. [11] (Sec-
tion VI-B).

7) We give an analysis of theoretical performance of the
SSE scheme.

II. DISTRIBUTED SEARCHABLE SYMMETRIC
ENCRYPTION

In this section, we formally define the new notion of
distributed searchable symmetric encryption (DSSE) and its
security. As such a scheme involves a client C, a storage
provider (SP) and a query proxy (QP), we formulate it as
a protocol between these three parties.

Notation. Throughout the paper, we use the following notation.
Let D = {dy,...,d,} be a set of n files (e.g., documents). Let
W ={w,...,wy,} be a pre-built dictionary of m keywords.
Given a document d, let u(d) denote the set of distinct
keywords in d. Given a tuple ¢, we refer to the ¢-th entry of ¢ as
t[i]. The encrypted index is denoted by Z = {I,y,,..., Ly, }-
J denotes a re-encrypted index and Z’ a re-encrypted and
permuted index. The keyword used in a query we denote by
s € W. The set of document identifiers of all documents
in D containing the query keyword s is written as id(D).
An element a randomly chosen from a set A is denoted by

a ﬁ A. For two distribution ensembles X and Y, we denote
computational indistinguishability by X =. Y.

Definition 1 (Distributed Searchable Symmetric Encryption
Scheme). A Distributed Searchable Symmetric Encryption
(DSSE) scheme for a set of keywords W = {w1,...,wn,} is a
protocol between three parties: a client C, a storage provider
SP and a query proxy QP, and consists of the following four
probabilistic polynomial time (PPT) algorithms:

o (K¢, Ky, Ks) «— Keygen(\): This algorithm is run
by the client C, takes a security parameter X\ as input,
and outputs a secret key K¢ to the client C and secret
keys K1 and K- to SP and QP, respectively.

331

o 7= (Zy,75) «— Buildindex(K¢, D): This algorithm
is run by the client C, takes a key K¢ and a set of
documents D as input, and outputs an encrypted index

Iy to SP and T to QP.

o T%=(T7,T5) +— Trapdoor(K¢, s): This algorithm
is run by the client C, takes a key Ko and a query
keyword s € W as input, and outputs a trapdoor T
to SP and trapdoor Tj to QP.

o X <— Searchindex(T%,7 = (T,,1), K1, K2): This
algorithm is a protocol between SP and QP. SP
provides 17,1y, Ky and QP provides T5,1y, Ko as
input. The algorithm has a set of document identifiers
X of documents in D as (public) output.

Additionally, we require a DSSE scheme to be correct, i.e., that
for the set of keywords W, any set of documents D, all secu-
rity parameter N, all outputs (K¢, K1, K3) <— Keygen(A),
7 <— BuildIndex(K¢, D), T® +— Trapdoor(K¢, s) and all
keywords s,w € W, it holds that:

Searchindex(T*,Z, K1, K2) = ids(D),

where ids(D) denotes the set of identifiers of all documents
in D containing the keyword s. The sequence of document
identifiers ids(D) for consecutive keywords s is called the
access pattern.

Suppose a client makes () queries, while the i-th query
queries for keyword s; € W; so in total the client queries
for s1,...,5¢9 € W. To distinguish between the different
trapdoors associated with these @ queries, we write T to
denote a trapdoor for the i-th query (i.e., the client queries
for the keyword s;). We denote an admissible protocol run
of a DSSE scheme, where the client performs () queries, by
HSSSE' Formally, an admissible QQ-query protocol run HgSSE
is defined as follows:

Definition 2 (Admissible @-query protocol run H§SSE)'
Consider a DSSE scheme with keyword set W, output
(K¢, Ky, Ks) of Keygen(\), and a document set D. For a
given Q € N, an admissible ()-query protocol run consists of
one call of algorithm T <— BuildIndex(K ¢, D), followed by
Q calls of algorithm T* <— Trapdoor(K¢, s;) for (possibly
different) keywords s; € W for i € [1,Q)], and another Q calls
of algorithm Searchindex(T%",Z, K1, K5). We denote such a

protocol run by HgSSE.

A. Security Model

Following all previous works on SSE, we treat the client
as a trusted party. Concerning SP and P, we approach the
security of a DSSE scheme by following the real-vs-ideal
paradigm of secure multiparty computation [13, Ch. 7] in the
semi-honest model. This means that we assume SP and QP to
act honest-but-curious, i.e., they will follow all protocol steps
honestly but may try to infer all kinds of information on other
parties inputs or intermediate results beyond what the output
of the DSSE scheme reveals. Moreover, we assume secure
channels between any of the parties and that SP and QP do
not collude.

In particular, this implies that only admissible Q-query
protocol runs HE?SSE are performed (for Q € N). Now
intuitively, since the protocol HCDQSSE only has the access pattern
(ids, (D), ..., ids,(D)) as public output to all participants,
if a DSSE scheme is secure in the semi-honest real-vs-ideal
paradigm, it leaks no information (including the search pattern)
other than the access pattern. Following this paradigm [13, Ch.
7], we first define the ideal functionality of a DSSE scheme
as follows:

Definition 3 (Functionality fgSSE). Consider a DSSE scheme
with keyword set W, output (K¢, K1, K2) of Keygen(\), and
a document set D. For Q) € N,]:é)SSE is the functionality that
takes as input

o K¢ and keywords s, ..., sq from the client C,
o K from the storage provider SP, and

o Ky from the query proxy QP.

and outputs idg(D) = (ids, (D),...
parties C, SP and QP.

yids, (D)) to all the

Then, we say that a DSSE scheme is secure if any admis-
sible Q-query protocol run HQSSE (for any @) € N) privately
computes the functionality F5gge. Formally, this means:

Definition 4 (Security). We say that a DSSE scheme is secure,
if for any @) € N, the protocol HgSSE privately computes the

functionality]-"é)SSE between the three parties C, SP and QP,
i.e., there exists a (PPT) simulator S such that

{S(K1,ido(D)} re s1,..50.K1 K

=. {Viewsp(Kc, 51,...,5Q, K1, K2) Y ke s1,....50,K1,K»

and

{S(K27 idQ(D))}Kc,sl,...,SQ,K1,K2
=. {Viewgp(Kc, 51,--.,5Q, K1, K2) ke 51,50, K1, Ko
Note that it is sufficient to simulate the views of SP and
QP separately as we do not consider any form of collusion
between them. Recall that the client is treated as a trusted party
who only provides inputs and so the security definition does
not need to take the client’s view into account.

III. THE PROPOSED DISTRIBUTED CONSTRUCTION

Recall that a DSSE scheme consists of three parties: a
client C, a storage provider SP and a query proxy QP. Our
proposed scheme uses an inverted index, that is, an index per
distinct keyword in the database. Each index consists of a
single bit per keyword per document. A plaintext index ¢,, for
keyword w is a bit string of length n, where n is the number of
documents in the database. Each position ¢,,[j] corresponds to
a unique document, where j is a unique document identifier.
If a document d; contains the keyword w, then the j-th bit
of ¢, is set to 1. Otherwise the bit is set to 0. To protect the
plaintext index ¢,,, it is encrypted, by a bitwise XOR operation
(denoted as @) with several keyed pseudo-random functions
described below. Concerning the output of Keygen(\), the key
K¢ = (Ky, Kp) is only known by the client C, the key K
is a shared key and known by C' and SP. Formally, K is

332

contained in K¢ as a second component which we omit here
for reasons of readability and just say that C' knows both K¢
and K. The second key K, for QP is empty in our proposed
solution. We assume that the documents are encrypted by
the client with some standard symmetric encryption algorithm
using a key different from K. Since the document encryption
is independent from our scheme it is not considered further.
Our construction makes use of the following cryptographic
primitives:

e f(K¢,w): The function f(K¢,w) takes a key K¢
and a keyword w as input. It outputs a pseudo-random
bit-string of length n.

e g(Ki,w,r): The function takes as input a key K7, a
keyword w and a random value ;. It outputs a pseudo-
random bit-string of length n.

e h(Ky,r1): The function takes a key K1, and a random
value r; as input. The output is an n-bit pseudo-
random string.

e pi: The keyed pseudo-random permutation py de-
scribes a permutation on the set [1, m]. The evaluation
of the permutation pj takes as input an element
x € [1,m] and outputs its permuted position py(x) €
[1, m].

e 7(X,p;): The function takes as input a set X of
size V| and a random permutation p,. It outputs a
permuted set according to p,.

For ease of readability we will omit the keys K¢, K1 and
use fu,gw(r1) and h(ry) in the rest of the paper to denote
f(Ke,w), g(K1,w,r1) and h(K7,71), respectively.

A. Our Construction

Next, we describe the four algorithms of our pro-
posed scheme, namely Keygen, BuildIndex, Trapdoor and
Searchindex. The key K5, as well as the index Z, are empty
in our construction and are thus omitted in the description.

o (K¢,Kq,Ks3) «— Keygen(\): Given a security pa-
rameter \, generate akey K = (K¢ = (K¢, Kp), K1)
for the pseudo-random functions. The key K¢ is only
known by C, the key K is known by C and SP.

e T = (I1,15) «+— Buildindex(K¢,D): With the key
K¢, and a document collection D, the algorithm does
the following:

1) For all search keywords w; € W:
a) Vd; € D:set v, [j] =1, if w; € u(d,);
otherwise ¢y, [7] is set to 0.
b) Encrypt the index ¢,,, as follows: [,, =
bw; D fun"

2) Permute the index 7 = 7w({/,},pK,) based
on the client’s key K.
3) Output the index Z and send to SP.

o TV = (T{",T3") «— Trapdoor(K¢,w): With the
key K, and a query keyword s € W, the algorithm

selects three random values 71,72, 73 and sets 17 =
(r1,72,73). Then, the algorithm generates the client’s
dictionary as W* = m(W, pk,). Next, the algorithm
calculates the query dictionary W9 = w(W¢€, p,,) and
looks up the current position gs(r2) for the desired
keyword s in the permuted keyword list W9. Generate
the trapdoor T5 = (gs(r2),k = fs @ gs(r1) ® r3).
Output 7% =

(T} = (r1,72,73), T3 = (4s(r2), fo © 9u(r1) ®73))

e X «— Searchindex(T%,Z = (71,12),K1,K>):
(SP provides T} and QP provides T3) The storage
provider SP re-encrypts and permutes the index Z for
all ¢ € [1,m)] as follows:

j == {J11)71} = {Iwi S Gw; (Tl) D h(rl)}v

= (T, pr,)

and sends 7' to QP. QP stores Z’ as its current index
and performs a table lookup for ¢s(r2) on Z’ to obtain
the right I. QP then re-encrypts as follows:

I'=I'ak
= (Ls 2] fs S2) gs(rl) D h(rl))
=1 D h(r1) rs.

S (fs ® gs(r1) ®r3)

I” is sent to SP, which can now decrypt ¢s = I ®
h(rl) @rs3. The result ¢4 encodes, whether a document
satisfies the query keyword s or not. Depending on the
client, SP sends either the matching document ids or
directly the matching encrypted documents to C.

A standard work flow is as follows. A client C first
runs the Keygen algorithm to generate the key K. To create
a searchable index, C' runs the BuildIndex algorithm which
outputs the inverted index Z. Finally C' stores the index Z
together with the encrypted documents on the storage provider
SP.

Later on, when the client wants to retrieve some documents
containing a search keyword s € W, it first runs the Trapdoor
algorithm to generate the trapdoor T° = (T7,T5). C sends
T7 to SP and T5 to QP. Then, SP and QP can run the
SearchIndex algorithm. SP re-encrypts and permutes the index
7 with help of 75 and sends the new Z’ to QP. QP performs
a table look-up and then re-encrypts the result using the key &
inside T%. The temporary result I/ is sent to SP, which can
now decrypt using 7} to obtain the plaintext index ¢, for the
search keyword s. Finally, SP either sends the matching ids
or the matching encrypted documents to the client.

By letting SP perform the re-encryption and permutation,
QP receives a fresh index before each query. These indexes
are indistinguishable from each other and also from random.
Thus the next query will not leak any information. To make
the scheme more efficient, the client can choose another re-
encryption policy, e.g., to trigger the re-encryption before he
queries the same keyword twice. In this way, SP and QP can
reduce the computational and communication complexity.

333

B. Updates

The proposed DSSE scheme allows efficient updates of
the document collection, like most of the SSE schemes. A
user can update the index by adding and deleting documents
without revealing information. Only the number of documents
processed is leaked. To add a document j + 1, the BuildIndex
algorithm is run and the new indexes ¢, [j + 1] are encrypted
and appended to the existing indexes. To delete a document
d, from the collection, the client sets the indexes ¢, [z] to 0,
encrypts and sent them to SP.

IV. SECURITY ANALYSIS

Theorem 1 (Security). Our proposed DSSE scheme from
Section 11l is secure with respect to Definition 4.

Proof: Let Q € N. By the Composition Theorem in the
semi-honest model [13 Theorem 7.5.7], we can treat each
step in protocol HDSSE separately. We start by constructlng

a simulator S of SP’s view in each step of protocol HDSSE
We then construct a simulator S of QP’s view of protocol
Mgsse-
Storage Provider SP. In line 2 of Figure 1, SP learns the
values I, for all keywords w € W = {w,...,w,,}. Since
this value is computed as an XOR of the plaintext index i,
and the n-bit output of the pseudo-random function f with
key K¢ and keyword w, the value [, is computationally
indistinguishable from a random n-bit string (recall that D
contains |D| = n documents). Therefore, S can simulate these
values with random n-bit strings.

Now, let s1,...,sq denote the keywords that the client
queries for. In line 4, for each of these keywords s; (j =
1,...,Q), the storage provider SP learns the three random
bit-strings 71, r2, and r3. These can be trivially simulated by
S by choosing random strings.

Finally, in line 7, SP receives the value I/ which equals
ts; ® h(K1,71) @ r3. But the simulator S knows the key K3
and the overall output idg(D) = (ids,(D),...,ids,(D))

of functionality .FDSSE by definition, and since he created
the random values 71 and r3 himself, he can simulate I by
simply computing ¢s @ h(Ky,r1) @ r3. This can be done for
each keyword s; and so S successfully simulated the view of
the storage provider SP.

Query Proxy QP. In line 5 of Figure 1, for each keyword w;
(i=1,...,m), QP learns the value/index Z’. But this index is
computed as a pseudo-random permutation of the re-encrypted
index J = {Iy, ® guw, (r1) @ h(r1)}, while every entry in J
is indistinguishable from a random n-bit string. Therefore, for
each keyword w;, the index Z’ is indistinguishable from a
random (m X m)-bit matrix, which can be simulated by S as
such.

Let s1,...,5¢ denote the) keywords that the client
queries for. In line 6, for each of the keywords s; for j € [1, @],
the query proxy QP learns the values ¢s,(r2) and k. Since
qs,(r2) is an index position for keyword s; after a pseudo-
random permutation with function 7w with input J and the

Client

Storage Provider Query Proxy

1 {Iwi}:{Lwi eaqu',}

2: I =r({lw,;},Pr,) — T

3: we = ﬂ(W,pr)

4: TP = (r1,7r2,73) — J = {I“’i D Guw; (r1) ® h(r1)}

5: W = 7(W, pry) 7' = (T 5 Pry) — T

6 T3 = (qs(r2). k= fs @ gs(r1) ®73) 1= TLUT, qs(r2))
7: s =1 ®h(r1) ®rs — I!:I;EB]C

Fig. 1.

pseudo-random permutation based on the random value ro, the
value can be simulated, by choosing a random value between
1 and m. The value k is computed as an XOR of the n-
bit outputs of the pseudo-random functions f(K¢,s;) and
g(K1,s5,m) and the random n-bit string rs. The value k
is thus indistinguishable from random and can be simulated
by S with random n-bit string. In total, this shows that S
successfully simulates the view of the query proxy @QP. ®

V. PERFORMANCE ANALYSIS

In this section, we consider the efficiency of our proposed
DSSE scheme, where the efficiency is measured in terms of
the computation and communication complexities.

Computation. The BuildIndex algorithm generates for all
keywords w € W an n-bit string (f,). The resulting index
is an m X m-matrix, where m is the number of keywords and
n the number of documents. The algorithm has to generate m
times an n-bit string and calculate mn bitwise XOR. Thus, the
index size, as well as the computation complexity is O(mn).

The Trapdoor algorithm chooses two random values 71, 79
and a random n-bit string r3, evaluates the permutation
7(W,pr,) at keyword s to find position ¢s(r2), generate
two n-bit strings (fs,gs(r1)) and finally computes the two
bitwise XORs on the n-bit strings. The trapdoor size and the
computation complexity is O(n).

In the Searchlndex algorithm, SP generates (m + 1) n-
bit strings and computes two XORs per keyword for the re-
encryption of the index. Then, SP generates and performs a
random permutation on m index positions. Thus the com-
putational complexity for SP is O(mn). QP performs a
simple table-lookup and calculates one XOR on a n-bit string,
resulting in a complexity of O(n).

Communication. Our scheme requires the index to be trans-
ferred per query. Since our index uses one bit per keyword
per document (cf. Table I), the communication complexity is
O(mn).

The trapdoor 77 consists of two random values and a n-bit
random string. The trapdoor 775 consists of an index position,
i.e., a number between 1 and m, and the n-bit string k. The
intermediate result I of the query proxy QP that has to be
transferred to SP is of size n bit.

Simplified upload and search processes of our DSSE scheme. TLU denotes a table look-up. The document up- and download is omitted.

TABLE 1. EXAMPLE INDEX SIZES FOR DIFFERENT DOCUMENT AND
KEYWORD SETS.
10,000 50,000 100,000 1,000,000
100 122 kB 610 kB 1.2 MB 12 MB
250 305 kB 1.5 MB 3 MB 30 MB
500 610 kB 3 MB 6 MB 60 MB
100,000 119 MB 596 MB 1.2 GB 11.6 GB
TABLE II. ESTIMATED SEARCH TIMES FOR A KEYWORD SEARCH IN

DIFFERENT DOCUMENT/KEYWORD SETS ASSUMING A 1 GB/S NETWORK
CONNECTION BETWEEN SP AND QP.

10,000 50,000 100,000 1,000,000
100 1.6 ms 7.8 ms 16 ms 161 ms
250 3.9 ms 20 ms 39 ms 393 ms
500 7.8 ms 39 ms 79 ms 786 ms
100,000 1.56 s 2.68 s 156 s 156 s

Remark. Note, that the above asymptotic complexities are
similar to previous schemes with the same security guaran-
tee [7], [25]. In practice, however, various operations make
a difference for the real performance numbers. In particular,
our scheme is based entirely on XOR operations and pseudo-
random functions, which are orders of magnitude more effi-
cient than other operations such as pairings. As an example,
the scheme by Shen et al. [25] needs to compute n(2m + 2)
composite order pairings per search query. For a document set
of 5000 documents and 250 keywords, a search query requires
8.4 days [7]. In comparison, our scheme requires n(2m + 3)
XOR operations and performs a search on the same dataset in
less than 2 ms, assuming a 1 Gb/s network connection between
SP and QP. See the example below and Table II for estimated
performance numbers of different document/keyword sets.

Example. For the following example, we use a data collection
of 1 million documents and a keyword list of 500 (which
we consider practical in many scenarios). Then, the encrypted
index is of size 500 x 1M bit = 500 M bit or 60 MB. Using
a 1 Gb/s network connection between SP and QP results in
a theoretical max. transmission rate of 120 MB/s. The real
max. is around 80 MB/s. To transmit an index of 60 MB takes
0.75 s at a rate of 80 MB/s. The computation on SP requires
2m 4+ 2 XOR on n-bit strings. The query proxy QP performs
one XOR on n-bit strings. An bitwise XOR on 500 million
bits, takes less than 18 ms on an Intel i5 CPU M460@2.53
GHz. Per search, we require n(2m+3) XORs. In our example,
this results in 1,003,000,000 XOR, taking 36 ms. In total, the

334

search takes 786 ms. Even for a huge keyword list of 100,000
keywords and one million documents, a query takes around
2.6 minutes.

VI. COLLUDING SERVERS

Recall that our security analysis assumes that the storage
provider and the query proxy do not collude. In this section,
we discuss the implication of SP and QP colluding.

If SP and QP collude, they can invert the permutation
and encryption performed on a per-query basis (lines 4 and
5 in Figure 1). In this case, we can omit the re-encryption
and permutation without further sacrificing data confidentiality.
Figure 2 shows the resulting scheme, which treats SP and QP
as a single server.

The original distributed scheme is reduced to a centralized
scheme consisting of a client and a server. In the reduced
scheme, the client sends an encrypted and permuted index to
the server, and queries the server directly by sending trapdoors.
Hence, the reduced scheme is in fact a “standard” SSE scheme.
It is easy to see that it leaks the search and access pattern.
However, we show in the next section that this reduced scheme
still satisfies Curtmola et al.’s [11] definition for adaptive
security.

Client Colluding Servers

10 {Tw;} = {tw; ® F(Kyp,wi)}

2: T=nr({lw;}rr,) ——— ZI={ly;}
3: W =n(W,pk,)

: T° = (g5, k = f(Ks,5) ———— I = TLU(Z,q.)
5: s =1s Dk

Fig. 2. SSE scheme with colluding servers.

A. The reduced scheme

As mentioned before, the reduced scheme is a plain SSE
scheme which does not fall under the DSSE definition given in
Section II. Therefore, we redefine this scheme in the standard
SSE terminology as introduced by Curtmola et al. [11].

e K <— Gen(1%): the client generates a set of three
secret keys K = (Kg4, Ky, K,,), for the document en-
cryption, the row encryption and the table permutation
respectively. Remark that this construction does not
share keys with the search provider.

e (I,c) «— Enc(K,D): the client encrypts every doc-
ument in D with the key K, using a PCPA secure
symmetric encryption scheme, e.g. AES in CTR mode
[19]. An encrypted and permuted index [is calculated
as follows:

o For every keyword w; in W:
» For all documents d; € D; let Z[i]; =
w; matches d;, otherwise set Z[i]; =
» Reassign Z[i] «— Z[i]|® f (K, w;), which
encrypts the row Z[i].

335

o Generate a permuted index I by applying o to
the encrypted rows, such that I = 7([, pk,).
Thus, for all 1 <14 < m: I[pg, (i)] = Z[d].

Output the encrypted and permuted index I.

e t +— Trpdr(K,w;): using the key K, the client
can calculate the trapdoor ¢t = (pg, (i), f(Kr,w;)).
The trapdoor contains the position of the row in the
permuted index corresponding to w; and the encryp-
tion/decryption key for the row.

o X <— Search(I,t): given an index and a trapdoor,
the server does the following:

o it finds and decrypts the row r = f(Ky, w;) ®
11, (0).

o from the decrypted row, the server deduces the
set of document identifiers {id(d;)|d; € D A
r[{] = 1}. Note that the server only has to
know what document identifier corresponds to
the i-th bit.

B. Security Analysis

In this section, we prove our reduced SSE scheme to be
semantically secure against an adaptive adversary. We use the
simulation-based definition for adaptive semantic security as
provided in [11] (Definition 4.13).

Recall that a history H = (D, s) over ¢ queries, is a tuple
including the document collection and the queried keywords.
We denote the keywords queried for by s = (s1, ..., s,) where
s; is the keyword asked for in the i-th query, and every s; € W.
Note there may exist a pair s;,s; where 7 # j but s; = s;.

An access pattern o(H) from a history H = (D,s)
contains the results of each query in H. Thus «(H) =
(ids, (D), ...,id,, (D)) is a vector containing the sets of
document identifiers of the matched documents.

The search pattern o(H) induced from a g-query history
is a ¢ x ¢ binary matrix such that s; = s; < o(H)[4][j] = 1.
If the setting is unambiguous, we write « (resp. o) for a(H)
(resp. o(H)).

A trace T(H) = (|d1], ..., |dn|,«(H),o(H)) contains the
lengths of all documents in D and the access and search pattern
induced by the input history H.

In the simulation-based definition of adaptive security by
Curtmola et al. [11], the basic idea is to build a simulator which
is given only the trace, and can simulate an index, ciphertexts
and trapdoors that are indistinguishable from the real index,
ciphertexts and trapdoors. We allow the adversary to build the
history linked to the trace adaptively; the adversary can query
for a keyword, receive a trapdoor and query again polynomially
many times.

Theorem 2 (Security). Our reduced SSE scheme from Sec-
tion VI-A is secure with respect to Curtmola et al’s [11]
definition for adaptive semantic security for SSE.

Proof: We will first define the g-query simulator S =
(So,...,S,) that, given a trace 7(H), generates v* =
(I*,c*,t*) and a state st 4. The simulator Sy only creates an
index and document ciphertexts, as no keywords have been

queried for at this stage. The i-th simulator S; returns trapdoors
up until the ¢-th query. We will then prove that no polynomial-
size distinguisher D can distinguish between the distributions
of v* and the outputs of an adaptive adversary that runs the
real algorithm.

o So(1%,7(H)): given (|di],...,|dn|), choose I* &
{0,1}™*™, Recall that m is public as it is the size
of the dictionary W, and that n is included in the
trace as the number of |d;|’s.

The ciphertexts are simulated by creating random

strings of the same lengths as the documents; c &
{0,1}!4!, where |d;| is included in the trace. Also, a
random permutation p* : [1,m] — [1,m] is generated.
The simulator stores 1*, a counter ¢ = 0 and a random
permutation o* : [1,m] — [1,m] in the state sts, and
outputs v* = (I*, c*, sts).

o S(sts,7(H,s1,...,8;)) forany 1 < i < g: given the
state (which includes I* and any previous trapdoors)
and the access pattern «, the simulator can generate a
trapdoor ¢} as follows:

Check if the keyword has been queried before; if there
is a j # i such that o[i][j] = 1, set t; = t}. Otherwise:

o Increase the counter by one and generate a
unique row index o*(c), using the counter and
the random permutation. Note that the counter
will never exceed m, as there are only m
unique keywords.

o Calculate a bit string » € {0,1}" such that
for 1 < j < n:rlj] =1« id(d;) € ail.
We now have what should be the unencrypted
row of the index corresponding to the keyword
queried for.

o Calculate k* = r @ I*[0*(c)]. We now have a
dummy key which satisfies the property k* &
I*[o*(c)] = r.

o Lettf=(c%(c),k*)

Include ¢ in sts, and output (¢], sts).

We will now show that the outputs of Realssg 4 and
Simgsgsg, 4,5, being v and v*, can not be distinguished by a dis-
tinguisher D that is given st 4. Recall that v = (I,¢,11,...,t4)
and v* = (I*,¢",t],...,t;).

e (Indistinguishability of I and I*) The output of
f(Ky,w;) is indistinguishable from random by def-
inition of f. Therefore, the XOR of entries of the
index and the output of f is indistinguishable from
random bit strings of the same length [4]. Since I* is
a random bit string of the same length as I, and with
all but negligible probability st 4 does not contain the
key, we conclude that I and I* are indistinguishable.

e (Indistinguishability of ¢; and cj) Since c; is PCPA-
secure encrypted, c¢; cannot be distinguished from
a random string. Since every c; is random and of
the same length as ¢;, and with all but negligible
probability st 4 does not contain the encryption key,
¢; is distinguishable from cj.

o (Indistinguishability of ¢; = (Kp(i),k = f(Ks,w;))
and tf = (0*(c),k*)) With all but negligible prob-
ability, st4 will not contain the key K,, so the

336

pseudo-randomness of 7 guarantees that each o*(c)
is computationally indistinguishable from 7 (K,).
As stated above, I and [* are indistinguishable, thus
I[i] and I*[i] are indistinguishable, thus I[i| & r = k
and I*[i] @ r = k* are indistinguishable. Thus, ¢; and
t7 are indistinguishable.

This indistinguishability shows that S successfully simulates
the view of the adversary, which concludes the proof.]

C. Performance Analysis

Computation and storage. The Enc algorithm is similar to the
BuildIndex algorithm of our scheme in Section III: it generates
an inverted index of the dictionary WV over the documents D.
Thus, the index size and the computation complexity are O(m-
n). Table I shows example index sizes for various document
and keyword sets.

The Trapdoor algorithm calculates the position of a row
and its decryption key by evaluating px, and f. Since the
decryption key is as long as a row, the trapdoor size is O(n +
log(m)). The computational complexity depends on the chosen
pseudo-random function f.

Given a trapdoor, the server evaluates the SearchIndex algo-
rithm by doing a table lookup and XOR’ing the resulting row
with the given decryption key. The computational complexity
is O(n).

Communication. The trapdoor contains a row id (O(logm)
bits) and the row decryption key (O(n) bits). Thus, the
communication complexity is O(n + log(m)).

Remark. As with the DSSE scheme, the above functions
are based entirely on XOR operations and pseudo-random
functions.

Comparison. To demonstrate the efficiency of our scheme, we
will compare it to Curtmola et al.’s [11] adaptively secure SSE
scheme. Since both schemes use negligibly little computational
resources (lookups and XOR'’s only), we focus on the sizes of
trapdoors instead.

For details on Curtmola et al.’s scheme, we refer to [11] and
only state here that their scheme stores document identifiers
of matching documents, rather than a single bit encoding of
whether a document matches a keyword. To hide the actual
number of matches a document has, every document id is
stored once for every possible keyword/document match. The
number of possible matches equals the number of keywords a
document can contain. This value, referred to as max, is limited
by two factors: the number of distinct keywords in V and the
size of a document. The following algorithm can be used to
determine max:

e Leti =0, max = 0 and S be the document size in
bytes.

e While S > 0:
o If28%.4< 8, seti=1i+ 1, max = max + 28°?
and S =5 —28% .
o Otherwise, set max — max + % and S = 0.

e Let max = min(max, |[W]|): if there are not enough
keywords to fill the entire document, use the size of
the dictionary as max value.

In [11], a trapdoor is n - log(max - n) bit. Our scheme uses
trapdoors of size log(m) + n bit; a log(m) bit row id and an
n bit key to decrypt it. Notice that the number of keywords
hardly affects the size of a trapdoor.

We compare document sets with documents of 25 kB (i.e.,
max < 12628), to demonstrate the effect of the document size
on the performance of the schemes.

TABLE III. COMPARISON OF TRAPDOOR SIZES.
Doc. size Curtmola et al. Our scheme
25 kB m =100 1000 15,000 100,000 100,000
n =1,000 2.1 kB 2.5 kB 2.9 kB 2.9 kB 141 B
10,000 24.9 kB 29.0 kB 33.6 kB 33.6 kB 1.25 kB
100,000 290 kB 332 kB 378 kB 378 kB 12.5 kB
10,000,000 37.3 MB 41.5 MB 46.1 MB 46.1 MB 1.25 MB

The comparison in table III indicates that our scheme
outperforms Curtmola et al.’s scheme in terms of trapdoor sizes
in the given setting. We believe that our scheme is of interest
even outside the context of this paper due to its conceptual
simplicity and high efficiency.

VII. CONCLUSION

In this paper, we have explored SSE in a distributed
setting and proposed the concept of distributed searchable
symmetric encryption (DSSE) for outsourcing encrypted data.
Compared with standard SSE, a DSSE scheme can potentially
provide more efficiency and better security guarantees. We
described a security model that in addition to previous models
also protects the search pattern. We proposed a construction
for DSSE (based entirely on binary XOR operations and
pseudo-random functions) which is highly efficient, despite
the additional security. The scheme uses an inverted index
approach and borrows re-shuffling techniques from private
information retrieval. The main idea is, that the query proxy
gets a fresh (i.e., re-encrypted and shuffled) index per query.
Thus, the query can be realized by a simple table look-up,
without revealing the search pattern.

We have also shown that even if the storage provider and
query proxy collude, the scheme is still secure under Curtmola
et al.’s definition for adaptive semantic security for SSE. The
resulting SSE scheme when the two servers collude is very
efficient and outperforms Curtmola et al.’s scheme in terms of
trapdoor sizes.

REFERENCES

[1] Todd W. Arnold, Carl U. Buscaglia, F. Chan, Vincenzo Condorelli,
John C. Dayka, W. Santiago-Fernandez, Nihad Hadzic, Michael D.
Hocker, M. Jordan, T. E. Morris, and Klaus Werner. IBM 4765
Cryptographic Coprocessor. IBM Journal of Research and Development,
56(1):10, 2012.

[2] Todd W. Arnold and Leendert van Doorn. The IBM PCIXCC: A
New Cryptographic Coprocessor for the IBM eServer. IBM Journal
of Research and Development, 48(3-4):475-488, 2004.

[3] Dmitri Asonov. Querying Databases Privately: A New Approach
to Private Information Retrieval, volume 3128 of Lecture Notes in
Computer Science. Springer, 2004.

337

(4]

(51

(6]

(71

(8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. A
Concrete Security Treatment of Symmetric Encryption. In Foundations
of Computer Science, pages 394-403. IEEE, 1997.

Steven M. Bellovin and William R. Cheswick. Privacy-Enhanced
Searches Using Encrypted Bloom Filters. IACR Cryptology ePrint
Archive, 2004:22, 2004.

Dan Boneh, Craig Gentry, Shai Halevi, Frank Wang, and David J. Wu.
Private Database Queries Using Somewhat Homomorphic Encryption.
In ACNS, pages 102-118, 2013.

Christoph Bosch, Qiang Tang, Pieter H. Hartel, and Willem Jonker.
Selective Document Retrieval from Encrypted Database. In ISC, pages
224-241, 2012.

Yan-Cheng Chang and Michael Mitzenmacher. Privacy Preserving
Keyword Searches on Remote Encrypted Data. In ACNS, pages 442—
455, 2005.

Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan.
Private Information Retrieval. Journal of the ACM, 45(6):965-981,
November 1998.

Emiliano De Cristofaro, Yanbin Lu, and Gene Tsudik. Efficient
Techniques for Privacy-Preserving Sharing of Sensitive Information. In
TRUST, pages 239-253, 2011.

Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky.
Searchable Symmetric Encryption: Improved Definitions and Efficient
Constructions. Journal of Computer Security, 19(5):895-934, 2011.

Eu-Jin Goh. Secure Indexes.
2003/216, 2003.

Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic
Applications. Cambridge University Press, 2004.

Cryptology ePrint Archive, Report

Oded Goldreich and Rafail Ostrovsky. Software Protection and Simu-
lation on Oblivious RAMs. J. ACM, 43(3):431-473, 1996.

Seny Kamara and Charalampos Papamanthou. Parallel and Dynamic
Searchable Symmetric Encryption. In Financial Cryptography, pages
258-274, 2013.

Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic
searchable symmetric encryption. In ACM Conference on Computer
and Communications Security, pages 965-976, 2012.

Murat Kantarcioglu and Chris Clifton. Security Issues in Querying
Encrypted Data. In DBSec, pages 325-337, 2005.

Kaoru Kurosawa and Yasuhiro Ohtaki. UC-Secure Searchable Symmet-
ric Encryption. In Financial Cryptography, pages 285-298, 2012.

Helger Lipmaa, David Wagner, and Phillip Rogaway. Comments to nist
concerning aes modes of operation: Ctr-mode encryption. 2000.
Chang Liu, Liehuang Zhu, Mingzhong Wang, and Yu an Tan. Search
Pattern Leakage in Searchable Encryption: Attacks and New Construc-
tion. Inf. Sci., 265:176-188, 2014.

Rafail Ostrovsky. Efficient Computation on Oblivious RAMs. In STOC,
pages 514-523, 1990.

Rafail Ostrovsky. Software Protection and Simulations on Oblivious
RAMs. PhD thesis, MIT, 1992.

Andreas Peter, Erik Tews, and Stefan Katzenbeisser. Efficiently out-
sourcing multiparty computation under multiple keys. IEEE Transac-
tions on Information Forensics and Security, 8(12):2046-2058, 2013.

Mariana Raykova, Binh Vo, Steven M. Bellovin, and Tal Malkin. Secure
Anonymous Database Search. In CCSW, pages 115-126, 2009.

Emily Shen, Elaine Shi, and Brent Waters. Predicate Privacy in
Encryption Systems. In TCC, pages 457-473, 2009.

Dawn Song, David Wagner, and Adrian Perrig. Practical Techniques
for Searches on Encrypted Data. In IEEE Symposium on Security and
Privacy, pages 44-55, 2000.

Peter van Liesdonk, Saeed Sedghi, Jeroen Doumen, Pieter H. Hartel,
and Willem Jonker. Computationally Efficient Searchable Symmetric
Encryption. In Secure Data Management, pages 87-100, 2010.

Peishun Wang, Huaxiong Wang, and Josef Pieprzyk. An Efficient
Scheme of Common Secure Indices for Conjunctive Keyword-Based
Retrieval on Encrypted Data. In WISA, pages 145-159, 2008.

Peishun Wang, Huaxiong Wang, and Josef Pieprzyk. Keyword Field-
Free Conjunctive Keyword Searches on Encrypted Data and Extension
for Dynamic Groups. In CANS, pages 178-195, 2008.

