
1

Nothing is for Free: Security in Searching
Shared & Encrypted Data

Qiang Tang

Abstract—Most existing symmetric searchable encryption
schemes aim at allowing a user to outsource her encrypted
data to a cloud server and delegate the latter to search on her
behalf. These schemes do not qualify as a secure and scalable
solution for the multi-party setting, where users outsource
their encrypted data to a cloud server and selectively autho-
rize each other to search. Due to the possibility that the cloud
server may collude with some malicious users, it is a chal-
lenge to have a secure and scalable multi-party searchable
encryption (MPSE) scheme. This is shown by our analysis
on the Popa-Zeldovich scheme, which says that an honest
user may leak all her search patterns even if she shares only
one of her documents with another malicious user. Based on
our analysis, we present a new security model for MPSE
by considering the worst-case and average-case scenarios,
which capture different server-user collusion possibilities.
We then propose a MPSE scheme by employing the bilinear
property of Type-3 pairings, and prove its security based on
the Bilinear Diffie-Hellman Variant (BDHV) and Symmetric
eXternal Diffie-Hellman (SXDH) assumptions in the random
oracle model.

Index Terms—Multi-party Searchable Encryption (MPSE),
Data Privacy, Trapdoor Privacy, Pairing.

I. Introduction
With the advancement of information technologies,

particularly cloud storage services, information out-
sourcing and sharing have become ubiquitous in our life.
For example, a user Alice may store her data at Dropbox
and share them with her friends, in the mean time she
may also have access to her friends’ data. Due to the
private nature of personal data, there is an inherent need
for a user to selectively share her data with different
recipients. In practice, what a user can do is to set
some access control policies and then rely on the cloud
server (e.g. Dropbox) to enforce them. Unfortunately, this
approach is not realistic due to two reasons. One is that
the users have no means to prevent the server from
accessing their data. The other is that, even if the server
is benign, it may also be forced to share users’ data with
other parties (e.g. by the USA PATRIOT Act).

A toy example is shown in Fig. 1. The real line from a
user to index means that the user owns the index, while
a dashed line means that the user is authorized by the
index owner to search.

A. Problem Statement
The concept of searchable encryption provides a

promising direction in solving the privacy problem when

The author is affiliated with APSIA group, SnT, University of Lux-
embourg, Luxembourg. e-mail: qiang.tang@uni.lu

Fig. 1. Search Shared & Encrypted Data

outsourching data to the cloud. Such schemes allow
users to store their data in encrypted form at an un-
trusted server, and then delegate the server to search
on their behalf by issuing a trapdoor (i.e. encrypted
keyword). A detailed survey of searchable encryption
schemes can be found in [27].

As to the specific setting where multiple users store
and share their data with each other in the cloud, we
need a new primitive, namely multi-party searchable
encryption (MPSE) schemes in the symmetric setting.
MPSE can be regarded as a multi-party version of the
symmetric searchable encryption proposed by Song et
al. [25]. Briefly, a MPSE scheme allows every user to
build an encrypted index for each of her documents
and store it at a cloud server. The index contains a list
of encrypted keywords, as well as some authorization
information which selectively authorizes other users to
search over this index.

Our objective is first to formulate MPSE and its secu-
rity properties and then to provide a scalable and secure
construction. Informally, the scalability and security cri-
teria in our mind are the following:
• As to scalability, the size of trapdoors and indexes

should be of constant size. If a user Alice wants
to allow another X users to search over her index,
then the size of this index should not be linear in X.
If Alice has been authorized by another Y users to

2

search their indexes, when Alice wants to search for
a keyword w then the size of her trapdoor should
not be linear in Y.

• As to security, there should not be any additional
trusted third party (TTP) involved, and the infor-
mation leaked to the server and malicious users
should be minimized. Referring to Fig. 1, the cloud
server will inevitably know which indexes match
which search queries, and the cloud server and User
1 together will potentially be able to recover what
User 3 is searching for (since Index2 is generated by
User 1 and the cloud server is delegated by User 3
to search over Index2). But, other leakages should
be prevented.

B. Related Work

The investigation of searchable encryption schemes in
the symmetric setting was initiated by Song et al. [25]
and followed up by many others (e.g. [8], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [23], [24]). This
setting typically assumes one user and one server, where
the user can generate searchable contents and stores
them at the server, and later delegate the server to search
on her behalf. To address our problem with any of these
schemes, one needs to independently generate a key to
protect each document (i.e. instantiate the scheme once
for every document) and then shares the key with the
users who will be authorized to search this document. As
a result, the number of trapdoors required to search for
a keyword will equal to the number of documents (or,
indexes), so that the solution obviously does not satisfy
our scalability criteria. Some other schemes are intended
for more complex settings (e.g. [2], [4], [5], [13], [14], [15],
[26], [22]) which are analyzed in more details below.

1) Some Existing Multi-User Schemes: Curtmola et al.
[13] proposed the concept of multi-user searchable en-
cryption schemes, where a user can authorize multiple
other users to search her encrypted data. However, the
proposed primitive does not take into account the fact
that the same user may also be authorized to search
other users’ data and the corresponding security issues.
As a result, the primitive from [13] offers a solution
for a much more simplified problem than ours, and it
seems not trivial to construct a scalable solution for our
problem based on their scheme. In the work of Bao et
al. [4], a new party, namely user manager, is introduced
into the system, to manage multiple users’ search ca-
pabilities (e.g. enable them to search each other’s data).
In this extension, the user manager needs to be fully
trusted since it is capable of submitting search queries
and decrypting encrypted data. This conflicts with our
security criteria (i.e. there should not be additional TTP
involved). The schemes of Dong, Russello and Dulay
[14], [15] have similar issues. In the work from [2],
[5], [26], the authors have investigated order preserving
encryption, where the ciphertexts preserve the order the
plaintexts so that every entity can perform an equality

comparison. Clearly, these schemes also conflict with our
security criteria (i.e. leak minimal information to the
server).

2) Popa-Zeldovich Scheme: The Popa-Zeldovich scheme
[22] is the only available work that addresses a similar
problem to ours. Let λ be the security parameter, their
scheme consists of the following algorithms.
• MK.Setup(λ): run GP to generate Γ =

(p,G1,G2,GT, ê, g2), and return the public parameters
params = (Γ,H1,H2), where H1 : {0, 1}∗ → G1 and
H2 : GT × GT → {0, 1}∗ are two hash functions. The
bilinear pairing parameter generation algorithm GP
is defined in Section II.

• MK.KeyGen(params): randomly select k from Zp and
return k. Note that this algorithm is used by a user
to generate her long-term private key (denoted as
uk) and also generate an independent secret key (de-
noted as f k) for protecting each of her documents.

• MK.Delta(uk, f k): return ∆ = g
f k
uk
2 .

• MK.Token(uk,w): return tk = H1(w)uk.
• MK.Enc(f k,w): return c = (r,H2(r, ê(H1(w), g2) f k)),

where r ∈R GT.
• MK.Adjust(tk,∆): return tk′ = ê(tk,∆).
• MK.Match(tk′, c): parse c as (r, h), return H2(r, tk′) ?

= h.
Next, we show that this scheme leaks unnecessary

information to the server, so that it does not satisfy our
security criteria. Informally, the granularity of authoriza-
tion is very coarse, i.e. an honest user may leak the
keywords in all her search queries to the server if she
authorizes a malicious user to search her index.

Let the long-term user keys of Ui and U j be denoted
as uki and uk j respectively. Suppose that Ui wants to
build an index index0 and authorizes U j to search, she
performs as follows:

1) Ui runs MK.KeyGen to generate a secret key
f k0, and runs MK.Enc to generate index0 =
MK.Enc(f k0,w0). For simplicity, we assume the in-
dex encodes only one keyword w0. Ui stores index0

and ∆i = MK.Delta(uki, f k0) = g
f k0
uki

2 at the server.
Here we assume Ui wants to enable herself to
search over index0.

2) Ui and U j magically computes ∆ j =

MK.Delta(uk j, f k0) = g
f k0
ukj

2 and stores it at the
server. Note that the scheme does not specify how
∆ j should be computed (see Remark 1 below), but
this does not affect our security analysis.

Now suppose that U j colludes with the server, then
the latter can trivially recover g f k0

2 . Afterwards, for any
token tk = H1(w)uki from Ui, the server can first compute
ê(tk,∆i) = ê(H1(w), g f k0

2), and then identify w by comput-
ing ê(H1(w′), g f k0

2) for all w′ given that the keyword set
is polynomial size. Note that, even if w is from a set
of super-polynomial size, the server can exclude a lot of
possibilities based on its try-and-error. Ideally, the server
and U j should only be able to tell whether w equals to

3

w0 or not. This is captured in the the worst-case trapdoor
privacy property of our security model in Section IV-B.

Remark 1: Besides the security issue, Popa and Zel-
dovich did not explicitly specify how a user Ui can
authorize another user U j to search his index. Take the
above analysis as example. The first possibility is that
Ui may want to send the secret key f k0 to U j through
a secure channel, so that U j can generate ∆ j. In this
case, if Ui would like to authorize a large number of
users to search her index, she needs to communicate
with all of them for sharing her secret key. Moreover,
such communications are required for every index, so
the solution is clearly unscalable. The second possibility
is that Ui may want to run an interactive protocol with
U j for the latter to generate ∆ j without revealing f k0 in
clear. This may be even worse than in the first possibility.

C. Solution Intuition

Conceptually, in the context of MPSE, an individual
user can act as a data owner and/or a follower.
• Data owner: in this case, the user will generate

the contents and indexes and allow other users to
search.

• Follower: in this case, the user will be authorized by
others to search their data.

When a user Alice acts a follower and searches another
user’s data (e.g. Bob’s), it is easy to say that Bob can
figure out the keyword in Alice’s query if he colludes
with the server. As such, Alice may not want a random
user Eve to authorize her to search his data. It is crucial
to have a secure and efficient procedure for Alice to
allow another user Bob to authorize her to search his
data. In this case, how to prevent Bob from colluding
with the server seems to be a difficult problem, and we
leave it as a future work.

In contrast, as a data owner, a user Alice has more
control over how the indexes are constructed. As a result,
when Alice searches her own data (which might be
authorized to other users as well), it is desirable to have
more privacy protection to the keywords in the search
queries. The security model and scheme from [22] fall
short in this aspect, while we will address the issue in
this paper.

D. Our Contribution

We first present a new formulation for MPSE. Com-
pared with [22], we explicitly introduce a Follow algo-
rithm, which enables a user Alice to assign a token to
other users through a public channel. With this token,
other users can authorize Alice to search their indexes
without any further interaction with Alice. Since the
communication of token is once for all, we solve the in-
herent scalability problem in the Popa-Zeldovich scheme
[22], as indicated in Remark 1.

We then present a security model for MPSE by consid-
ering the worst-case and average-case scenarios. In the

worst-case scenario, we assume that every user except
the honest user will collude with the cloud server, and
we define the worst-case data and trapdoor privacy
properties. It is worth noting that the worst-case trap-
door privacy property eliminates the aforementioned
information leakage in the Popa-Zeldovich scheme. In
the average-case scenario, we assume that a group of
honest users, who do not share data from any one
outside of the group, will not collude with the cloud
server, and we define a hybrid privacy property.

We finally propose a MPSE scheme by employing
the bilinear property of Type-3 pairings, and prove its
security based on the Bilinear Diffie-Hellman Variant
(BDHV) and Symmetric eXternal Diffie-Hellman (SXDH)
assumptions in the random oracle model. Similar to the
Popa-Zeldovich scheme, the proposed scheme is also
motivated by the PEKS construction of [6]. But, it is
different in the sense that an index contains separate
searchable contents for the data owner and other au-
thorized users, in order for the scheme to be provably
secure in our security model. As a side effect, we do
not need the eXternal Diffie-Hellman Variant (XDHV)
assumption (required in [22]) which is stronger than the
SXDH assumption.

E. Organization
The rest of this paper is organized as follows. In

Section II, we present the preliminary knowledge. In
Section III, we present the algorithmic definition for
MPSE. In Section IV, we present the security model for
MPSE. In Section V, we present our main construction
for MPSE. In Section VI, we conclude the paper.

II. Preliminary
Throughout the paper, we use the following no-

tation. x||y means the concatenation of x and y,
P.P.T. means probabilistic polynomial time, and x $←
AO1,O2,···(m1,m2, · · ·) means that x is the output of the
algorithm A which runs with the input m1,m2, · · · and
access to oracles O1,O2, · · · . When X is a set, x ∈R X
means that x is chosen from X uniformly at random,
and |X| means the size of X. For b ∈ {0, 1}, b̄ represents
1 − b.

A function P(λ) : Z → R is said to be negligible with
respect to λ if, for every polynomial f (λ), there exists an
integer N f such that P(λ) < 1

f (λ) for all λ ≥ N f . If P(λ) is
negligible, then we say 1 − P(λ) is overwhelming.

A. Pairing and Hardness Assumptions
A prime-order bilinear group generator is an algo-

rithm GP that takes as input a security parameter λ and
outputs a description Γ = (p,G1,G2,GT, ê, g1, g2) where:
• G1, G2, and GT are groups of prime-order p with

efficiently-computable group laws.
• g1 is a randomly-chosen generator of G1 and g2 is a

randomly-chosen generator of G2.

4

• ê is an efficiently-computable bilinear pairing ê :
G1 × G2 → GT, i.e., a map satisfying two properties:

– Bilinearity: ê(ga
1, g

b
2) = ê(g1, g2)ab for all a, b ∈ Zp;

– Non-degeneracy: ê(g1, g2) , 1.
According to [9], a pairing is Type-3 if there is no

efficiently computable isomorphism between G1 and G2.
The following assumption requires a Type-3 pairing.

Given Γ = (p,G1,G2,GT, ê, g1, g2), the Symmetric eXter-
nal Diffie-Hellman (SXDH) assumption [3] holds if, for
every P.P.T. attacker A, the advantage ϵsxdh = max{ϵ1, ϵ2}
is negligible for x1, x2, x3, x4, r1, r2 ∈R Zp.

ϵ1 = |Pr[A(Γ, gx1
1 , g

x2
1 , g

x1x2
1) = 1]−Pr[A(Γ, gx1

1 , g
x2
1 , g

r1
1) = 1]|

ϵ2 = |Pr[A(Γ, gx3
2 , g

x4
2 , g

x3x4
2) = 1]−Pr[A(Γ, gx3

2 , g
x4
2 , g

r2
2) = 1]|

This essentially says that the Decisional Diffie-Hellman
(DDH) assumption holds for both G1 and G2.

Given Γ = (p,G1,G2,GT, ê, g1, g2), the Bilinear Diffie-
Hellman Variant (BDHV) assumption [22] holds if, for
x1, x2, x3 ∈R Zp and R ∈R GT, every P.P.T. attacker A’s
advantage ϵbdhv = |Pr[A(Γ,X0) = 1] − Pr[A(Γ,X1) = 1]| is
negligible.

X0 = (gx1
1 , g

1
x1
2 , g

x2
x1
2 , g

x3
1 , ê(g1, g2)x2x3),X1 = (gx1

1 , g
1

x1
2 , g

x2
x1
2 , g

x3
1 ,R).

Lemma 1: Suppose an attacker has the advantages ϵbdhv
and ϵsxdh in solving the BDHV and SXDH problems, then
its advantage in distinguishing Y0 and Y1 is at most
ϵbdhv + ϵsxdh where x1, x2, x3 ∈R Zp and R0,R1 ∈R GT.

Y0 = (gx1
1 , g

1
x1
2 , g

x2
x1
2 , g

x3
1 , g

x4
1 , ê(g1, g2)x2x3 , ê(g1, g2)x2x4)

Y1 = (gx1
1 , g

1
x1
2 , g

x2
x1
2 , g

x3
1 , g

x4
1 ,R0,R1)

Proof. For the attacker, we consider another input Y2,

where Y2 = (gx1
1 , g

1
x1
2 , g

x2
x1
2 , g

x3
1 , g

x4
1 ,R0,R

x4
x3
0)

From Y0 and Y2 we can unanimously obtain X0 and
X1 (defined in the BDHV assumption) by getting rid of
two elements (e.g. the last and third last ones), therefore
|Pr[A(Γ,Y0) = 1] − Pr[A(Γ,Y2) = 1]| ≥ ϵbdhv. On the other
hand, from X0 and X1 we can unanimously obtain Y0
and Y2 by adding two elements (e.g. choose r ∈R Zp
and set gx4

1 = gx3r
1 , and generate a new element by rasing

the last element of X0 or X1 to the power r), therefore
|Pr[A(Γ,Y0) = 1] − Pr[A(Γ,Y2) = 1]| ≤ ϵbdhv. As a result,
we have |Pr[A(Γ,Y0) = 1] − Pr[A(Γ,Y2) = 1]| = ϵbdhv.

As to distinguishing Y1 and Y2, note the fact that

gx1
1 , g

1
x1
2 , g

x2
x1
2 are irrelevant to the rest of Y1 and Y2, we

have |Pr[A(Γ,Y1) = 1] − Pr[A(Γ,Y2) = 1]| equals to
|Pr[A(Γ, α0) = 1] − Pr[A(Γ, α1) = 1]|, where

α0 = (gx3
1 , g

x4
1 ,R0,R1), α1 = (gx3

1 , g
x4
1 ,R0,R

x4
x3
0)

Furthermore, it is obvious that |Pr[A(Γ, α0) = 1] −
Pr[A(Γ, α1) = 1]| ≤ |Pr[A(Γ, β0) = 1] − Pr[A(Γ, β1) = 1]|,
where

x5, x6 ∈R Zp, β0 = (gx3
1 , g

x4
1 , g

x5
1 , g

x6
1), β1 = (gx3

1 , g
x4
1 , g

x5
1 , g

x4x5
x3

1).

Finally, |Pr[A(Γ, β0) = 1]−Pr[A(Γ, β1) = 1]| ≤ ϵsxdh so that
|Pr[A(Γ,Y1) = 1] − Pr[A(Γ,Y2) = 1]| ≤ ϵsxdh.

Based on |Pr[A(Γ,Y0) = 1] − Pr[A(Γ,Y2) = 1]| = ϵbdhv
and |Pr[A(Γ,Y1) = 1] − Pr[A(Γ,Y2) = 1]| ≤ ϵsxdh, we have
|Pr[A(Γ,Y0) = 1] − Pr[A(Γ,Y1) = 1]| ≤ ϵbdhv + ϵsxdh. The
lemma now follows.

Given Γ = (p,G1,G2,GT, ê, g1, g2), the n-Parallel Deci-
sional Diffie-Hellman (PDDHn) assumption [1] holds in
G1 if, for x1, x2, · · · , xn ∈R Zp and R1,R2, · · · ,Rn ∈R G1, ev-
ery P.P.T. attacker A’s advantage ϵpddhn = |Pr[A(Γ,Z0) =
1] − Pr[A(Γ,Z1) = 1]| is negligible.

Z0 = (gx1
1 , g

x2
1 , · · · , g

xn
1 , g

x1x2
1 , gx2x3

1 , · · · , gxnx1
1),

Z1 = (gx1
1 , g

x2
1 , · · · , g

xn
1 ,R1,R2, · · · ,Rn).

It has been proven that this assumption is equivalent to
DDH assumption in G1 [1], namely ϵddh ≤ ϵpddhn ≤ nϵddh ≤
nϵsxdh. Next, we review a more generalized assumption.

Given Γ = (p,G1,G2,GT, ê, g1, g2), the n-Multi Deci-
sional Diffie-Hellman (M-DDHn) assumption [10] holds
in G1 if, for x1, x2, · · · , xn ∈R Zp and R1,R2, · · · ,R n(n−1)

2
∈R

G1, every P.P.T. attacker A’s advantage ϵm−ddhn =
|Pr[A(Γ,U0) = 1] − Pr[A(Γ,U1) = 1]| is negligible.

U0 = (gx1
1 , g

x2
1 , · · · , g

xn
1 , g

xix j

1 (1 ≤ i < j ≤ n))

U1 = (gx1
1 , g

x2
1 , · · · , g

xn
1 ,R1,R2, · · · ,R n(n−1)

2
).

The M-DDHn assumption can be reduced to the DDH
assumption in G1 [10]. More precisely, we have ϵddh ≤
ϵm−ddhn ≤ n2ϵddh ≤ n2ϵsxdh.

In a similar way, both PDDHn and M-DDHn assump-
tions can be defined for G2.

III. New Definition forMPSE

A MPSE scheme involves two types of entities: a cloud
server and a set of users Ui (1 ≤ i ≤ N) where N can be
any integer and should be a polynomial in the security
parameter. Every user can generate encrypted indexes
and authorize others to search, while the cloud server
stores all encrypted contents and search on the users’
behalf. We envision the following workflow for MPSE.

1) The users together set up some global public pa-
rameters.

2) Every user Ui, for 1 ≤ i ≤ N, generates a master
public/private key pair. The private key is mainly
used to for three purposes.
• Generate tokens to follow other users who can

then authorize Ui to search their encrypted
indexes.

• Derive document-specific secret keys to gener-
ate encrypted indexes.

• Generate trapdoors to search over encrypted
indexes.

3) For every her document, Ui first extracts a list of
keywords and then derives a document-specific
key from her master private key to generate the
encrypted index, which contains an encryption of

5

the list of keywords and some authorization in-
formation indicating who can search. The index is
outsourced to the cloud server.

4) To search for a specific keyword, Ui issues the cloud
server a trapdoor, generated based on her master
private key and the keyword.

5) With the trapdoor from Ui, the cloud server first se-
lects the encrypted indexes (from both Ui and other
users) whose attached authorization information
indicates that Ui is authorized to search. Then, for
each selected index, the cloud server runs a match
algorithm to decide whether the index contains the
same keyword as that in the trapdoor.

Intuitively, we wish Ui’s master private key to estab-
lish a link between her trapdoors and all indexes that
have been authorized to her (generated by herself and
others). As a result, Ui is able to search all indexes with
only one trapdoor.

Remark 2: The authorization information in each index
gives the server an indication who can search which in-
dex. This is crucial for the server’s operational efficiency
in practice. Otherwise, with a search request, the server
needs to try all indexes in its database. Consider the
server may have many users and each of them may store
a lot of indexes, the absence of explicit authorization
information will make it impossible to have a practical
solution.

A. Algorithmic Definition for MPSE

Let λ be the security parameter. A MPSE scheme
consists of the following algorithms.
• Setup(λ): Taking the security parameter λ as input,

it sets up the global public parameter params. It
is required that params includes a definition for a
keyword space W.

• KeyGen(params): Run by user Ui, for every 1 ≤
i ≤ N, it generates a master public/private key pair
(MPKi,MSKi).

• Follow(MSKi,MPK j): Run by Ui, it generates a token
TKi→ j. We use i→ j to denote Ui follows U j.

• Formindex(MSKi, doc,TK): The doc parameter is a
keyword set {w1,w2, · · · , wn} where no keyword
should repeat, and TK contains tokens of the form
TKt→i. If Ui wants to authorize herself to search, in-
stead of TKi→i, we assume MPKi should be included
in TK . Ui performs as follows.

1) Select a unique identifier id for the index, and
generate a document-specific secret key FKid.

2) Based on FKid, run the Enc algorithm to gener-
ate TAGid = {Tagw1 , Tagw2 , · · · ,Tagwn }.

3) Based on MSKi and TK , generate authoriza-
tion information ∆id that allows the users affil-
iated with the tokens from TK to search the
index.

4) Return indexid = (id,TAGid,∆id).

• Enc(FKid,w): It generates a tag Tagw for the keyword
w based on the secret key FKid.

• Trapdoor(MSKi,w): Run by Ui, this algorithm out-
puts a trapdoor Trapw for keyword w.

• Match(Trapw, indexid): Let indexid = (id,TAGid,∆id)
and TAGid = {Tagw1 , Tagw2 , · · · ,Tagwn }. Run by the
cloud server, when Trapw issuer’s token has been
included in generating ∆id, it returns 1 if w = wi
form some 1 ≤ i ≤ n and 0 otherwise.

Remark 3: Even though Ui needs to authorize herself
to search her own data, for both security and efficiency
reasons, we assume that she will not explicitly issue a
token TKi→i and stores it locally. Instead, she should
authorize herself on the fly in the Formindex algorithm.

B. Soundness Property
Given (MPKi,MSKi) = KeyGen(params) and

(MPK j,MSK j) = KeyGen(params), a MPSE scheme
is sound if the followings are true.
• If w ∈ doc, Match(Trapdoor(MSK j,w),Formindex(MSKi,

doc,TK)) = 1 holds with overwhelming probability
when TK j→i is in TK or MPK j is in TK (in which
case j = i).

• If w < doc, Match(Trapdoor(MSK j,w),Formindex(MSKi,
doc,TK)) = 0 holds with overwhelming probability
when TK j→i is in TK or MPK j is in TK (in which
case j = i).

IV. SecurityModel forMPSE
In the context of searchable encryption, it is realistic

to assume that the de facto size of the keyword space
W is polynomial with respect to the security parameter
λ, even though we can specify a space of any size in
our theoretical cryptographic scheme. This implies that
a scheme can be in the danger of dictionary attacks, as
shown in Section I-B2. We further make the following
assumptions.
• We assume that the cloud server will honestly per-

form search on every user’s behalf (e.g. if an index
is matched by a search query, the cloud server will
not say no.), but it can be malicious in trying to
obtaining user’s private information by colluding
with dishonest users or simply forging new users
in the system.

• We assume that there is a secure channel between
every user and the cloud server to transmit trap-
doors. This leads us to consider the cloud server as
the primary attacker since a dishonest user alone
will not learn anything due to the secure channel.

In the context of MPSE, it is infeasible for a user to
be absolutely confident about which other users will be
honest in the long run (or, will not be compromised in
the future). As such, we choose to investigate the security
properties for MPSE in two scenarios.
• In the worst-case scenario, an honest user assumes

all other users may be dishonest or compromised

6

by the cloud server. Corrspondingly, we define the
worst-case data and trapdoor privacy properties in
Section IV-A. In this scenario, a user who only
follows other users has no privacy (e.g. User 3, User
4 and User 6 in the example shown in Fig. 1 of
Section I-A).

• In the average-case scenario, an honest user assumes
all other users who have authorized her to search
are honest. For example, in the example shown in
Fig. 1 of Section I-A, User 3 needs to assume User
1 and User 2 are honest. In this scenario, we define
the average-case hybrid privacy property in Section
IV-B.

It is worth noting that the security properties in the
two scenarios do not imply each other, so that it is
essential for a MPSE scheme to achieve them all. In the
following, we define the security properties through the
standard challenger-attacker attack games.

A. Security in the Worst-case Scenario

Without loss of generality, we present the definitions
by assuming U1 is honest. In the attack games, the
challenger simulates U1 with key pair (MPK1,MSK1) and
interacts with the attacker A, which plays the role of
the cloud server and all colluded users Ui (2 ≤ i ≤
N). For simplicity, we assume the attacker generates
(MPKi,MSKi) for 2 ≤ i ≤ N. The attacker may issue
the following types of oracle queries to the challenger:
Follow, Formindex, Trapdoor.
• For a Follow oracle query, the attacker has MPKi

for some 2 ≤ i ≤ N as input, and receives a token
TK1→i = Follow(MSK1,MPKi).

• For a Formindex oracle query, the attacker has
a document parameter doc and a set of tokens
TK as input, and receives an index indexid =
Formindex(MSK1, doc,TK). If the attacker wants U1
to search her own index, it includes MPK1 in TK .
Note that TK mainly contains tokens of the form
TKi→1.

• For a Tarpdoor oracle query, the attacker has a
keyword w as input, and receives a trapdoor Trapw =
Trapdoor(MSK1,w).

Remark 4: In answering the oracle queries, the chal-
lenger should check the inputs from the attacker are
well-formed. For instance, in a Follow oracle query the
MPKi should be in the right form, and in a Formindex
oracle query the parameter doc contain keywords from
the right domain. For the sake of simplicity, we skip
enumerating all these checks.

Intuitively, the worst-case data privacy property says
that, if U1 has not authorized an index to any other
user (e.g. Index1 for Doc 1 in the toy example, shown in
Fig. 1 of Section I-A), then the attacker will not learned
any useful information about the keywords in this index
unless U1 reveals it by issuing the relevant trapdoors.

This property is an analog to the semantic security for
PEKS in [6].

Definition 1: A MPSE scheme achieves
worst-case data privacy if any P.P.T. attacker A’s
advantage (i.e. |Pr[b′ = b] − 1

2 |) is negligible in the attack
game shown in Fig. 2. In the game, there are two
restrictions.
• In the Formindex oracle query to generate indexid∗ , it

is required that TK only contains MPK1 and neither
w0 nor w1 is in the doc parameter.

• Neither w0 nor w1 has been queried to the Trapdoor
oracle.

1) params $← Setup(λ)
(MPK1,MSK1) $← KeyGen(params)

2) (w0,w1, indexid∗ , state) $←
AFollow,Formindex,Trapdoor(params,MPK1)

3) b ∈R {0, 1}
Tagwb = Enc(FKid∗ ,wb), Tagwb̄

= Enc(FKid∗ ,wb̄)
4) b′ $←AFollow,Formindex,Trapdoor(state,Tagwb ,Tagwb̄

)

Fig. 2. Worst-case Data Privacy Game

When generating the challenge (Tagwb ,Tagwb̄
) in Step

3, FKid∗ is the secret key the challenger has used in
generating indexid∗ . In the above definition, the first
restriction is to guarantee that no keyword should repeat
in the index and the index has not been authorized
to the attacker. Note that the challenger will return
Tagwb and Tagwb̄

generated under FKid∗ , if the attacker
queries Formindex with w0 or w1 then the keyword will
repeat in the index. The second restriction is obviously
essential. Given Trapw0 or Trapw1 (the attacker knows
the corresponding keyword w0 or w1), the attacker can
trivially recover b by running the Match algorithm.

Remark 5: In the definition, we have set the challenge to
be (Tagwb ,Tagwb̄

), which equals to (Tagw0 ,Tagw1) if b = 0
and equals to (Tagw1 ,Tagw0) otherwise. The attacker’s
task is to tell b, namely which tag is for w0 or w1.
This is in contrast to the usual definitions, e.g. those
from [6], [22], where the challenge only contains Tagwb .
For searchable encryption schemes in the asymmetric
setting, e.g. [6], this feature does not make much differ-
ence because the attacker can generate tags on its own,
but it seems to result in a strictly stronger definition
for symmetric searchable encryption schemes (including
MPSE) because (Tagwb ,Tagwb̄

) reveals more information
than Tagwb alone to the attacker.

Intuitively, the worst-case trapdoor privacy property
says that, if U1 does not follow any other user, then the
attacker will not learn any useful information about the
keywords in the U1’s trapdoors unless these trapdoors
match an index (e.g. Index 3 or Index4 in the toy
example, shown in Fig. 1 of Section I-A) that has been
shared with the attacker.

Definition 2: A MPSE scheme achieves
worst-case trapdoor privacy if any P.P.T. attacker

7

A’s advantage (i.e. |Pr[b′ = b] − 1
2 |) is negligible in the

attack game shown in Fig. 3. In the game, there are
three restrictions.
• For any Formindex oracle query with the input

(doc,TK), the following two situations should not
happen at the same time: (1) w0 or w1 is in the doc
parameter; (2) TK contains TKi→1 for some i.

• For any Formindex oracle query with the input
(doc,TK), if TK contains only MPK1 then w0 and
w1 can only be in the doc parameter at the same time.

• Neither w0 nor w1 has been queried to the Trapdoor
oracle.

1) params $← Setup(λ)
(MPK1,MSK1) $← KeyGen(params)

2) (w0,w1, state) $←AFormindex,Trapdoor(params,MPK1)
3) b ∈R {0, 1}, Trapwb = Trapdoor(MSK1,wb)

Trapwb̄
= Trapdoor(MSK1,wb̄)

4) b′ $←AFormindex,Trapdoor(state,Trapwb ,Trapwb̄
)

Fig. 3. Worst-case Trapdoor Privacy Game

In the above definition, the first restriction says that
an index should not simultaneously be authorized to the
attacker and contain the keyword w0 or w1. Otherwise,
the attacker can recover b by comparing search results
of Trapwb to the results of its own trapdoors for w0 and
w1 (this is possible because the attacker is authorized
to search). The second restriction is essential. If only w0
or w1 is in an index (the attacker knows which one),
then the attacker can recover b in Trapwb by running
the Match algorithm on Trapwb and the index. The third
restriction is essential, because, given Trapw0 or Trapw1

(the attacker knows the corresponding keyword w0 or
w1), the attacker can trivially recover b in Trapwb by
running the Match algorithm based on these trapdoors
and comparing their results.

Remark 6: It is worth noting that we allow the attacker
to access tags for w0 and w1 in the game through the
Formindex oracle. This is in the vein of enhanced function
privacy for IBE and enhanced keyword privacy for PEKS
[7]. In contrast to Definition 1, the attacker has no access
to the Follow oracle in Definition 2. As a result, it
seems difficult to have a hybrid definition to cover both
properties.

B. Security in the Average-case Scenario

Unlike in the worst-case scenario, where the challenger
simulates only one honest user U1, in the average-case
scenario the challenger simulates a group of honest users
who do not follow any user from outside of the group.
For example, User 1, User 2, and User 3 form such
a group, as shown in Fig. 1 of Section I-A. Without
loss of generality, we assume that Ut (1 ≤ j ≤ t) are
honest and t is an integer determined by the attacker.
The attacker may query the following oracles: Follow,
Formindex, Trapdoor.

• For a Follow oracle query, the attacker has x, y where
1 ≤ x , y ≤ t as input and receives TKx→y =
Follow(MSKx,MPKy).

• For a Formindex oracle query, the attacker has MPKx
where 1 ≤ x ≤ t, a document parameter doc and a
set of tokens TK as input, and receives an index
indexid = Formindex(MSKx, doc,TK).

• For a Tarpdoor oracle query, the attacker has x where
1 ≤ x ≤ t and a keyword w as input, and receives a
trapdoor Trapw = Trapdoor(MSKx,w).

Intuitively, the average-case hybrid privacy property
implies that the attacker cannot learn more information
than what can be inferred from the search results on their
indexes. The following definition can be considered as a
hybrid version of the worst-case data and trapdoor pri-
vacy properties, as we ask the attacker to distinguish two
(tag, trapdoor) pairs for (v0,w0) and (v1,w1) respectively,
which are chosen by the attacker.

Definition 3: A MPSE scheme achieves
average-case hybrid privacy if any P.P.T. attacker
A’s advantage (i.e. |Pr[b′ = b] − 1

2 |) is negligible
in the attack game shown in Fig. 4. Let the set
S = {MPK1, · · · ,MPKt,TKx→y (1 ≤ x , y ≤ t)}. The
set TAGvb

contains Enc(FKid, vb) for every FKid that
is generated in answering the Formindex oracle query
with an input (MPKx, doc,TK) where TK ⊆ S (i.e. the
index has not been authorized to the attacker). The
set TRAPwb contains Trapdoor(MSKx,wb) for every
1 ≤ x ≤ t. TAGvb̄

and TRAPwb̄
are defined similarly.

There are the following restrictions.
• v0 = w0 iff v1 = w1, and v0 = w1 iff v1 = w0.
• Any of v0,w0, v1,w1 should not be in the input to the

Trapdoor oracle.
• For any Formindex oracle query with the input

(MPKx, doc,TK), if TK ∩ S , ∅ and TK \ S , ∅
(the index has been authorized to both the attacker
and some honest users), then none of v0,w0, v1,w1 is
included in the doc parameter.

• For any Formindex oracle query with the input
(MPKx, doc,TK), if TK ⊆ S (i.e. the index has
not been authorized to the attacker), then none of
v0,w0, v1,w1 should be in the doc parameter.

1) params $← Setup(λ)
2) (t, state) $←A(params)
3) (MPK1,MSK1, · · · ,MPKt,MSKt)

$← KeyGen(params)
MPK ∗ = (MPK1, · · · ,MPKt)

4) (v0,w0, v1,w1, state) $←
AFollow,Formindex,Trapdoor(state,MPK ∗)

5) b ∈R {0, 1}, TAGvb
, TRAPwb , TAGvb̄

, TRAPwb̄

6) b′ $←AFollow,Formindex,Trapdoor(state,TAGvb
,TRAPwb ,

TAGvb̄
,TRAPwb̄

)

Fig. 4. Average-case Hybrid Privacy Game

The first and second restrictions are essential because
otherwise the attacker can trivially recover b by matching

8

the trapdoors and the tags in the challenge. The third
restriction is necessary since it means that if an index
is authorized to the attacker then none of v0,w0, v1,w1
should be included in it. The fourth restriction is to
guarantee that no keyword will repeat in any index.

Consider the example shown in Fig. 1 of Section
I-A, if the attacker chooses t = 3 in the attack (i.e.
User 1, User 2, and User 3 are not compromised) then
TAGvb

, TRAPwb , TAGvb̄
, TRAPwb̄

are defined as fol-
lows. TAGvb

and TAGvb̄
contain the tags for vb and vb̄

under the document-specific secret keys of index1, in-
dex2, index3 and index5. TRAPwb and TRAPwb̄

contain
trapdoors for wb and wb̄ under the long-term private keys
of User 1, User 2 and User 3.

C. Remarks on the Security Model
In [22], Popa and Zeldovich defined two security prop-

erties for their multi-key searchable encryption scheme.
• One is data hiding property. In the attack game,

the challenger generates the key materials after the
attacker has chosen its parameters. This property
is similar to worst-case data privacy property for
MPSE, but seems to be weaker (see Definition 1 and
Remark 5 in Section IV-A).

• The other is trapdoor hiding property (called token
hiding property in [22]), which is similar to the
worst-case trapdoor privacy property (Definition 2
in Section III) for MPSE. The trapdoor hiding prop-
erty definition is weaker because it does not allow
the attacker to query any trapdoor from the honest
user. In contrast, in our worst-case trapdoor privacy
property definition, we allow the attacker to query
any trapdoors except for the two challenged key-
words w0,w1. This explains why the Popa-Zeldovich
scheme does not achieve our worst-case trapdoor
privacy property.

V. MainMPSE Construction
In the literature, searchable encryption schemes in the

symmetric setting are usually based on lightweight cryp-
tographic primitives such as block ciphers and pseudo-
random functions. As a result, they are much more
efficient than schemes in the asymmetric setting where
relatively expensive tools (e.g. bilinear pairings) are re-
quired. Unfortunately, for MPSE, it seems difficult to
have an instantiation only based on these lightweight
primitives due to the fact that a user needs to selectively
authorize other users to search her indexes. This fact
has lead Popa and Zeldovich to design their scheme
based on bilinear pairings [22], by employing the bilinear
property of pairings.

In our construction, we follow a very similar approach
to that of Popa and Zeldovich, by adapting the PEKS
construction of [6] to the symmetric setting. However,
our construction is different in two aspects.
• One is that an index contains separate searchable

contents for the owner and other authorized users,

so that we can avoid the undesirable property of the
Popa-Zeldovich scheme.

• The other is that we add parameters for users to
use a static variant of ElGamal encryption to protect

their credential (i.e. g
1
yi
2 for user Ui) in running the

Follow algorithm. As a side effect, we get rid of the
eXternal Diffie-Hellman Variant (XDHV) assump-
tion required in [22]. Note that other encryption can
also be used, but they will be less efficient in space
and size.

A. The Proposed MPSE Scheme

Let λ be the security parameter, the proposed MPSE
scheme consists of the following algorithms.
• Setup(λ): run GP to generate Γ =

(p,G1,G2,GT, ê, , g1, g2), and return params =
(Γ,H,H1), where H : {0, 1}∗ → G1 and
H1 : {0, 1}∗ → G2 are two hash functions.

• KeyGen(params): Run by Ui, for every 1 ≤ i ≤ N, it
returns (MPKi,MSKi), where MPKi = gxi

2 and MSKi =
(MPKi, xi, yi) for xi, yi ∈R Zp.

• Follow(MSKi,MPK j): parse MSKi as (MPKi, xi, yi)
and MPK j as gx j

2 , and return TKi→ j =

(MPKi,MPK j,H1(gxix j

2 ||i|| j) · g
1
yi
2).

• Formindex(MSKi, doc,TK): parse MSKi as
(MPKi, xi, yi) and doc as (w1, w2, · · · ,wn), and
then do the following.

1) Select a unique identifier id ∈R {0, 1}λ for the
index, and generate a document-specific secret
key FKid = (k1, k2) where k1, k2 ∈R Zp.

2) Generate TAGid =
{Enc(FKid,w1), · · · ,Enc(FKid,wn)}Permute, which
is a randomly permutated set of the ciphertexts.

3) For every TKt→i = (MPKt,MPKi,H1(gxtxi
2 ||t||i) ·

g
1
yt
2) from TK , first recover g

1
yt
2 and then gen-

erate ΘMPKt = g
k2
yt
2 .

4) If MPKi ∈ TK , generate ΘMPKi = g
k1
yi
2 and set

∆id = (ΘMPKt , · · · ;ΘMPKi), otherwise set ∆id =
(ΘMPKt , · · ·).

5) Return indexid = (id,TAGid,∆id).

• Enc(FKid,w): parse FKid as k1, k2 and return c =
(c1, c2), where c1 = ê(H(w), g2)k1 , c2 = ê(H(w), g2)k2 .

• Trapdoor(MSKi,w): parse MSKi as (MPKi, xi, yi), re-
turn Trapw = (MPKi,H(w)yi).

• Match(Trapw, indexid): parse Trapw as (α, β)
and parse indexid as (id, {Enc(FKid,w1),
Enc(FKid,w2), · · · ,Enc(FKid,wn)}Permute,∆id) and
proceed as follows:

1) If Θα < ∆id, return 0.
2) If id is generated by the issuer of Trapw, then

if Test1(Enc(FKid,w j), β) = 1 for some 1 ≤ j ≤ n
return 1 otherwise return 0. Let Enc(FKid,w j) =

9

(c1, c2), we define Test1(Enc(FKid,w j), β) = 1 iff
c1 = ê(β,Θα).

3) If Test2(Enc(FKid,w j), β) = 1 for some 1 ≤ j ≤ n
return 1, otherwise return 0. Let Enc(FKid,w j) =
(c1, c2), we define Test2(Enc(FKid,w j), β) = 1 iff
c2 = ê(β,Θα).

B. Analysis of the Proposed Scheme
Let MPKi = gxi

2 , MSKi = (MPKi, xi, yi) and MPK j =

gx j

2 , MSK j = (MPK j, x j, y j). Given any FKid = (k1, k2)
and w,w′ ∈ W, it is straightforward to verify that the
followings are true.
• Given (c1, c2) = Enc(FKid,w), the equalities c1 =

ê(H(w)yi , g
k1
yi
2) and c2 = ê(H(w)y j , g

k2
yj

2) hold with prob-
ability 1.

• Given (c1, c2) = Enc(FKid,w) and w′ , w, the in-

equalities c1 , ê(H(w′)yi , g
k1
yi
2) and c2 , ê(H(w′)y j , g

k2
yj

2)
hold with overwhelming probability. In fact, these
inequalities do not hold only if H(w′) = H(w) which
has a negligible probability.

As a result, the value of
Match(Trapdoor(MSK j,w),Formindex(MSKi, doc,TK)) is
the same as required in the soundness definition in
Section III-B. The proposed scheme is sound.

With the following three theorems, we show that the
proposed scheme achieves all three properties defined
in our security model, defined in Section IV. The proofs
make use of the standard game-hopping technique.

Theorem 1: The proposed MPSE scheme achieves
worst-case data privacy property under Definition 1,
based on the BDHV and SXDH assumptions in the
random oracle model.

Proof. This proof is very straightforward. The chal-
lenger makes use of the property of random oracle,
and tries to guess the attacker’s output in step 2 of the
attack game. This strategy reduces the tightness of the
reduction, but makes the proof easier.

Suppose that the number of queries to the Formindex
oracle is bounded by q1 and the number of queries to the
random oracle H is bounded by q2. For a P.P.T. attacker, q1
and q2 should be polynomials in the security parameter
λ.

Game 0: The challenger faithfully simulates every-
thing. Let the attacker’s advantage be ϵ.

Game 1: The challenger tries to guess id∗, w0 and w1
in the attacker’s output in Step 2 of the attack game.
If the guess is correct, the challenger continues, and
aborts otherwise. The challenger’s success probability is

1
q1q2(q2−1) . Let the attacker’s advantage be ϵ1, which equals
to ϵ

q1q2(q2−1) .
Game 2: The challenger performs the same as in Game

1, except for the following. For a query to H with the
input w where w < {w0,w1}, the challenger first check
whether the same query has been made. If so, return
the existing hash value, otherwise chooses r ∈R Zp and

return gr
1 as the hash value. The challenger also send the

exponent r to the attacker. If w0 or w1 is queried to H,
then the challenger randomly choose a value from G1
as the hash value. This game is identical to Game 1. Let
the attacker’s advantage be ϵ2 in this game, and we have
ϵ2 = ϵ1.

Game 3: The challenger performs the same as in
Game 2, except for the following. Let MPK1 = gx∗

2 ,
MSK1 = (MPK1, x∗, y∗), FKid∗ = (k∗1, k

∗
2) and k∗2 = k∗1z∗ for

z∗ ∈R Zp. The challenger gives x∗, gy∗

1 , g
1
y∗

2 , g
k∗1
y∗

2 and z∗ to
the attacker. With the given information, the attacker can
answer Formindex, Follow and Trapdoor oracles on its
own. Let the attacker’s advantage be ϵ3 in this game, and
it is clear ϵ3 ≥ ϵ2 because of the additional information
given to the attacker.

In Game 3, the attacker is given the following infor-
mation and is asked to guess b.

(gy∗

1 , g
1
y∗

2 , g
k∗1
y∗

2 ,H(w0),H(w1), ê(H(wb), g2)k∗1 , ê(H(wb̄), g2)k∗1)

ê(H(wb), g2)k∗1 and ê(H(wb̄), g2)k∗1 are from the chal-
lenge, and we have ignored (ê(H(wb), g2)k∗1)z∗ and
(ê(H(wb̄), g2)k∗1)z∗ since they are redundant. It is worth
mentioning that we deliberately ignore other redundant
information such as x∗ because they are not relevant to
the rest of our proof.

Game 4: The challenger performs the same as in
Game 3, except for randomly setting the challenge.

The attacker will obtain (gy∗

1 , g
1
y∗

2 , g
k∗1
y∗

2 ,H(w0),H(w1),R0,R1),
where R0,R1 ∈R GT. Let the attacker’s advantage be ϵ4
in this game, and we have |ϵ4 − ϵ3| ≤ ϵbdhv + ϵsxdh based
on Lemma 1.

In Game 4, it is clear that ϵ4 = 0 because the challenge
is independent from b. To sum up, we have ϵ

q1q2(q2−1) ≤
ϵbdhv + ϵsxdh. Since q1q2(q2 − 1) is a polynomial in the
security parameter, therefore, if ϵbdhv + ϵsxdh is negligible
then ϵ is also negligible. The theorem now follows.

Theorem 2: The proposed MPSE scheme achieves
worst-case trapdoor privacy property under Definition
2, based on the SXDH assumption in the random oracle
model.

Proof. This proof makes use the same strategy as in
the proof of Theorem 1.

Suppose that the number of queries to the random
oracle H is bounded by q2. For a P.P.T. attacker, q2 should
be a polynomial in the security parameter λ.

Game 0: The challenger faithfully simulates every-
thing. Let the attacker’s advantage be ϵ.

Game 1: The challenger tries to guess w0 and w1
in the attacker’s output in Step 2 of the attack game.
If the guess is correct, the challenger continues, and
aborts otherwise. The challenger’s success probability is

1
q2(q2−1) . Let the attacker’s advantage be ϵ1, which equals
to ϵ

q2(q2−1) .
Game 2: The challenger performs the same as in Game

1, except for the following. For a query to H with the

10

input w where w < {w0,w1}, the challenger first check
whether the same query has been made. If so, return
the existing hash value, otherwise chooses r ∈R Zp and
return gr

1 as the hash value. The challenger also send the
exponent r to the attacker. If w0 or w1 is queried to H,
then the challenger randomly choose a value from G1
as the hash value. This game is identical to Game 1. Let
the attacker’s advantage be ϵ2 in this game, and we have
ϵ2 = ϵ1.

Game 3: The challenger performs the same as in
Game 2, except for the following. Let MPK1 = gx∗

2 and
MSK1 = (MPK1, x∗, y∗). The challenger gives x∗ and gy∗

1
to the attacker. With the given information, the attacker
can answer the Trapdoor oracle on its own. Let the
attacker’s advantage be ϵ3 in this game, and it is clear
ϵ3 ≥ ϵ2 because of the additional information given to
the attacker.

Game 4: The challenger performs the same as in Game
3, except for the following. The challenger selects k∗1 ∈R

Zp to compute g
k∗1
y∗

2 , and also computes H(wb)y∗ ,H(wb̄)y∗ .
The challenger then answers any Formindex oracle query
with the input (doc,TK) as follows.

• If MPK1 < TK , reject the query and let the attacker
answer on its own.

• If MPK1 ∈ TK and TK \ {MPK1} , ∅, do the
following. In this case, w0,w1 < doc.

1) Select a unique identifier id ∈R {0, 1}λ for the
index.

2) Select k2, z ∈R Zp.
3) For every w ∈ doc, suppose H(w) = gr

1 then set

its ciphertext (ê(gy∗

1 , g
k∗1
y∗

2)rz, ê(gr
1, g2)k2). Shuffle all

the ciphertexts to generate TAGid.

4) Set ∆MPK1 = g
k∗1z

y∗

2 , use k2 to generate ∆MPKt for
all TKt→1 ∈ TK , and then set ∆id.

5) Return (id,TAGid,∆id).

• If TK = {MPK1}, do the following.

1) Select a unique identifier id ∈R {0, 1}λ for the
index.

2) Select k2, z ∈R Zp.
3) If w0,w1 ∈ doc, set their ciphertexts to

be (ê(H(wb)y∗ , g
k∗1
y∗

2)z, ê(H(wb)y∗ , g
k∗1
y∗

2)zk2) and

(ê(H(wb̄)y∗ , g
k∗1
y∗

2)z, ê(H(wb̄)y∗ , g
k∗1
y∗

2)zk2). For every
w ∈ doc and w < {w0,w1}, suppose
that H(w) = gr

1 then set its ciphertext

(ê(gy∗

1 , g
k∗1
y∗

2)rz, ê(gy∗

1 , g
k∗1
y∗

2)rzk2). Shuffle all the
ciphertexts to generate TAGid.

4) Set ∆MPK1 = g
k∗1z

y∗

2 and then set ∆id = {∆MPK1 }.
5) Return (id,TAGid,∆id).

This game is indeed identical to Game 3. Let the at-
tacker’s advantage be ϵ4 in this game, and we have
ϵ4 = ϵ3.

By looking at the simulation, it is clear that the chal-

lenger only needs (gy∗

1 , g
k∗1
y∗

2 ,H(w0),H(w1),H(wb)y∗ ,H(wb̄)y∗)
to faithfully answer all the oracle queries from the
attacker. In particular, the challenger does not need to
know k∗1 and the value of b. Since the random number

k∗1 only appears in g
k∗1
y∗

2 , the challenger indeed only needs
(gy∗

1 ,H(w0),H(w1),H(wb)y∗ ,H(wb̄)y∗) to faithfully answer all
the oracle queries from the attacker in the game.

Game 5: The challenger performs the same as in Game
4, except for replacing H(wb)y∗ with R1 ∈R G1 and replac-
ing H(wb̄)y∗ with R2 ∈R G1. Let the attacker’s advantage
be ϵ5 in this game. It is clear that, in game 4 and Game
5, the attacker can be regarded as a distinguisher for
M-DDH3 problem in G1, and ϵm−ddh3 ≤ 9ϵddh ≤ 9ϵsxdh.
Therefore, we have |ϵ5 − ϵ4| ≤ 9ϵsxdh.

In Game 5, it is clear that ϵ4 = 0 because the challenge
is independent from b. To sum up, we have ϵ

q2(q2−1) ≤
9ϵsxdh. Since q2(q2 − 1) is a polynomial in the security
parameter, therefore, if ϵsxdh is negligible then ϵ is also
negligible. The theorem now follows.

Theorem 3: The proposed MPSE scheme achieves
average-case hybrid privacy property under Definition
3, based on the SXDH assumption in the random oracle
model.

Proof. In the attack game, there are five general cases
for the values v0,w0, v1,w1.

1) v0 = w0, v1 = w1, and v0 , v1 (or equivalently,
v0 = w1, v1 = w0 and v0 , v1)

2) v0 , v1 , w0 , w1
3) v0 = v1 = w0 = w1
4) v0 = v1 and w0 , w1 , v0
5) w0 = w1 and v0 , v1 , w0

It is clear that the attacker’s advantage is 0 in the third
case (i.e. v0 = v1 = w0 = w1) and the fourth and fifth
cases is covered in the first case.

Suppose that the number of queries to the random
oracle H is bounded by q2. For a P.P.T. attacker, q2 should
be a polynomial in the security parameter λ. Next, we
consider the first and second cases only. The proof is
carried out in a similar manner to that of Theorem 2,
and also makes use the same strategy as in the proof of
Theorem 1.

Proof for Case 1: v0 = w0, v1 = w1, and v0 , v1

Game 0: The challenger faithfully simulates every-
thing. Let the attacker’s advantage be ϵ.

Game 1: The challenger tries to guess v0,w0, v1,w1 in
the attacker’s output in Step 4 of the attack game (in fact,
the challenger only needs to guess v0 and v1). If the guess
is correct, the challenger continues, and aborts otherwise.
The challenger’s success probability is 1

q2(q2−1) . Let the
attacker’s advantage be ϵ1, which equals to ϵ

q2(q2−1) .
Game 2: The challenger performs the same as in Game

1, except for the following. For a query to H with the
input w where w < {v0,w0, v1,w1}, the challenger first

11

check whether the same query has been made. If so,
return the existing hash value, otherwise chooses r ∈R Zp
and return gr

1 as the hash value. The challenger also send
the exponent r to the attacker. If one of {v0,w0, v1,w1}
is queried to H, then the challenger randomly choose a
value from G1 as the hash value. This game is identical
to Game 1. Let the attacker’s advantage be ϵ2 in this
game, and we have ϵ2 = ϵ1.

Game 3: The challenger performs the same as in
Game 2, except for the following. For each Follow oracle
with the input (i, j), the challenger returns TKi→ j =
(MPKi,MPK j,R) where R ∈R G2. Let the attacker’s ad-
vantage be ϵ3 in this game. Game 3 is identical to Game 2
unless the attacker queries the H1 oracle with gxix j

2 ||i|| j for
some i, j (referred to as an event EVT). Straightforwardly,
the attacker has advantage Pr[EVT] in solving the M-
DDHt problem in G2. As a result, |ϵ3 − ϵ2| ≤ Pr[EVT] ≤
t2 · ϵsxdh.

Game 4: The challenger performs the same as in Game
3, except for the following. Let MPK1 = gx1

2 and MSK1 =
(MPK1, x1, y1). For 2 ≤ i ≤ t, set MPKi = gxi

2 and MSKi =
(MPKi, xi, y1ri) for ri ∈R Zp. Set r1 = 1. The challenger
gives gy1

1 and ri (2 ≤ i ≤ t) to the attacker. With the given
information, the attacker can answer the Trapdoor oracle
on its own. Let the attacker’s advantage be ϵ4 in this
game, and it is clear ϵ4 ≥ ϵ3 because of the additional
information given to the attacker.

Game 5: The challenger performs the same as in Game
4, except for the following. Let S =MPK ∗∪{TKu→v (1 ≤
u , v ≤ t)}. The challenger selects k∗1 ∈R Zp to compute

g
k∗1
y∗

2 and also compute H(wb)y∗ ,H(wb̄)y∗ for b ∈R {0, 1}. In
the following, we implicitly set y1 = y∗.
• The challenger answers any Formindex oracle query

with the input (MPK j, doc,TK) for some 1 ≤ j ≤ t
as follows.

1) If S ∩ TK = ∅, do the following.
a) Select a unique identifier id ∈R {0, 1}λ for the

index.
b) Select k2, k1 ∈R Zp.
c) For every w ∈ doc, set its ciphertext

(ê(H(w), g2)k1 , ê(H(w), g2)k2). Shuffle all the
ciphertexts to generate TAGid.

d) Use k2 to generate ∆MPKu for every token
TKu→ j ∈ TK and then set ∆id.

e) Return (id,TAGid,∆id).
2) If TK∩S , ∅ and TK\S , ∅, do the following.

In this case, v0,w0, v1,w1 < doc.
a) Select a unique identifier id ∈R {0, 1}λ for the

index.
b) Select k2, z ∈R Zp.
c) For every w ∈ doc, suppose H(w) = gr

1, set its

ciphertext (ê(gy∗

1 , g
k∗1
y∗

2)rz, ê(gr
1, g2)k2). Shuffle all

the ciphertexts to generate TAGid.
d) For every MPKi ∈ TK and TKi→ j ∈ TK for

1 ≤ i ≤ t, set ∆MPKi = g
k∗1z

y∗ri
2 , use k2 to generate

∆MPK for every other token TKu→ j ∈ TK ,
and then set ∆id.

e) Return (id,TAGid,∆id).

3) If TK ⊆ S, do the following.

a) Select a unique identifier id ∈R {0, 1}λ for the
index.

b) Select k2, z ∈R Zp.
c) For every w ∈ doc, suppose H(w) = gr

1, set its

ciphertext (ê(gy∗

1 , g
k∗1
y∗

2)rz, ê(gy∗

1 , g
k∗1
y∗

2)rzk2). Shuffle
all the ciphertexts to generate TAGid.

d) For every MPKi ∈ TK and TKi→ j ∈ TK , set

∆MPKi = g
k∗1z

y∗ri
2 , and then set ∆id.

e) Return (id,TAGid,∆id).

• In generating the challenge, the challenger proceeds
as follows.

– For every k2, z in the third case of answer-
ing the Formindex oracle, set Enc(FKid, vb) =

(ê(H(wb)y∗ , g
k∗1
y∗

2)z, ê(H(wb)y∗ , g
k∗1
y∗

2)zk2). Set TAGvb
as

the set of all these ciphertexts.
– Set TRAPwb = (H(wb)y∗ ,H(wb)y∗r2 , · · · ,H(wb)y∗rt).
– For every k2, z in the third case of answer-

ing the Formindex oracle, set Enc(FKid, vb̄) =

(ê(H(wb̄)y∗ , g
k∗1
y∗

2)z, ê(H(wb̄)y∗ , g
k∗1
y∗

2)zk2). Set TAGvb̄
as

the set of all these ciphertexts.
– Set TRAPwb̄

= (H(wb̄)y∗ ,H(wb̄)y∗r2 , · · · ,H(wb̄)y∗rt).

This game is indeed identical to Game 4. Let the
attacker’s advantage be ϵ5 in this game, and we have
ϵ5 = ϵ4.

By looking at the simulation, it is clear that the chal-

lenger only needs (gy∗

1 , g
k∗1
y∗

2 ,H(w0),H(w1),H(wb)y∗ ,H(wb̄)y∗)
to faithfully answer all the oracle queries from the
attacker. Recall that v0 = w0 and v1 = w1. In
particular, the challenger does not need to know k∗1
and the value of b. Since the random number k∗1

only appears in g
k∗1
y∗

2 , the challenger indeed only needs
(gy∗

1 ,H(w0),H(w1),H(wb)y∗ ,H(wb̄)y∗) to faithfully answer all
the oracle queries from the attacker in the game.

Game 6: The challenger performs the same as in Game
5, except for replacing H(wb)y∗ with R1 ∈R G1 and replac-
ing H(wb̄)y∗ with R2 ∈R G1. Let the attacker’s advantage
be ϵ6 in this game. It is clear that, in game 5 and Game
6, the attacker can be regarded as a distinguisher for the
M-DDH3 problem in G1, and ϵm−ddh3 ≤ 9ϵddh ≤ 9ϵsxdh.
Therefore, we have |ϵ6 − ϵ5| ≤ 9ϵsxdh.

In Game 6, it is clear that ϵ6 = 0 because the challenge
is independent from b. To sum up, we have ϵ

q2(q2−1) ≤
(t2 + 9)ϵsxdh. Since q2(q2 − 1) and t are polynomials in the
security parameter, therefore, if ϵsxdh is negligible then ϵ
is also negligible.

Proof for Case 2: v0 , v1 , w0 , w1

12

Game 0: The challenger faithfully simulates every-
thing. Let the attacker’s advantage be ϵ.

Game 1: The challenger tries to guess v0,w0, v1,w1
in the attacker’s output in Step 4 of the attack game.
If the guess is correct, the challenger continues, and
aborts otherwise. The challenger’s success probability is

1
q2(q2−1)(q2−2)(q2−3) . Let the attacker’s advantage be ϵ1, which
equals to ϵ

q2(q2−1)(q2−2)(q2−3) .
Game 2: The challenger performs the same as in Game

1, except for the following. For a query to H with the
input w where w < {v0,w0, v1,w1}, the challenger first
check whether the same query has been made. If so,
return the existing hash value, otherwise chooses r ∈R Zp
and return gr

1 as the hash value. The challenger also send
the exponent r to the attacker. If one of {v0,w0, v1,w1}
is queried to H, then the challenger randomly choose a
value from G1 as the hash value. This game is identical
to Game 1. Let the attacker’s advantage be ϵ2 in this
game, and we have ϵ2 = ϵ1.

Game 3: The challenger performs the same as in
Game 2, except for the following. For each Follow oracle
with the input (i, j), the challenger returns TKi→ j =
(MPKi,MPK j,R) where R ∈R G2. Let the attacker’s ad-
vantage be ϵ3 in this game. Game 3 is identical to Game 2
unless the attacker queries the H1 oracle with gxix j

2 ||i|| j for
some i, j (referred to as an event EVT). Straightforwardly,
the attacker has advantage Pr[EVT] in solving the M-
DDHt problem in G2. As a result, |ϵ3 − ϵ2| ≤ Pr[EVT] ≤
t2 · ϵsxdh.

Game 4: The challenger performs the same as in Game
3, except for the following. Let MPK1 = gx1

2 and MSK1 =
(MPK1, x1, y1). For 2 ≤ i ≤ t, set MPKi = gxi

2 and MSKi =
(MPKi, xi, y1ri) for ri ∈R Zp. Set r1 = 1. The challenger
gives gy1

1 and ri (2 ≤ i ≤ t) to the attacker. With the given
information, the attacker can answer the Trapdoor oracle
on its own. Let the attacker’s advantage be ϵ4 in this
game, and it is clear ϵ4 ≥ ϵ3 because of the additional
information given to the attacker.

Game 5: The challenger performs the same as in Game
4, except for the following. Let S =MPK ∗∪{TKu→v (1 ≤
u , v ≤ t)}. The challenger selects k∗1 ∈R Zp to compute

g
k∗1
y∗

2 and also compute H(vb)y∗ ,H(vb̄)y∗ , H(wd)y∗ ,H(wd̄)y∗ for
b, d ∈R {0, 1}. In the following, we implicitly set y1 = y∗.
• The challenger answers any Formindex oracle query

with the input (MPK j, doc,TK) for some 1 ≤ j ≤ t
as follows.

1) If S ∩ TK = ∅, do the following.
a) Select a unique identifier id ∈R {0, 1}λ for the

index.
b) Select k2, k1 ∈R Zp.
c) For every w ∈ doc, set its ciphertext

(ê(H(w), g2)k1 , ê(H(w), g2)k2). Shuffle all the ci-
phertexts to generate TAGid.

d) Use k2 to generate ∆MPKu for every token
TKu→ j ∈ TK and then set ∆id.

e) Return (id,TAGid,∆id).

2) If TK∩S , ∅ and TK\S , ∅, do the following.
In this case, v0,w0, v1,w1 < doc.
a) Select a unique identifier id ∈R {0, 1}λ for the

index.
b) Select k2, z ∈R Zp.
c) For every w ∈ doc, suppose H(w) = gr

1, set its

ciphertext (ê(gy∗

1 , g
k∗1
y∗

2)rz, ê(gr
1, g2)k2). Shuffle all

the ciphertexts to generate TAGid.
d) For every MPKi ∈ TK and TKi→ j ∈ TK for

1 ≤ i ≤ t, set ∆MPKi = g
k∗1z

y∗ri
2 , use k2 to generate

∆MPKu for every other token TKu→ j ∈ TK ,
and then set ∆id.

e) Return (id,TAGid,∆id).
3) If TK ⊆ S, do the following.

a) Select a unique identifier id ∈R {0, 1}λ for the
index.

b) Select k2, z ∈R Zp.
c) For every w ∈ doc, suppose H(w) = gr

1, set its

ciphertext (ê(gy∗

1 , g
k∗1
y∗

2)rz, ê(gy∗

1 , g
k∗1
y∗

2)rzk2). Shuffle
all the ciphertexts to generate TAGid.

d) For every MPKi ∈ TK and TKMPKi→MPK j ∈

TK , set ∆MPKi = g
k∗1z

y∗ri
2 , and then set ∆id.

e) Return (id,TAGid,∆id).
• In generating the challenge, the challenger proceeds

as follows.
– For every k2, z in the third case of answer-

ing the Formindex oracle, set Enc(FKid, vb) =

(ê(H(vb)y∗ , g
k∗1
y∗

2)z, ê(H(vb)y∗ , g
k∗1
y∗

2)zk2). Set TAGvb
as

the set of all these ciphertexts.
– Set TRAPwd = (H(wd)y∗ ,H(wd)y∗r2 , · · · ,H(wd)y∗rt).
– For every k2, z in the third case of answer-

ing the Formindex oracle, set Enc(FKid, vb̄) =

(ê(H(vb̄)y∗ , g
k∗1
y∗

2)z, ê(H(vb̄)y∗ , g
k∗1
y∗

2)zk2). Set TAGvb̄
as

the set of all these ciphertexts.
– Set TRAPwd̄

= (H(wd̄)y∗ ,H(wd̄)y∗r2 , · · · ,H(wd̄)y∗rt).
When b = d, this game is indeed identical to Game 4.

Let the attacker’s advantage be ϵ5 in this game, and we
have ϵ5 ≥ ϵ42 .

By looking at the simulation, it is clear that the chal-
lenger only needs the following information in order to
faithfully answer all the oracle queries from the attacker.
Recall that v0 = w0 and v1 = w1.

(gy∗

1 , g
k∗1
y∗
2 ,H(v0),H(v1),H(w0),H(w1),H(vb)y∗ ,H(vb̄)y∗ ,H(wd)y∗ ,H(wd̄)y∗)

In particular, the challenger does not need to know k∗1
and the value of b. Since the random number k∗1 only

appears in g
k∗1
y∗

2 , the challenger indeed only needs the
following to faithfully answer all the oracle queries from
the attacker in the game.

(gy∗

1 ,H(v0),H(v1),H(w0),H(w1),H(vb)y∗ ,H(vb̄)y∗ ,H(wd)y∗ ,H(wd̄)y∗)

Game 6: The challenger performs the same as in Game
5, except for replacing H(vb)y∗ with R1 ∈R G1, replacing

13

H(vb̄)y∗ with R2 ∈R G1, replacing H(wd)y∗ with R3 ∈R G1,
replacing H(wd̄)y∗ with R4 ∈R G1. Let the attacker’s ad-
vantage be ϵ6 in this game. It is clear that, in game 5 and
Game 6, the attacker can be regarded as a distinguisher
for the M-DDH5 problem in G1, and ϵm−ddh5 ≤ 25ϵddh ≤
25ϵsxdh. Therefore, we have |ϵ6 − ϵ5| ≤ 25ϵsxdh.

In Game 6, it is clear that ϵ6 = 0 because the
challenge is independent from b. To sum up, we have

ϵ
q2(q2−1)(q2−2)(q2−3) ≤ (t2+25)ϵsxdh. Since q2(q2−1)(q2−2)(q2−3)
and t are a polynomials in the security parameter, there-
fore, if ϵsxdh is negligible then ϵ is also negligible.

Based on the proofs for Case 1 and Case 2, the theorem
now follows.

VI. Concluding Remarks

Motivated by the work by Popa and Zeldovich [22],
we have formulated a new primitive, namely multi-
party searchable encryption (MPSE), for enabling users
to selectively authorize each other to search in their
encrypted data. Due to the user status dynamics, we
presented a security model by considering the worst-
case and average-case collusion scenarios simultane-
ously, and also proposed a new scheme with provable
security. Even though our security model for MPSE
provides stronger security guarantee than that from [22],
a lot of interesting extensions remain possible. We list
some of them below.
• In the formulation of MPSE, we assume that autho-

rization is granted on index level, namely for each of
her indexes Alice can decide whether Bob can search
or not (if authorized Bob can try all keywords). It
is interesting to have a formulation that supports
authorizations on keyword level, namely Alice can
authorize Bob to search for a subset of keywords in
her indexes.

• As mentioned in Sections I-A and IV, if Alice is
authorized by Bob to search his index, then the
cloud server colluded with Bob can recover the
keyword in all Alice’s search queries. This is in-
evitable in our formulation because we require that
Alice should be able to issue a single trapdoor
to search all indexes that have been authorized to
her by potentially many users (Alice (herself), Bob,
Charlie, etc). If we allow Alice to have multiple key
pairs and use them with different peers (this will
mean that Alice needs to issue multiple trapdoors
to search the indexes), then the above “inevitable”
information leakage may be avoided. This deserves
further investigation.

• In the formulation of MPSE, we assume that a
forward index is generated for each document. One
drawback of this kind of indexes is that it leaks some
uncessary information, e.g. how many keywords are
in the index. In contrast, inverted index structure
may not have this problem, as shown in [13]. It is
worth investigating a new formulation for MPSE by
assuming an inverted index structure.

Acknowledgement.
The author would like to thank Afonso Arriaga (SnT,

University of Luxembourg) and Liqun Chen (HP labs,
Bristol) for their helpful discussions.

References
[1] M. Abdalla, E. Bresson, O. Chevassut, and D. Pointcheval.

Password-based group key exchange in a constant number of
rounds. In M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, editors,
Public Key Cryptography — PKC 2006, volume 3958 of LNCS, pages
427–442. Springer, 2006.

[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving
encryption for numeric data. In Proceedings of the 2004 ACM
SIGMOD international conference on Management of data, pages 563–
574. ACM, 2004.

[3] G. Ateniese, J. Camenisch, S. Hohenberger, and B. de Medeiros.
Practical group signatures without random oracles.
http://eprint.iacr.org/2005/385, 2005.

[4] F. Bao, R. H. Deng, X. Ding, and Y. Yang. Private query on
encrypted data in multi-user settings. In L. Chen, Y. Mu, and
W. Susilo, editors, Proceedings of the 4th international conference on
Information security practice and experience, volume 4991 of LNCS,
pages 71–85. Springer, 2008.

[5] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-
preserving symmetric encryption. In A. Joux, editor, Advances
in Cryptology — EUROCRYPT 2009, volume 5479 of LNCS, pages
224–241. Springer, 2009.

[6] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public
Key Encryption with Keyword Search. In C. Cachin and J. Ca-
menisch, editors, Advances in Cryptology — EUROCRYPT 2004,
volume 3027 of LNCS, pages 506–522. Springer, 2004.

[7] D. Boneh, A. Raghunathan, and G. Segev. Function-private
identity-based encryption: Hiding the function in functional en-
cryption. In R. Canetti and J. A. Garay, editors, Advances in
Cryptology — CRYPTO 2013, volume 8043 of LNCS, pages 461–
478. Springer, 2013.

[8] C. Bosch, Q. Tang, P. Hartel, and W. Jonker. Selective document
retrieval from encrypted databse. In D. Gollmann and F. C.
Freiling, editors, Information Security Conference - 15th Information
Security Conference (ISC 2012), volume 7483 of LNCS, pages 224–
241. Springer, 2012.

[9] X. Boyen. The uber-assumption family. In S. D. Galbraith and
K. G. Paterson, editors, Pairing-Based Cryptography — Pairing 2008,
volume 5209 of LNCS, pages 39–56. Springer, 2008.

[10] E. Bresson, O. Chevassut, and D. Pointcheval. Dynamic group
diffie-hellman key exchange under standard assumptions. In
L. R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002,
volume 2332 of LNCS, pages 321–336. Springer, 2002.

[11] Y. Chang and M. Mitzenmacher. Privacy preserving keyword
searches on remote encrypted data. In J. Ioannidis, A. D.
Keromytis, and M. Yung, editors, Proceedings of the Third inter-
national conference on Applied Cryptography and Network Security,
volume 3531 of LNCS, pages 442–455. Springer, 2005.

[12] M. Chase and S. Kamara. Structured encryption and controlled
disclosure. In M. Abe, editor, Advances in Cryptology — ASI-
ACRYPT 2010, volume 6477 of LNCS, pages 577–594. Springer,
2010.

[13] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable
symmetric encryption: improved definitions and efficient con-
structions. In Proceedings of the 13th ACM conference on Computer
and Communications Security, pages 79–88. ACM, 2006.

[14] C. Dong, G. Russello, and N. Dulay. Shared and searchable
encrypted data for untrusted servers. In V. Atluri, editor, Data
and Applications Security XXII, 22nd Annual IFIP WG 11.3 Working
Conference on Data and Applications Security, volume 5094 of LNCS,
pages 127–143. Springer, 2008.

[15] C. Dong, G. Russello, and N. Dulay. Shared and searchable
encrypted data for untrusted servers. Journal of Computer Security,
19(3):367–397, 2011.

[16] E. J. Goh. Secure indexes. Technical Report 216, IACR, 2003.
[17] P. Golle, J. Staddon, and B. Waters. Secure conjunctive keyword

search over encrypted data. In M. Jakobsson, M. Yung, and
J. Zhou, editors, Applied Cryptography and Network Security, Sec-
ond International Conference, volume 3089 of LNCS, pages 31–45.
Springer, 2004.

14

[18] B. Hore, S. Mehrotra, M. Canim, and M. Kantarcioglu. Secure
multidimensional range queries over outsourced data. The VLDB
Journal, 21(3):333–358, 2012.

[19] M. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclo-
sure on searchable encryption: Ramification, attack and mitiga-
tion. In Proceedings of the Network and Distributed System Security
Symposium, NDSS 2012, page To appear. Internet Society, 2012.

[20] F. Kerschbaum and A. Sorniotti. Searchable encryption for out-
sourced data analytics. In J. Camenisch and C. Lambrinoudakis,
editors, Public Key Infrastructures, Services and Applications - 7th
European Workshop, volume 6711 of LNCS, pages 61–76. Springer,
2011.

[21] M. Kuzu, M. Islam, S. Mohammad, and M. Kantarcioglu. Efficient
similarity search over encrypted data. In Proceedings of the 2012
IEEE 28th International Conference on Data Engineering, pages 1156–
1167. IEEE Computer Society, 2012.

[22] R. A. Popa and N. Zeldovich. Multi-key searchable encryption.
http://eprint.iacr.org/2013/508, 2013.

[23] M. Raykova, A. Cui, B. Vo, B. Liu, T. Malkin, S. M. Bellovin, and
S. J. Stolfo. Usable, secure, private search. IEEE Security & Privacy,
10:53–60, 2012.

[24] E. Shen, E. Shi, and B. Waters. Predicate privacy in encryption
systems. In O. Reingold, editor, Proceedings of the 6th Theory of
Cryptography Conference on Theory of Cryptography, volume 5444 of
LNCS, pages 457–473. Springer, 2009.

[25] D. X. Song, D. Wagner, and A. Perrig. Practical Techniques for
Searches on Encrypted Data. In IEEE Symposium on Security and
Privacy, pages 44–55. IEEE Computer Society, 2000.

[26] Q. Tang. Privacy preserving mapping schemes supporting com-
parison. In Proceedings of the 2010 ACM workshop on Cloud
computing security workshop, pages 53–58, 2010.

[27] Q. Tang. Theory and Practice of Cryptography Solutions for Secure
Information Systems, chapter Search in Encrypted Data: Theoretical
Models and Practical Applications, pages 84–108. IGI, 2013.

