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Abstract  

Core shearing and core/face debonding are two common failure states of sandwich beams which 

are mainly the result of excessive shear stresses in the core. Generally, the core made of 

homogeneous Fiber Reinforced Polymer (FRP) shows better shear resistance in comparison with 

that made of pure polymer. Usually, this enhancement is however somewhat limited. This paper 

proposes a methodology to decrease interfacial stresses by presenting the optimal distribution of 

reinforcing ingredients in the polymeric matrix. For this purpose, a Non-Uniform Rational B-

spline (NURBS) based reinforcement distribution optimizer is developed. This technique aims at 

the local stress minimization within any arbitrary zone of the design domain. In our 

methodology, optimization and model analysis (calculation of the objective function and the 

design constraints) have common data sets. The quadratic NURBS basis functions smoothly 

define the reinforcement distribution function as a NURBS surface. The core and face sheets are 

modeled as multi-patches and compatibility in the displacement field is enforced by the penalty 

method. An adjoint sensitivity method is devised to minimize the objective function within areas 

of interest defined over arbitrary regions in the design domain. It is also used for efficient 

updating of design variables through optimization iterations. The method is verified by several 

examples. 

Keywords: Optimization, Sandwich beam, NURBS, Material interface, Isogeometric 

Analysis (IGA)  

 

1. Introduction 

Sandwich beams are a special class of composite materials fabricated by attaching two thin but 

stiff face sheets to a lightweight thick core which experiences mostly shear stresses. As a result of 
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their high bending stiffness and high strength to weight ratios, sandwich beams have numerous 

applications in the automotive, aerospace, marine and construction industries [1]. A comprehensive 

review and assessment of various theories for modeling sandwich composites are presented in [2]. 

Core shearing and debonding between core and face sheets are two common failure modes of these 

structures. Core shearing occurs when a sandwich beam is subjected to an excessive transverse 

shear force. Moreover, experimental evidence shows that debonding failure is influenced by the 

existence of a crack at the imperfect interface [3]. The excessive interfacial stresses between the 

core and the face sheet can be considered as a main cause for this failure.  

To decrease the stress concentration at the interface, Functionally Graded Materials (FGMs) with 

continuously varying composition have been developed [4]. However, FRP materials are also 

widely used in the core of sandwich beams. Improving the interfacial stresses within FRP cores 

were only superficially studied. Available research on interfacial stresses optimization mainly 

concerns beams strengthened with FRP bonded plate. For instance, Krour et al. [5] and Lousdad et 

al. [6] tried to minimize interfacial stresses of a concrete beam strengthened with FRP plate, by 

finding optimal fiber orientation in the FRP plate and its end shape, respectively. 

Motivated by our previous research on fiber distribution optimization in Fiber Reinforced 

Composite (FRC) structures [7], we extend the methodology to present an optimization package 

for sandwich beams minimizing any stress state within any arbitrary area of interest defined over 

the design domain. The advantages of our methodology include: The same data set is used for 

optimization and analysis, high convergence rate due to the smoothness of the NURBS, mesh 

independency of the optimal layout, no need for any post processing technique and its non-

heuristic nature (see [7]). In our present work we also devise an adjoint sensitivity technique for 

flexible choice of regions where the stress reduction is demanded. The technique is used for 

efficient updating of the design variables during optimization iterations.  

The remainder of this paper is organized as follows: In Section 2 and Section 3, FGMs and IGA 

fundamentals are briefly discussed. Material discontinuity and optimization methodology are 

explained in Section 4 and 5, respectively. Afterwards, case studies in Section 6 and concluding 

remarks in Section 7 are presented. 
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2. Short introduction to FGM and homogenization technique  

Mechanical characteristics at any point in FGMs depend on the volume fraction of its 

ingredients. The sum of the volume fraction of reinforcement (  ) and the matrix (  ) is equal to 

unity (       ). In a beam with a FG core, the volume fraction of reinforcement is assumed 

to follow the power law distribution: 

    
 

 
 

 

  
 
 

              with                                                    

where   is a non-negative exponent,   is the distance from the midline of the core in the 

thickness direction and    is the FG core thickness. Fig.1 depicts    versus the non dimensional 

thickness 
 

  
, for different values of  . It is clear the mechanical properties of the FG core 

significantly depend on  .  

For the sake of simplicity, the rule of mixtures as a classical homogenization approach is used in 

this work. The Mori-Tanaka homogenization technique [8] is also used for model verification 

purposes. A summary of the governing equations can be stated as follows: 

 

 

Fig.1 Volume fraction versus the non-dimensional thickness for various   of the FG core, figure from [9] 

 

Rule Of Mixtures (ROM) method: 

                                                                                           

By substituting Eq.(1) in to Eq.(2) the effective Young’s modulus     , Poisson’s ratio      and 

mass density      of the FG core are determined by : 
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Mori-Tanaka method: 

In contrast to the ROM, the Mori-Tanaka scheme considers the forces between the matrix and 

particulate phases and accounts for the interaction of the elastic fields among neighboring 

inclusions [8]. The effective bulk modulus      and the effective shear modulus      of a 

mixture of two constituents are determined by [9]: 

       

     
 

  

          
              with                  

     

   
 

 
  
                                   

       

     
 

  

          
                with                

     

   
          
         

                           

where (     ) and (     ) are the bulk and the shear modulus of the reinforcement and matrix 

constituents respectively, obtained by:  

   
  

        
 ;    

  

       
               with                                                       

Finally, the effective Young’s (    ) modulus and Poisson’s ratio (    ) are given by: 

     
         

          
      and           

           

             
                                        

 

3. Fundamentals of IGA 

IGA was introduced by T.J.R. Hughes and co-workers to unify Computer Aided Design 

(CAD) and Computer Aided Engineering (CAE) [10]. Instead of Lagrange polynomial, 

CAD-shape functions are used in IGA for Finite Elements (FE) analysis. Using IGA concepts, 

shape optimization can be performed by the designer directly from the CAD model, without 

generating or regenerating any mesh to discretize the domain [11, 12].  

The predominant technology which is widely used by CAD in order to represent complex 

geometries is NURBS. Its basis is given by  
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where         are B-spline basis functions recursively defined by using Cox-de Boor formula 

and starting with piecewise constants (   ) [13] 

         
                        
                            

                                                              

and for           

        
    

       
          

        

           
                                                  

   is also referred to as the     weight while      is weighting function defined as follows: 

               

 

   

                                                                 

Applying the quotient rule to Eq.(7a) yields: 

 

  
  
       

        
                 

       
                                            

with 

    
     

 

       
          

 

           
                                           

and  

         
        

 

   

                                                                    

If the weights are all equal, then   
            ; hence, B-splines are special cases of NURBS. 

Finally, a NURBS curve is defined as: 

        
      

 

   

                                                                        

where      
  are control points and                                 . Similarly, for 

definition of a NURBS surface, two knot vectors                     and   

                  (one for each direction) as well as a control net      are required. A NURBS 

surface is defined as: 
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where     
         is constructed according to  

    
         

                  

       
 
    

 
    

                 

                                                

 

where         and         are univariate B-spline basis functions of order   and   corresponding 

to knot vector   and  , respectively. 

 

4. Material discontinuity   

In a sandwich beam, material properties for the core and the face sheets are different, so the 

displacement solution at the interface of the core and the face sheets is only    continuous and 

the strain field (displacement gradient) is discontinuous across the material interface. It means 

there is discontinuity in gradient field. In classical    FEM, weak discontinuities can be 

automatically captured, if the material interface is located on an element boundary (conforming 

mesh). However, for problems with curved interfaces, using conforming meshes may be 

cumbersome, especially when such interfaces evolve. Several advanced methods like the 

Extended Finite Element Method (XFEM) [14, 15] and XIGA [16, 17] have been developed for 

capturing material discontinuity using non conforming mesh. Recently Nguyen proposed very 

simple approaches to handle such discontinuities in IGA for composite delamination using knot 

insertion for cohesive interfaces [18].    

In IGA, continuity across an interior element boundary directly depends on the polynomial 

order and the multiplicity of the corresponding knot. Thus, knot insertion can be used to tailor 

the continuity of the fields along element interface (see Fig.2). Taking the knot vector in 1-D as 

                   , where    is the    knot,   is the number of basis functions and   is the 

polynomial order, the basis functions across knot    are      times continuously differentiable 

or       continuous; where    is the multiplicity of knot   .  

Fig.2(a) and 2(b) present the physical and parametric spaces; Fig.2(c) and 2(d) compare 

supports of the shape functions for interior (entirely inside the core or the face sheets) and 

interfacial elements. According to Fig.2(c), control points corresponding to interior element no.1 

are {1, 2, 3, 4, 5, 6, 7, 8, 9} and for interior element no.2 are {4, 5, 6, 7, 8, 9, 10, 11, 12}. Two 

rows of control points (i.e. row {4, 5, 6} and row {7, 8, 9}) are in common between these two 

elements. These shared control points produce overlapping shape functions as illustrated in 
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Fig.2(c). In other words, the shape functions extend beyond the elements (   continuity). In 

contrary to the interior elements, interfacial elements have at least one edge on the material 

interface. Two of these elements (elements no. 3 and no.4) are shown in Fig.2(d). These two 

elements have only one row of control points (i.e. row {27, 28, 29}) in common due to repeated 

knot at the interface. This knot insertion imposes    continuity in the displacement field at the 

position of the material interface. As shown in Fig.2(d), the shape functions of elements no.3 and 

no.4 do not overlap with each others.  

 

 

Fig.2 Schematic illustration of    and    continuity of quadratic NURBS elements, a) physical mesh b) 

parametric mesh c) typical elements on single material without interface with    continuity d) typical 

elements on material interface with    continuity 

 

In our optimization methodology, control points which define the geometry of the model, 

contain the nodal volume fractions of the reinforcement as optimization design variables. Note 

that this is an advantage due to the smoothness provided by the NURBS functions and the 

simplicity of dealing with only one approximation space for the geometry, reinforcement 

distribution and analysis. Though single knot insertion suffices to capture weak discontinuities 
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in the analysis of sandwich beam models using IGA, it does not properly represent the situation 

arising at the neighborhood of material interface in the reinforcement distribution surface. 

Assume that material interface is being    continuous. Thus, according to Fig.2(d) there is a 

single row of control points (denoted by {27, 28, 29}) located at the interface in physical space. 

No control point can contain more than one value of nodal volume fraction of reinforcement as 

design variable in one optimization iteration. For element no. 3 corresponding control points are 

{21, 22, 23, 24, 25, 26, 27, 28, 29}and their counterpart design variables are {   ,    ,    , 

   ,    ,    ,    ,    ,    }. Analogously for element no. 4, {27, 28, 29, 30, 31, 32, 33, 34, 

35} and  {   ,    ,    ,    ,    ,    ,    ,    ,    } are the vector of corresponding control 

points and the vector of design variables, respectively. Here     ,    ,    } are common design 

variables between element no. 3 and element no. 4. Since element no. 3 is located in face sheet 

and it is supposed that the face sheet material composition is fixed and does not change during 

the optimization, we set all design variables related to the face sheets to unity. So,     ,    , 

   } as a part of the face sheet should be a unit vector. However, they also belong to element 

no. 4 in the core of the beam with different nodal values. To overcome this discrepancy, we 

impose     continuity at the interface via the insertion of one additional knot (in total 3 knots at 

the parametric interface). In this case a new row of control points will coincide with the existing 

ones. Half of them contain the face sheet characteristics and the other half contains the core 

characteristics. Continuity in the displacement field along the interface is enforced by the 

penalty method. Fig.3 schematically illustrates the implemented technique. Red dots represent 

interfacial control points which are duplicated and coincident at the interfaces. Green ones show 

typical interior control points.     
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Fig.3 Exploded view of the sandwich beam modeled as multi-patches and glued with penalty method 

results in     continuity. Interfacial control points are denoted by red dots and are coincident at 

interfaces. Green dots are typical interior control points. 

 

5. Overview of optimization methodology  

As mentioned before, NURBS basis functions are used in this work not only for the analysis but 

also to model the reinforcement distribution. In our methodology the nodal reinforcement 

volume fraction (    ) on control points are defined as design variables and the reinforcement 

distribution (  ) is approximated as NURBS surface. Every point in the parametric space is 

mapped to the physical space having two attributes, geometrical coordinates and reinforcement 

volume fraction value. Due to the intrinsic characteristics of NURBS (higher order continuity 

and compact support, see [13]), even coarse meshes yield smooth enough surfaces to clearly 

represent the optimization results without needing any further image processing techniques [7]. 

The distribution function        , which indicates the amount of reinforcement at every design 

point      , is used for obtaining the homogenized stiffness. It is defined by: 
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where     
   

are the NURBS basis functions. Once the reinforcement volume fraction at each point 

is available, the equivalent mechanical characteristics of the domain are obtained through the 

rule of mixtures: 

                                                                      

where    ,    and    are the homogenised, the matrix and the reinforcement elastic tensors, 

respectively. Subsequently,     will be denoted by  . Since the core experiences mostly shear 

stresses, without loss of generality, the average value of the shear stresses within the area of 

interest is considered as the objective function. Other stress components (i.e. bending and 

peeling) can be also taken into account in the same manner. For the plane stress assumption, the 

stress in a vector form (               ) is given by: 

                                                                                    

and also 

                                                                                    

where   is the stress matrix of the element,       is the related row of     corresponding to the 

   direction and   is the matrix containing the derivatives of the shape functions. Thus, the 

objective function (         ) can be written in the following form: 

          
 

    
       
  

                                                     

where   is the area of interest over which the objective function is supposed to be minimized. 

The optimization problem can be summarized as follows:  

      Minimize:                                                         

Subjected to:                                                     
                                                          

                                                                                   

                                                                        

                                                                           

    is the total reinforcement volume in each optimization iteration,     is an arbitrary initial 

reinforcement volume which must be set at the beginning of the optimization process and   is 

the entire design domain;  ,   and   in Eq.(17) represent the global stiffness matrix of the 

system, the displacement and force vectors, respectively. 
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By introducing a proper Lagrangian objective function, l, and by using the Lagrangian 

multipliers method we have: 

                                                                   

   

     

   

     

 

where       are upper and lower bounds values of the Lagrange multipliers, respectively.     

is the number of control points. By setting the first derivative of Eq.(20) to zero we will obtain: 

  

  
 

  

  
 
   
  

                                                           

  denotes the vector containing all     . In this work we implement optimality criteria (OC) 

based optimization (Zhou & Rozvany, 1991, [19]) to numerically solve Eq.(21). The design 

variables are updated by a sensitivity analysis as presented next. 

 

5.1 Adjoint sensitivity analysis 

In gradient-based methods, to solve Eq.(21), one should differentiate the objective and 

constraint functions with respect to the design variables. The procedure to obtain these 

derivatives is called sensitivity analysis. Generally, there are two main groups of methods for 

sensitivity analysis: numerical methods (e.g. finite difference) which are approximate; and 

analytical methods (including direct and adjoint methods) which are exact. According to [20] the 

most efficient method for calculating derivatives involved in Eq.(21) is the adjoint method since 

there is a large number of  design variables but few functions (here two, including objective 

function and design constraint). Recalling Eq.(21), we use the chain-rule to calculate the 

sensitivity of           with respect to   using partial derivatives ( 
     

    
 ): 

  

  
 
  

  

  

  
 
  

  
                                                                 

From force equilibrium we have: 

 
  

  
 
   

  
 
  

  
                                                                   

  

  
   

  

  
 
    

  
                                                                  

where      denotes transpose of    . Substitution of Eq.(24) in Eq.(22) yields to: 
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By assuming 

   
  

  
 
  

  
 
  

                                                              

and knowing that  
  

  
  , we can write:  

    
  

  
                                                                      

Eventually Eq.(22) can be written in the form: 

  

  
     

  

  
 
  

  
                                                           

The second terms of Eq.(28) are obtained as follows: 

  

  
 

 

    
   

    
  

           
  

                                               

with  

    
  

   
   
  

     
   

   
  

                                               

    
 and      in right hand side of Eq.(30) are related rows of    and    corresponding to the 

shear (  ) component. Considering Eq.(11), one can write: 

   
     

     
                                                                              

To complete Eq.(28), 
  

  
 and 

  

  
 are needed: 

  

  
 

 

    
          
  

                                                          

and 

  

  
   

  

  
       

 

                                                             

where 

  

  
     

 

    
  

                                                            

Finally, the second term of Eq.(21) can be written as: 
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where 
   

  
 can be obtained from Eq.(31). 

 

6. Case studies 

In this section, the NURBS-based finite element model is verified by performing both static and 

dynamic benchmark problems. Afterwards the performance of the optimization algorithm is 

studied. 

 

6.1 Verification of the IGA model 

6.1.1 Static analysis of a sandwich beam with a homogeneous elastic core 

To demonstrate the accuracy and convergence of the IGA model, in particular with respect to 

the imposed discontinuity at the interface, we first analyze a sandwich beam as sketched in Fig.4 

under         uniform distributed load at the top of the beam. The beam is      long and 

     wide and clamped at the left edge. The design parameters are listed in Table-1. The model 

is discretized by a       quadratic NURBS mesh. 

 

  

Fig.4 Model of the cantilever sandwich beam 
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Table-1 Design data of the sandwich beam with a homogeneous elastic core  

Property Elastic Core Face Sheets 

Young’s Modulus        0.167 1.67 

Poisson’s ratio     0.3 0.3 

Thickness (CM) 0.8 0.2 

 

Fig.5 and Fig.6 show the solution for the displacements and the stresses at the middle section 

      (cut A-A in Fig.4). As can be observed from the graphs, displacements are continuous as 

required by the compatibility condition. The jump in     is properly reproduced at the interfaces 

as well as the slope discontinuity in shear stresses,     . The results agree well with the 

benchmark problem in [21].  

 

 

Fig.5 Displacements in the x (a) and y direction (b) of a sandwich cantilever beam along cut A-A (  
 

 
) 

shown in Fig.4 

 

 

Fig.6 Normal stress (a) and shear stress (b) in a sandwich cantilever beam along cut A-A (  
 

 
) shown in 

Fig.4 
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Replacing the distributed load a parabolic traction at right edge of the beam, the displacement 

and energy norms are evaluated by 

         
 

 
                                

 

 

 
 

                           

               
                                 

                      

 

 
 

                           

 

where   and   are the strain and displacement vectors while the subscripts     and       

denote “numerical” and “exact”, respectively. The exact displacements as derived in [22] are 

imposed on the entire boundary of the beam using the least squares method (see [23]). The 

convergence results are shown in Fig.7. The mesh parameter   is defined as the ratio between the 

beam height and the number of elements in the vertical direction. Using quadratic mesh, the 

optimal convergence rates (three for displacement norm and two for energy norm) are obtained.  

 

 

Fig.7 Energy and displacement norms for the sandwich cantilever beam under parabolic loading at the 

right edge 
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6.1.2 Free vibration of a sandwich beam with a FG core 

This example includes a sandwich beam with the FG core made of Aluminum and Zirconia 

(Al/Zro2). The length of the beam is         , its height is         and the core 

thickness is         . Other relevant data is listed in Table-2. Geometry, loading and support 

conditions are as in Fig.4. 

 

Table-2 Material properties of the sandwich beam with the FG core 

Property Aluminum Zirconia Face sheets 

Young’s Modulus        70 151 210 

Poisson’s ratio     0.3 0.3 0.3 

Mass density  
  

    2700 5700 7860 

 

Table-3 shows the first six natural frequencies of the sandwich beam with the FG core. Results 

obtained by other methods [9] are also presented. Using IGA with coarse meshes yields to 

accuracy around 0.1% comparing with reference results (fine mesh FEM using ANSYS) as 

presented in Table-3.  

 

Table-3 The first six natural frequencies for a sandwich beam with FG core 

Mode 

Mori-Tanaka ROM Tech. 

t-RPIM IGA t-RPIM IGA 
FEM 

(ANSYS) 
t-RPIM IGA t-RPIM IGA 

FEM 

(ANSYS) 

21 x 11 101 x 11 - 21 x 11 101 x 11 - 

1 461.7 458.01 459.2 457.8 458.2 461.5 459.28 459.4 459.02 459.5 

2 2729.4 2695.65 2709.2 2694.1 2697.1 2727.8 2707.1 2708.7 2705.5 2708.6 

3 6443.7 6368.67 6432.9 6367.4 6374.1 6443.0 6436.0 6440.7 6434.7 6440.8 

4 7105.9 6944.8 6954.7 6940.0 6950.2 7065.4 6985.8 6995.8 6981.1 6991.3 

5 12651.9 12341.3 12462.2 12330 12353 12634.2 12434.5 12446.4 12423 12446.0 

6 18999.3 18465.8 18594.6 18441 18483 18990.8 18630.4 18659.5 18606 18647.0 

 

Though, the aim of this paper is not to demonstrate the advantages of IGA in sandwich beam 

modeling, Fig.8 shows smooth convergence of the NURBS results. This coarse model accuracy 

is beneficial for iterative design procedure and optimization especially when FE model is 

computationally expensive.  
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Fig.8 The first six natural frequencies of the sandwich beam with FG core versus number of control 

points of the model 

 

6.2 Optimization case studies 

After the verification of the IGA model, we proceed to the optimization of the reinforcement 

distribution. Let us consider again the cantilever sandwich beam with uniformly distributed load 

as shown in Fig.4. All design parameters are summarized in Table-4.      

  Fig.9 illustrates the chosen sub-domains which are considered for the definition of the 

objective function. Areas are considered at mid span, mid height and in the vicinity of the 

interfaces. As mentioned before, since core shearing and debonding failure states are mostly due 
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to shear stresses, we concentrate on the minimization of the shear stresses. However, other 

components of the stresses can be also taken into account.  

 

Table-4 Problem definition, cantilever sandwich beam with uniformly distributed top load 

                                  

1.25 0.25 3.5 72.4 210 0.3 10 0.025 0.2 10% 60% 

                                                                                                    

                
                                                         

                
  

 
                                                                                   

 

 

Fig.9 Definition of area of interest  

 

Fig.10(a) depicts the optimal layout of the reinforcement distribution in the core minimizing the 

shear stresses inside the area of interest #1. Fig.10(b) shows the evolution of the objective 

function during the iterative process. The shear stress inside the nominated sub-domain, 

converges smoothly towards a minimum value.  
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Fig.10 Optimal distribution of reinforcing ingredients considering area of interest #1 (a), objective 

function versus iterations (b)  

 

Fig.11 compares the shear stress across the thickness of the beam at mid of area #1 considering 

homogeneous and optimal distributions of reinforcements. The graph clearly shows that the 

shear stress profile improves inside the area of interest (around 50% reduction); however, for the 

face sheets which are outside area of interest #1(dash lines), the shear stress increases.  

 

 

 

Fig.11 Shear stress profile for area #1 considering homogeneous and optimal distribution of 

reinforcements, dash lines stand for face sheets which are outside of area #1 

 

To demonstrate the correctness of the model, we extend area of interest #1 to include face 

sheets. The extended area is called area of interest #2 (see Fig.9). The optimal distribution of the 

reinforcement and the history of objective function are plotted in Fig.12(a) and 12(b), 
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respectively. Fig.13 compares the shear stress profiles before and after optimization. As 

expected, the shear stresses improve within area #2.  

 

Fig.12 Optimal distribution of reinforcing ingredients considering area of interest #2 (a), objective 

function versus iterations (b)  

 

 

Fig.13 Shear stress profile for area #2 considering homogeneous and optimal distribution of 

reinforcements 

 

In the next case, area of interest #3 is defined on the core of the beam and includes central 

elements of the core as illustrated in Fig.9.  The same types of results are presented in Fig.14(a) 

and 14(b).  
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Fig.14 Optimal distribution of reinforcing ingredients considered area of interest #3 (a), objective 

function versus iterations (b)  

 

Fig.15 shows the shear stress profile before and after optimization along a section at mid width 

(Fig.15(a)) and mid span (Fig.15(b)). In both figures, dash lines refer to zones which are outside 

the interested area #3. Again, the graphs clearly illustrate that the shear stresses considerably 

decrease in the area of interest.  
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Fig.15 Shear stress profile for area #3 along a section at mid width (a) and mid length (b) of the beam 

considering homogeneous and optimal distribution of reinforcements. In both figures, dash lines refer 

to zones which are outside the interested area #3. 

 

As a final case, we consider area of interest #4 which includes interfacial elements in core of the 

beam (see Fig.9). The optimal distribution of reinforcing ingredients and the history of the 

objective function are illustrated in Fig.16(a) and 16(b), respectively.  
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Fig.16 Optimal distribution of reinforcing ingredients considering area of interest #4 (a), objective 

function versus iterations (b)  

 

Fig.17 compares the shear stress at the interfacial elements of the core along the length of the 

beam. Fig.17(a) is for the bottom interface and Fig.17(b) is for the top interface. In both graphs 

dashed lines show the shear stress for pure polymer (without any reinforcements). Adding 10% 

uniformly distributed reinforcing ingredients to the polymer matrix negligibly improves the shear 

stresses along the interfaces, while the same amount of reinforcements with optimal distribution, 

considerably reduces the interfacial shear stresses. This improvement has descending trend from 

the fixed left end (with the maximum shear load) to the free right end (with zero shear load).  

The results in Fig.17 are based on averaging shear stress inside each element. The similar results 

are presented in Fig.18 by plotting nodal values of shear stress along longitudinal sections 

cutting through the area of interest #4. Fig.18(a) and 18(b) correspond to the top and the bottom 

interfaces, respectively. These graphs prove that the beam with uniform FRP doesn’t show 

considerable improvement in interfacial shear stress in comparison with pure polymer; while 

dominant improvement needs to optimal distribution of reinforcements.   
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Fig.17 Average of shear stress in each interfacial element along the beam length considering area of 

interest #4 for pure polymer, homogeneous FRP and FRP with optimal distribution of reinforcements for 

(a) bottom interface and (b) top interface 
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Fig.18 Nodal values of shear stress along a longitudinal sections at top interface (a) and bottom interface 

(b) in area of interest #4 comparing characteristics obtained by pure polymer, homogeneous FRP and 

FRP with optimal distribution of reinforcements 

 

7. Concluding remarks 

Excessive shear stress in sandwich beams can yield to core shearing and core/face debonding. 

This research work presents a computational algorithm for decreasing interfacial shear stress in 
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sandwich beams with polymeric core. The output of the algorithm is the optimal distribution of 

reinforcing ingredients inside the polymer matrix. The algorithm can be also used for optimizing 

other stress components (i.e. peeling and bending stresses) in any arbitrary zone of the design 

domain. Our methodology takes advantages of NURBS basis functions for both analysis (IGA) 

and reinforcement distribution optimization (NURBS surface). Using IGA for model analysis, 

yields to high rate and smooth convergence to exact results.     continuity is imposed at the 

interface to “truly” isolate the reinforcement distribution in the core from the face sheets using 

multi-patch and penalty techniques. The adjoint sensitivity technique provides flexibility in 

defining the area of interest over which the objective function is minimized and also for efficient 

updating of the design variables through optimization iterations. Comparing the results of the 

case study illustrates that adding reinforcements homogeneously into polymers will slightly 

improve the interfacial shear stress but that considerable improvements are observed when the 

distribution of the reinforcement in the core is optimized.  
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