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Mo#va#on:	
  understand	
  and	
  op<mise	
  material	
  fracture	
  
behavior	
  	
  	
  

Mul<-­‐scale	
  Methods	
  -­‐	
  two	
  approaches	
  compared	
  

Parallel	
  with	
  medical	
  simula<on	
  	
  

Future
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Wright	
  Flyer	
  	
  

10:35am	
  Dec	
  17,	
  1903
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Wilbur and Orville Wright, 1903



On	
  Dec	
  14	
  Wilbur	
  won	
  
the	
  coin	
  toss,	
  made	
  the	
  
first	
  aUempt	
  and	
  stalled	
  

Orville	
  made	
  the	
  first	
  
flight	
  on	
  Dec.	
  17	
  

12	
  seconds	
  &	
  120	
  X
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Wilbur and Orville Wright, 1903



20,000	
  years
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Aircraft safety



[1959-­‐2001]	
  1,307	
  
commercial	
  jet	
  aircraX	
  
losses
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Worldwide statistics

Today:	
  	
  
1	
  accident	
  per	
  
1,000,000	
  
departures	
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Accident rates and fatalities/year
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Accident rates and fatalities/year
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Learning from intuition & theory 

Franklin Institute Science Museum. Wilbur Wright's handwriting



Increased	
  prac<cal	
  
understanding	
  of	
  
mechanics	
  —	
  in	
  par<cular	
  
fracture	
  and	
  fa<gue
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Learning from experience 

Aloha airlines accident - fatigue cracks at corners

Bird strikes

Novel convertible aircraft
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Learning from experiments

Replica of the 1901 Wright Wind Tunnel
(constructed with assistance from Orville 
Wright)

World’s largest wind tunnel (2014)
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teaching…



Introduc<on	
  of	
  
composite	
  materials	
  
have	
  reduced	
  the	
  
weight	
  of	
  structures	
  by	
  
20%	
  

Over	
  1,000km	
  saving	
  
of	
  8,660kg	
  of	
  fuel	
    
[A340-­‐300]
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New materials for more payload
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New kinds of experiments for new kinds of models

[Allix, Kerfriden, Gosselet 2010]
Discretise

0.125 mm
50 mm

100 plies

courtesy: EADS

Kerfriden, Allix, Gosselet, Bordas et al, 2009, 2010, 2011, 2012, 2013, 2014
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A bolted joint
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A bolted joint

0.125 mm

50 mm

100 plies

courtesy: EADS
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A bolted joint

0.125 mm

50 mm

100 plies

courtesy: EADS

• 5	
  elements	
  through	
  the	
  thickness	
  of	
  a	
  ply	
  =>	
  0.025mm/element	
  	
  

• 50mm	
  bolted	
  joint	
  area	
  =>	
  2,000	
  elements	
  

• 50mm	
  x	
  50mm	
  x	
  100	
  plies	
  =>	
  	
  2,000	
  x	
  2,000	
  x	
  (100	
  x	
  5)	
  	
  	
  

=>	
  2	
  billion	
  elements
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A380 giant 79.8m
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Large	
  structures	
  

whose	
  behaviour	
  is	
  	
  governed	
  by	
  
small-­‐scale	
  effects	
  	
  

=>	
  intractable	
  problem	
  size
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How can the problem size 
be reduced but the 

accuracy controlled? 
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Challenge	
  
•Reduce	
  the	
  problem	
  size	
  
•Preserve	
  essen<al	
  features

Physics	
  based	
  model	
  
reduc#on	
  a.k.a.	
  Mul#scale	
  
Methods

Algebraic	
  based	
  model	
  
reduc#on	
  a.k.a.	
  Machine	
  
Learning

Reduce	
  computa#onal	
  
expense	
  

Control	
  the	
  error
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Challenge	
  
•Reduce	
  the	
  problem	
  size	
  
•Preserve	
  essen<al	
  features

Physics	
  based	
  model	
  
reduc#on	
  a.k.a.	
  Mul#scale	
  
Methods

Algebraic	
  based	
  model	
  
reduc#on	
  a.k.a.	
  Machine	
  
Learning

Reduce	
  computa#onal	
  
expense	
  

Control	
  the	
  error
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Physics-based  
model reduction methods 

multi-scale methods
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Full-scale

Homogenisa*on+

(Or+discrete+
model)+

PDE+with+
constant+coeff.+
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Full-scale

Homogenisa*on+

(Or+discrete+
model)+

PDE+with+
constant+coeff.+
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Full-scale

Homogenisa*on+

(Or+discrete+
model)+

PDE+with+
constant+coeff.+
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Multi-scale methods 
Replace the 

heterogeneous fine-
scale model by an 

equivalent smoother 
model at the scale 

where the predictions 
are requiredHomogenisa*on+

(Or+discrete+
model)+

PDE+with+
constant+coeff.+
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Concurrent methods

Akbari,	
  Kerfriden,	
  Bordas,	
  2014

Fine-scale zone  
exists concurrently 

to the coarse scale zone
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Concurrent methods

Akbari,	
  Kerfriden,	
  Bordas,	
  2014

Fine-scale zone  
exists concurrently 

to the coarse scale zone

adaptive coarse-fine  
interface
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Concurrent methods

Molecular 
Dynamics

Continuum

Molecular 
Dynamics

Continuum
Continuum

Molecular 
Dynamics

Talebi,	
  Ramaia,	
  Rabczuk,	
  Bordas,	
  Kerfriden,	
  2014

Coarse-graining

Molecular 
Dynamics



Hierarchical methods FE^2

36Akbari,	
  Kerfriden,	
  Bordas,	
  2014

Solve a Finite 
Element Problem
at each material 

point of the coarse 
scale Finite Element 

Problem



Hierarchical methods FE^2

Loading

37

Feyel,	
  Chaboche,	
  2000	
  -­‐	
  Akbari,	
  Kerfriden,	
  Bordas,	
  2014

RVE 
Stress-Strain curve



Hierarchical methods FE^2

Loading
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Feyel,	
  Chaboche,	
  2000	
  -­‐	
  Akbari,	
  Kerfriden,	
  Bordas,	
  2014

RVE 
Stress-Strain curve



Hierarchical methods FE^2

Loading
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Feyel,	
  Chaboche,	
  2000	
  -­‐	
  Akbari,	
  Kerfriden,	
  Bordas,	
  2014

RVE 
Stress-Strain curve



Hierarchical methods FE^2

Peak
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Feyel,	
  Chaboche,	
  2000	
  -­‐	
  Akbari,	
  Kerfriden,	
  Bordas,	
  2014

RVE 
Stress-Strain curve

Peak



Hierarchical methods FE^2

Unloading	
    

41

RVE 
Stress-Strain curve

Tangent stiffness  
not positive definite



Hierarchical methods FE^2

Unloading	
    
RVE	
  does	
  not	
  exist
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Feyel,	
  Chaboche,	
  2000	
  -­‐	
  Akbari,	
  Kerfriden,	
  Bordas,	
  2014

RVE 
Stress-Strain curve

Loss of material stability
Localization 

Tangent stiffness  
not positive definite



Hierarchical methods FE^2

Unloading	
    
RVE	
  does	
  not	
  exist
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Feyel,	
  Chaboche,	
  2000	
  -­‐	
  Akbari,	
  Kerfriden,	
  Bordas,	
  2014

RVE 
Stress-Strain curve

Loss of material stability
Localization 

Tangent stiffness  
not positive definite
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Hybrid methods

Akbari,	
  Kerfriden,	
  Bordas,	
  2014
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Example
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Example
20-100 times fewer unknowns in 2D ~ 1000 times fewer in 3D



Results: uni-axial tension
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❖ Sizes are in mm



Results: uni-axial tension
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❖ 100X (magnification of displacement)

von-Mises stress (Pa)



Results: uni-axial tension
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❖ 100X (magnification of displacement)

von-Mises stress (Pa)



Results: uni-axial tension
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❖ 100X (magnification of displacement)

von-Mises stress (Pa)



Results: uni-axial tension
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❖ 100X (magnification of displacement)

von-Mises stress (Pa)



Results: uni-axial tension
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❖ 100X (magnification of displacement)

von-Mises stress (Pa)



Adaptive multi-scale

53Feyel,	
  Chaboche,	
  2000	
  -­‐	
  Akbari,	
  Kerfriden,	
  Bordas,	
  2014

RVE 
Stress-Strain curve

Loss of material stability
Localization 

Semi-concurrent
FE^2

Analytical 
homogenisation

Switch to concurrent

Concurrent
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Open problem 
- model selection and error 
control 

Possible approach 
- machine learning and 
statistical inference, e.g. 
Bayesian statistics
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Open problem 
- statistical variability at the fine 
scale (geometry, material 
parameter) 

Possible approach 
- identification through small-
scale experiments (costly, difficult 
to characterize interfaces) 
- Monte Carlo 
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Challenge	
  
•Reduce	
  the	
  problem	
  size	
  
•Preserve	
  essen<al	
  features

Physics	
  based	
  model	
  
reduc#on	
  a.k.a.	
  Mul#scale	
  
Methods

Algebraic	
  based	
  model	
  
reduc#on	
  a.k.a.	
  Machine	
  
Learning

Reduce	
  computa#onal	
  
expense	
  

Control	
  the	
  error
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Algebraic model 
reduction methods 

Use	
  precomputed	
  solu<ons	
  to	
  accelerate	
  online	
  simula<ons



Example - parametric problems

Method	
  of	
  separated	
  representa<on
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Aim:	
  accelerate	
  the	
  simula<on	
  using	
   
pre-­‐computa<ons
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Lattice beam problem
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Lattice beam problem

−5 0 5 10 15 20 25
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0
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UD

FD1

S =
�
S1 S2 ... SnS

�

Compute	
  solu<ons	
  for	
  several	
  loading	
  condi<ons
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Lattice beam problem
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Lattice beam problem
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Lattice beam problem

−5 0 5 10 15 20 25
−3

−2

−1

0

1

2

3

4

5

6

UD

nS loads

S =
�
S1 S2 ... SnS

�

Perform	
  singular	
  value	
  decomposi<on	
  -­‐	
  POD  
to	
  obtain	
  “most	
  energe<c	
  modes”



Reduced basis

• P.	
  Kerfriden,	
  P.	
  Gosselet,	
  S.	
  Adhikari,	
  and	
  S.	
  Bordas.	
  Bridging	
  proper	
  orthogonal	
  decomposi2on	
  methods	
  and	
  augmented	
  Newton-­‐Krylov	
  algorithms:	
  an	
  
adap2ve	
  model	
  order	
  reduc2on	
  for	
  highly	
  nonlinear	
  mechanical	
  problems.	
  Computer	
  Methods	
  in	
  Applied	
  Mechanics	
  and	
  Engineering,	
  200(5-­‐8):850-­‐866,	
  2011.
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Reduced basis

• P.	
  Kerfriden,	
  P.	
  Gosselet,	
  S.	
  Adhikari,	
  and	
  S.	
  Bordas.	
  Bridging	
  proper	
  orthogonal	
  decomposi2on	
  methods	
  and	
  augmented	
  Newton-­‐Krylov	
  algorithms:	
  an	
  
adap2ve	
  model	
  order	
  reduc2on	
  for	
  highly	
  nonlinear	
  mechanical	
  problems.	
  Computer	
  Methods	
  in	
  Applied	
  Mechanics	
  and	
  Engineering,	
  200(5-­‐8):850-­‐866,	
  2011. 65
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Beyond the elastic limit

• P.	
  Kerfriden,	
  P.	
  Gosselet,	
  S.	
  Adhikari,	
  and	
  S.	
  Bordas.	
  Bridging	
  proper	
  orthogonal	
  decomposi2on	
  methods	
  and	
  augmented	
  Newton-­‐Krylov	
  algorithms:	
  an	
  
adap2ve	
  model	
  order	
  reduc2on	
  for	
  highly	
  nonlinear	
  mechanical	
  problems.	
  Computer	
  Methods	
  in	
  Applied	
  Mechanics	
  and	
  Engineering,	
  200(5-­‐8):850-­‐866,	
  2011.
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Beyond the elastic limit

• P.	
  Kerfriden,	
  P.	
  Gosselet,	
  S.	
  Adhikari,	
  and	
  S.	
  Bordas.	
  Bridging	
  proper	
  orthogonal	
  decomposi2on	
  methods	
  and	
  augmented	
  Newton-­‐Krylov	
  algorithms:	
  an	
  
adap2ve	
  model	
  order	
  reduc2on	
  for	
  highly	
  nonlinear	
  mechanical	
  problems.	
  Computer	
  Methods	
  in	
  Applied	
  Mechanics	
  and	
  Engineering,	
  200(5-­‐8):850-­‐866,	
  2011.
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This solution is not in the snapshot !−5 0 5 10 15 20 25
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Parametric / stochastic multiscale fracture 
mechanics

70

➡ Direct numerical simulation: efficient preconditioner?

➡ Adaptive coupling?

First realisation Second realisation

Highly correlated solution fields

Localisation of fracture, uncorrelated



Partitioned POD/DDM

71

Original domain

Domain Decomposition Method



Partitioned POD/DDM
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Original domain

Domain Decomposition Method



Partitioned POD/DDM
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Original domain

Domain Decomposition Method
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‣ Decompose	
  
the	
  
structure	
  
into	
  
subdomains	
  

‣ Perform	
  a	
  
reduc<on	
  in	
  
the	
  highly	
  
correlated	
  
region	
  

‣ Couple	
  the	
  
reduced	
  to	
  
the	
  non-­‐
reduced	
  
region	
  by	
  a	
  
primal	
  Schur	
  
complement
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Challenges	
  
Reduce	
  the	
  problem	
  size	
  
Preserve	
  essen<al	
  features

Physics	
  based	
  model	
  reduc#on	
  
a.k.a.	
  Mul#scale	
  Methods

Algebraic	
  based	
  model	
  
reduc#on	
  a.k.a.	
  Machine	
  

Learning

Reduce	
  computa#onal	
  expense	
  -­‐	
  Control	
  the	
  error

The	
  problem	
  is	
  not	
  reducible	
  in	
  
the	
  fracture	
  process	
  zone

Adap#ve	
  Domain	
  
Decomposi#on	
  Proper	
  

Orthogonal	
  Decomposi#on

Representa#ve	
  volume	
  
elements	
  do	
  not	
  exist	
  aEer	
  the	
  

onset	
  of	
  fracture

Adap#ve	
  Mul#-­‐scale	
  
Methods:	
  hierarchical	
  -­‐	
  semi-­‐

concurrent	
  -­‐	
  concurrent
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Open problems 
- how to define the 
reduced area? 
- precomputation time 
(offline)  



Future?
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Heterogeneous	
  &	
  mul<-­‐
func<onal	
  materials	
  

Can	
  we	
  op<mise	
  the	
  
material	
  microstructure	
  
given	
  macroscopic	
  
objec<ve	
  func<ons

78

Material complexity

Experiments	
  required	
  
to	
  aUain	
  sufficient	
  
confidence	
  in	
  their	
  
behavior	
  are	
  
increasingly	
  costly	
  	
  

0.125 mm

100 plies

courtesy: EADS



Factor-­‐of-­‐Safety	
  or	
  
probabilis<c	
  based	
  
methods	
  cannot	
  
handle	
  unknown	
  
unknowns

79

Material complexity

0.125 mm

100 plies

courtesy: EADS

Lack	
  of	
  similitude	
  
between	
  tes<ng	
  
(experimental)	
  and	
  
opera<ng	
  condi<ons	
  
—	
  also	
  encountered	
  
in	
  geophysics,	
  
medicine…
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Challenges

0.125 mm

100 plies

courtesy: EADS

• Move	
  away	
  from	
  heuris#cs	
  and	
  experience-­‐
based	
  engineering	
  

• Develop	
  fundamental	
  understanding	
  of	
  
physical	
  processes	
  (degrada<on,	
  …)



Actual	
  aircraE

81

Digital twin concept

Digital	
  aircraE	
  model	
  

Cer<fica<on	
  and	
  
design	
  methods

High	
  fidelity	
  modeling	
  
and	
  simula<on

Situa<on	
  awarenessLife	
  predic<on	
  and	
  
extension

Requires	
  real-­‐#me	
  data	
  
assimila#on,	
  and	
  model	
  

update…



Parallel with medicine

82
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The	
  average	
  drug	
  
developed	
  by	
  a	
  major	
  
pharmaceu<cal	
  
company	
  costs	
  at	
  least	
  
$4	
  billion,	
  and	
  it	
  can	
  be	
  
as	
  much	
  as	
  $11	
  billion.

MechanicsMedicine

The	
  development	
  cost	
  
of	
  the	
  A380	
  	
  

11	
  billion	
  euros…	
  

of	
  the	
  dreamliner…	
   
$32	
  billion	
  



Macro	
  (wing)	
  -­‐	
  Micro	
  
(carbon	
  fibres)	
  

Environmental	
  effects	
  
(Temperature,	
  
irradia<on…)	
  

Experimental	
  condi<on	
  
dissimilari<es

84

Mechanics Medicine

Macro	
  (Body,	
  
Physiology)	
  to	
  micro	
  
(microbes,	
  needle/
scalpel…)	
  

Pa<ent’s	
  environment,	
  
living	
  condi<ons,	
  
habits…	
  

Organ	
  proper<es	
  
depend	
  strongly	
  on	
  age,	
  
gender,	
  …
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Patient/plane-specific simulation
Prac#cal	
  early-­‐stage	
  design	
  simula#ons	
  (interac#ve)

[Allix, Kerfriden, Gosselet 2010]
Discretise

0.125 mm

50 mm

100 plies

courtesy: EADS

‣Reduce the problem size while controlling the error (in QoI) when solving very 
large (multiscale) mechanics problems  

Discretise

Surgical	
  simula#on	
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Surgical simulation

SimLearning AssistancePlanning

PrecisionRealTcut  
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[Courtecuisse	
  et	
  al.,	
  MICCAI,	
  2013	
  
and	
  Medical	
  Image	
  Analysis,	
  2014]	
  

First	
  implicit,	
  interac#ve	
  method	
   
for	
  cuOng	
  with	
  contact	
  

Abdominal	
  minimally	
  invasive	
  
surgery	
  simula#on	
  (Inria,	
  

Shacra)	
  

Cataract	
  Surgery	
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… not exactly brain surgery

Courtecuisse,	
  Kerfriden,	
  Bordas…	
  Medical	
  Image	
  Analysis	
  2014



• Understanding	
  and	
  op#misa#on	
  of	
  fracture	
  of	
  
heterogeneous	
  materials	
  

• mul<-­‐scale	
  methods	
  are	
  being	
  developed	
  

• these	
  methods	
  are	
  expensive	
  

• model	
  selec<on	
  remains	
  an	
  open	
  problem	
  

• variability	
  of	
  the	
  material	
  proper<es	
  exacerbate	
  these	
  
difficul<es	
  

• taking	
  into	
  account	
  realis<c	
  situa<ons	
  remains	
  elusive	
  

• coupling	
  with	
  sensing	
  systems	
  may	
  be	
  the	
  future

88

Conclusions

… mechanical twinning



real-time simulations could also help 
engineers gain insight into complex 

non-intuitive phenomena by 
allowing to probe, quickly, the 

parameter space and design space 
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thanks for your attention
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Partners	
  and	
  Funding



Gracias por su atención 
Merci de votre attention 

Thank you for your attention 
Danke für Ihre Aufmerksamkeit  
Gracie per la vostra attenzione
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