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Abstract. The classical property of associativity is very often considered in

aggregation function theory and fuzzy logic. In this paper we provide axiom-
atizations of various classes of preassociative functions, where preassociativity
is a generalization of associativity recently introduced by the authors. These
axiomatizations are based on existing characterizations of some noteworthy

classes of associative operations, such as the class of Aczélian semigroups and
the class of t-norms.

1. Introduction

Let X be an arbitrary nonempty set (e.g., a nontrivial real interval) and let
X∗ = ⋃n⩾0X

n be the set of all tuples on X, with the convention that X0 = {ε}
(i.e., ε denotes the unique 0-tuple on X). The length ∣x∣ of a tuple x ∈ X∗ is a
nonnegative integer defined in the usual way: we have ∣x∣ = n if and only if x ∈Xn.
In particular, we have ∣ε∣ = 0.

In this paper we are interested in n-ary functions F ∶Xn → Y , where n ⩾ 1 is
an integer, as well as in variadic functions F ∶X∗ → Y , where Y is a nonempty
set. A variadic function F ∶X∗ → Y is said to be standard [16] if the equality
F (x) = F (ε) holds only if x = ε. Finally, a variadic function F ∶X∗ → X ∪ {ε} is
called a variadic operation on X (or an operation for short), and we say that such
an operation is ε-preserving standard (or ε-standard for short) if it is standard and
satisfies F (ε) = ε.

For any variadic function F ∶X∗ → Y and any integer n ⩾ 0, we denote by Fn

the n-ary part of F , i.e., the restriction F ∣Xn of F to the set Xn. The restriction
F ∣X∗∖{ε} of F to the tuples of positive lengths is denoted F ♭ and called the non-
nullary part of F . Finally, the value F (ε) is called the default value of F .

The classical concept of associativity for binary operations can be easily gener-
alized to variadic operations in the following way. A variadic operation F ∶X∗ →
X ∪ {ε} is said to be associative [16,21] (see also [18, p. 24]) if

(1) F (x,y,z) = F (x, F (y),z) , x,y,z ∈X∗.

Here and throughout, for tuples x = (x1, . . . , xn) and y = (y1, . . . , ym) in X∗, the
notation F (x,y) stands for the function F (x1, . . . , xn, y1, . . . , ym), and similarly for
more than two tuples. We also assume that F (ε,x) = F (x, ε) = F (x) for every
x ∈X∗.
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Any associative operation F ∶X∗ →X ∪ {ε} clearly satisfies the condition F (ε) =
F (F (ε)). From this observation it follows immediately that any associative stan-
dard operation F ∶X∗ →X ∪ {ε} is necessarily ε-standard.

Associative binary operations and associative variadic operations are widely in-
vestigated in aggregation function theory, mainly due to the many applications in
fuzzy logic (for general background, see [13]).

Associative ε-standard operations F ∶X∗ → X ∪ {ε} are closely related to as-
sociative binary operations G∶X2 → X, which are defined as the solutions of the
functional equation

G(G(x, y), z) = G(x,G(y, z)), x, y, z ∈X.
In fact, it can be easily seen [21,22] that a binary operation G∶X2 →X is associative
if and only if there exists an associative ε-standard operation F ∶X∗ →X ∪{ε} such
that G = F2. Moreover, as observed in [18, p. 25] (see also [5, p. 15] and [13, p. 33]),
any associative ε-standard operation F ∶X∗ →X ∪ {ε} is completely determined by
its unary and binary parts. Indeed, by associativity we have

(2) Fn(x1, . . . , xn) = F2(Fn−1(x1, . . . , xn−1), xn), n ⩾ 3,
or equivalently,

(3) Fn(x1, . . . , xn) = F2(F2(. . . F2(F2(x1, x2), x3), . . .), xn), n ⩾ 3.
In this paper we are interested in the following generalization of associativity

recently introduced by the authors in [21,22] (see also [16]).

Definition 1.1 ( [21,22]). A function F ∶X∗ → Y is said to be preassociative if for
every x,y,y′,z ∈X∗ we have

F (y) = F (y′) ⇒ F (x,y,z) = F (x,y′,z).

We can easily observe that any ε-standard operation F ∶R∗ → R∪ {ε} defined by
Fn(x) = f(∑n

i=1 xi) for every integer n ⩾ 1, where f ∶R→ R is a one-to-one function,
is an example of preassociative function.

It is immediate to see that any associative ε-standard operation F ∶X∗ →X∪{ε}
necessarily satisfies the equation F1 ○ F ♭ = F ♭ (take x = z = ε in Eq. (1)) and it
can be shown (Proposition 3.3) that an ε-standard operation F ∶X∗ → X ∪ {ε} is
associative if and only if it is preassociative and satisfies F1 ○ F ♭ = F ♭.

It is noteworthy that, contrary to associativity, preassociativity does not involve
any composition of functions and hence allows us to consider a codomain Y that
may differ from X ∪ {ε}. For instance, the length function F ∶X∗ → R, defined by
F (x) = ∣x∣, is standard and preassociative.

In this paper we mainly consider preassociative standard functions F ∶X∗ → Y
for which F1 and F ♭ have the same range. (For ε-standard operations, the latter
condition is an immediate consequence of the condition F1 ○ F ♭ = F ♭ and hence
these preassociative functions include all the associative ε-standard operations.) In
Section 3 we recall the characterization of these functions as compositions of the
form F ♭ = f ○H♭, where H ∶X∗ → X ∪ {ε} is an associative ε-standard operation
and f ∶H(X∗ ∖ {ε})→ Y is one-to-one.

In Section 4 we investigate the special case of standard functions whose unary
parts are one-to-one. It turns out that this latter condition greatly simplifies the
general results on associative and preassociative standard functions obtained in [21,
22]. Section 5 contains the main results of this paper. We first recall axiomatizations
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of some noteworthy classes of associative ε-standard operations, such as the class
of variadic extensions of Aczélian semigroups, the class of variadic extensions of t-
norms and t-conorms, and the class of associative and range-idempotent ε-standard
operations. Then we show how these axiomatizations can be extended to classes
of preassociative standard functions. Finally, we address some open questions in
Section 6.

Throughout the paper we make use of the following notation and terminology.
We denote by N the set {1,2,3, . . .} of strictly positive integers. The domain and
range of any function f are denoted by dom(f) and ran(f), respectively. The
identity operation on X is the function id∶X →X defined by id(x) = x.

2. Preliminaries

Recall that a function F ∶Xn →X (n ∈ N) is said to be idempotent (see, e.g., [13])
if F (x, . . . , x) = x for every x ∈ X. Also, an ε-standard operation F ∶X∗ → X ∪ {ε}
is said to be

● idempotent if Fn is idempotent for every n ∈ N,
● unarily idempotent [21,22] if F1 = id,
● unarily range-idempotent [21, 22] if F1∣ran(F ♭) = id∣ran(F ♭), or equivalently,
F1 ○F ♭ = F ♭. In this case F1 necessarily satisfies the equation F1 ○F1 = F1.

A function F ∶X∗ → Y is said to be unarily quasi-range-idempotent [21, 22] if
ran(F1) = ran(F ♭). Since this property is a consequence of the condition F1○F ♭ = F ♭
whenever F is an ε-standard operation, we see that if an ε-standard operation
F ∶X∗ → X ∪ {ε} is unarily range-idempotent, then it is necessarily unarily quasi-
range-idempotent. The following proposition, stated in [21] without proof, provides
a finer result.

Proposition 2.1 ( [21, 22]). An ε-standard operation F ∶X∗ → X ∪ {ε} is unarily
range-idempotent if and only if it is unarily quasi-range-idempotent and satisfies
F1 ○ F1 = F1.

Proof. (Necessity) We have ran(F1) ⊆ ran(F ♭) for any operation F ∶X∗ → X ∪ {ε}.
Since F is unarily range-idempotent, we have F1 ○F ♭ = F ♭, from which the converse
inclusion follows immediately. In particular, F1 ○ F1 = F1.

(Sufficiency) Since F is unarily quasi-range-idempotent, the identity F1 ○F1 = F1

is equivalent to F1 ○ F ♭ = F ♭. �

Recall that a function g is a quasi-inverse [26, Sect. 2.1] of a function f if

f ○ g∣ran(f) = id∣ran(f),(4)

ran(g∣ran(f)) = ran(g).(5)

For any function f , denote by Q(f) the set of its quasi-inverses. This set is
nonempty whenever we assume the Axiom of Choice (AC), which is actually just
another form of the statement “every function has a quasi-inverse.” Recall also
that the relation of being quasi-inverse is symmetric: if g ∈ Q(f) then f ∈ Q(g);
moreover, we have ran(g) ⊆ dom(f) and ran(f) ⊆ dom(g) and the functions f ∣ran(g)
and g∣ran(f) are one-to-one.

By definition, if g ∈ Q(f), then g∣ran(f) ∈ Q(f). Thus we can always restrict the
domain of any quasi-inverse g ∈ Q(f) to ran(f). These “restricted” quasi-inverses,
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also called right-inverses [3, p. 25], are then simply characterized by condition (4),
which can be rewritten as

g(y) ∈ f−1{y}, y ∈ ran(f).
The following proposition yields necessary and sufficient conditions for a function

F ∶X∗ → Y to be unarily quasi-range-idempotent.

Proposition 2.2 ( [21, 22]). Assume AC and let F ∶X∗ → Y be a function. The
following assertions are equivalent.

(i) F is unarily quasi-range-idempotent.
(ii) There exists an ε-standard operation H ∶X∗ →X∪{ε} such that F ♭ = F1○H♭.
(iii) There exists a unarily idempotent ε-standard operation H ∶X∗ → X ∪ {ε}

and a function f ∶X → Y such that F ♭ = f ○H♭. In this case, f = F1.

In assertions (ii) we may choose H♭ = g ○ F ♭ for any g ∈ Q(F1) and H is then
unarily range-idempotent. In assertion (iii) we may choose H1 = id and Hn = g○Fn

for every n > 1 and any g ∈ Q(F1).
We say that a function F ∶X∗ → Y is unarily idempotizable if it is unarily quasi-

range-idempotent and F1 is one-to-one. In this case the composition F −11 ○F ♭ from
X∗ ∖{ε} to X is unarily idempotent. From Proposition 2.2, we immediately derive
the following corollary.

Corollary 2.3. Let F ∶X∗ → Y be a function. The following assertions are equiv-
alent.

(i) F is unarily idempotizable.
(ii) F1 is a bijection from X onto ran(F ♭) and there is a unique unarily idem-

potent ε-standard operation H ∶X∗ → X ∪ {ε}, namely H♭ = F −11 ○ F ♭, such
that F ♭ = F1 ○H♭.

(iii) There exist a unarily idempotent ε-standard operation H ∶X∗ →X∪{ε} and
a bijection f from X onto ran(F ♭) such that F ♭ = f ○H♭. In this case we
have f = F1 and H♭ = F −11 ○ F ♭.

3. Associative and preassociative functions

In this section we recall some results on associative and preassociative variadic
functions.

As the following proposition [7, 16] states, under the assumption that F (ε) = ε
there are different equivalent definitions of associativity (see also [13, p. 32]).

Proposition 3.1 ( [7,16]). Let F ∶X∗ →X∪{ε} be an operation such that F (ε) = ε.
The following assertions are equivalent:

(i) F is associative.
(ii) For every x,y,z,x′,y′,z′ ∈ X∗ such that (x,y,z) = (x′,y′,z′) we have

F (x, F (y),z) = F (x′, F (y′),z′).
(iii) For every x,y ∈X∗ we have F (x,y) = F (F (x), F (y)).

Remark 1. Associativity for ε-standard operations was defined in [7] as in assertion
(ii) of Proposition 3.1. It was also defined in [6, p. 16], [13, p. 32], and [15, p. 216]
as in assertion (iii) of Proposition 3.1.

Just as for associativity, preassociativity (see Definition 1.1) may have different
equivalent forms. The following proposition, stated in [21] without proof, gives an
equivalent definition based on two equalities of values.
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Proposition 3.2 ( [21,22]). A function F ∶X∗ → Y is preassociative if and only if
for every x,x′,y,y′ ∈X∗ we have

F (x) = F (x′) and F (y) = F (y′) ⇒ F (x,y) = F (x′,y′).

Proof. (Necessity) Let x,y,x′,y′ ∈ X∗. If F (x) = F (x′) and F (y) = F (y′), then
we have F (x,y) = F (x′,y) = F (x′,y′).

(Sufficiency) Let x,y,y′,z ∈ X∗. If F (y) = F (y′), then F (x,y) = F (x,y′) and
finally F (x,y,z) = F (x,y′,z). �

As mentioned in the introduction, preassociativity generalizes associativity. More-
over, we have the following result.

Proposition 3.3 ( [21,22]). An ε-standard operation F ∶X∗ →X∪{ε} is associative
if and only if it is preassociative and unarily range-idempotent (i.e., F1 ○F ♭ = F ♭).

The following two straightforward propositions show how new preassociative
functions can be generated from given preassociative functions by compositions
with unary maps.

Proposition 3.4 (Right composition). If F ∶X∗ → Y is standard and preassociative
then, for every function g∶X ′ → X, the function H ∶X ′∗ → Y , defined by H0 = a
for some a ∈ Y ∖ ran(F ♭) and Hn = Fn ○ (g, . . . , g) for every n ∈ N, is standard and
preassociative.

Proposition 3.5 (Left composition). Let F ∶X∗ → Y be a preassociative standard
function and let g∶Y → Y ′ be a function. If g∣ran(F ♭) is one-to-one, then the function
H ∶X∗ → Y defined by H0 = a for some a ∈ Y ′ ∖ ran(g∣ran(F ♭)) and H♭ = g ○ F ♭ is
standard and preassociative.

We now focus on those preassociative functions F ∶X∗ → Y which are unarily
quasi-range-idempotent, that is, such that ran(F1) = ran(F ♭). It was established
in [21, 22] that these functions are completely determined by their nullary, unary,
and binary parts. Moreover, as the following theorem states, they can be factorized
into compositions of associative ε-standard operations with one-to-one unary maps.

Theorem 3.6 ( [21, 22]). Assume AC and let F ∶X∗ → Y be a function. Consider
the following assertions.

(i) F is preassociative and unarily quasi-range-idempotent.
(ii) There exists an associative ε-standard operation H ∶X∗ → X ∪ {ε} and a

one-to-one function f ∶ ran(H♭)→ Y such that F ♭ = f ○H♭.
Then (i) ⇒ (ii). If F is standard, then (ii) ⇒ (i). Moreover, if condition (ii)
holds, then we have F ♭ = F1 ○H♭, f = F1∣ran(H♭), f−1 ∈ Q(F1), and we may choose
H♭ = g ○ F ♭ for any g ∈ Q(F1).

Remark 2. (a) If condition (ii) of Theorem 3.6 holds, then by Eq. (2) we see
that F can be computed recursively by

Fn(x1, . . . , xn) = F2((g ○ Fn−1)(x1, . . . , xn−1), xn), n ⩾ 3,
where g ∈ Q(F1). A similar observation was already made in a more par-
ticular setting for the so-called quasi-associative functions; see [27].

(b) It is necessary that F be standard for the implication (ii) ⇒ (i) to hold
in Theorem 3.6. Indeed, take a ∈ R and the function F ∶R∗ → R defined by
F (ε) = a and F ♭(x) = x1. Then condition (ii) holds for H♭ = F ♭ and f = id.
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However, F is neither standard nor preassociative since F (a) = F (ε) and
F (ab) = a ≠ b = F (b) for every b ∈ R ∖ {a}.

4. Unarily idempotizable functions

In this section we examine the special case of unarily idempotizable standard
functions, i.e., unarily quasi-range-idempotent standard functions with one-to-one
unary parts.

As far as associative ε-standard operations are concerned, we have the following
immediate result.

Proposition 4.1. If F ∶X∗ → X ∪ {ε} is an associative ε-standard operation and
F1 is one-to-one (hence F is unarily idempotizable), then F is unarily idempotent
(i.e., F1 = id).
Proof. Since F1 ○ F1 = F1 we simply have F1 = F −11 ○ F1 = id. �

We also have the next result, from which we can immediately derive the following
corollary.

Theorem 4.2 ( [21,22]). Let F1∶X →X and F2∶X2 →X be two operations. Then
there exists an associative ε-standard operation G∶X∗ →X ∪ {ε} such that G1 = F1

and G2 = F2 if and only if the following conditions hold:

(i) F1 ○ F1 = F1 and F1 ○ F2 = F2,
(ii) F2(x, y) = F2(F1(x), y) = F2(x,F1(y)),
(iii) F2 is associative.

Such an operation G is then uniquely determined by Gn(x1, . . . , xn) = G2(Gn−1(x1, . . . , xn−1), xn)
for n ⩾ 3.
Corollary 4.3. Let F1∶X →X and F2∶X2 →X be two operations. Then there ex-
ists an associative and unarily idempotizable ε-standard operation G∶X∗ → X ∪
{ε} such that G1 = F1 and G2 = F2 if and only if F1 = id and F2 is asso-
ciative. Such an operation G is then uniquely determined by Gn(x1, . . . , xn) =
G2(Gn−1(x1, . . . , xn−1), xn) for n ⩾ 3.

Regarding preassociative and unarily quasi-range-idempotent standard functions,
we have the following results.

Proposition 4.4. Assume AC and let F ∶X∗ → Y be a function. If condition (ii)
of Theorem 3.6 holds, then the following assertions are equivalent.

(i) F1 is one-to-one,
(ii) H1 is one-to-one,
(iii) H1 = id.

Proof. (i) ⇒ (iii) H1 = F −11 ○ F1 = id.
(iii) ⇒ (ii) Trivial.
(ii) ⇒ (i) F1 = f ○H1 is one-to-one as a composition of one-to-one functions. �

Corollary 4.5. Let F ∶X∗ → Y be a function such that F1 is one-to-one. Consider
the following assertions.

(i) F is preassociative and unarily quasi-range-idempotent.
(ii) There is a unique ε-standard operation H ∶X∗ → X ∪ {ε} such that F ♭ =

F1 ○H♭, namely H♭ = F −11 ○ F ♭. This operation is associative and unarily
idempotent.
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Then (i)⇒ (ii). If F is standard, then (ii)⇒ (i).

Proof. The proof follows from Theorem 3.6 and Proposition 4.4. Here AC is not
required since the quasi-inverse of F1 is simply an inverse. �

Corollary 4.6. Let F1∶X → Y and F2∶X2 → Y be two functions and suppose
that F1 is one-to-one. Then there exists a preassociative and unarily quasi-range-
idempotent standard function G∶X∗ → Y such that G1 = F1 and G2 = F2 if and only
if ran(F2) ⊆ ran(F1) and the function H2 = F −11 ○ F2 is associative. In this case
we have G♭ = F1 ○H♭, where H ∶X∗ → X ∪ {ε} is the unique associative ε-standard
operation having H1 = id and H2 as unary and binary parts, respectively.

Proof. The proof follows from Theorem 4.11 in [21, 22] and Proposition 4.4 in this
paper. �

The following result is a reformulation of Corollary 4.6, where F2 is replaced
with H2 = F −11 ○ F2.

Corollary 4.7. Let F1∶X → Y and H2∶X2 →X be two functions and suppose F1 is
one-to-one. Then there exists a preassociative and unarily quasi-range-idempotent
standard function G∶X∗ → Y such that G1 = F1 and G2 = F1 ○H2 if and only if
H2 is associative. In this case we have G♭ = F1 ○H♭, where H ∶X∗ → X ∪ {ε} is
the unique associative ε-standard operation having H1 = id and H2 as unary and
binary parts, respectively.

Corollary 4.7 shows how the preassociative and unarily quasi-range-idempotent
standard functions with one-to-one unary parts can be constructed. Just provide
a nullary function F0, a one-to-one unary function F1, and a binary associative
function H2. Then F ♭ = F1 ○H♭, where H is the associative ε-standard operation
having H1 = id and H2 as unary and binary parts, respectively.

5. Axiomatizations of some classes of associative and preassociative
functions

In this section we derive axiomatizations of classes of preassociative functions
from certain existing axiomatizations of classes of associative operations. We re-
strict ourselves to a small number of classes. Further axiomatizations can be derived
from known classes of associative operations.

The approach that we use here is the following. Starting from a class of binary
associative operations F ∶X2 →X, we identify all the possible associative ε-standard
operations F ∶X∗ → X ∪ {ε} which extend these binary operations (this reduces to
identifying the possible unary parts using Theorem 3.5 in [21, 22]). If the unary
parts are one-to-one, then we use Corollary 4.5; otherwise we use Theorem 3.6.

5.1. Preassociative functions built from Aczélian semigroups. Let us recall
an axiomatization of the Aczélian semigroups due to Aczél [1] (see also [2, 8, 9]).

Proposition 5.1 ( [1]). Let I be a nontrivial real interval (i.e., nonempty and not a
singleton). An operation H ∶ I2 → I is continuous, one-to-one in each argument, and
associative if and only if there exists a continuous and strictly monotonic function
φ∶ I → J such that

(6) H(x, y) = φ−1 (φ(x) + φ(y)) ,



8 JEAN-LUC MARICHAL AND BRUNO TEHEUX

where J is a real interval of one of the forms ]−∞, b[, ]−∞, b], ]a,∞[, [a,∞[ or
R = ]−∞,∞[ (b ⩽ 0 ⩽ a). For such an operation H, the interval I is necessarily
open at least on one end. Moreover, φ can be chosen to be strictly increasing.

According to Theorem 3.5 in [21, 22], every associative ε-standard operation
H ∶ I∗ → I ∪ {ε} whose binary part is of form (6) must be unarily idempotent.
Indeed, we must have

φ−1 (φ(x) + φ(y)) = H2(x, y) = H2(H1(x), y) = φ−1 (φ(H1(x)) + φ(y))
and hence H1(x) = x. Thus, there is only one such associative ε-standard operation,
which is defined by

Hn(x) = φ−1 (φ(x1) +⋯ + φ(xn)) , n ∈ N.
Proposition 4.4 and Corollary 4.5 then show how a class of preassociative and
unarily idempotizable standard functions can be constructed from H.

Theorem 5.2. Let I be a nontrivial real interval (i.e., nonempty and not a sin-
gleton). A standard function F ∶ I∗ → R is preassociative and unarily quasi-range-
idempotent, and F1 and F2 are continuous and one-to-one in each argument if
and only if there exist continuous and strictly monotonic functions φ∶ I → J and
ψ∶J → R such that

Fn(x) = ψ(φ(x1) +⋯ + φ(xn)), n ∈ N,
where J is a real interval of one of the forms ]−∞, b[, ]−∞, b], ]a,∞[, [a,∞[ or
R = ]−∞,∞[ (b ⩽ 0 ⩽ a). For such a function F , we have ψ = F1 ○ φ−1 and I
is necessarily open at least on one end. Moreover, φ can be chosen to be strictly
increasing.

Proof. (Necessity) By Corollary 4.5, the ε-standard operation H ∶X∗ → X ∪ {ε}
defined by H♭ = F −11 ○ F ♭ is associative. Moreover, H2 is clearly continuous and
one-to-one in each argument since so are F −11 and F2. We then conclude by Propo-
sition 5.1.

(Sufficiency) By Corollary 4.5 and Proposition 5.1, F is preassociative and unar-
ily quasi-range-idempotent. Moreover, F1 and F2 are continuous and one-to-one in
each argument. �

5.2. Preassociative functions built from t-norms and related operations.
Recall that a t-norm (resp. t-conorm) is an operation H ∶ [0,1]2 → [0,1] which is
nondecreasing in each argument, symmetric, associative, and such that H(1, x) = x
(resp. H(0, x) = x) for every x ∈ [0,1]. Also, a uninorm is an operation H ∶ [0,1]2 →
[0,1] which is nondecreasing in each argument, symmetric, associative, and such
that there exists e ∈ ]0,1[ for which H(e, x) = x for every x ∈ [0,1]. For general
background see, e.g., [3, 12–15,26].

Let us see how t-norms can be used to generate preassociative functions. We
first observe that the associative ε-standard operation which extends any t-norm is
unique and unarily idempotent; we call such an operation a (variadic) t-norm. In-
deed, from the condition H(1, x) = x it follows that H(x) =H(H(1, x)) =H(1, x) =
x. Using Corollary 4.5, we then obtain the following axiomatization.

Theorem 5.3. Let F ∶ [0,1]∗ → R be a standard function such that F1 is strictly
increasing (resp. strictly decreasing). Then F is preassociative and unarily quasi-
range-idempotent, and F2 is symmetric, nondecreasing (resp. nonincreasing) in
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each argument, and satisfies F2(1, x) = F1(x) for every x ∈ [0,1] if and only if
there exist a strictly increasing (resp. strictly decreasing) function f ∶ [0,1]→ R and
a variadic t-norm H ∶ [0,1]∗ → [0,1] ∪ {ε} such that F ♭ = f ○H♭. In this case we
have f = F1.

Proof. (Necessity) By Corollary 4.5, the ε-standard operation H ∶ [0,1]∗ → [0,1] ∪
{ε} defined by H♭ = F −11 ○ F ♭ is associative. Moreover, H2 is clearly symmetric,
nondecreasing in each argument, and such that H2(1, x) = x. Hence H is a t-norm.

(Sufficiency) By Corollary 4.5, F is preassociative and unarily quasi-range-idemp-
otent. Moreover, F1 and F2 clearly satisfy the stated properties. �

If we replace the condition “F2(1, x) = F1(x)” in Theorem 5.3 with “F2(0, x) =
F1(x)” (resp. “F2(e, x) = F1(x) for some e ∈ ]0,1[”), then the result still holds
provided that the t-norm is replaced with a t-conorm (resp. a uninorm).

5.3. Preassociative functions built from Ling’s axiomatizations. The next
proposition gives an axiomatization due to Ling [17]; see also [4, 19]. We remark
that this characterization can be easily deduced from previously known results on
topological semigroups (see Mostert and Shields [23]). However, Ling’s proof is
elementary.

Proposition 5.4 ( [17]). Let [a, b] be a real closed interval. An operation H ∶ [a, b]2 →
[a, b] is continuous, nondecreasing in each argument, associative, and such that
H(b, x) = x for all x ∈ [a, b] and H(x,x) < x for all x ∈ ]a, b[, if and only if there
exists a continuous and strictly decreasing function φ∶ [a, b]→ [0,∞[, with φ(b) = 0,
such that

H(x, y) = φ−1(min{φ(x) + φ(y), φ(a)}).

Proceeding as in Section 5.1, we obtain the following characterization.

Theorem 5.5. Let [a, b] be a real closed interval and let F ∶ [a, b]∗ → R be a standard
function such that F1 is strictly increasing (resp. strictly decreasing). Then F
is unarily quasi-range idempotent and preassociative, and F2 is continuous and
nondecreasing (resp. nonincreasing) in each argument, F2(b, x) = F1(x) for every
x ∈ [a, b], F2(x,x) < F1(x) (resp. F2(x,x) > F1(x)) for every x ∈ ]a, b[ if and only
if there exist a continuous and strictly decreasing function φ∶ [a, b] → [0,∞[, with
φ(b) = 0, and a strictly decreasing (resp. strictly increasing) function ψ∶ [0, φ(a)]→
R such that

Fn(x) = ψ(min{φ(x1) +⋯ + φ(xn), φ(a)}), n ∈ N.
For such a function, we have ψ = F1 ○ φ−1.

5.4. Preassociative functions built from range-idempotent functions. Re-
call that an ε-standard operation F ∶X∗ →X∪{ε} is said to be range-idempotent [7]
if F (k ⋅ x) = x for every x ∈ ran(F ♭) and every k ∈ N, where F (k ⋅ x) stands for the
unary function F (x, . . . , x) obtained by repeating k times the variable x. Equiva-
lently, F (k ⋅ F (x)) = F (x) for every x ∈X∗ and every k ∈ N.

We say that a function F ∶X∗ → Y is invariant by replication if for every x ∈X∗
and every k ∈ N we have F (k ⋅ x) = F (x), where F (k ⋅ x) stands for the function
F (x, . . . ,x) obtained by repeating k times the tuple x. More generally, we say that
a function F ∶X∗ → Y is preinvariant by replication if for every x,y ∈X∗ and every
k ∈ N we have that F (x) = F (y) implies F (k ⋅ x) = F (k ⋅ y). Clearly, if a function
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F ∶X∗ → Y is invariant by replication or preassociative, then it is preinvariant by
replication.

Also, if an ε-standard operation F ∶X∗ → X ∪ {ε} is unarily range-idempotent
and invariant by replication, then it is range-idempotent. Indeed, we simply have
F (k ⋅ F (x)) = F (F (x)) = F (x) for every x ∈X∗ and every k ∈ N.

Recall [7] that an associative ε-standard operation F ∶X∗ → X ∪ {ε} is range-
idempotent if and only if it is invariant by replication. Moreover, if any of these
conditions holds, then we have F (x, F (x, y,z),z) = F (x, y,z) for all y ∈ X and all
x,z ∈X∗.

Lemma 5.6. Let F ∶X∗ → X ∪ {ε} be an ε-standard operation. The following
assertions are equivalent.

(i) F is associative and range-idempotent.
(ii) F is associative and F (F (x), F (x)) = F (x) for every x ∈X.
(iii) F is preassociative, unarily quasi-range-idempotent, and range-idempotent.
(iv) F is preassociative, unarily quasi-range-idempotent, and satisfies F1 ○ F1 =

F1 and F (F (x), F (x)) = F (x) for every x ∈X.

Proof. (i) ⇒ (iii) ⇒ (iv) ⇒ (ii) Follows from Propositions 2.1 and 3.3.
(ii) ⇒ (i) Since F is associative, it is unarily quasi-range-idempotent. Thus, we

only need to prove that F (k ⋅ F (x)) = F (x) for every x ∈ X and every k ∈ N. Due
to our assumptions, this condition holds for k = 1 and k = 2. Now, suppose that it
holds for some k ⩾ 2. We then have F ((k + 1) ⋅ F (x)) = F2(Fk(k ⋅ F (x)), F (x)) =
F2(F (x), F (x)) = F (x) and hence the condition holds for k + 1. �

The following result yields an axiomatization of a class of associative and range-
idempotent ε-standard operations (hence invariant by replication) over bounded
chains. If X represents a bounded chain, we denote the classical lattice operations
onX by ∧ and ∨. Also, the ternary median function onX is the function med∶X3 →
X defined by

med(x, y, z) = (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x).

Proposition 5.7. Let H ∶X∗ →X ∪{ε} be an ε-standard operation over a bounded
chain X. Then the following three assertions are equivalent.

(i) (a) H is associative,
(b) H2(H1(x),H1(x)) =H1(x) for every x ∈X,
(c) H1 and H2 are nondecreasing in each argument, and
(d) the sets H1(X) = ran(H1), H2(X,z), and H2(z,X) are convex for

every z ∈X.
(ii) (a) H is associative,

(b) H is range-idempotent,
(c) for every n ∈ N, Hn is nondecreasing in each argument, and
(d) for every n ∈ N, the set Hn(y,X,z) is convex for every (y,z) ∈Xn−1.

(iii) There exist a, b, c, d ∈X, with a ⩽ c ∧ d and c ∨ d ⩽ b, such that

Hn(x) = med(a, (c ∧ x1) ∨med(
n

⋀
i=1
xi, c ∧ d,

n

⋁
i=1
xi) ∨ (d ∧ xn), b) , n ∈ N.

Proof. (i)⇒ (ii) Assume thatH ∶X∗ →X∪{ε} satisfies condition (i). By Lemma 5.6,
H is range-idempotent. Using Eq. (3), we immediately see that, for every n ∈ N,
Hn is nondecreasing in each argument.
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Now, let us show that, for every z ∈ X and every convex subset C of X, the set
H2(C, z) is convex. Let t ∈X such that H2(y0, z) < t <H2(y1, z) for some y0, y1 ∈ C.
Since H2 is nondecreasing and H2(X,z) is convex, there is u ∈ [y0, y1] ⊆ C such
that t =H2(u, z). This shows that H2(C, z) is convex.

We now show by induction on n that Hn(y,X,z) is convex for every (y,z) ∈
Xn−1. This condition clearly holds for n = 1 and n = 2. Assume that it holds for
some n ⩾ 2 and let us show that it still holds for n + 1, that is, Hn+1(y,X,z) is
convex for every (y,z) ∈ Xn. If z = ε, then since H2(z,X) is convex so is the set
Hn+1(y,X) = H2(Hn(y),X). If z = (v, z), then the set C = Hn(y,X,v) is convex
and hence so is the set Hn+1(y,X,v, z) =H2(C, z).

(ii) ⇒ (i) Trivial.
(ii) ⇔ (iii) This equivalence was proved in [7]. �

Remark 3. If we set c = d in any of the operations H described in Proposi-
tion 5.7(iii), then its restriction to [a, b]∗ is a c-median [13], that is,

Hn∣[a,b]n(x) = med(
n

⋀
i=1
xi, c,

n

⋁
i=1
xi) .

We observe that any operation H ∶X∗ →X ∪{ε} satisfying the conditions stated
in Proposition 5.7 has a unary part of the form H1(x) = med(a, x, b), which is not
always one-to-one. We will therefore make use of Theorem 3.6 (instead of Corol-
lary 4.5) to derive the following generalization of Proposition 5.7 to preassociative
functions.

Theorem 5.8. Let F ∶X∗ → Y be a standard function, where X and Y are chains
and X is bounded, and let a, b ∈ X such that a ⩽ b. Then the following three
assertions are equivalent.

(i) (a) F is preassociative and unarily quasi-range-idempotent,
(b) there exists a strictly increasing function f ∶ [a, b] → Y , with a convex

range, such that F1(x) = (f ○med)(a, x, b) for all x ∈X,
(c) F2(x,x) = F1(x) for every x ∈X,
(d) F2 is nondecreasing in each argument, and
(e) the sets F2(X,z), and F2(z,X) are convex for every z ∈X.

(ii) (a) F is preassociative and unarily quasi-range-idempotent,
(b) there exists a strictly increasing function f ∶ [a, b] → Y , with a convex

range, such that F1(x) = (f ○med)(a, x, b) for all x ∈X,
(c) for every integer n ⩾ 2, we have Fn(n ⋅ x) = F1(x) for every x ∈X,
(d) for every integer n ⩾ 2, Fn is nondecreasing in each argument, and
(e) for every integer n ⩾ 2, the set Fn(y,X,z) is convex for every (y,z) ∈

Xn−1.
(iii) There exist c, d ∈ [a, b] and a strictly increasing function f ∶ [a, b]→ Y , with

a convex range, such that

Fn(x) = (f ○med)(a, (c ∧ x1) ∨med(
n

⋀
i=1
xi, c ∧ d,

n

⋁
i=1
xi) ∨ (d ∧ xn), b) , n ∈ N.

In this case we have f = F1∣[a,b].

Proof. (i) ⇒ (iii) Let F ∶X∗ → Y be a standard function satisfying condition (i)
and take g ∈ Q(F1) such that (g ○ F1)(a) = a and (g ○ F1)(b) = b (this is always
possible due to the form of F1 and does not require AC). Thus, g∣ran(F1) = f−1 is
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strictly increasing. Let H ∶X∗ → X ∪ {ε} be the ε-standard operation defined by
H♭ = g ○ F ♭. By Theorem 3.6, H is associative and F ♭ = f ○H♭.

Let us show that H(H(x),H(x)) = H(x) for every x ∈ X. Using condition
(i)(c), we have H2(H1(x),H1(x)) = (g ○ F2)(H1(x),H1(x)) = (g ○ F1)(H1(x)) =
(g ○ F1 ○ g ○ F1)(x) = (g ○ F1)(x) =H1(x).

The function H1(x) = med(a, x, b) is clearly nondecreasing. Since F2 is nonde-
creasing in each argument, so is H2 = g ○ F2.

The set H1(X) = ran(H1) = [a, b] is convex. Let us show that the set H2(X,z)
is also convex for every z ∈ X. Let t ∈ X such that H2(y0, z) < t < H2(y1, z) for
some y0, y1 ∈ X. Since ran(H2) ⊆ ran(H1), we have t ∈ ran(H1) = [a, b]. Therefore,
since f is increasing, we have

F2(y0, z) = (f ○H2)(y0, z) ⩽ f(t) ⩽ (f ○H2)(y1, z) = F2(y1, z)

and hence there exists u ∈ X such that f(t) = F2(u, z). If follows that t = (f−1 ○
F2)(u, z) =H2(u, z) and hence that the set H2(X,z) is convex. We show similarly
that H2(z,X) is convex.

Thus, the operation H satisfies the conditions stated in Proposition 5.7 and we
have ran(H) = ran(H1) = [a, d].

(iii) ⇒ (ii) Combining Theorem 3.6 and Proposition 5.7, we obtain that F is
preassociative and unarily quasi-range-idempotent. Also, for every integer n ⩾ 2, Fn

is nondecreasing in each argument and we have Fn(n⋅x) = (f ○med)(a, x, b) = F1(x)
for every x ∈X. Finally, the set Fn(y,X,z) = (f ○Hn)(y,X,z) is convex for every
(y,z) ∈ Xn−1 since f is strictly increasing and both sets ran(f) and Hn(y,X,z)
(see Proposition 5.7) are convex.

(ii) ⇒ (i) Trivial. �

In the special case where X is a real closed interval and Y = R, the convexity
conditions can be replaced with the continuity of the corresponding functions in
both Proposition 5.7 and Theorem 5.8. Moreover, every Hn (resp. Fn) is symmetric
if and only if c = d. We then have the following corollary.

Corollary 5.9. Let I be a real closed interval and let [a, b] be a closed subinterval
of I. A standard function F ∶ I∗ → R is preassociative and unarily quasi-range-
idempotent, there exists a continuous and strictly increasing function f ∶ [a, b] → R
such that F1(x) = (f ○med)(a, x, b), F2 is continuous, symmetric, nondecreasing in
each argument, and satisfies F2(x,x) = F1(x) for every x ∈ I if and only if there
exist c ∈ [a, b] and a continuous and strictly increasing function f ∶ [a, b] → R such
that

Fn(x) = (f ○med)(a,med(
n

⋀
i=1
xi, c,

n

⋁
i=1
xi) , b) , n ∈ N.

In this case we have f = F1∣[a,b].

6. Concluding remarks and open problems

In this paper we have first recalled the concept of preassociativity, a recently-
introduced property which naturally generalizes associativity for variadic functions.
Then, starting from known axiomatizations of noteworthy classes of associative op-
erations, we have provided characterizations of classes of preassociative functions
which are unarily quasi-range-idempotent. We observe that, from among these
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preassociative functions, the associative ones can be identified by using Proposi-
tion 3.3.

We end this paper by the following interesting questions:

(1) Find interpretations of the preassociativity property in aggregation function
theory and/or fuzzy logic.

(2) Find new axiomatizations of classes of preassociative functions from existing
axiomatizations of classes of associative operations. Classes of associative
operations can be found in [3, 4, 7–15,17–20,23–25].
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