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The quasicontinuum (QC) method is multiscale approach for lattice models that fully resolves lattice 

models in regions in which individual lattice events need to be captured and coarse-grains elsewhere. 

The QC method was originally proposed to reduce the computational costs of atomistics [1] and has so 

far mainly been used for this, e.g. [2-5]. Recently however, the QC method has been reformulated in 

terms of virtual-power to deal with (local and nonlocal) dissipation mechanisms [6,7]. In this way the QC 

approach can also be used for structural lattice models using dissipative springs, e.g. for electronic 

textile [8].  

A significant amount of structural lattice models use beams, in contrast to springs, depending on 

the material one desires to model. Whereas the kinematic variables of spring lattices are only formed by 

nodal displacements, those of beam lattices consist of nodal displacements and nodal rotations. 

Consequently, QC approaches for beams need to deal with the nodal rotations as well. Furthermore, 

when planar beam lattices experience out-of-plane deformation, the nodal displacements and nodal 

rotations are nonlinear functions of the nodal coordinates. This means that QC approaches for beam 

lattices require higher-order interpolation. Consequently, standard summation rules do not suffice. This 

presentation will show a number of QC formulations to deal with the typical issues arising in planar 

beam lattices and clearly distinguishes between the error due to interpolation and the error due to 

summation. Finally, the QC formulation most convenient in terms of accuracy versus efficiency, is 

presented [9]. 
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