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The quasicontinuum (QC) method is multiscale approach for lattice models that fully resolves lattice
models in regions in which individual lattice events need to be captured and coarse-grains elsewhere.
The QC method was originally proposed to reduce the computational costs of atomistics [1] and has so
far mainly been used for this, e.g. [2-5]. Recently however, the QC method has been reformulated in
terms of virtual-power to deal with (local and nonlocal) dissipation mechanisms [6,7]. In this way the QC
approach can also be used for structural lattice models using dissipative springs, e.g. for electronic
textile [8].

A significant amount of structural lattice models use beams, in contrast to springs, depending on
the material one desires to model. Whereas the kinematic variables of spring lattices are only formed by
nodal displacements, those of beam lattices consist of nodal displacements and nodal rotations.
Consequently, QC approaches for beams need to deal with the nodal rotations as well. Furthermore,
when planar beam lattices experience out-of-plane deformation, the nodal displacements and nodal
rotations are nonlinear functions of the nodal coordinates. This means that QC approaches for beam
lattices require higher-order interpolation. Consequently, standard summation rules do not suffice. This
presentation will show a number of QC formulations to deal with the typical issues arising in planar
beam lattices and clearly distinguishes between the error due to interpolation and the error due to
summation. Finally, the QC formulation most convenient in terms of accuracy versus efficiency, is
presented [9].
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