Alex Biryukov and Dmitry Khovratovich
University of Luxembourg

12 October 2014

«0O» «Fr «=»r «

it
-
[y

DA

Authenticated encryption

Simple encryption

If you just want to protect confidentiality of your data, you use
(simple) symmetric encryption:

encrypt

Plaintext .
use and

¢ transmit

- Nonce

EI\'

1
Ciphertext

e Agree on the key K;
e Choose nonce N uniquely for each piece of data;
e Encrypt and send.

Good encryption scheme makes ciphertexts look random (even if
plaintexts repeat).

Simple encryption

If you just want to protect confidentiality of your data, you use
(simple) symmetric encryption:

encrypt

Plaintext .
use and

¢ transmit

- Nonce

EI\'

1
Ciphertext

e Agree on the key K;
e Choose nonce N uniquely for each piece of data;

e Encrypt and send.

Good encryption scheme makes ciphertexts look random (even if
plaintexts repeat).

No integrity protection.

Encryption and authentication

If you also want to protect integrity of your data (i.e. authenticate
the message), you use authenticated encryption:

encrypt and
authenticate

Plaintext use and

‘ transmit

~—[]

Ex

\
Ciphertext
Tag
e Tag T is added to each ciphertext;
e Adversary can not modify C||T without getting noticed.

Good encryption scheme should decrypt forged ciphertext to L
(invalid).

Encryption and authentication

If you also want to protect integrity of your data (i.e. authenticate
the message), you use authenticated encryption:

encrypt and
authenticate

Plaintext use and

‘ transmit

~—[]

Ex

\
Ciphertext
Tag
e Tag T is added to each ciphertext;
e Adversary can not modify C||T without getting noticed.
Good encryption scheme should decrypt forged ciphertext to L
(invalid).

We might also want to authenticate some data without encrypting
it (associated data).

AD

Message Nonce
authenticate encrypt and
and bind authenticate
=
use and
‘ transmit,
-]
Ex
@™

Confidentiality:

e Ciphertexts indistinguishable from random strings;
Data integrity:

e Most of seemingly valid ciphertexts decrypt to L.

DA

Desirable features

Non-exhaustive list of authenticated encryption features:
e Parallelizability to fully use multi-core CPU,;
e Incremental tags to avoid recomputing the entire ciphertext;
e Security proof;
e Reasonable performance;

e Compact implementation.

What we also want

Extra features

AD Message Nonce
authenticate encrypt and
and bind authenticate
use and
‘ transmit
~—[]
Ex

Some extra features:

Easy to understand and implement.

Security level equal to the key length (does not hold for
AES-CBC/GCM/OCB).
e More compact and verifiable security proofs.

No extra operations like key derivation, field multiplications
etc. (makes the design more complex).

Extra features

AD Message Nonce
authenticate encrypt and
and bind authenticate
use and
‘ transmit
~—[]
Ex

Some extra features:

Easy to understand and implement.

Security level equal to the key length (does not hold for
AES-CBC/GCM/OCB).
e More compact and verifiable security proofs.

No extra operations like key derivation, field multiplications
etc. (makes the design more complex).

Solution: design a permutation-based mode, not a blockcipher one.

Permutation-based

How to construct a variable-length cipher:

Ex

==
— —d —d

e Each component is keyed function Fg;

e Security reduces to pseudorandomness of F (unpredictable
under a random key).

«0O>» «F»r «=>»

« =

DA

How to construct a variable-length cipher:

Ex

—

0D~ 3

e Each component is a fixed public function F;

e Security proven if F is randomly chosen (while in fact it is

not).

«0O>» «F»r «=>»

« =

DA

Permutation-based

Why permutation-based?

e A wide permutation can take key, nonce, counter, intermediate
values, or a message block altogether as input.

e Plenty of designs: different widths and optimizations;

e The underlying permutation is easier to design and analyze (no
need to care of key schedule, mask generation, nonce
formatting, etc.).

Permutation-based

Why permutation-based?

e A wide permutation can take key, nonce, counter, intermediate
values, or a message block altogether as input.

e Plenty of designs: different widths and optimizations;

e The underlying permutation is easier to design and analyze (no
need to care of key schedule, mask generation, nonce
formatting, etc.).

Cons:
o Weaker security model (random permutation);
o Lower throughput (larger calls/byte ratio).

80- and 128-bit security

Most popular modes suggest using AES (128-bit block) as the
underlying blockcipher.

«0O>» «F»r «=>»

« =

DA

Most popular modes suggest using AES (128-bit block) as the
underlying blockcipher.

No security guaranteed as the number of invocations g approaches
on/2 _ 964

«O0>» 4F>» «=)r « =)

DA

Most popular modes suggest using AES (128-bit block) as the
underlying blockcipher.

No security guaranteed as the number of invocations g approaches
on/2 _ 964

We want to offer a higher security margin.

«Or «F»r 4«

it

-
it

-
[y

DA

PAEQ

PAEQ

Our new scheme PAEQ has

Basic features:

Fully parallelizable;
Handles associated data;

Variable key/nonce/tag
length;

Patent-free;

Online encryption and
authentication, no length
awareness;

Byte-oriented.

Incremental tag (for max
tag length).

Extra features:

e Security level up to 128 bits and higher
(up to w/3) and equal to the key
length;

e Compact security proof in the random
permutation setting;

e Permutation inputs and outputs are
linked by only XORs and counters, no
extra operations;

e Only forward permutation calls.

Encryption

Binding associated data

FAT—
X x

HO@@ HO@B@® HO@G

e

BCOX RBCOX RCOX

Authentication

Eneryption of the last block of length ¢

Nonce-misuse option

D = (kyi+r (mod 256))

@ key k bits
@ nonce, r bits riszok

counter, s bits

Encryption:

e Counter mode with PRF;

e Confidentiality basically follows from the properties of CTR.

«0O» «Fr «=»r «

it
v
[y

DA

Authentication:

Fi(N,1)

BepED] Il N@Ee
‘ F ‘ ‘ F o o0 F ‘ F ‘ F
T TS S 95 O

PAEQ: authentication

e PMAC style with additional input from the encryption part;

e If the tag has full length, it can be updated with a few extra

calls.

Security proof

PAEQ comes with several security proofs. Confidentiality and
integrity are established up to 2 total queries to F:

where k — key length, 7 — tag length, g — total number of queries
to F.

If the nonce is misused, integrity is still established up to 2%/2
queries.

Encryption

6 k r s

Binding associated data

D i o ke

f

HE@E HE@®

RE3]]E) REs]]e) @@

ooC o' 0OC>O oOC>O

X | j—ﬂ}*- X j—‘ﬁ*- X —¢-cD>

‘ EP*(E EP*@ @ S-CaD

¥ ‘ ‘ ¥ ‘ f

0OC>O 0OCDO 0OCDO

X X “Hs 16 X X ‘ a+s XX \\
16k dats
H@CZO

Authentication

I}

optional
trumeation

We use our own permutation — AESQ.

Dy =256-k+r+i

@ key, k bits
nonce, r bits r+s > 2k
counter, s bits

AESQ

New 512-bit permutation aimed at modern CPUs:

e 4 parallel AES states;

e 2 AES rounds alternated with column shuffle;

e Simple round constants;

e 20 rounds in total.

IHHUU W0 0 00

GBSrRMC) (GBSRMO) (GBSRMC) (GBSRMO)

1-=@ 2-=P 3@ 4@
GBsrMC) (GBSRMO) (BSRMC) (GBSRMO)
5@ [e) 8t

[g A AT
e
(0 (0 N g

AESQ

Properties of AESQ

Running two instances of AESQ in parallel yields highest
throughput on Haswell processors.

W00 QU0 O g

GBSrRMC) (GBSRMO) (BSRMC) (GBSRMO)
1-@ 2@ 3@ 1@

GBsSrRMC) (GBSRMO) (BSRMC) (GBSRMO)
5 6 7= 8

[g A AT
e
(0 (0 N g

Security of AESQ:
e Differential /linear properties disappear after 8 rounds;
e Rebound attacks stop at 12 rounds;
¢ Preimage/distinguishing attacks stop at 12-14 rounds.

Benchmarks on the Haswell CPU:

Security level / Key length || PAEQ (20 rounds, cycles per byte)
64 49
80 5.1
128 5.8
256 8.9

«Or «F»r 4«

it
.

it
v

DA

Questions?

