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REye blink startle magnitude is assumed to be higher in threatening contexts. A scarce amount of studies suggest
that this does not hold true when startle is measured during perceived threats to homeostatic integrity. The
present study was set up to describe the startle response pattern to a selection of interoceptive stimuli. Female
subjects (N = 36) were exposed once to 90 s of continued (1) cold pain, (2) inhalation of a gas mixture of
7.5% CO2, and (3) breathing against an inspiratory and expiratory resistive load. Each stimulus was preceded
and followed by a 90 second period of rest, respectively labeled baseline and recovery. Even after correcting
eye blink startle responses for habituation, a decreased startle amplitude was evident during these stimuli.
Results suggest that startle amplitude during aversive stimulation is inversely correlated with perceived fearful-
ness for women, although further studies are necessary to corroborate this interpretation.

© 2013 Published by Elsevier B.V.
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C1. Introduction

Interoception, the perception of the state of the body, serves to
maintain homeostasis and is closely linked to the experience of emo-
tions (Craig, 2002). Interoceptive fear is the apprehension of bodily
sensations (Shear et al., 1997) and canmanifest itself following the per-
ceived disruption of homeostasis or in the anticipation thereof (Furst
and Cooper, 1970). The anticipated or perceived disruption of homeo-
stasis that lies at the heart of interoceptive fear, can potentially relate
to any part of the organisms' functioning, including gas-exchange and
thermoregulation. Interoceptive fear includes fear of pain, as pain is a
perception related to the body state, processed in a neural network
that largely overlaps with processing of non-painful interoceptive sen-
sations (Legrain et al., 2011; Moseley et al., 2012), and in that painful
stimulation is relayed through a central homeostatic pathway along
with other visceral and somatic afferents signaling the disruption of
homeostasis (Craig, 2003).

From an evolutionary perspective, fears promote an animal's
chances of survival by helping to select a response appropriate for
counteracting a perceived or anticipated threat (Ohman and Mineka,
2001). In this line of logic, interoceptive fear can have an adaptive
advantage in urging a behavioral response to restore homeostasis or
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ypical modulation of startle in
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prevent its disruption. However, interoceptive fear in the absence of a
real threat may paradoxically lead to over-perception of bodily sensa-
tions and to excessive physical symptom reports.

Functional disorders, anxiety disorders, and pain related disorders,
affect a significantly large part of the population. In all of these disorders
interoceptive fears play a key role, implying that the advancement of
both clinical and fundamental knowledge on interoceptive fear is of
utmost importance. A body of literature as well as a number of labora-
tory studies imply that the etiology and maintenance of such disorders
is due to associative learning processes (Acheson et al., 2007; Bouton
et al., 2001; De Peuter et al., 2011; Mayer, 2000; Meulders et al., 2011;
Pappens et al., 2013). Because of interoceptive fear conditioning, origi-
nally benign sensations can elicit fear responses, when in the past
these benign sensations have preceded an aversive interoceptive
sensation.

Although interoceptive fear conditioning has a strong pedigree in
the understanding of the aforementioned disorders, relatively little
research has elaborated on the basic fear response topography to inter-
oceptive stimulations used in the laboratory. Therefore, the major aim
of the current study was to document unconditioned fear responding
to such interoceptive stimulations. We made a selection of stimuli
frequently used in experimental paradigms on pain (e.g., Helsen et al.,
2011) and dyspnea (Acheson et al., 2007; Pappens et al., 2011), namely
cold pain, inhalation of CO2-enriched air, and loaded breathing. We
selected these particular stimuli because a limited body of literature
on startle in response to these stimuli is already available, although as
yet no design has presented these three stimuli in comparable manners
within subjects. In this initial study, we limited ourselves towomen:we
justify this choice given that psychosomatic complaints and disorders
women in face of aversive bodily sensations, International Journal of
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have a higher prevalence among women (Kroenke and Spitzer, 1998;
Şar, 2010).

The potentiation – i.e. the relative increase in magnitude – of the
eye blink component of startle is a well-validated and widely accepted
measure of fear responding. An important question relating to the aim
of the current study is whether the eye blink component of startle can
provide a reliable indication of fear during aversive interoceptive
stimulation. The startle reflex is modulated by the motivational system
(Lang et al., 2000), and shows an increased amplitude when experienc-
ing fear (Globisch et al., 1999; Hammet al., 1997) or somethingwhich is
otherwise unpleasant (Vrana et al., 1988). Affective modulation of the
startle reflexmagnitude results from activation of a variety of structures
inwhich the amygdala plays a pivotal role. Thismodulatory effect of the
motivational neurocircuitry on the eye blinkmotor reflex is described in
more detail in the literature (e.g., Davis, 2006; Lang et al., 1998;Misslin,
2003). Although potentiation of startle following manipulations that
induce fear or unpleasantness is a robust finding, it has predominantly
been tested using visual and auditory stimuli. In contrast, the few
studies on startle in response to aversive interoceptive stimulation
present a more complicated and as yet inconclusive picture of findings.

With regard to thermal pain stimulation, findings are somewhat
equivocal. For phasic heat pain, it appears that stimulation of short
duration evokes startle potentiation (Crombez et al., 1997), whereas
stimulation of a longer duration does not (Horn et al., 2012, in
press). For cold pain, there is an overall reduction when averaging
startle amplitudes delivered at different times during a prolonged
stimulation (Tavernor et al., 2000), whereas such reduction may not
be evident at individual time points (De Peuter et al., 2009). Lovallo
(1975) describes that pain in response to the cold pressor test (CPT)
does not keep rising progressively as time of immersion increases, a
finding which may explain why startle probes at particular time
intervals are not reduced.

Regarding dyspnea, findings from several studies conducted in our
research group strongly suggest that dyspnea induced by the inhalation
of CO2-enriched air is associated with an inhibition of the startle reflex
(De Peuter et al., 2009; Pappens et al., 2012; Van Diest et al., 2009b).
Paradoxically, when dyspnea is induced by loaded breathing – a me-
chanical stimulus creating respiratory resistance – startle potentiation
is evident when the stimulus is light (near perceptual threshold level),
but absent when a respiratory load of higher (moderate) intensity is
administered (Pappens et al., 2010). This is paradoxical, because
self-report measures as well as skin conductance indicated that the
higher load was more aversive and arousing than the light load.

Possible mechanisms for these findings have been suggested by
their respective authors, andwill be reviewed in the Discussion section.
Regardless of the mechanism responsible for the apparently atypical
startle pattern found in earlier studies documenting startle responding
to the CPT, inhalation of CO2-enriched air, and loaded breathing, it
seems that startle within one type of stimulus is inversely correlated
with unpleasantness (Pappens et al., 2010). The following parsimonious
conclusions could be made: (a) these types of aversive interoceptive
stimulation are associated with a reduction in startle rather than
potentiation. (b) As dyspneic stimuli become more aversive as time
progresses, it could be expected that startle responsivity decreases
overall as the duration of dyspneic interoceptive stimulation increases.
However, (c) startle in response to painful peripheral hypothermic
stimulationmay be an exception in that pain fluctuates over the course
of time, and accordingly, startle may not necessarily decrease linearly
over time.

To test these hypotheses, in the current study we subjected
these earlier findings to a novel experimental paradigm, allowing for a
within-subject comparison of unconditioned defensive responding
to these three types of sustained, aversive interoceptive stimulation.
The primary aim of this study was to shed light on the startle response
over time to three types of stimulation. Eye blink startle responses were
studied during 90 s periods of cold pain, inhalation of CO2-enriched air,
Please cite this article as: Ceunen, E., et al., Atypical modulation of startle i
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and loaded breathing. In contrast to the studies of Pappens et al. (2010,
2011), which applied loads for only one inspiration, the continued stim-
ulation allowed for testing our assumption that startle declines linearly
during the course of dyspneic stimulation. Since we did not expect
potentiation but rather a reduction in startle, it was important to
make sure any reduction in startle wouldn't be due to habituation.
Therefore it was important to have a design which would allow us to
statistically correct for habituation-bound decrease in startle. For this
reason, startles were measured during a baseline phase prior to the
stimulus phase, and during a recovery phase following the stimulus
phase, so that a best fit line could be calculated which would filter out
the effects of habituation. Another new element in the current experi-
ment was that respiratory loads were applied both during inspiration
and expiration, so that startle eliciting probes would always be admin-
istered during actual stimulation.

To test the general conclusions we made earlier, we respectively
expected to observe:

(a) A reduced startle blink magnitude during aversive interoceptive
stimulation, as compared to prior and following an aversive in-
teroceptive stimulus. Given our design, this would correspond
to a reduction of startle during stimulus phase as compared to
baseline and recovery phase.

(b) For both dyspneic stimuli, we hypothesized a progressive reduc-
tion of the startle magnitude during the stimulus phase, as
unpleasant dyspneic stimuli have been shown earlier to be asso-
ciated with reduced startle responding, and as these stimuli
are thought to become progressively more unpleasant as time
since the onset increases.

(c) For the CPT, we expected a quadratic response pattern during
the stimulus phase, given that the overall average of multiple
startle responses is associated with a reduction in amplitude
(Tavernor et al., 2000) while no such reduction has been evident
during the 30 to 60 second period following stimulus onset (De
Peuter et al., 2009), the latter which is perhaps due to the fluctu-
ations in pain sensations during cold stimulation.

In linewith earlier findings, it was expected that all stimuli would be
scored as unpleasant rather than pleasant, that these stimuli would in-
duce some self-perceived arousal as opposed to complete calm, leading
to sub-maximal levels of feelings of dominance, and to induce some
fear.

2. Materials and methods

2.1. Participants

Thirty-six female psychology freshmen (mean age: 19 y/old) partic-
ipated in return for course credit. Exclusion criteria were pregnancy,
presence or history of cardiovascular disease, pain-related conditions,
or respiratory disease. Participants were randomly assigned to one of
six orders of stimulus presentation — stimulus presentation orders
were counterbalanced. The study protocol was approved by the Ethics
Committee of the Department of Psychology in accordance with the
Declaration of Helsinki (WorldMedical Association, 1997); prior to par-
ticipation, all subjects read and signed an informed consent with infor-
mation about the sensations that could possibly follow from exposure
to the stimuli, a guarantee about anonymity, and that participation
was voluntary and could be terminated at any point in time without
loss of the promised course credit.

2.2. Stimuli and apparatuses

2.2.1. Cold pressor
The cold pressor test (CPT) was used as a cold pain (CP) stimulus.

The CPT consisted of a Plexiglas water basin (Julabo®, Seelbach,
n women in face of aversive bodily sensations, International Journal of
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Germany), model 19A, containing a type FT200 cooler and type ED
water circulator. During the CPT, participants were requested to
immerse their right hand to the wrist in this water-filled basin posi-
tioned on the right-hand side of their seat. The water with a constant
temperature of 6 °C was circulated to prevent buildup of warmer
water around the hand; the hand was to be held in the cold water
for a duration of 90 s. Pain at this temperature is experienced as
intense, very cold and deep, and produces sympathetic autonomous
responses (Casey et al., 1996). Participants were explicitly told
beforehand that this was not a pain tolerance test and were informed
about the duration the hand had to be held in the cold water; this
information was provided with the purpose of discouraging partici-
pants to withdraw their hand prematurely, although they were free
to withdraw their hand at any time. In the 90 s prior to and the 90 s
following the CPT, participants immersed their hand in a stainless
steel water basin, model FBATH18 (Techne®, Staffordshire, United
Kingdom), with the water having a constant temperature of 30 °C
and circulating by means of the TE-10D Tempette® thermo regulator
and circulator. Immersing the hand in water of 30 °C prior and fol-
lowing the CPT was intended to create equal conditions for everyone
during the experiment. The two approximately equally sized water
basins – one cold and one lukewarm – were purposefully chosen for
their visual distinctiveness as to prevent subjects from immersing
their hand in the wrong basin at the wrong time.

2.2.2. CO2

A gas mixture of CO2 enriched air, with a proportion of 7.5% CO2,
21% O2 and 71.5% N2 was administered for a duration of 90 s to induce
sensations of dyspnea. The decompressed gas mixture was contained
in a meteorological balloon and connected to the inspiratory port.
Apart from dyspneic sensations and altered respiratory behavior, 7.5%
CO2 enriched air can elicit (transient) sweating, feelings of warmth,
and dizziness (Devriese et al., 2006; Stegen et al., 1998). Effects of CO2

inhalation are thought to be cumulative, with less effect on the first
few breaths. Similarly, after termination of CO2 administration, the
blood pH level gradually – not instantaneously – returns to its normal
level, an effect which is referred to as washout.

2.2.3. Resistive loads
Resistive loads require extra effort from the respiratory muscles –

the diaphragm and intercostals – during breathing, in order tomaintain
flow rate and volume. The accompanying sensation is comparable to
breathing through a narrow tube and resembles dyspneic sensations
experienced in COPD, asthma and other types of obstructed breathing
(Younes, 1995). Unlike CO2 administration, loaded breathing can be
noticed from thefirst breath. Prolonged loaded breathingmay addition-
ally have some cumulative effects, as respiratory muscles can become
fatigued. In the current study, two resistive loads were used: one
was applied to the inspiratory valve, and one to the expiratory valve.
Applying both an inspiratory and expiratory load on breathing ensured
that stimulation was continuously unpleasant as it was for the other
two stimuli, and that the startle eliciting probewould always fall during
actual stimulation. Both loads were of an intensity of 1.96 kPa l−1 s, an
intensity rated as unpleasant (Pappens et al., 2010).

2.2.4. Breathing apparatus
Throughout the experiment – except during self-report – partici-

pants breathed through a mouthpiece while wearing a nose clip. The
mouthpiece was fitted on a microbial filter, which in its turn was
connected to a non-rebreathing valve to ensure that inspiratory and
expiratory air remained separated. The inspiratory and expiratory port
of the non-rebreathing valve were both connected to a manual direc-
tional control three-way T-shape™ stopcock-type™ valve (Hans
Rudolph, Inc., series 2110) by means of a vinyl tube (inner diameter
3.5 cm; length 100 cm). In the loaded breathing trial, the valves allowed
easy switching between loaded and unloaded breathing. In the CO2
Please cite this article as: Ceunen, E., et al., Atypical modulation of startle in
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inhalation trial, the three-way valve allowed easy switching between
breathing room air and CO2 enriched air on the inspiratory side.

2.2.5. Eye blink startle response
Electromyographic (EMG) activity of the left orbicularis oculi

muscle as response to acoustic startle probes (95 dB) was measured
by the placement of three electrodes filled with high conductivity
Microlyte electrolyte gel. One electrode was placed perpendicular
under the pupil when the eye was in forward gaze, the second
approximately 1 to 2 cm lateral to the first (center-to-center) following
the curvature of the eye, and one signal ground electrodewas placed on
the center of the forehead. All sites were first cleaned with alcohol to
reduce inter-electrode resistance. The raw signal was amplified by a
Coulbourn isolated bioamplifier with bandpass filter (LabLinc v75-04)
with a 90 Hz high pass filter. This signal was routed to a Coulbourn 4
channel integrator (LabLinc v76-24), which rectified and smoothed
the signal online with a time constant of 20 ms. The EMG signal was
sampled at 1000 Hz starting 500 ms prior to the onset of the auditory
startle probe, until 1000 ms after probe onset.

2.2.6. Software
All signals were transmitted through a 16-Bit National Instruments

PCI-6221 data acquisition card (National Instruments, Austin, Texas)
to a computer. Affect 4.0 software (Spruyt et al., 2010) was used for
running the experiment as well as for data acquisition. A modular
script-based program named PSychoPHysiological Analysis and abbre-
viated as PSPHA (De Clercq et al., 2006) was used to handle the
recorded signals offline and to extract the relevant parameters neces-
sary for statistical analysis.

2.2.7. Self-report measures
At the end of each trial a computerized 9-point scale of the language-

free self-assessment manikin (SAM-scale, Bradley and Lang, 1994) was
administered to retrospectively rate themean valence (unpleasant =1;
pleasant = 9), arousal (calm = 1; excited = 9), and dominance
(lack of control = 1, sense of control = 9) felt during the 90 second
stimulus. Before proceeding to the next trial, subjects were requested
to indicate their fear as experienced during the stimulus period on a
computerized horizontal visual analog scale (VAS; 0 = not at all
scared; 100 = extremely scared).

2.3. Procedure

Upon arrival, the experimenter led the participants into the experi-
mental room where he provided them an informed consent. The
informed consent brieflymentioned all stimuli, aswell as the sensations
each stimulus may respectively elicit, and that any sensations felt were
without harmandwere of a transient nature. Participantswere request-
ed to read through the consent before agreeing to sign it. After signing, a
brief questionnaire of medical history in relation to exclusion criteria
(see Section 2.1) was provided. Next, electrodes were attached —

subjects were informed that these were meant for measuring phy-
siological responses, albeit without further specifications. The experi-
menter verbally went through the experimental procedure, and then
placed headphones on the participant. Participants were requested to
put on the nose clip and breathe through the mouthpiece, and told to
keep their eyes fixated in the direction of the computer screen. Partici-
pants sat upright (not reclined) throughout the entire experiment and
lights remained on (not dimmed). Prior to initiation of the experimental
manipulations, the experimenter left and went to the operator room,
adjacent to the room where participants were left alone throughout
the entire experiment; the experimenter remained in the operator
room until the experiment was over.

Prior to each trial, 10 acoustic startle probes were administered to
habituate participants to the startle probe. Habituation to the probes
was done because startle responses tend to be amplified at the initial
women in face of aversive bodily sensations, International Journal of
3
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Table 1 t1:1

t1:2Means and standard deviations for valence, arousal, dominance, and fear experienced
t1:3during stimulation.

t1:4Cold pain CO2 inhalation Loaded breathing

t1:5Mean SD Mean SD Mean SD

t1:6Valence 3b 1.6 3.8a 1.5 3.8a 1.6
t1:7Arousal 6a 1.9 5.6a 1.7 5.4a 1.8
t1:8Dominance 3.9a 1.9 4.4a 1.9 4.5a 2.2
t1:9Fear 43a 24 47a 25 45a 30

t1:10Note. Valence, arousal, and dominance all ranged from 1 to 9, respectively unpleasant
t1:11versus pleasant, calm versus excited, and a lack of control versus a sense of control.
t1:12Fear ranged from 0 to 100, respectively from not at all scared to extremely scared.
t1:13Means in the same row which share a subscript are not significantly different from
t1:14one another according to Tukey–Kramer post-hoc tests.
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presentation of the acoustic probes due to their novelty. During
habituation the interval between probes varied from 19 to 21 s.
After startle probe habituation, a trial started off with a baseline
phase of 90 s where subjects breathed through a mouthpiece, fixated
their eyes on a computer screen, and received three startle probes at
unpredictable times, one during the first, one during the second and
one during the last 30 s. Additionally, in the CPT trial, subjects
immersed their hand in lukewarm water during baseline. The second
phase was the stimulus phase during which either of the three
stimuli – cold water, CO2-enriched air, or loaded breathing – was
administered. During this phase, again there were three startle
probes at variable times — one during the first 30 s, one during the
second, and one during the last. The third phase is referred to as the
recovery phase, and was identical to the baseline phase, except in
that it followed – instead of preceded – the stimulus phase. After
recovery, subjects were free to release the mouthpiece while they
filled out the self-report scales, before proceeding to the next trial.
In total there were three trials, and only one (continuous) stimulus
was presented per trial, during the stimulus phase. Avoiding repeated
presentation of stimuli ensured that potential learning behavior and
alteration of responses due to recent exposure was minimized. At
the end of the experiment, subjects were fully debriefed.

2.4. Data analysis

Eye blink startle EMG responses were calculated by subtracting
the mean value from the 0 to 20 ms following probe onset from the
peak value found in the 21 to 175 ms time window following probe
onset. Excluding startle measured during habituation, there were 27
remaining data points per subject. Data points where there was
already blink activity at the onset of startle probe presentation were
rejected (b10%) as recommended by Blumenthal et al. (2005). The
maximum percentage of missing data points for a single subject was
just under 26%, while the mean number of missing data points per
person was just over 7%. After removing rejected values, startle
amplitudes were transformed to T-scores for each individual, which is
a common procedure (see Blumenthal et al., 2005). The reason for this
transformation was that we were interested in overall intraindividual
differences in response to the different phases and probe delivery
times, and not in interindividual differences in response amplitude.
Having obtained individual T-scores, missing data were replaced
by the mean startle amplitude in response to the same probe of those
people who had received all stimuli in the same order. We did this to
rule out effects of stimulus presentation order on amplitude. Once
missing data were replaced, the data were detrended by using individ-
ual regression models with probe order as the predictor (Lüthy et al.,
2003). Using this method, the mean of a best fit line was subtracted
from the actual T-score. Unless this method is applied, magnitudes in
our design are generally higher during baseline, and lower during
recovery, simply because startle magnitudes continue to decline linear-
ly, even after initial habituation. By removing this linear reduction in
magnitude, the magnitudes at each point in time across the three
phases become better comparable, and the differences in amplitude
that remain are more likely due to the sensations at that moment of
prolonged stimulation.

The detrended data were then entered into repeated measures
ANOVA's, with trial type (CPT, CO2 or load trial), phase (baseline, stim-
ulus, or recovery), and startle probe timing (1st 30 s, 2nd 30 s, or last
30 s) as within subject variables. In order to test our first hypothesis
that startle would be reduced during aversive interoceptive stimulation
as compared to baseline and recovery phase, we performed a polynomi-
al quadratic contrast for the effect of phase on all data points. In order to
test our second hypothesis that startle would progressively decrease
during prolonged dyspneic stimulation, we performed a polynomial
linear contrast on the effect of startle probe timing on the data
points obtained during the stimulus phase of both dyspneic stimuli.
Please cite this article as: Ceunen, E., et al., Atypical modulation of startle i
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And finally, in order to test our third hypothesis that startle in response
to the CPT would show a reduction in amplitude overall, except during
the 30 to 60 s following the onset, we performed a polynomial quadrat-
ic contrast on the data points obtained during the stimulus phase of CPT.

The SAM scores for valence of the three stimuli were compared
using a one-way repeated measures ANOVA. The same analysis was
done for the SAM scores on arousal as well as for dominance levels
and VAS state anxiety scores compared in response to the three
stimuli.

An α-level of .05 was set for statistical significance. Analyses were
done using the STATISTICA version 10 software package and the
means and standard deviations displayed in Table 1 were obtained
using the JMP 9 software package.

3. Results

3.1. Eye blink EMG

To test our first hypothesis that startle is reduced during intero-
ceptive stimulation (all three stimuli), a univariate test of significance
for planned comparisons of least square means for the effect of PHASE
confirmed the existence of a quadratic contrast, F(1, 35) = 6.19,
p b .05, meaning that startle dropped from baseline phase to stimulus
phase, and rose again from stimulus phase to recovery phase (see
Fig. 1a). To test our second hypothesis that dyspneic stimuli lead to
a progressive decrease in startle responding, another test for planned
comparisons was performed for the effect of startle probe timing
during stimulus phase of both dyspneic stimuli, and found a linear
decrease in startle magnitude, F(1, 35) = 4.20, p b .05 (see Fig. 1b). In
contrast, the effect of startle probe timing during the stimulus phase
of the CPT displayed a quadratic pattern, F(1, 35) = 4.68, p b .05. That
is, during the stimulus phase where the CPT was administered, there
was an initial reduction in startle amplitude, followed by an increase
in amplitude, whichwas in its turn followed by a decrease in amplitude
again (see Fig. 1c).

3.2. Self-report

As evident from Table 1, the three stimuli evoked similar levels of
arousal, dominance, and fear. The only significant difference between
the stimuli was in perceived valence, F(2, 70) = 5.52, p b .01, with
Tukey–Kramer post-hoc tests indicating that CP was rated as more
unpleasant than both CO2 inhalation (p = .01) and loaded breathing
(p b .05).

4. Discussion

The current study aimed to elucidate the startle response pattern
during aversive interoceptive stimulation, and used a sample of 36
young adult females to do so. To date affective modulation of startle
has almost exclusively been studied using visual and auditory stimuli,
n women in face of aversive bodily sensations, International Journal of
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ceptive sensations (e.g., Lang et al., 2011; Melzig et al., 2008). Howev-
er, reports on startle during aversive interoceptive stimulation are
still very scarce. In this initial study on within-subject responses to
different types of interoceptive stimulation, two respiratory stimuli
commonly used in studies on dyspnea and fear, and one cold stimulus
commonly used in research on pain were presented to participants. In
order to effectively document startle not as a conditioned response,
but as an unconditioned response, all stimuli were administered only
once, which necessitated that they be administered for a relatively
prolonged duration in order to allow for the administration of multiple
startle probes.

The findings from our current study are in accordance with the
scarce amount of previously published data, in that startle responding
to these three interoceptive stimuli is reduced overall. A new insight
from the current study is the presence of a linear decrease of startle
responding in face of dyspneic stimulation, and a non-linear, quadratic
startle response pattern during the CPT.

The overall reduction of startle for all three stimuli is evident despite
that all three stimuli are rated as fearful, unpleasant, arousing, and asso-
ciated with sub-maximal levels of dominance. Although the ratings of
unpleasantness are not at the extreme end of the valence-scale, an
earlier study of Pappens (2010) found that the intensity of respiratory
loaded breathing which we also used in the current study, was more
aversive than aversive pictures from the International Affective Picture
System (IAPS). Moreover, the CO2 inhalation in the current study was
equally aversive as loaded breathing, and CP was even more aversive.
That participants in the current study refrained from filling in the
extremes of the valence and fear scales does not indicate the stimuli
were ineffective in inducing unpleasantness or fear. Rather, we argue
this underreport to be due to the lack of milder unpleasant stimuli
Please cite this article as: Ceunen, E., et al., Atypical modulation of startle in
Psychophysiology (2013), http://dx.doi.org/10.1016/j.ijpsycho.2013.03.01
(e.g., unpleasant pictures), and the anticipation that a potentially
more aversive stimulus might be presented in a subsequent trial (re-
quiring that the extremes of the scale need to remain unused until
then). Though we did not let subjects rate the baseline and recovery
phases, right after the experiment was over subjects informally
informed the experimenter that those phases were dull (they had to
stare at a fixation cross and knewno stimuli would be presented during
those phases), thus ruling out that the affective tone was constantly
negative.

From the perspective of the emotional priming model, which
posits that startle magnitude should be greater when the aversive
motivational system is active (Lang et al., 1998), the overall reduction
in startle is puzzling. Although the few previous studies that found
similar results forwarded a number of explanations, currently there
is no satisfactory answer to the mechanisms underlying this unusual
response pattern. Nevertheless, based on prior explanatory specula-
tions, some suggestions for future research can be made.

One speculation that has been made earlier, is that the reduction
in startle responding is due to the interoceptive nature of the stimuli
(Pappens et al., 2010), implying that aversive interoceptive stimulation
of any kindwould fail to evoke potentiation. Although the current study
did not find any counterevidence for this claim, further research with
other types of interoceptive stimulation is necessary in order to truly
falsify this claim. Moreover, resorting to the interoceptive nature of
the stimuli as an explanation for the unusual startle response, requires
a predefined and well-outlined working definition of interoception,
given that consensus on its definition is lacking, in particular with
regard to the ‘outer boundaries’ of the concept (Dworkin, 2007).

Another explanation forwarded by Pappens et al. (2010) is that
according to the defense cascade model (Lang et al., 1997), startle po-
tentiation should no longer be evident during the circastrike (fight/
women in face of aversive bodily sensations, International Journal of
3
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flight) phase of defensive responding, despite aversiveness of stimula-
tion (e.g., Low et al., 2008; Richter et al., 2012). This circastrike phase
of defensive responding is distinct from earlier defensive phases, not
only in startle responding and threat imminence, but also in autono-
mous responses such as heart rate, skin conductance, and presumably
in respiration as well (Van Diest et al., 2009a). In order to test whether
the startle response pattern in face of interoceptive stimuli might be
due to activation of circastrike responding, inclusion of additional
autonomous measures could theoretically provide further conclusive
evidence. In practice however, many interoceptive stimuli, including
the stimuli used in this experiment, elicit regulatory homeostatic
responses, which may complicate interpretation of autonomous mea-
sures, making this hypothesis hard to test for at least a number of inter-
oceptive stimuli.

Finally, orientation of attention to bodily processes has been specu-
lated to be responsible for a reduction in responsiveness to auditory
stimuli such as the startle probe (Pappens et al., 2012). This speculation
could be tested by manipulating orientation of attention to bodily
processes or to surrounding stimuli such as acoustic probes. To date,
only one such studyhas been done and suggests orientation of attention
inward may be responsible for a reduction in startle responding to
respiratory loads (Pappens et al., 2011), but it remains unclear whether
this could also explain startle in response to CO2 or the CPT. An alterna-
tive method to corroborate this explanation, is to include a measure of
attention requiring subjects to indicate whether their attention
was oriented predominantly at bodily sensations, predominantly at
surrounding stimuli, or divided between both.

In the current study, these explanatory hypotheses were not
extensively put to the test, as the primary aim was to describe, not
explain the response pattern to the interoceptive stimuli we selected.
Nevertheless, the present findings provide sufficient reason for taking
these hypotheses and the methods to test them into account in future
studies. Outlining the definition of interoception, testing startle in
response to other forms of aversive interoceptive stimulation, inclusion
of other psychophysiological measures in some instances, and manipu-
lation and/or measures of orientation of attention are all potential
avenues for future research, which may elucidate the mechanism
responsible for the atypical startle patterns observed in the current
and previous studies. Additionally, possible sex differences in the sub-
jective experience and/or in the psychophysiological response pattern
may require more attention in future studies, given that psychosomatic
complaints are predominantly present inwomen (Kroenke and Spitzer,
1998; Şar, 2010). Until these issues are addressed in further studies, any
explanatory hypotheses remain speculative at best. For now, we are left
with only a descriptive model of startle to aversive interoceptive
stimulation.

In this respect, it needs to be mention that the startle-by-startle
analysis, a method usually rejected in favor of averaging magnitudes
of startles delivered at different times, may actually provide additional
insight into the pattern of responding over the course of time. The
startle-by-startle analysis accounts for discrepancies between the
study of Tavernor (2000) and an earlier study of ourselves (De Peuter
et al., 2009); our current findings illustrate that although startle
respondingmay be generally reduced following CPT, it is not necessarily
reduced at all points in time following the onset of this stimulus. The
magnitude increase during the 30 to 60 second interval that we have
found a second time now, warrants a startle-by-startle analysis in addi-
tion to the more common averaging method, especially when startles
are administered during prolonged aversive stimulation. Moreover,
further research on the CPT and its concomitant fluctuations of sensory
discomfort over the course of time are necessary, as these sensory fluc-
tuations may underlie the fluctuations in startle responding. Currently,
such research is very limited (e.g., Davis and Pope, 2002).

In conclusion, the evidence for an unusual startle response pattern
during interoceptive stimulation is becoming more substantial. Al-
though it is commonly assumed that startle is potentiated during
Please cite this article as: Ceunen, E., et al., Atypical modulation of startle i
Psychophysiology (2013), http://dx.doi.org/10.1016/j.ijpsycho.2013.03.01
aversive emotional states including fear, an opposite pattern has been
found for a number of fearful interoceptive stimuli. A startle-by-startle
analysis suggests this to be dependent on subjective fearfulness which
generally increases following the onset of respiratory stimulation, but
presumably fluctuates for CP induced by the CPT. Further research is
needed to test this hypothesis more thoroughly, and to find out if the
results are specific to women, or whether they also apply to men.
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