On the use of power indexes in reliability theory

Jean-Luc Marichal

University of Luxembourg
Luxembourg

Part I: Semicoherent systems

System

Definition. A system is a set of interconnected components

$$
C=\{1, \ldots, n\}=[n]
$$

Example. Home video system

1. Blu-ray player
2. PlayStation 3
3. LED television
4. Sound amplifier
5. Speaker A
6. Speaker B

Assumptions

- The system and the components are of the crisply on/off kind
- The components are nonrepairable

Structure function

State of a component $j \in C=[n] \rightarrow$ Boolean variable

$$
x_{j}= \begin{cases}1 & \text { if component } j \text { is functioning } \\ 0 & \text { if component } j \text { is in a failed state }\end{cases}
$$

State of the system \rightarrow Boolean function $\phi:\{0,1\}^{n} \rightarrow\{0,1\}$

$$
\phi\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}1 & \text { if the system is functioning } \\ 0 & \text { if the system is in a failed state }\end{cases}
$$

This function is called the structure function of the system

$$
S=(C, \phi)
$$

Representations of Boolean functions

$$
\left.\begin{array}{l}
\begin{array}{l}
\text { Boolean function } \\
\phi:\{0,1\}^{n} \rightarrow\{0,1\}
\end{array} \quad \longleftrightarrow
\end{array} \begin{array}{l}
\text { set function } \\
\phi: 2^{[n]} \rightarrow\{0,1\}
\end{array}\right]
$$

Polynomial representation of a Boolean function

$$
\phi(\mathbf{x})=\sum_{A \subseteq[n]} \phi(A) \prod_{j \in A} x_{j} \prod_{j \in[n] \backslash A}\left(1-x_{j}\right)
$$

Semicoherent systems

The system is said to be semicoherent if

- ϕ is nondecreasing : $x \leqslant x^{\prime} \Rightarrow \phi(x) \leqslant \phi\left(x^{\prime}\right)$
- $\phi(\mathbf{0})=0, \phi(\mathbf{1})=1$

Representations of Boolean functions

$$
\begin{aligned}
& x_{1} \Pi x_{2}=\min \left(x_{1}, x_{2}\right)=x_{1} x_{2} \\
& x_{1} \amalg x_{2}=\max \left(x_{1}, x_{2}\right)=1-\left(1-x_{1}\right)\left(1-x_{2}\right)
\end{aligned}
$$

Since ϕ is nondecreasing and nonconstant

$$
\begin{gathered}
\phi(\mathbf{x})=\coprod_{\substack{A \subseteq[n] \\
\phi(A)=1}} \prod_{j \in A} x_{j} \\
\phi(\mathbf{x})=\prod_{\begin{array}{c}
A \subseteq[n] \\
\phi([n] \backslash A)=0
\end{array}} \coprod_{j \in A} x_{j}
\end{gathered}
$$

(Hammer and Rudeanu 1968)

Block diagrams

- A serially connected segment of components is functioning if and only if every single component is functioning

- A system of parallel components is functioning if and only at least one component is functioning

Block diagrams

Series structure

$$
\phi(\mathbf{x})=x_{1} x_{2} x_{3}=\prod_{i=1}^{3} x_{i}
$$

Parallel structure

$$
\phi(\mathbf{x})=1-\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right)=\coprod_{i=1}^{3} x_{i}
$$

Block diagrams

Example. Home video system

1. Blu-ray player
2. PlayStation 3
3. LED television
4. Sound amplifier
5. Speaker A
6. Speaker B

Block diagrams

Example. Bridge structure

$$
\phi(\mathbf{x})=x_{3} \phi\left(1_{3}, \mathbf{x}\right)+\left(1-x_{3}\right) \phi\left(0_{3}, \mathbf{x}\right)
$$

$$
\phi\left(1_{3}, \mathbf{x}\right)=\left(x_{1} \amalg x_{2}\right)\left(x_{4} \amalg x_{5}\right)
$$

$$
\phi\left(0_{3}, \mathbf{x}\right)=\left(\begin{array}{ll}
x_{1} & x_{4}
\end{array}\right) \amalg\left(\begin{array}{ll}
x_{2} & x_{5}
\end{array}\right)
$$

Pivotal decomposition of the structure function

$$
\phi(\mathbf{x})=x_{j} \phi\left(1_{j}, \mathbf{x}\right)+\left(1-x_{j}\right) \phi\left(0_{j}, \mathbf{x}\right)
$$

Correspondence Reliability/Game Theory

Reliability	Game Theory
Component	Player
Semicoherent structure	Simple game
Structure function	Characteristic function
Irrelevant component	Null player
Path set	Winning coalition
Cut set	Blocking coalition
Minimal path set	Minimal winning coalition
Minimal cut set	Minimal blocking coalition
Series structure	Unanimity game
Paralell structure	Decisive game
Module	Committee
Modular set	Committee set

(Ramamurthy 1990)

State variable \longrightarrow Random variable

$$
\begin{gathered}
x_{j} \longrightarrow X_{j}(t) \\
X_{j}(t)= \begin{cases}1 & \text { if } j \text { is functioning at time } t \\
0 & \text { if } j \text { is in a failed state at time } t\end{cases}
\end{gathered}
$$

$T_{j}=$ random lifetime of component $j \in C$ $X_{j}(t)=\operatorname{Ind}\left(T_{j}>t\right)=$ random state of j at time $t \geqslant 0$

System lifetime and component lifetimes

$T_{S}=$ system lifetime
$X_{S}(t)=\operatorname{Ind}\left(T_{S}>t\right)=$ random state of the system at time $t \geqslant 0$

$$
X_{S}(t)=\phi\left(X_{1}(t), \ldots, X_{n}(t)\right) \quad t \geqslant 0
$$

How to describe T_{1}, \ldots, T_{n} ?

System lifetime and component lifetimes

Cumulative distribution function (c.d.f.) of the component lifetimes

$$
F\left(t_{1}, \ldots, t_{n}\right)=\operatorname{Pr}\left(T_{1} \leqslant t_{1}, \ldots, T_{n} \leqslant t_{n}\right) \quad t_{1}, \ldots, t_{n} \geqslant 0
$$

$$
S=(C, \phi, F)
$$

Classical assumptions

- F absolutely continuous + i.i.d. lifetimes
- F absolutely continuous + exchangeable lifetimes
- F has no ties

$$
\operatorname{Pr}\left(T_{i}=T_{j}\right)=0 \quad i \neq j
$$

Part II: Signature and importance indexes

Simple game

Let $N=\{1, \ldots, n\}$ be the set of players
Characteristic function of the game
= set function $v: 2^{N} \rightarrow \mathbb{R}$ which assigns to each coalition $S \subseteq N$ of players a real number $v(S)$ which represents the worth of S

The game is said to be simple if v takes on its values in $\{0,1\}$
The set function v can be regarded as a Boolean function $v:\{0,1\}^{n} \rightarrow\{0,1\}$

Power indexes

Let $v: 2^{N} \rightarrow\{0,1\}$ be a simple game on a set N of n players Let $j \in N$ be a player

Banzhaf power index (Banzhaf 1965)

$$
\psi_{\mathrm{B}}(v, j)=\frac{1}{2^{n-1}} \sum_{S \subseteq N \backslash\{j\}}(v(S \cup\{j\})-v(S))
$$

Shapley power index (Shapley 1953)

$$
\psi_{\mathrm{Sh}}(v, j)=\sum_{S \subseteq N \backslash\{j\}} \frac{1}{n\binom{n-1}{|S|}}(v(S \cup\{j\})-v(S))
$$

Cardinality index

Cardinality index (Yager 2002)
$C_{k}=\frac{1}{(n-k)\binom{n}{k}} \sum_{|S|=k} \sum_{j \in N \backslash S}(v(S \cup\{j\})-v(S)) \quad(k=0, \ldots, n-1)$

$$
C_{k}=\frac{1}{\binom{n}{k+1}} \sum_{|S|=k+1} v(S)-\frac{1}{\binom{n}{k}} \sum_{|S|=k} v(S)
$$

Interpretation:

C_{k} is the average gain that we obtain by adding an arbitrary player to an arbitrary k-player coalition

Barlow-Proschan importance index

System $S=(C, \phi, F)$
Assume that the components have independent lifetimes

Importance index (Barlow-Proschan 1975)

$$
\begin{gathered}
l_{\mathrm{BP}}^{(j)}=\operatorname{Pr}\left(T_{S}=T_{j}\right) \quad j \in C \\
\mathbf{I}_{\mathrm{BP}}=\left(l_{\mathrm{BP}}^{(1)}, \ldots, l_{\mathrm{BP}}^{(n)}\right) \quad \sum_{j} l_{\mathrm{BP}}^{(j)}=1
\end{gathered}
$$

$l_{\mathrm{BP}}^{(j)}$ is an measure of importance of component j

Barlow-Proschan importance index

In the i.i.d. case:

$$
\mathbf{I}_{\mathrm{BP}}=\left(l_{\mathrm{BP}}^{(1)}, \ldots, l_{\mathrm{BP}}^{(n)}\right) \quad \longrightarrow \quad \mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)
$$

$$
b_{j}=\sum_{A \subseteq C \backslash\{j\}} \frac{1}{n\binom{n-1}{|A|}}(\phi(A \cup\{j\})-\phi(A))
$$

$$
b_{j}=\psi_{\mathrm{Sh}}(\phi, j)
$$

b_{j} is independent of F !
$\Rightarrow \quad \mathbf{b}$ defines a structure importance index

System signature

Assume that F is absolutely continuous and the components have i.i.d. lifetimes

Order statistics

$$
T_{1}, \ldots, T_{n} \quad \longrightarrow \quad T_{1: n} \leqslant \cdots \leqslant T_{n: n}
$$

System signature (Samaniego 1985)

$$
s_{k}=\operatorname{Pr}\left(T_{S}=T_{k: n}\right) \quad k=1, \ldots, n
$$

$$
\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right) \quad \sum_{k} s_{k}=1
$$

System signature

Explicit expression (Boland 2001)

$$
s_{k}=\frac{1}{\binom{n}{n-k+1}} \sum_{\substack{A \subseteq C \\|A|=n-k+1}} \phi(A)-\frac{1}{\binom{n}{n-k}} \sum_{\substack{A \subseteq C \\|A|=n-k}} \phi(A)
$$

$$
\begin{gathered}
C_{k}=\frac{1}{\binom{n}{k+1}} \sum_{|S|=k+1} v(S)-\frac{1}{\binom{n}{k}} \sum_{|S|=k} v(S) \\
s_{k}=C_{n-k}
\end{gathered}
$$

s_{k} is independent of F !
$\Rightarrow \quad \mathbf{s}$ defines the structure signature

Barlow-Proschan importance index and system signature

Series structure

$$
\mathbf{I}_{\mathrm{BP}}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) \quad \mathbf{s}=(1,0,0)
$$

Barlow-Proschan importance index and system signature

Bridge structure

$$
\begin{aligned}
\mathbf{I}_{\mathrm{BP}} & =\left(\frac{7}{30}, \frac{7}{30}, \frac{2}{30}, \frac{7}{30}, \frac{7}{30}\right) \\
\mathbf{s} & =\left(0, \frac{1}{5}, \frac{3}{5}, \frac{1}{5}, 0\right)
\end{aligned}
$$

Barlow-Proschan importance index and system signature

Home video system

$$
\begin{aligned}
\mathbf{I}_{\mathrm{BP}} & =\left(\frac{2}{30}, \frac{2}{30}, \frac{11}{30}, \frac{11}{30}, \frac{2}{30}, \frac{2}{30}\right) \\
\mathbf{s} & =\left(\frac{5}{15}, \frac{6}{15}, \frac{4}{15}, 0,0,0\right)
\end{aligned}
$$

Correspondence Reliability/Game Theory

Reliability	Game Theory
Component	Player
Importance of a component	Power of a player
Barlow-Proschan importance index	Shapley power index
Birnbaum importance index	Banzhaf power index
Signature	Cardinality index

Extension of signature to dependent lifetimes

General dependent case : we only assume that F has no ties
Probability signature (Navarro-Spizzichino-Balakrishnan 2010)

$$
\begin{gathered}
p_{k}=\operatorname{Pr}\left(T_{S}=T_{k: n}\right) \quad k=1, \ldots, n \\
\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \quad \sum_{k} p_{k}=1
\end{gathered}
$$

Can we provide an explicit expression for p_{k} in terms of ϕ and F ?

$$
S=(C, \phi, F)
$$

Extension of signature to dependent lifetimes

Relative quality function $q: 2^{C} \rightarrow[0,1]$

$$
\begin{aligned}
q(A) & =\operatorname{Pr}\left(T_{i}<T_{j}: i \notin A, j \in A\right) \\
& =\operatorname{Pr}\left(\max _{i \notin A} T_{i}<\min _{j \in A} T_{j}\right)
\end{aligned}
$$

(M. \& Mathonet 2011)
$q(A)=$ probability that the best $|A|$ components (those having the longest lifetimes) are exactly A
$\rightarrow \quad q(A)$ measures the overall quality of the components A when compared with the components $C \backslash A$

Remark: q is independent of ϕ (q depends only on C and F)

Extension of signature to dependent lifetimes

Theorem (M. \& Mathonet 2011)

$$
p_{k}=\sum_{\substack{A \subseteq C \\|A|=n-k+1}} q(A) \phi(A)-\sum_{\substack{A \subseteq C \\|A|=n-k}} q(A) \phi(A)
$$

\longrightarrow extends Boland's formula

$$
s_{k}=\frac{1}{\binom{n}{n-k+1}} \sum_{\substack{A \subseteq C \\|A|=n-k+1}} \phi(A)-\frac{1}{\binom{n}{n-k}} \sum_{\substack{A \subseteq C \\|A|=n-k}} \phi(A)
$$

Extension of signature to dependent lifetimes

Proposition

If T_{1}, \ldots, T_{n} are exchangeable, then q is symmetric

$$
q(A)=\frac{1}{\binom{n}{|A|}}
$$

$$
\Rightarrow \quad p_{k}=s_{k}=\frac{1}{\left.n_{n}^{n}\right)} \sum_{\substack{A \subseteq C \\ n-k+1 \\|A|=n-k+1}} \phi(A)-\frac{1}{\binom{n}{n-k}} \sum_{\substack{A \subseteq C \\|A|=n-k}} \phi(A)
$$

$$
\mathbf{p}=\mathbf{s}
$$

Extension of BP index to dependent lifetimes

Relative quality function of component j

$$
\begin{gathered}
q_{j}: 2^{C \backslash\{j\}} \rightarrow[0,1] \\
q_{j}(A)=\operatorname{Pr}\left(\max _{i \in C \backslash A} T_{i}=T_{j}<\min _{i \in A} T_{i}\right)
\end{gathered}
$$

(M. \& Mathonet 2013)
$q_{j}(A)=$ probability that the components that are better than component j are precisely A.

Extension of BP index to dependent lifetimes

We have

$$
\sum_{A \subseteq C \backslash\{j\}} q_{j}(A)=1 \quad(j \in C)
$$

Theorem (M. \& Mathonet 2013)

$$
I_{\mathrm{BP}}^{(j)}=\sum_{A \subseteq C \backslash\{j\}} q_{j}(A)(\phi(A \cup\{j\})-\phi(A))
$$

In the i.i.d. case:

$$
I_{\mathrm{BP}}^{(j)}=b_{j}=\sum_{A \subseteq C \backslash\{j\}} \frac{1}{n\binom{n-1}{|A|}}(\phi(A \cup\{j\})-\phi(A))
$$

Extension of BP index to dependent lifetimes

Proposition

If T_{1}, \ldots, T_{n} are exchangeable, then

$$
q_{j}(A)=\frac{1}{n\binom{n-1}{|A|}}
$$

$$
I_{\mathrm{BP}}^{(j)}=b_{j}=\sum_{A \subseteq C \backslash\{j\}} \frac{1}{n\binom{n-1}{|A|}}(\phi(A \cup\{j\})-\phi(A))
$$

$$
\mathbf{I}_{\mathrm{BP}}=\mathbf{b}
$$

Part III: Additional results in the exchangeable case

Manual computation of the Barlow-Proschan index

$$
b_{j}=\psi_{\mathrm{Sh}}(\phi, j)=\sum_{A \subseteq C \backslash\{j\}} \frac{1}{n\binom{n-1}{|S|}}(\phi(A \cup\{j\})-\phi(A))
$$

$$
\bar{\phi}(\mathbf{x})=\text { multilinear extension of } \phi(\mathbf{x})
$$

Theorem (Owen 1972)

$$
b_{j}=\psi_{\mathrm{Sh}}(\phi, j)=\int_{0}^{1}\left(\frac{\partial}{\partial x_{j}} \bar{\phi}\right)(x, \ldots, x) d x
$$

Manual computation of the Barlow-Proschan index

Example. Home video system

$$
\begin{gathered}
\phi\left(x_{1}, \ldots, x_{6}\right)=\left(x_{1} \amalg x_{2}\right) x_{3} x_{4}\left(x_{5} \amalg x_{6}\right) \\
\bar{\phi}\left(x_{1}, \ldots, x_{6}\right)=x_{1} x_{3} x_{4} x_{5}+x_{2} x_{3} x_{4} x_{5}+x_{1} x_{3} x_{4} x_{6}+x_{2} x_{3} x_{4} x_{6} \\
-x_{1} x_{2} x_{3} x_{4} x_{5}-x_{1} x_{2} x_{3} x_{4} x_{6}-x_{1} x_{3} x_{4} x_{5} x_{6}-x_{2} x_{3} x_{4} x_{5} x_{6} \\
+x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}
\end{gathered}
$$

Example: $b_{2}=$?

$$
\begin{aligned}
& \left(\frac{\partial}{\partial x_{2}} \bar{\phi}\right)(x, \ldots, x)=2 x^{3}-3 x^{4}+x^{5} \\
& b_{2}=\int_{0}^{1}\left(2 x^{3}-3 x^{4}+x^{5}\right) d x=\frac{2}{30}
\end{aligned}
$$

Manual computation of the signature

How can we efficiently compute the system signature

$$
s_{k}=\frac{1}{\binom{n}{n-k+1}} \sum_{\substack{A \subseteq C \\|A|=n-k+1}} \phi(A)-\frac{1}{\binom{n}{n-k}} \sum_{\substack{A \subseteq C \\|A|=n-k}} \phi(A) \quad ?
$$

Manual computation of the signature

With any n-degree polynomial $p: \mathbb{R} \rightarrow \mathbb{R}$ we associate the reflected polynomial $R^{n} p: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\left(R^{n} p\right)(x)=x^{n} p\left(\frac{1}{x}\right)
$$

$p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \quad \Rightarrow \quad\left(R^{n} p\right)(x)=a_{n}+a_{n-1} x+\cdots+a_{0} x^{n}$

(M. 2014)

Setting $p(x)=\frac{d}{d x} \bar{\phi}(x, \ldots, x)$, we have

$$
\int_{0}^{x}\left(R^{n-1} p\right)(t+1) d t=\sum_{k=1}^{n}\binom{n}{k} s_{k} x^{k}
$$

Manual computation of the signature

Example. Home video system

$$
\begin{gathered}
\bar{\phi}\left(x_{1}, \ldots, x_{6}\right)=x_{1} x_{3} x_{4} x_{5}+x_{2} x_{3} x_{4} x_{5}+x_{1} x_{3} x_{4} x_{6}+x_{2} x_{3} x_{4} x_{6} \\
-x_{1} x_{2} x_{3} x_{4} x_{5}-x_{1} x_{2} x_{3} x_{4} x_{6}-x_{1} x_{3} x_{4} x_{5} x_{6}-x_{2} x_{3} x_{4} x_{5} x_{6} \\
+x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} \\
\bar{\phi}(x, \ldots, x)=4 x^{4}-4 x^{5}+x^{6} \\
p(x)=\frac{d}{d x} \bar{\phi}(x, \ldots, x)=16 x^{3}-20 x^{4}+6 x^{5} \\
\left(R^{5} p\right)(x)=6-20 x+16 x^{2} \\
\begin{array}{r}
\int_{0}^{x}\left(R^{5} p\right)(t+1) d t=2 x+6 x^{2}+\frac{16}{3} x^{3} \\
=\binom{6}{1} s_{1} x+\binom{6}{2} s_{2} x^{2}+\cdots+\binom{6}{6} s_{6} x^{6}
\end{array}
\end{gathered}
$$

Barlow-Proschan importance index and system signature

 Home video system

$$
\begin{aligned}
\mathbf{s} & =\left(\frac{5}{15}, \frac{6}{15}, \frac{4}{15}, 0,0,0\right) \\
\mathbf{C} & =\left(0,0,0, \frac{4}{15}, \frac{6}{15}, \frac{5}{15}\right) \\
\mathbf{I}_{\mathrm{BP}} & =\left(\frac{2}{30}, \frac{2}{30}, \frac{11}{30}, \frac{11}{30}, \frac{2}{30}, \frac{2}{30}\right)
\end{aligned}
$$

Thank you for your attention!

