A methodology to choose the orbit for a double-pair-scenario future gravity satellite mission

Experiences from the SC4MGV project

M. Weigelt S. Iran Pour M. Murböck S. Tonetti
P. Visser I. Daras S. Cesare J. de Teixeira da Encarnação
C. Siemes J. van den IJssel S. Cornara T. Gruber
T. van Dam R. Pail N. Sneeuw R. Haagmans
Orbit selection
Definition of scientific requirements

Basic scientific requirements:

3-day solutions with 1 mm precision and 500 km spatial resolution

10-day solutions with 1 mm precision and 150 km spatial resolution
Definition of scientific requirements

Basic scientific requirements:

3-day solutions with 1 mm precision and 500 km spatial resolution

10-day solutions with 1 mm precision and 150 km spatial resolution
Impact factors

- Spatial resolution
- Temporal resolution
- Technical feasibility
- Science benefit
- Aliasing
- Homogeneity
- Geographical extent
- Repeatability
- Precision

Search space
Basic considerations

Based on experience of previous studies the search space can be limited to:

• repeat mode \((\beta/\alpha)\) of each pair

• \(h \geq 340\) km \((\text{air drag considerations})\)

• inclination of polar pair between 88° and 92° \((\text{minimizing polar gap})\)

• inclination of inclined pair within 65°-75° or 105°-115°

• intersatellite distance between 75-100 km \((\text{technical constraints})\)
Genetic algorithm approach

The resulting search space is scanned using a genetic algorithm:

- Quick-look tool (no orbit integration but calculation along nominal orbit)
- Signal and error based on ESA mass transport model (Gruber et al. 2011)
 - signal: hydrology + ice + solid Earth
 - error: GOT4.7-EOT08a + 10% of atmosphere and ocean + 5% random
- Testing the global RMS of a single (first) 10-day solution
- Evaluation of 3000 candidates (massive numerical effort)
Orbit scenarios for baseline

<table>
<thead>
<tr>
<th>Scenario</th>
<th>β/α [rev./nodal day]</th>
<th>Inclination [°]</th>
<th>Altitude [km]</th>
<th>Sub-cycle [nodal days]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>484/31</td>
<td>89</td>
<td>363.3</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>478/31</td>
<td>66</td>
<td>384.6</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>493/32</td>
<td>89</td>
<td>423.6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>249/16</td>
<td>70</td>
<td>347.6</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>493/32</td>
<td>91</td>
<td>427.1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>269/17</td>
<td>114</td>
<td>351.2</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>453/29</td>
<td>92</td>
<td>366.4</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>311/20</td>
<td>70</td>
<td>351.2</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>172/11</td>
<td>92</td>
<td>361.9</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>460/29</td>
<td>115</td>
<td>342.5</td>
<td>7</td>
</tr>
</tbody>
</table>
Scenario selection
Evaluation criteria

<table>
<thead>
<tr>
<th>Class</th>
<th>Measure</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit</td>
<td>Orbit residuals</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sampling and ground track coverage</td>
<td></td>
</tr>
<tr>
<td>Spectral</td>
<td>Degree RMS (including spread of solution)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Cumulative geoid errors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signal-to-noise ratio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isotropy</td>
<td></td>
</tr>
<tr>
<td>Spatial</td>
<td>Global RMS</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Basin RMS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Latitude and longitude dependent RMS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Correlation</td>
<td></td>
</tr>
<tr>
<td>Time series</td>
<td>Equivalent water height</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total water storage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loading</td>
<td></td>
</tr>
</tbody>
</table>

and many more …
Orbit configuration (sampling) (Level 1)
Groundtrack

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5
Equator sampling

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5
Degree RMS and Isotropy (Level 2)
Degree RMS

Degree RMS

Gain

\[\text{Degree RMS} \]

\[\text{Gain} \]

\[\text{Unitless} \]

\[10^{-12} \]

\[10^{-13} \]

\[0 \]

\[20 \]

\[40 \]

\[60 \]

\[80 \]

\[100 \]

\[120 \]

\[\text{SNR} \]

\[10^0 \]

\[10^1 \]

\[10^{-1} \]

\[0 \]

\[20 \]

\[40 \]

\[60 \]

\[80 \]

\[100 \]

\[120 \]
Assignment of error sources
Assignment of error sources
Assignment of error sources
Spatial error pattern (Level 2)
Unfiltered spatial pattern

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5
Filtered spatial pattern

Scenario 1
Scenario 2
Scenario 3
Scenario 4
Scenario 5
Mean-filtered spatial pattern

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5
Time series analysis (Level 3)
Total water storage change

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5
Southern Chile

South Chile, Pacific Coast – total water storage change

<table>
<thead>
<tr>
<th></th>
<th>Trend [mm/yr.]</th>
<th>Annual amp. [mm]</th>
<th>Phase [days]</th>
<th>Semi-annual amp. [mm]</th>
<th>Phase [days]</th>
<th>Residual [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>0.61</td>
<td>0.65</td>
<td>333</td>
<td>0.38</td>
<td>299</td>
<td>0.49</td>
</tr>
<tr>
<td>Δ Scenario 1</td>
<td>-1.14</td>
<td>-0.23</td>
<td>-28</td>
<td>0.12</td>
<td>-11</td>
<td>0.63</td>
</tr>
<tr>
<td>Δ Scenario 2</td>
<td>-0.44</td>
<td>0.02</td>
<td>-19</td>
<td>0.24</td>
<td>-6</td>
<td>1.70</td>
</tr>
<tr>
<td>Δ Scenario 3</td>
<td>1.01</td>
<td>0.27</td>
<td>14</td>
<td>0.04</td>
<td>20</td>
<td>0.15</td>
</tr>
<tr>
<td>Δ Scenario 4</td>
<td>-3.52</td>
<td>-0.08</td>
<td>-110</td>
<td>-0.07</td>
<td>-56</td>
<td>1.65</td>
</tr>
<tr>
<td>Δ Scenario 5</td>
<td>0.23</td>
<td>0.05</td>
<td>10</td>
<td>-0.01</td>
<td>-11</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Summary

• We choose scenario 5 as baseline scenario.

• GA needs better optimization criterion:
 – Testing a single solution is equivalent to testing a static field.
 – Time-variable signal needs to be tested.

• Impact of the sampling pattern needs to be understood. (e.g. isotropy, aliasing, …)

• Scenario selection needs evaluation on all levels of calculation and application.