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1. Introduction

Let N be the set of nonnegative integers. Let alsoX be an arbitrary nonempty
set and let X∗ =

∪
n∈N Xn be the set of all tuples on X, with the conven-

tion that X0 = {ε} (i.e., ε denotes the unique 0-tuple on X). As usual, a
function F : Xn → X is said to be n-ary. Similarly, we say that a function
F : X∗ → X is ∗-ary. With a slight abuse of notation we may assume that
every ∗-ary function F : X∗ → X satisfies F (ε) = ε. The n-ary part Fn of a
function F : X∗ → X is the restriction of F to Xn, that is, Fn = F |Xn . For
tuples x = (x1, . . . , xn) and y = (y1, . . . , ym), the notation F (x,y) stands for
F (x1, . . . , xn, y1, . . . , ym), and similarly for more than two tuples.

A function F : X∗ → X is said to be barycentrically associative, or
B-associative for short, if

F (x,y, z) = F (x, k · F (y), z), (1.1)

for every integer k ∈ N and every x, z ∈ X∗ and y ∈ Xk, where the notation
k·x means that the argument x is repeated k times. For instance, F (x, 2·y) =
F (x, y, y).

Barycentric associativity was introduced in Schimmack [7] as a natural
and suitable variant of associativity to characterize the arithmetic mean. Con-
trary to associativity, this property is satisfied by various means, including
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the geometric mean and the harmonic mean. It was also used by Kolmogoroff
[5] and Nagumo [6] to characterize the class of quasi-arithmetic means.

Since its introduction this property was used under at least three dif-
ferent names: associativity of means [2], decomposability [3, Sect. 5.3], and
barycentric associativity [1]. Here we have chosen the third one, which natu-
rally recalls the associativity property of the barycenter as defined in affine
geometry. For general background on barycentric associativity and its links
with associativity, see [4, Sect. 2.3].

Let R be an infinite commutative integral domain (with identity). We
say that a function F : R∗ → R is a ∗-ary polynomial function, or simply a
polynomial function, if Fn = F |Rn is a polynomial function for every integer
n > 1.

In this note we provide a complete description of those polynomial func-
tions F : R∗ → R which are B-associative. This description is given in the
Main Theorem below and the proof is given in the next section.

Any polynomial function F : R∗ → R such that Fn is constant for every
n > 1 is clearly B-associative. It is straightforward to see that nontrivial
instances of B-associative polynomial functions include

• the first projection, defined by Fn(x1, . . . , xn) = x1 for every n > 1,
• the last projection, defined by Fn(x1, . . . , xn) = xn for every n > 1,
• the arithmetic mean, defined by Fn(x1, . . . , xn) = n−1

∑n
i=1 xi for every

n > 1 (assuming that every integer n > 1 is invertible in R).

These examples are special cases of the following one-parameter family
of polynomial functions. For every integer n > 1 and every z ∈ R such that

∆z
n =

n∑
i=1

zn−i(1− z)i−1 = ∆1−z
n

is invertible, define the weighted arithmetic mean function Mz
n : Rn → R by

Mz
n(x) = (∆z

n)
−1

n∑
i=1

zn−i(1− z)i−1 xi .

For every z ∈ R we define

n(z) = inf{n > 1 : ∆z
n is not invertible}.

Clearly, we have n(z) > 3. If ∆z
n is invertible for every integer n > 1, then

we set n(z) = ∞.
For every z ∈ R, consider the function Mz : R∗ → R whose restriction

to Rn is Mz
n if n < n(z), and 0, otherwise. The Main Theorem states that, up

to special cases and constant functions, the typical B-associative polynomial
functions are the functions Mz, where z ∈ R. Note that the special functions
M1, M0, and M1/2 are precisely the three above-mentioned instances of B-
associative polynomial functions.

Given a function F : X∗ → X and an integer k > 1 or k = ∞, we denote
by [F ]k the class of functions G : X∗ → X obtained from F by replacing Fn

with a constant function for every n > k. In particular, we have [F ]∞ = {F}.
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Main Theorem. A polynomial function F : R∗ → R is B-associative if and
only if one of the following two conditions holds.

(i) There exist z ∈ R and an integer k > 1 or k = ∞, with k 6 n(z), such
that F ∈ [Mz]k.

(ii) There exists a polynomial function Q : R2 → R of degree > 1 such that
F1(x) = x, F2(x, y) = Q(x, y)x+(1−Q(x, y)) y, and Fn is constant for
every n > 3.

Remark 1.1. By the very definition of function Mz, we see that the condition
k 6 n(z) is not really needed to describe the set of possible functions F in
case (i) of the Main Theorem. However, we have added this condition to
stress on the fact that Fn can be any constant function for every n > n(z).

Example 1.2. Suppose that R is a field of characteristic zero. One can readily
see that ∆z

n = 0 if and only if (1 − z)n = zn and 2z − 1 ̸= 0, that is, if and
only if z = 1/(1 + ωn), where ωn ∈ R \ {−1, 1} is an n-th root of unity.
For instance, if R is the field C of complex numbers and F : C∗ → C is a
B-associative polynomial function such that F3 = Mz

3 , with z = 1/(1 + i),
then necessarily Fn is constant for every n > 4.

Example 1.3. If R is the ring Z of integers, then n(0) = n(1) = ∞ and
n(z) = 3 for every z ∈ Z \ {0, 1}. Thus, if F : Z∗ → Z is a B-associative
polynomial function of type (i), then F ∈ [M0]k or F ∈ [M1]k for some
integer k > 1 or k = ∞, or F ∈ [Mz]k for some z ∈ Z \ {0, 1} and some
k ∈ {1, 2, 3}.

The following straightforward corollary concerns the special case when
Fn is symmetric (i.e., invariant under any permutation of the arguments) for
every n > 1.

Corollary 1.4. Let F : R∗ → R be a polynomial function such that Fn is
symmetric for every n > 1. Then F is B-associative if and only if either
Fn is constant for every n > 1 or 1/2 ∈ R and one of the following two
conditions holds.

(i) There exists an integer k > 2 or k = ∞, with k 6 n(1/2), such that
F ∈ [M1/2]k.

(ii) There exists a nonzero antisymmetric polynomial function Q : R2 → R
such that F1(x) = x, F2(x, y) =

x+y
2 +(x−y)Q(x, y), and Fn is constant

for every n > 3.

2. Technicalities and proof of the Main Theorem

We observe that the definition ofR enables us to identify the ringR[x1, . . . , xn]
of polynomials of n indeterminates over R with the ring of polynomial func-
tions of n variables from Rn to R.

It is a straightforward exercise to show that the ∗-ary polynomial func-
tions given in the Main Theorem are B-associative.
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We now show that no other ∗-ary polynomial function is B-associative.
We first consider the special case when R is a field. We will then prove the
Main Theorem in the general case (i.e., when R is an infinite commutative
integral domain).

From the definition of B-associative functions, we immediately derive
the following interesting fact.

Fact 2.1. Let F : X∗ → X be a B-associative function.

(i) If Fn is constant for some n > 1, then so is Fn+1.
(ii) Any G ∈

∪
k>1[F ]k is B-associative.

A function F : Xn → X is said to be idempotent if F (n · x) = x for
every x ∈ X. It is said to be range-idempotent if F (n · x) = x for every x
in the range of F . Equivalently, F is range-idempotent if δF ◦ F = F , where
δF is the diagonal section of F , defined by δF (x) = F (n · x). In this case we
clearly have δF ◦ δF = δF .

Now let F : R∗ → R be a B-associative polynomial function, where R
is a field. Since F is B-associative, Fn is clearly range-idempotent for every
n > 1 (just take x = z = ε in Eq. (1.1)). The following lemma then shows
that Fn is either constant or idempotent.

Lemma 2.2. A polynomial function F : Rn → R is range-idempotent if and
only if it is either constant or idempotent.

Proof. The condition is trivially sufficient. To see that it is also necessary, we
let F : Rn → R be a range-idempotent polynomial function and show that
its diagonal section δF is either constant or the identity function. Clearly, if
δF is constant, then so is F = δF ◦ F .

Suppose that δF is nonconstant and let us write δF (x) =
∑d

i=0 aix
i,

with d > 1 and ad ̸= 0. By equating the leading (i.e., highest degree) terms

in both sides of the identity δF ◦δF = δF , we obtain a2dx
d2

= adx
d. Therefore,

we must have d = 1 and a1 = 1, that is, δF (x) = x+ a0. Substituting again
in δF ◦ δF = δF , we obtain a0 = 0. �

Let us write Fn is the following standard form

Fn(x) =
d∑

j=0

∑
|α|=j

aα xα, with xα = xα1
1 · · · xαn

n ,

where the inner sum is taken over all α ∈ Nn such that |α| = α1+· · ·+αn = j.
This polynomial function is said to be of degree d if there exists α ∈ Nn, with
|α| = d, such that aα ̸= 0.

Due to Fact 2.1, we may always assume that Fn is nonconstant. By
Lemma 2.2, it is therefore idempotent, which means that

d∑
j=0

∑
|α|=j

aα

 xj = x, x ∈ R,
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or equivalently,∑
|α|=1

aα = 1 and
∑
|α|=j

aα = 0 for j ̸= 1.

We then have the following results.

Lemma 2.3. Let F : R∗ → R be a B-associative polynomial function and
assume that Fn+1 is nonconstant for some n > 2. Then there exists an idem-
potent binary polynomial function P : R2 → R such that

Fn+1(x1, . . . , xn+1)

= P (Fn(x1, . . . , xn), xn+1), (2.1)

= P (Fn(x1, (n− 1) · Fn(x2, . . . , xn+1)), Fn(x2, . . . , xn+1)) (2.2)

and

P (Fn(Fn(x2, . . . , xn+1), x2, . . . , xn), xn+1) = Fn(x2, . . . , xn+1). (2.3)

Proof. Consider the binary polynomial functions P : R2 → R and Q : R2 →
R defined by P (x, y) = Fn+1(n · x, y) and Q(x, y) = Fn+1(x, n · y), respec-
tively. Since Fn+1 is nonconstant, by Lemma 2.2 it must be idempotent and
therefore so are P and Q. By B-associativity of F , we then obtain Eq. (2.1)
and

P (Fn(x1, . . . , xn), xn+1) = Q(x1, Fn(x2, . . . , xn+1)). (2.4)

Clearly, Fn is nonconstant by Fact 2.1. Setting xn+1 = xn = · · · = x2 in
Eq. (2.4) and then using idempotence, we obtain

P (Fn(x1, (n− 1) · x2), x2) = Q(x1, x2).

Then, substituting for Q in Eq. (2.4) from the latter equation, we obtain
Eq. (2.2). Finally, setting x1 = Fn(x2, . . . , xn+1) in either Eq. (2.2) or Eq. (2.4)
and then using idempotence, we obtain Eq. (2.3). �

Proposition 2.4. Let F : R∗ → R be a B-associative polynomial function. If
F3 is nonconstant, then F2 must be of degree 1.

Proof. Let us particularize Lemma 2.3 to the case n = 2. There exists an
idempotent binary polynomial function P : R2 → R such that

P (F2(x1, x2), x3) = P (F2(x1, F2(x2, x3)), F2(x2, x3)) (2.5)

and

P (F2(F2(x2, x3), x2), x3)− F2(x2, x3) = 0. (2.6)

Clearly, F2 is nonconstant by Fact 2.1. Let us express F2 and P in the fol-
lowing convenient ways. Let p (resp. q) be the degree of P (resp. F2) in the
first variable. Then there are polynomial functions Pi : R → R (i = 0, . . . , p)
and Qj : R → R (j = 0, . . . , q), with Pp ̸= 0 and Qq ̸= 0, such that

P (x, y) =

p∑
i=0

xi Pi(y) and F2(x, y) =

q∑
j=0

xj Qj(y). (2.7)
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Considering the standard form of F2, we can also write

F2(x, y) =
∑

k+ℓ6d

ak,ℓ x
kyℓ =

d∑
m=0

Rm(x, y),

where d is the degree of F2 and

Rm(x, y) =
∑

k+ℓ=m

ak,ℓ x
kyℓ, with Rd ̸= 0.

Claim. If p > 0 and q > 0, then the polynomial functions Pp and Qq are
constant.

Proof. Substituting for P and F2 from Eq. (2.7) in Eq. (2.5) and then equat-
ing the leading terms in x1 in the resulting equation, we obtain

(xq
1 Qq(x2))

p Pp(x3) = (xq
1 Qq(F2(x2, x3)))

p Pp(F2(x2, x3)),

or, equivalently, G(x2, x3)−H(x2, x3) = 0, where

G(x2, x3) = Qp
q(F2(x2, x3))Pp(F2(x2, x3))

and
H(x2, x3) = Qp

q(x2)Pp(x3).

Denote by axα (resp. bxβ) the leading term of Pp (resp. Qq); hence ab ̸= 0.
Clearly, the leading term in x2 of G is

(b(xq
2 Qq(x3))

β)p a(xq
2 Qq(x3))

α (2.8)

and is therefore of degree pqβ + qα. Similarly, the leading term in x2 of H is

(bxβ
2 )

p Pp(x3)

and is of degree pβ.
If pqβ + qα > pβ, then the expression in Eq. (2.8) must be the zero

polynomial function, which is impossible since Qq ̸= 0. Therefore we must
have pqβ+qα = pβ, that is α = 0 (i.e., Pp is the constant a) and (q−1)β = 0.
If q = 1, then the leading term in x2 of G(x2, x3)−H(x2, x3) is

(b(x2 Qq(x3))
β)p a− (bxβ

2 )
p a = (bxβ

2 )
p a (Qq(x3)

pβ − 1) ,

and hence Qq must be constant. �

Let us now prove that F2 is of degree 1. We consider the following cases,
which cover all the possibilities.

Case q = 0. We have F2(x, y) = Q0(y) and therefore y = F2(y, y) =
Q0(y) = F2(x, y), which shows that F2 is of degree 1.

Case p = 0. We have P (x, y) = P0(y). Using idempotence, we obtain y =
P (y, y) = P0(y) and therefore P (x, y) = y. Substituting for P in Eq. (2.5),
we obtain x3 = F2(x2, x3) and therefore F2 is of degree 1.

Case p > 0 and q = 1. We have F2(x1, x2) = x1Q1(x2)+Q0(x2) withQ1 ̸=
0. Since F2 is idempotent, we also have x = F2(x, x) = xQ1(x)+Q0(x).
But Q1 is constant by the claim. It follows that Q0 is of degree 1 and
therefore so is F2.
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Case p > 0 and q > 1. By definition of q we must have d > 2. Let us com-
pute the leading terms (i.e., homogeneous terms of highest degree) of
the left-hand side of Eq. (2.6). On the one hand, we have

F2(F2(x2, x3), x2) =
∑

k+ℓ6d

ak,ℓ

(
d∑

m=0

Rm(x2, x3)

)k

xℓ
2︸ ︷︷ ︸

(∗)

,

where the expression (∗) is of degree kd+ℓ, with Rk
d(x2, x3)x

ℓ
2 as leading

terms. We also have

max{kd+ ℓ : k + ℓ 6 d, ak,ℓ ̸= 0} = qd.

Indeed, if k > q, then ak,ℓ = 0 by definition of q. If k = q and ℓ ̸= 0, then
ak,ℓ = 0 by the claim. If k = q and ℓ = 0, then ak,ℓ ̸= 0 and kd+ ℓ = qd.
Finally, if k 6 q − 1, then

kd+ ℓ 6 kd+ d− k = k(d− 1) + d 6 (q − 1)(d− 1) + d

= qd− q + 1 < qd (since q > 1).

This shows that the leading terms of F2(F2(x2, x3), x2) are of degree qd
and consist of aq,0 R

q
d(x2, x3), where aq,0 ̸= 0.

Now, to compute the leading terms of P (F2(F2(x2, x3), x2), x3), it
is convenient to express P as

P (x, y) =
∑

rqd+s6e

br,s x
rys =

e∑
m=0

Sm(x, y),

where e = max{rqd+ s : br,s ̸= 0} and

Sm(x, y) =
∑

rqd+s=m

br,s x
rys, with Se ̸= 0.

It follows that the leading terms of P (F2(F2(x2, x3), x2), x3) are of de-
gree e and consist of Se(aq,0 R

q
d(x2, x3), x3). On the other hand, the

leading terms of F2(x2, x3) are of degree d and consist of Rd(x2, x3).
We observe that there exists r > 0 such that br,s ̸= 0 (otherwise,

if br,s = 0 for every r > 0, then p = 0, a contradiction). By defi-
nition of e, we then have e > rdq > d. By Eq. (2.6), we then have
Se(aq,0 R

q
d(x2, x3), x3) = 0, or equivalently,∑

rqd+s=e

br,s (aq,0 R
q
d(x2, x3))

r
xs
3 = 0. (2.9)

Since Rd(x2, x3) is of degree > 1 in x2 (otherwise, we would have
Rd(x, y) = T (y) and therefore 0 = Rd(y, y) = T (y) = Rd(x, y), a con-
tradiction), we can write

Rd(x2, x3) =

f∑
k=0

xk
2 Tk(x3), with f > 0 and Tf ̸= 0.
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Equating the leading terms in x2 in Eq. (2.9), we obtain

br0,e−r0qd

(
aq,0 x

fq
2 T q

f (x3)
)r0

xe−r0qd
3 = 0,

where r0 = max{r : rqd+ s = e, br,s ̸= 0}. This is a contradiction.

This completes the proof of the proposition. �

Proposition 2.5. Let F : R∗ → R be a B-associative polynomial function. If
Fn = Mz

n for some n > 2 and some z ∈ R such that ∆z
n ̸= 0, then either

Fn+1 = Mz
n+1 or Fn+1 is constant. Moreover, if ∆z

n+1 = 0, then Fn+1 is
constant.

Proof. Assume that Fn = Mz
n for some n > 2 and some z ∈ R such that

∆z
n ̸= 0 and assume that Fn+1 is nonconstant. Substituting in Eq. (2.3) and

observing that (1− z)∆z
n + zn = ∆z

n+1, we obtain

P

(
∆z

n+1

n∑
i=2

zn−i (1− z)i−2

(∆z
n)

2
xi +

zn−1(1− z)n−1

(∆z
n)

2
xn+1, xn+1

)

=
n∑

i=1

zn−i (1− z)i−1

∆z
n

xi+1. (2.10)

If z = 0, then Eq. (2.10) reduces to P (xn, xn+1) = xn+1. By Eq. (2.1), we
obtain Fn+1(x1, . . . , xn+1) = xn+1, that is, Fn+1 = Mz

n+1. We can henceforth
assume that z ̸= 0.

If ∆z
n+1 = 0, then we obtain a contradiction; indeed, the left-hand side of

Eq. (2.10) is independent of x2 whereas the coefficient of x2 in the right-hand
side is zn−1/∆z

n. In this case Fn+1 must be constant.
We can now assume that ∆z

n+1 ̸= 0. Using the expression of P given in
Eq. (2.7) and equating the leading terms in x2 in Eq. (2.10), we obtain(

∆z
n+1

(∆z
n)

2
zn−2 x2

)p

Pp(xn+1) =
zn−1

∆z
n

x2.

It follows that p = 1 and that P1 is constant, say P1 = c, where c =
z∆z

n/∆
z
n+1. We then have P (x, y) = cx + P0(y) and, by idempotence of

P , we also have cx+ P0(x) = x. Therefore, P (x, y) = cx+ (1− c)y. Finally,
by Eq. (2.1) we obtain

Fn+1(x1, . . . , xn+1) = c Fn(x1, . . . , xn) + (1− c)xn+1 = Mz
n+1 .

This completes the proof of the proposition. �

Let us now show that any B-associative polynomial function F : R∗ →
R, where R is a field, falls into one of the two cases given in the Main
Theorem.

Suppose first that F1 or F2 is constant. In the latter case, F1 is either
constant or the identity function by Lemma 2.2. By Fact 2.1, Fn is constant
for every n > 2 and therefore F falls into case (i) with k = 1 or k = 2.

Suppose now that F1 and F2 are nonconstant. These functions are idem-
potent by Lemma 2.2 and therefore F1 is the identity function. If F2 is of
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degree 1, then by Lemma 2.2 we have F2(x, y) = zx + (1 − z)y for some
z ∈ R and therefore F falls into case (i) by Propositions 2.5 and Fact 2.1.
Otherwise if F2 is of degree > 2, then by Proposition 2.4 and Fact 2.1 we
have F1(x) = x, F2(x, y) = zx+ (1− z)y+R(x, y) for some z ∈ R and some
polynomial function R : R2 → R of degree > 2 such that R(x, x) = 0 for all
x ∈ R, and Fn is constant for every n > 3. It is easy to see that a polynomial
function R : R2 → R satisfies R(x, x) = 0 for all x ∈ R if and only if we have
R(x, y) = (x−y)Q′(x, y) for some polynomial function Q′ : R2 → R. Indeed,
if we write the homogeneous terms of degree k of R(x, y) in the form

k∑
j=0

cj x
jyk−j = (x− y)

k∑
j=1

( k−j∑
i=0

ck−i

)
xj−1yk−j +

( k∑
j=0

cj

)
yk ,

then we see that R(x, x) = 0 if and only if
∑k

j=0 cj = 0. Thus, we have

F2(x, y) = y + (x − y)Q(x, y) for some polynomial function Q : R2 → R of
degree > 1. Therefore, F falls into case (ii). This completes the proof of the
Main Theorem when R is a field.

Let us now prove the Main Theorem when R is an infinite integral do-
main. Using the identification of polynomials and polynomial functions, we
can extend every B-associative ∗-ary polynomial function over an infinite in-
tegral domain R to a ∗-ary polynomial function on the fraction field Frac(R)
of R. The latter function is still B-associative since the B-associativity prop-
erty for ∗-ary polynomial functions is defined by a set of polynomial equations
on the coefficients of the polynomial functions. Therefore, every B-associative
∗-ary polynomial function F over R is the restriction to R of a B-associative
∗-ary polynomial function F over Frac(R). The possible expressions for such a
polynomial function F are given by the Main Theorem over Frac(R). Clearly,
if F falls into case (ii), then so does F . If F falls into case (i), then there exist
z ∈ Frac(R) and an integer k > 1 or k = ∞, with k 6 inf{n > 1 : ∆z

n = 0},
such that F ∈ [Mz]k. If k = 1, then Fn is constant for every n > 1. Therefore
Fn is also a constant (in R) for every n > 1 and hence F falls into case (i). If
k > 2, then F ∈ [Mz]k, where z = F 2(1, 0) = F2(1, 0) ∈ R. For every integer
n < k, we have

Fn(x) = Mz
n(x) =

n∑
i=1

(∆z
n)

−1 zn−i(1− z)i−1 xi .

Since Fn is the extension of Fn, the coefficient (∆z
n)

−1 zn−i(1 − z)i−1 of xi

in Fn(x) is in R for i = 1, . . . , n. A straightforward induction shows that
(∆z

n)
−1 zn−j ∈ R for j = 1, . . . , n. Therefore ∆z

n is invertible in R for every
n < k and hence k 6 n(z). This shows that F falls into case (i). The proof is
now complete.
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