Irreducible decomposition for local representations of quantum Teichmüller space

Jérémy Toulisse

April 22, 2014

Abstract

We give an irreducible decomposition of the so-called local representations [HBL07] of the quantum Teichmüller space $\mathcal{T}_q(\Sigma)$ where Σ is a punctured surface of genus g>0 and q is a N-th root of unity with N odd.

Let Σ be an oriented surface of genus g>0 with s punctures $v_1,...,v_s$ such that 2g-2+s>0 (this condition is equivalent to the existence of an ideal triangulation of Σ , ie. a triangulation whose vertices are exactly the v_i). Let $\mathcal{T}(\Sigma)$ be the Teichmüller space of Σ , that is the moduli space of complete hyperbolic metrics on Σ . Given λ an ideal triangulation of Σ , W.P. Thurston [Thu98] constructed a parameterization of $\mathcal{T}(\Sigma)$ by associating a strictly positive real number to each edge λ_i of the ideal triangulation, $i \in \{1,...,n\}$ (where n=6g-6+3s is the number of edges of λ). These coordinates are called **shear coordinates** associated to λ . In this coordinates system, the coefficients of the Weil-Petersson form on $\mathcal{T}(\Sigma)$ depend only on the combinatoric of λ and are easy to compute.

For a parameter $q \in \mathbb{C}^*$, L.O. Chekhov, V.V. Fock [FC99] and independently R. Kashaev [Kas98] defined the so-called **quantum Teichmüller space** $\mathcal{T}_q(\Sigma)$ of Σ (the construction of R. Kashaev differs a little from the one of L.O. Chekhov and V.V. Fock), which is a deformation of the Poisson algebra of rational functions over $\mathcal{T}(\Sigma)$. This algebraic object is obtained by gluing together a collection of non-commutative algebra $\mathcal{T}_q(\lambda)$ (called Chekhov-Fock algebra) canonically associated to each ideal triangulation of Σ . A representation of $\mathcal{T}_q(\Sigma)$ is then a family of representation $\{\rho_{\lambda}: \mathcal{T}_q(\lambda) \to \operatorname{End}(V)\}_{\lambda \in \Lambda(\Sigma)}$, where $\Lambda(\Sigma)$ is the space of all ideal triangulations of Σ , and ρ_{λ} and $\rho_{\lambda'}$ satisfy compatibility conditions whenever $\lambda \neq \lambda'$. For $\lambda \in \Lambda(\Sigma)$, the representation ρ_{λ} is an avatar of the representation of $\mathcal{T}_q(\Sigma)$ and carries almost all the information.

When q is a N-th root of unity, $\mathcal{T}_q(\lambda)$ admits finite-dimensional representations. In this paper, we will consider N odd. The irreducible representations of $\mathcal{T}_q(\lambda)$ have been studied in [BL07]. In particular, they show that an irreducible representation of $\mathcal{T}_q(\lambda)$ is classified (up to isomorphism) by a weight $x_i \in \mathbb{C}^*$ assigned to each edge λ_i , a choice of N-th root $p_j = (x_1^{k_{j_1}}...x_n^{k_{j_n}})^{1/N}$ associated to each puncture v_j (where k_{j_i} is the number of times a small simple loop around

 v_j intersects λ_i) and a square root $c = (p_0...p_s)^{1/2}$. Such a representation has dimension N^{3g-3+s} .

In [HBL07], the authors introduced another type of representations of $\mathcal{T}_q(\lambda)$, called **local representations**, which are well behaved under cut and paste. A local representation of $\mathcal{T}_q(\lambda)$ is defined by a an embedding into the tensorial product of **triangle algebras** (see definitions below). The local representations of $\mathcal{T}_q(\lambda)$ are classified (up to isomorphism) by a weight $x_i \in \mathbb{C}^*$ associated to each edge λ_i and a choice of N-th root $c = (x_1...x_n)^{1/N}$. Such a representation has dimension $N^{4g-4+2s}$.

It follows that a local representation of $\mathcal{T}_q(\lambda)$ is not irreducible. In this paper, we address the question of the decomposition of a local representation into its irreducible components. In particular, we prove the following result:

Theorem 1. Let λ be an ideal triangulation of Σ and ρ be a local representation of $\mathcal{T}_q(\lambda)$ classified by weight $x_j \in \mathbb{C}^*$ associated to each edge λ_j and a choice of N-th root $c = (x_1...x_n)^{1/N}$. We have the following decomposition:

$$\rho = \bigoplus_{i \in \mathcal{I}} \rho^{(i)}.$$

Here, $\rho^{(i)}$ is an irreducible representation classified by the same x_j , a N-th root $p_j^{(i)} = (x_1^{k_{j_1}}...x_n^{k_{j_n}})^{1/N}$ associated to each puncture, and the same c. Moreover, for each choice of N-th root $p_j = (x_1^{k_{j_1}}...x_n^{k_{j_n}})^{1/N}$ for each puncture and $c = (p_0...p_s)^{1/2}$, there exists exactly N^g elements $i \in \mathcal{I}$ with $p_j^{(i)} = p_j$ for all $j \in \{0,...,s\}$.

This result may be used to define representations of the so-called **Kauffman** skein algebra $\mathcal{S}^A(\overline{\Sigma})$ [Tur91] (where $\overline{\Sigma}$ is the surface Σ without marked points) which corresponds to a quantization by deformation of the character variety

$$\mathcal{R}:=\operatorname{Hom}(\pi_1(\overline{\Sigma}),\operatorname{PSL}(2,\mathbb{C})) \ /\!\!/ \operatorname{PSL}(2,\mathbb{C}))$$

where $PSL(2,\mathbb{C})$ acts by conjugation on the morphisms and the double slash means that we take the quotient in the sense of Geometric Invariant Theory. In [BW11, Theorem 1], the authors constructed a morphism

$$Tr_{\omega}(\lambda): \mathcal{S}_A(\Sigma) \longrightarrow \hat{\mathcal{Z}}_{\omega}(\lambda),$$

where $q = \omega^4$, $A = \omega^{-2}$ and $\hat{\mathcal{Z}}_{\omega}(\lambda)$ is an algebra of non-commutative rational fractions such that $\mathcal{T}_q(\lambda)$ consists of rational fractions in $\hat{\mathcal{Z}}_{\omega}(\lambda)$ involving only even powers of the variables. This morphism, composed with a representation ρ of $\mathcal{T}_q(\lambda)$ is studied in [BW12a] and [BW12b] to define a new kind of representations of $\mathcal{S}^A(\Sigma)$. However, if one wants to define representation of $\mathcal{S}^A(\overline{\Sigma})$ in the same way, one has to consider the direct sum of N^g irreducible components of a local representation $\rho: \mathcal{T}^q(\lambda) \to \operatorname{End}(V)$ arising in the decomposition of Theorem 1 and find a subspace $E \subset V$ stable by $\rho \circ Tr_{\omega}(\lambda)$ such that $(\rho \circ Tr_{\omega}(\lambda))_{|E|}$ defines a representation of $\mathcal{S}^A(\overline{\Sigma})$ (see [BW14] for the construction). Hopefully, this representation of $\mathcal{S}^A(\overline{\Sigma})$ should be used to define a more intrinsic version of

the Kashaev-Baseilhac-Benedetti TQFT (see [Kas95], [Kas99], [BB04], [BB05] and [BB07]).

In the first section, we recall the definition of the Chekhov-Fock algebra, the quantum Teichmüller space, the triangle algebra and the local representations. In the second one, we prove the Theorem 1. The proof is done in two steps: we first prove the result for a special triangulation λ_0 and special weights; we then extend to the general case.

Acknowledgment : I would like to thank Francis Bonahon for the time he spent explaining me the subtilities of the quantum Teichmüller theory. This work has been supported by a "Summer Regs" grant from GEAR in summer 2013.

1 The Chekhov-Fock algebra and the irreducible representations of $\mathcal{T}_q(\Sigma)$

The results of this section come from [BL07] and [HBL07]. From now, for $n \in \mathbb{N}$, define $\mathbb{N}_n := \mathbb{Z}/n\mathbb{Z}$ and denote by $\mathcal{U}(N)$ the group of N-th root of unity.

1.1 The Chekhov-Fock algebra

Let λ be an ideal triangulation of Σ . The **Chekhov-Fock algebra** $\mathcal{T}_q(\lambda)$ associated to λ is the algebra generated by the elements $X_i^{\pm 1}$ associated to each edge λ_i of the triangulation λ . These elements are subjects to the relations:

$$X_i X_j = q^{\sigma_{ij}} X_j X_i,$$

where the coefficients σ_{ij} are the coefficients of the Weil-Petersson form in the shear coordinates associated to λ and depend only on the combinatoric of λ . Namely, we have $\sigma_{ij} = a_{ij} - a_{ji}$ where a_{ij} is the number of angular sector delimited by λ_i and λ_j in the faces of λ with λ_i coming before λ_j counterclockwise. In practice, elements of $\mathcal{T}_q(\lambda)$ are just Laurent polynomials in the variables X_i satisfying non-commutativity conditions. We will sometimes denote $\mathcal{T}_q(\lambda)$ by $\mathbb{C}[X_1^{\pm 1}, ..., X_n^{\pm 1}]_q$ to reflect this fact.

 $\mathbb{C}[X_1^{\pm 1},...,X_n^{\pm 1}]_q$ to reflect this fact. Let $\mathbf{k}=(k_1,...,k_n)\in\mathbb{Z}^n$ be a multi-index; to a monomial X composed of a product of $X_i^{k_i}$, we associate its quantum ordering:

$$[X] := q^{-\sum_{i < j} \sigma_{ij}} X_1^{k_1} ... X_n^{k_n}.$$

It allows us to associate a monomial $X_{\mathbf{k}} \in \mathcal{T}_q(\lambda)$ to each each multi-index $\mathbf{k} \in \mathbb{Z}^n$.

To study finite-dimensional representations of $\mathcal{T}_q(\lambda)$, one needs to determine its center.

Proposition 1 ([BL07], Proposition 15). The center of $\mathcal{T}_q(\lambda)$ is generated by:

- X_i^N for each $i \in \{1, ..., n\}$.
- For each puncture v_j , the **puncture invariant** P_j associated to the multiindex $\mathbf{k}_j = (k_{j_1}, ..., k_{j_n})$ (where k_{j_i} is the number of intersections of λ_i with a small simple loop around v_j).

• The element H associated to the multi index $\mathbf{k} = (1, ..., 1)$.

Note that $[P_1...P_s] = H^2$.

1.2 Triangle algebra

Let T be a disk with three punctures $v_1, v_2, v_3 \in \partial T$ endowed with the natural triangulation λ composed of three counterclokwise directed edges λ_1, λ_2 and λ_3 (as in Figure 1).

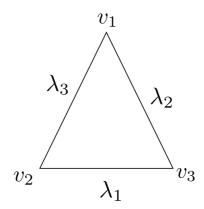


Figure 1: The triangle T

Define the **triangle algebra** as the Chekhov-Fock algebra $\mathcal{T} := \mathcal{T}_q(\lambda)$. It is generated by $X_1^{\pm 1}, X_2^{\pm 1}, X_3^{\pm 1}$ with relations $X_i X_{i+1} = q^2 X_{i+1} X_i$ for all $i \in \mathbb{N}_3$. The center of \mathcal{T} is given by X_1^N, X_2^N, X_3^N and $H = q^{-1} X_1 X_2 X_3$. Irreducible finite dimensional representations of \mathcal{T} have dimension N and are classified (up to isomorphism) by a choice of weight $x_i \in \mathbb{C}^*$ associated to each edge λ_i and a central charge, that is a choice of a N-th root $c = (x_1 x_2 x_3)^{1/N}$ (see [HBL07, Lemma 2]).

To be more precise, for V the N-dimensional complex vector space generated by $\{e_1, ..., e_N\}$ and ρ an irreducible repesentation of \mathcal{T} classified by $x_1, x_2, x_3 \in \mathbb{C}^*$ and $c = (x_1 x_2 x_3)^{1/N}$. Up to isomorphism, the action of \mathcal{T} on V defined by ρ is given by:

$$\begin{cases} X_1 e_i = \widetilde{x}_1 q^{2i} e_i \\ X_2 e_i = \widetilde{x}_2 e_{i+1} \\ X_3 e_i = \widetilde{x}_3 q^{1-2i} e_{i-1} \end{cases}$$

where \widetilde{x}_i is an N-th root of x_i such that $\widetilde{x}_1\widetilde{x}_2\widetilde{x}_3 = c$. Note that, up to isomorphism, ρ is independent of the choice of the N-th root \widetilde{x}_i with $\widetilde{x}_1\widetilde{x}_2\widetilde{x}_3 = c$.

In particular, for the representation ρ classified by $x_1 = x_2 = x_3 = 1$ and $c \in \mathcal{U}(N)$, as $\rho(X_i)^N = Id_V$, the spectrum of $\rho(X_i)$ is a subset of $\mathcal{U}(N)$. For $h \in \mathcal{U}(N)$, denote by $V_h(X_i)$ the eigenspace of $\rho(X_i)$ associated to the eigenvalue h. We have the following lemma which will be usefull in the next section:

Lemma 1. For each $i \in \{1, 2, 3\}$ and $h \in \mathcal{U}(N)$, $\dim(V_h(X_i)) = 1$.

Proof. We use the explicit form of the representation ρ in $V = \text{span}\{e_1, ..., e_N\}$. Take $\widetilde{x}_1 = \widetilde{x}_2 = 1$ and $\widetilde{x}_3 = c$.

For i = 1, one sees that $V_h(X_1) = \operatorname{span}\{e_k\}$ where $h = q^{2k}$.

For i=2, the vector $\alpha_k:=\sum_{i\in\mathbb{N}_N}q^{-2ki}e_i$ satisfies $X_2\alpha_k=q^{2k}\alpha_k$ and $\{\alpha_1,...,\alpha_k\}$ form a basis of V. Then $V_h(X_2)$ is generated by α_k .

For i = 3, we use the fact that $X_1 X_2 X_3 e_i = ce_i$, where c, the central charge of ρ , lies in $\mathcal{U}(N)$.

1.3 Local representation of $\mathcal{T}_q(\lambda)$

Let λ be an ideal triangulation of Σ . Such a triangulation is composed of m faces $T_1, ..., T_m$ and each face T_j determines a triangle algebra \mathcal{T}_j whose generators are associated to the three edges of T_j . It provides a canonical embedding \mathfrak{i} of $\mathcal{T}_q(\lambda)$ into $\mathcal{T}_1 \otimes ... \otimes \mathcal{T}_m$ defined on the generators as follow:

- $\mathfrak{i}(X_i) = X_{ji} \otimes X_{ki}$ if λ_i belongs to two distinct triangles T_j and T_k and $X_{ji} \in \mathcal{T}_j$, $X_{ki} \in \mathcal{T}_k$ are the generators associated to the edge $\lambda_i \in T_j$ and $\lambda_i \in T_k$ respectively.
- $\mathfrak{i}(X_i) = [X_{ji_1}X_{ji_2}]$ if λ_i corresponds to two sides of the same face T_j and $X_{ji_1}, X_{ij_2} \in \mathcal{T}_j$ are the associated generators.

Now, a local representation of $\mathcal{T}_q(\lambda)$ is a representation which factorizes as $(\rho_1 \otimes ... \otimes \rho_m) \circ \mathfrak{i}$ where $\rho_i : \mathcal{T}_i \to V_i$ is an irreducible representation of the triangle algebra \mathcal{T}_i . In particular, such a representation has dimension N^m where m = 4g - 4 + 2s is the number of faces of the triangulation.

1.4 Classification of these representations

Here we recall [BL07, Theorem 21] and [HBL07, Proposition 6] respectively:

Theorem 2. (F. Bonahon, X. Liu) An irreducible representation of $\mathcal{T}_q(\lambda)$ is determined by its restriction to the center of $\mathcal{T}_q(\lambda)$ and is classified by a non-zero complex number x_i associated to each edges λ_i , for each puncture v_j , a choice of a N-th root $p_j = (x_1^{k_{j_1}}...x_n^{k_{j_n}})^{1/N}$ and a choice of a square root $c = (p_0...p_s)^{1/2}$. Such a representation satisfies:

- $\bullet \ \rho(X_i^N) = x_i Id,$
- $\rho(P_j) = p_j Id$,
- $\rho(H) = cId$.

Theorem 3. (H. Bai, F. Bonahon, X. Liu) Up to isomorphism, a local representation of $\mathcal{T}_q(\lambda)$ is classified by a non-zero complex number x_i associated to the edge λ_i and a choice of a N-th root $c = (x_1...x_n)^{1/N}$. Such a representation satisfies:

- $\rho(X_i^N) = x_i Id$,
- $\rho(H) = cId$.

1.5 The quantum Teichmüller spaces and its representations

If one wants to quantize the Teichmüller space, he has to do it in a canonical way. The definition of the Chekhov-Fock algebra $\mathcal{T}_q(\lambda)$ involves the choice of an ideal triangulation. So we have to understand the behavior when one changes from an ideal triangulation λ to another one λ' . Set $\mathcal{T}_q(\lambda) = \mathbb{C}[X_1^{\pm 1}, ..., X_n^{\pm 1}]_q$ and $\mathcal{T}_q(\lambda') = \mathbb{C}[X_1'^{\pm 1}, ..., X_n'^{\pm 1}]_q$. These algebras admit a division algebras, denoted by $\hat{\mathcal{T}}_q(\lambda)$ and $\hat{\mathcal{T}}_q(\lambda')$ respectively, consisting of rational fractions in the variables X_i (respectively X_i') satisfying some non-commutativity relations.

For each pair of ideal triangulation λ and λ' , L.O. Chekhov and V.V. Fock constructed coordinates change isomorphisms

$$\Psi_{\lambda\lambda'}^q: \hat{\mathcal{T}}_q(\lambda') \longrightarrow \hat{\mathcal{T}}_q(\lambda),$$

which are the unique isomorphism satisfying naturals conditions (as for example $\Psi^q_{\lambda\lambda''}=\Psi^q_{\lambda\lambda'}\circ\Psi^q_{\lambda'\lambda''}$ for each λ,λ' and λ'' ideal triangulations of Σ). See [Liu09] for more details and explicit formulae of $\Psi^q_{\lambda\lambda'}$.

Now, the quantum Teichmüller space $\mathcal{T}_q(\Sigma)$ is defined by:

$$\mathcal{T}_q(\Sigma) := \bigsqcup_{\lambda \in \Lambda(\Sigma)} \hat{\mathcal{T}}_q(\lambda) / \sim,$$

where $\Lambda(\Sigma)$ is the set of ideal triangulation of Σ , and the equivalence relation \sim identifies each pair of $\hat{\mathcal{T}}_q(\lambda)$ and $\hat{\mathcal{T}}_q(\lambda')$ by the isomorphism $\Psi^q_{\lambda\lambda'}$. Note that, as each coordinates change $\Psi^q_{\lambda\lambda'}$ is an algebra isomorphism, $\mathcal{T}_q(\Sigma)$ inherits an algebra structure, and the $\hat{\mathcal{T}}_q(\lambda)$ can be thought as "global coordinates" on $\mathcal{T}_q(\Sigma)$.

A natural definition for a finite dimensional representation of $\mathcal{T}_q(\Sigma)$ would be a family of finite dimensional representation $\{\rho_\lambda: \hat{\mathcal{T}}_q(\lambda) \longrightarrow \operatorname{End}(V_\lambda)\}_{\lambda \in \Lambda(\Sigma)}$ such that for each pair of ideal triangulation λ and λ' , $\rho_{\lambda'}$ is isomorphic to $\rho_\lambda \circ \Psi^q_{\lambda,\lambda'}$. Note that, as pointed out in [HBL07, Section 4.2], there exists no algebra homomorphism $\rho_\lambda: \hat{\mathcal{T}}_q(\lambda) \longrightarrow \operatorname{End}(V_\lambda)$ for V_λ finite dimensional. In fact, as $\hat{\mathcal{T}}_q(\lambda)$ is infinite dimensional as a vector space and $\operatorname{End}(V_\lambda)$ is finite dimensional, such a homomorphism ρ_λ would have non-zero kernel. Hence, there would exists elements $x \in \hat{\mathcal{T}}_q(\lambda)$ such that $\rho_\lambda(x) = 0$ and so, $\rho_\lambda(x^{-1})$ would make no sense.

So one defines a **local representation (respectively irreducible representation) of** $\mathcal{T}_q(\Sigma)$ as a family of representation $\{\rho_{\lambda}: \mathcal{T}_q(\lambda) \longrightarrow \operatorname{End}(V_{\lambda})\}_{\lambda \in \Lambda(\Sigma)}$ such that for each $\lambda, \lambda' \in \Lambda(\Sigma)$, ρ_{λ} is a local representation (respectively irreducible representation) of $\mathcal{T}_q(\lambda)$, and $\rho_{\lambda'}$ is isomorphic (as representation) to $\rho_{\lambda} \circ \Psi^q_{\lambda \lambda'}$ whenever $\rho_{\lambda} \circ \Psi^q_{\lambda \lambda'}$ makes sense. We say that $\rho_{\lambda} \circ \Psi^q_{\lambda \lambda'}$ makes sense, if for each Laurent polynomial $X' \in \mathcal{T}_q(\lambda')$, there exists P, P', Q and $Q' \in \mathcal{T}_q(\lambda)$ such that:

$$\Psi_{\lambda\lambda'}(X') = PQ^{-1} = Q'^{-1}P' \in \hat{\mathcal{T}}_q(\lambda);$$

now, as $\rho_{\lambda}(\mathcal{T}_q(\lambda)) \subset GL(V_{\lambda})$, $\rho_{\lambda}(Q)$ and $\rho_{\lambda}(Q')$ are invertibles, so we can define:

$$\rho_{\lambda} \circ \Psi_{\lambda \lambda'}(X') := \rho_{\lambda}(P)\rho_{\lambda}(Q)^{-1} = \rho_{\lambda}(Q')^{-1}\rho_{\lambda}(P').$$

A fundamental result in [BL07] and [HBL07, Proposition 10] is that for each pair of ideal triangulations λ and λ' , there exists a rational map

$$\varphi_{\lambda\lambda'}:\mathbb{C}^n\longrightarrow\mathbb{C}^n$$

such that a local representation $\rho_{\lambda'}$ of $\mathcal{T}_q(\lambda')$ classified by $x_i' \in \mathbb{C}^*$ associated to λ_i' and $c' = (x_1'...x_n')^{1/N}$ is isomorphic to $\rho_{\lambda} \circ \Psi_{\lambda\lambda'}$ (whenever it makes sense) for a representation ρ_{λ} of $\mathcal{T}_q(\lambda)$ classified by $x_i \in \mathbb{C}^*$ associated to λ_i and $c = (x_1...x_n)^{1/N}$ if and only if c = c' and

$$(x'_1, ..., x'_n) = \varphi_{\lambda \lambda'}(x_1, ..., x_n).$$

2 Proof of Theorem 1

2.1 Special case

Here we prove Theorem 1 for a local representation $\rho: \mathcal{T}_q(\lambda_0) \longrightarrow \operatorname{End}(V)$ where λ_0 is special triangulation of Σ and ρ is classified by weights $x_i = 1$ and $c \in \mathcal{U}(N)$. Here, Σ is a genus g > 0 surface with s + 1 punctures $v_0, ..., v_s$. Recall that m = 4g - 4 + 2(s + 1) and n = 6g - 6 + 3(s + 1) are respectively the number of faces and edges of λ_0 . Moreover, we denote by Xu the action of $X \in \mathcal{T}_q(\lambda_0)$ on $u \in V$ defined by ρ .

To decompose ρ into irreducible factors, one has to look at the eigenspaces of $\rho(P_j)$ for each puncture invariant P_j associated to the puncture v_j . Note that, as $\rho(P_j)^N = Id$, the spectrum of P_j is contained in $\mathcal{U}(N)$.

The idea of the proof is to look at the action of the P_j on each factor of a nice decomposition of V into a tensorial product of vector spaces. It is based on the following remark:

Remark 1. For a decomposition $V = E_1 \otimes E_2$, if $x_j \in E_j$ satisfies $Px_j = h_j x_j$ for j = 1, 2 where $P \in \{P_0, ..., P_s\}$ and $h_j \in \mathcal{U}(N)$, then $P(x_1 \otimes x_2) = h_1 h_2 x_1 \otimes x_2$. That is, the eigenspace of P in V associated to the eigenvalue $h \in \mathcal{U}(N)$ contains the tensorial product of eigenspaces of P in E_j associated to the eigenvalues h_j , for j = 1, 2, whenever $h = h_1 h_2$.

For
$$\mathbf{h} = (h_1, ..., h_s) \in \mathcal{U}(N)^s$$
, set

$$V_{\mathbf{h}} := \{ u \in V, \ P_i u = h_i u, \ i = 1, ..., s \}.$$

Proposition 2. For each $h \in \mathcal{U}(N)^s$, dim $V_h = N^{m-s}$.

Proof. Take an ideal triangulation $\widetilde{\lambda}$ of $\Sigma \setminus \{v_1, ..., v_s\}$ (which is a one punctured surface), and for a triangle T of $\widetilde{\lambda}$, consider the triangulation of $T \cup \{v_1, ..., v_s\}$ as in Picture 2.

The union of these two triangulations gives an ideal triangulation λ_0 of Σ . Denote by \widetilde{V} the tensorial product of all the vector spaces associated to the triangles of $\widetilde{\lambda} \setminus T$. As the triangulation $\widetilde{\lambda}$ contains 3g-1 triangles, $\dim(\widetilde{V}) = N^{3g-2}$ (because we do not consider the vector space associated to T). Denote by V^j and V'^k the j^{th} (resp. k^{th}) vector space associated to the triangle T_j (resp. T'_k) as in Figure 2 (here, $j \in \{0, ..., s\}$ and $k \in \{1, ..., s\}$).

For
$$\mathbf{h} = (h_1, ..., h_s) \in \mathcal{U}(N)^s$$
 and $j \in \{1, ..., s\}$, define:

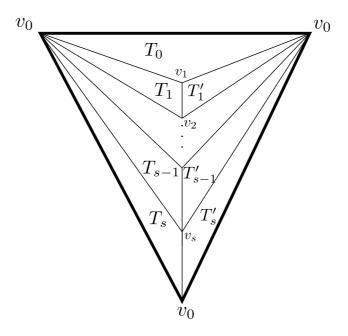


Figure 2: Triangulation of $T \cup \{v_1, ..., v_s\}$

$$\mathcal{V}_{\mathbf{h}}^{j} = \{ x \in V^{j} \otimes V'^{j}, \ P_{k}x = h_{k}x, \ k = 1, ..., s \}.$$

$$\mathcal{V}_{\mathbf{h}}^{0} = \{x \in V^{0}, P_{k}x = h_{k}x, k = 1, ..., s\}.$$

We have the following lemma:

Lemma 2.

i. dim
$$\mathcal{V}_{h}^{0} = \begin{cases} 1 & if h_{k} = 1 \ \forall k \neq 1 \\ 0 & otherwise. \end{cases}$$

ii.
$$\forall j \in \{1, ..., s-1\} \ \dim \mathcal{V}_{h}^{j} = \left\{ \begin{array}{ll} 1 & \textit{if } h_{k} = 1 \ \forall k \notin \{j, j+1\} \\ 0 & \textit{otherwise.} \end{array} \right.$$

iii. dim
$$V_h^s = \begin{cases} N & if h_k = 1 \ \forall k \neq s \\ 0 & otherwise. \end{cases}$$

Proof. i. If $k \neq 1$, v_k is not a vertex of T_0 . It follows that P_k acts on V^0 by the identity; so if $h_k \neq 1$, $\mathcal{V}_{\mathbf{h}}^0 = \{0\}$.

Now, if $h_k = 1$ for all $k \neq 1$, then $\mathcal{V}_{\mathbf{h}}^0 = V_{h_1}^0(P_1)$ (as defined in Lemma 1) which is one dimensional.

ii. Fix $j \in \{1, ..., s-1\}$. For $k \notin \{j, j+1\}$, v_k is neither a vertex of T_j nor of T'_j . So P_j acts on $V^j \otimes V'^j$ as the identity. Hence, if $h_k \neq 1$, then $\mathcal{V}^j_{\mathbf{h}} = \{0\}$.

Take $h_k=1$ for all $k\notin\{j,j+1\}$ and denote by $\mathcal{T}_j=\mathbb{C}[X^{\pm 1},Y^{\pm 1},Z^{\pm 1}]_q$, $\mathcal{T}'_j=\mathbb{C}[X'^{\pm 1},Y'^{\pm 1},Z'^{\pm 1}]_q$ the triangle algebras associated to the triangles T_j and T'_j respectively (as in Figure 3).

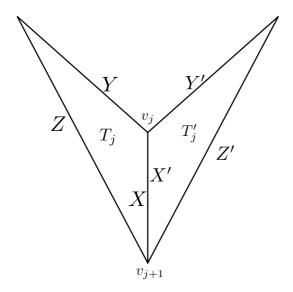


Figure 3: The generators of \mathcal{T}_j and \mathcal{T}'_j

For $c_j, c'_j \in \mathcal{U}(N)$ the central charges of the restriction of the representation to \mathcal{T}_j and \mathcal{T}'_j respectively, P_j acts on $V^j := \operatorname{span}\{e_0, ..., e_{N-1}\}$ like $c_j Z^{-1}$, on $V'^j = \operatorname{span}\{e'_0, ..., e'_{N-1}\}$ like $c'_j Z'^{-1}$ and P_{j+1} acts on V_j like $c_j Y^{-1}$, on V'_j like $c'_j Y'^{-1}$. Set $c_j = q^p$ and $c'_j = q^{p'}$, we get the following:

$$P_j e_k = q^{2k-1+p} e_{k+1}$$

 $P_j e'_l = q^{1-2l+p'} e_{l+1}$

It follows that the action of P_j on $V^j \otimes V'^j$ is given by:

$$P_j \epsilon_{k,l} = q^{2(k-l)+p+p'} \epsilon_{k+1,l+1}$$
 where $\epsilon_{k,l} := e_k \otimes e'_l$.

In the same way, one sees that the action of P_{j+1} on $V^j \otimes V'^j$ is given by:

$$P_{j+1}\epsilon_{k,l} = q^{p+p'}\epsilon_{k-1,l-1}.$$

Now, for $m, n \in \mathbb{N}$, set $\alpha_{m,n} := \sum_{k=0}^{N-1} q^{2km} \epsilon_{k,k+n}$, an easy calculation shows that:

$$\begin{cases} P_j \alpha_{m,n} = q^{-2(m+n)+p+p'} \alpha_{m,n} \\ P_{j+1} \alpha_{m,n} = q^{2m+p+p'} \alpha_{m,n}. \end{cases}$$

It follows that $\{\alpha_{n,m}, n, m \in \mathbb{N}\}$ is a base of $V^j \otimes V'^j$ and, for all $h_j, h_{j+1} \in \mathcal{U}(N)$, there exists a unique couple $(m,n) \in \mathbb{N}^2_N$ with $h_j = q^{-2(m+n)+p+p'}$ and $h_{j+1} = q^{2m+p+p'}$. So dim $\mathcal{V}^j_{\mathbf{h}} = 1$ if and only if $h_k = 1$ for all $k \notin \{j, j+1\}$.

iii. If $k \neq s$, v_k is neither a vertex of T_s nor T_s' , so if $h_k \neq 1$, $\mathcal{V}_{\mathbf{h}}^s = \{0\}$. Suppose that $h_k = 1$ for all $k \in \{1, ..., s - 1\}$, then

$$\mathcal{V}_{\mathbf{h}}^{s} \supset \bigoplus_{h_{a}h_{b}=h_{s}} V_{h_{a}}^{s}(P_{s}) \otimes V_{h_{b}}^{\prime s}(P_{s}),$$

(where $V_{h_a}^s(P_s)$ and $\mathcal{V}_{h_b}^s$ are defined as in Lemma 1). The direct sum contains N terms of dimension one, hence dim $\mathcal{V}_{\mathbf{h}}^s \geq N$. But, we have

$$\dim(V^s \otimes V'^s) = N^2 = \sum_{\mathbf{h} \in \mathcal{U}(N)^s} \dim(\mathcal{V}^s_{\mathbf{h}}) \ge N \times N.$$

So $\mathcal{V}_{\mathbf{h}}^{s}$ is N-dimensional.

Now, the proof of Proposition 2 is straightforward: from Remark 1, we have

$$\bigoplus_{\mathbf{h}^0\mathbf{h}^1...\mathbf{h}^s=\mathbf{h}} \mathcal{V}^0_{\mathbf{h}^0} \otimes ... \otimes \mathcal{V}^s_{\mathbf{h}^s} \otimes \widetilde{V} \subset V_{\mathbf{h}}.$$

Writing $\mathbf{h}^j = (h_1^j, ..., h_s^j)$ and $\mathbf{h} = (h_1, ..., h_s)$, one notes that the only non-zero terms in the direct sum are those who satisfy:

$$\begin{cases} h_1^0 h_1^1 = h_1 \\ h_2^1 h_2^2 = h_2 \\ \vdots \\ h_s^{s-1} h_s^s = h_s \end{cases}$$

There exists exactly N^s different choices for $\mathbf{h}^0,...,\mathbf{h}^s\in\mathcal{U}(N)^s$ satisfying the above relations, and each non-zero vector space of the direct sum has dimension N^{m-2s} . So dim $V_h\geq N^{m-s}$. Now, we have

$$\dim V = N^m = \sum_{\mathbf{h} \in \mathcal{U}(N)^s} \dim V_{\mathbf{h}} \ge N^s \times N^{m-s},$$

and so dim $V_{\mathbf{h}} = N^{m-s}$ for each $\mathbf{h} \in \mathcal{U}(N)$.

In particular, it proves the decomposition of Theorem 1 for ρ . In fact, let $\rho^{(i)}: \mathcal{T}_q(\lambda_0) \longrightarrow \operatorname{End}(V^{(i)})$ be an irreducible representation in the decomposition of ρ . It must satisfies $\rho^{(i)}(X_i)^N = \operatorname{Id}_{V^{(i)}}$ and $\rho^{(i)}(H) = c\operatorname{Id}_{V^{(i)}}$, in other word, $\rho^{(i)}$ must be associated to the same weights $x_i = 1$ and global charge $c \in \mathcal{U}(N)$ than ρ .

Set $h_j^{(i)} \in \mathcal{U}(N)$ the weight of $\rho^{(i)}$ associated to the each puncture v_j , that is, $\rho^{(i)}(P_j) = h_j^{(i)} Id_{V^{(i)}}$. Note that, as $\rho^{(i)}([P_0...P_s]) = \rho^{(i)}([H^2]) = h_0^{(i)} h_1^{(i)} ... h_s^{(i)} \mathrm{Id}_{V^{(i)}} = c^2 \mathrm{Id}_{V^{(i)}}$, a necessary condition for $\rho^{(i)}$ to be in the decomposition of ρ is to satisfy $h_0^{(i)} ... h_s^{(i)} = c^2$. Hence, if $\rho^{(i)}$ is in the decomposition of ρ , knowing $h_j^{(i)}$ for each j = 1, ..., s uniquely determine $h_0^{(i)}$ and so fully determine $\rho^{(i)}$.

Now, as for each $\mathbf{h}=(h_1,...,h_s)\in\mathcal{U}(N)^s,\ V_{\mathbf{h}}$ has dimension $N^{m-s}=N^{4g-3+(s+1)}$ and as an irreducible representation of $\mathcal{T}_q(\lambda_0)$ has dimension $N^{3g-3+(s+1)}$, then each space V_h contains exactly N^g times the representation $\rho^{(i)}$, classified by $p_0=c^2h_1^{-1}...h_s^{-1},\ p_1=h_1,...,p_s=h_s$.

2.2 Proof in the global case

Now, to complete the proof of Theorem 1, one remarks that the decomposition of ρ into irreducible factors only depends on the decomposition of $\rho(P_j)$ into eigenspaces (for each puncture v_j), that is on the possible choices of N-th root of $x_1^{k_{k_1}}...x_n^{k_{j_n}}$ (where P_j is associated to the multi-index $\mathbf{k}_j = (k_{j_1},...,k_{j_n})$). But this choice is discrete and depends continuously on the weights x_i associated to the edge λ_i , hence does not depend on the choice of $x_i \in \mathbb{C}^*$. It proves Theorem 1 for the triangulation λ_0 and every weight $x_i \in \mathbb{C}^*$.

Note that the map $\varphi_{\lambda_0\lambda}$ defined in Subsection 1.5 is rational, hence defined on a Zariski dense open set of \mathbb{C}^n . As we extended the decomposition for all weights x_i associated to each edge of the triangulation λ_0 , there exists a local representation $\{\rho_\lambda: \mathcal{T}_q(\lambda) \longrightarrow \operatorname{End}(V_\lambda)\}_{\lambda \in \Lambda(\Sigma)}$ of $\mathcal{T}_q(\Sigma)$ as defined in Subsection 1.5. So, for each $\lambda \in \Lambda(\Sigma)$, $\rho_{\lambda_0} \circ \Psi^q_{\lambda_0\lambda}: \mathcal{T}_q(\lambda) \longrightarrow \operatorname{End}(V_{\lambda_0})$ makes sense and is isomorphic to $\rho_\lambda: \mathcal{T}_q(\lambda) \longrightarrow \operatorname{End}(V_\lambda)$. That is, there exists a vector space isomorphism $L_{\lambda_0\lambda}: V_\lambda \longrightarrow V_{\lambda_0}$ such that, for each $X \in \mathcal{T}_q(\lambda)$,

$$\rho_{\lambda_0}(\Psi^q_{\lambda_0\lambda}(X)) = L_{\lambda_0\lambda} \circ \rho_{\lambda}(X) \circ L^{-1}_{\lambda_0\lambda}.$$

However, ρ_{λ_0} is a local representation of $\mathcal{T}_q(\lambda_0)$, hence there exists an irreducible decomposition of ρ_{λ_0} given by the decomposition $V_{\lambda_0} = \bigoplus_{i \in \mathcal{I}} V_{\lambda_0}^i$ as in

Theorem 1. That is, for each $i \in \mathcal{I}$, $V_{\lambda_0}^i$ is stable by ρ_{λ_0} and has dimension $N^{3g-3+s+1}$.

Using the isomorphism $\Psi_{\lambda\lambda_0}$, one gets that for each $X\in\mathcal{T}_q(\lambda)$, $\rho_{\lambda_0}(\Psi_{\lambda_0\lambda}(X))V^i_{\lambda_0}=V^i_{\lambda_0}$. Set $V^i_{\lambda}:=L^{-1}_{\lambda_0\lambda}(V^i_{\lambda_0})$, we have $\dim V^i_{\lambda}=\dim V^i_{\lambda_0}=3g-3+s+1$ (because $L_{\lambda_0\lambda}$ is an isomorphism) so for each $X\in\mathcal{T}_q(\lambda)$, $\rho_{\lambda}(X)V^i_{\lambda}=V^i_{\lambda}$. In other words, we have a decomposition

$$\rho_{\lambda} = \bigoplus_{i \in \mathcal{I}} \rho_{\lambda}^{(i)},$$

where $\rho_{\lambda}^{(i)}: \mathcal{T}_q(\lambda) \longrightarrow \operatorname{End}(V_{\lambda}^i)$. As each V_{λ}^i as the dimension of an irreducible representation, we get an irreducible decomposition of ρ_{λ} . One easily checks that it satisfies the conditions of Theorem 1. Now we extend this decomposition by continuity for all weight $x_i \in \mathbb{C}^*$ associated to the edge λ_i of λ .

References

[BB04] S. Baseilhac and R. Benedetti. Quantum hyperbolic invariants of 3-manifolds with $PSL(2,\mathbb{C})$ -characters. $Topology,\ 43(6):1373-1423,\ 2004.$

- [BB05] S. Baseilhac and R. Benedetti. Classical and quantum dilogarithmic invariants of flat PSL(2, C)-bundles over 3-manifolds. *Geom. Topol.*, 9:493–569 (electronic), 2005.
- [BB07] S. Baseilhac and R. Benedetti. Quantum hyperbolic geometry. *Algebr. Geom. Topol.*, 7:845–917, 2007.
- [BL07] F. Bonahon and X. Liu. Representations of the quantum Teichmüller space and invariants of surface diffeomorphisms. *Geom. Topol.*, 11:889–937, 2007.
- [BW11] F. Bonahon and H. Wong. Quantum traces for representations of surface groups in $SL_2(\mathbb{C})$. Geom. Topol., 15(3):1569–1615, 2011.
- [BW12a] F. Bonahon and H. Wong. Representations of the kauffman skein algebra I: invariants and miraculous cancellations. arXiv preprint arXiv:1206.1638, 2012.
- [BW12b] F. Bonahon and H. Wong. Representations of the kauffman skein algebra II: punctured surfaces. arXiv preprint arXiv:1206.1639, 2012.
- [BW14] F. Bonahon and H. Wong. Representations of the kauffman bracket skein algebra III: closed surfaces and canonicity. *In preparation*, 2014.
- [FC99] V. V. Fock and L. O. Chekhov. A quantum Teichmüller space. *Theoretical and Mathematical Physics*, 120(3):1245–1259, 1999.
- [HBL07] F. Bonahon H. Bai and X. Liu. Local representations of the quantum Teichmüller space. arXiv preprint arXiv:0707.2151, 2007.
- [Kas95] R. M. Kashaev. A link invariant from quantum dilogarithm. Modern Phys. Lett. A, 10(19):1409–1418, 1995.
- [Kas98] R. M. Kashaev. Quantization of Teichmüller spaces and the quantum dilogarithm. Letters in Mathematical Physics, 43(2):105–115, 1998.
- [Kas99] R. M. Kashaev. Quantum hyperbolic invariants of knots. In Discrete integrable geometry and physics (Vienna, 1996), volume 16 of Oxford Lecture Ser. Math. Appl., pages 343–359. Oxford Univ. Press, New York, 1999.
- [Liu09] X. Liu. The quantum Teichmüller space as a noncommutative algebraic object. J. Knot Theory Ramifications, 18(5):705–726, 2009.
- [Thu98] W. P. Thurston. Minimal stretch maps between hyperbolic surfaces. arXiv preprint math/9801039, 1998.
- [Tur91] V. G. Turaev. Skein quantization of Poisson algebras of loops on surfaces. Ann. Sci. École Norm. Sup. (4), 24(6):635–704, 1991.

Jérémy Toulisse
University of Luxembourg, Campus Kirchberg
Mathematics Research Unit, BLG
6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg
Grand Duchy of Luxembourg
jeremy.toulisse@uni.lu