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Abstract

We give an irreducible decomposition of the so-called local represen-
tations [HBLOT7| of the quantum Teichmiiller space 7,(X) where ¥ is a
punctured surface of genus g > 0 and ¢ is a N-th root of unity with N
odd.

Let ¥ be an oriented surface of genus g > 0 with s punctures vy, ..., vs
such that 2g — 2 + s > 0 (this condition is equivalent to the existence of an
ideal triangulation of ¥, ie. a triangulation whose vertices are exactly the v;).
Let 7(X) be the Teichmiiller space of X, that is the moduli space of complete
hyperbolic metrics on . Given A an ideal triangulation of ¥, W.P. Thurston
[Thu98| constructed a parameterization of 7 (X) by associating a strictly positive
real number to each edge A; of the ideal triangulation, ¢ € {1,...,n} (where
n = 6g — 6 + 3s is the number of edges of \). These coordinates are called
shear coordinates associated to A. In this coordinates system, the coefficients
of the Weil-Petersson form on 7 (X) depend only on the combinatoric of A and
are easy to compute.

For a parameter ¢ € C*, L.O. Chekhov, V.V. Fock [FC99| and indepen-
dently R. Kashaev [Kas98| defined the so-called quantum Teichmiiller space
T4(32) of ¥ (the construction of R. Kashaev differs a little from the one of L.O.
Chekhov and V.V. Fock), which is a deformation of the Poisson algebra of ra-
tional functions over 7 (X). This algebraic object is obtained by gluing together
a collection of non-commutative algebra 7;()) (called Chekhov-Fock algebra)
canonically associated to each ideal triangulation of ¥. A representation of
Tq(%) is then a family of representation {py : T4(A) — End(V)}ren(x), where
A(X) is the space of all ideal triangulations of 3, and py and py satisfy com-
patibility conditions whenever X\ # X. For A € A(X), the representation p) is
an avatar of the representation of 7,(X) and carries almost all the information.

When ¢ is a N-th root of unity, 7,(\) admits finite-dimensional representa-
tions. In this paper, we will consider N odd. The irreducible representations of
T4(A) have been studied in [BLO7]. In particular, they show that an irreducible
representation of 74(A) is classified (up to isomorphism) by a weight x; € C*
assigned to each edge A;, a choice of N-th root p; = (xlfjl ...xﬁj”)l/N
to each puncture v; (where kj, is the number of times a small simple loop around
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vj intersects \;) and a square root ¢ = (pg...ps)"/*. Such a representation has

dimension N3973+s,

In [HBLOT], the authors introduced another type of representations of 74(\),
called local representations, which are well behaved under cut and paste. A
local representation of 7;4(\) is defined by a an embedding into the tensorial
product of triangle algebras (see definitions below). The local representations
of T¢(X) are classified (up to isomorphism) by a weight z; € C* associated to
each edge \; and a choice of N-th root ¢ = (:Ul...:cn)l/N. Such a representation
has dimension N49—4+2s,

It follows that a local representation of 7;(\) is not irreducible. In this
paper, we adress the question of the decomposition of a local representation
into its irreducible components. In particular, we prove the following result:

Theorem 1. Let A\ be an ideal triangulation of ¥ and p be a local representation
of Tq(N\) classified by weight x; € C* associated to each edge Aj and a choice of
N-th root ¢ = (x1...2,)YN. We have the following decomposition:

=@

i€l
Here, p() is an irreducible representation classified by the same xj, a N-th root
fljn)l/N

kj1

pgz) = (7,
for each choice of N-th root p; = (a:lfjl...x

o associated to each puncture, and the same c. Moreover,

flfn)l/N for each puncture and ¢ =

(po...ps)'/?, there exists exactly N9 elements i € T with pg-z)
{0, ..., s}.

This result may be used to define representations of the so-called Kauffman
skein algebra S4(¥) [Tur91] (where X is the surface ¥ without marked points)
which corresponds to a quantization by deformation of the character variety

= p; for all j €

R := Hom(m (3), PSL(2,C)) J PSL(2,C))

where PSL(2,C) acts by conjugation on the morphisms and the double slash
means that we take the quotient in the sense of Geometric Invariant Theory. In
IBW1I, Theorem 1], the authors constructed a morphism

Tro(A) : Sa(2) — Z,(N),

where ¢ = w*, A = w2 and 2W(A) is an algebra of non-commutative rational
fractions such that 7;()\) consists of rational fractions in Z,()\) involving only
even powers of the variables. This morphism, composed with a representation p
of T4(A) is studied in [BW12a] and [BW12b] to define a new kind of representa-
tions of S4(X). However, if one wants to define representation of S4(¥) in the
same way, one has to consider the direct sum of N9 irreducible components of a
local representation p: T9(\) — End (V') arising in the decomposition of Theo-
rem [[l and find a subspace £ C V stable by poT'r, () such that (poTry(N)),
defines a representation of S4(¥) (see [BW14] for the construction). Hopefully,
this representation of S#4(X) should be used to define a more intrinsic version of



the Kashaev-Baseilhac-Benedetti TQFT (see [Kas95)|, [Kas99|, [BB04], [BBO5]
and [BB07]).

In the first section, we recall the definition of the Chekhov-Fock algebra, the
quantum Teichmiiller space, the triangle algebra and the local representations.
In the second one, we prove the Theorem [Il The proof is done in two steps: we
first prove the result for a special triangulation A\g and special weights; we then
extend to the general case.
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work has been supported by a "Summer Regs" grant from GEAR in summer
2013.

1 The Chekhov-Fock algebra and the irreducible rep-
resentations of 7,(%)

The results of this section come from [BLO7| and [HBLO7|. From now, for n € N,
define N,, := Z/nZ and denote by U(N) the group of N-th root of unity.

1.1 The Chekhov-Fock algebra

Let A be an ideal triangulation of ¥. The Chekhov-Fock algebra 7,(\) as-
sociated to A is the algebra generated by the elements Xiil associated to each
edge \; of the triangulation A\. These elements are subjects to the relations:

XiX; =q"X;X;,

where the coefficients o;; are the coefficients of the Weil-Petersson form in the
shear coordinates associated to A and depend only on the combinatoric of .
Namely, we have 0;; = a;; —aj; where a;; is the number of angular sector delim-
ited by A; and A; in the faces of A with A\; coming before \; counterclockwise.
In practice, elements of 7,(\) are just Laurent polynomials in the variables X
satisfying non-commutativity conditions. We will sometimes denote 74(\) by
C[XT!, ..., X;F1, to reflect this fact.

Let k = (k1, ..., k) € Z" be a multi-index; to a monomial X composed of a
product of Xiki, we associate its quantum ordering;:

[X] := ¢~ Zi<s o xF1 xFn,

It allows us to associate a monomial Xi € 74()\) to each each multi-index
keZ™.

To study finite-dimensional representations of 7;(\), one needs to determine
its center.

Proposition 1 ([BLO7|, Proposition 15). The center of T4()) is generated by:
o XY for each i€ {1,...,n}.

e For each puncture vj, the puncture invariant P; associated to the multi-
index kj = (kj,, ..., kj,) (where kj; is the number of intersections of \; with
a small simple loop around v;).



e The element H associated to the multi index k= (1,...,1).

Note that [P;...P;] = H?.

1.2 Triangle algebra

Let T be a disk with three punctures v, v9,v3 € 01 endowed with the natural
triangulation A\ composed of three counterclokwise directed edges A1, Ao and A3
(as in Figure [).

U1

() U3

A1

Figure 1: The triangle T

Define the triangle algebra as the the Chekhov-Fock algebra 7 := T4(\).
It is generated by leﬂ,ijﬂ,XgjEl with relations X;X;11 = quiJrlXi for all
i € N3. The center of T is given by X1V, X&', X& and H = ¢~ 1 X1 X2 X;3.
Irreducible finite dimensional representations of 7 have dimension N and are
classified (up to isomorphism) by a choice of weight x; € C* associated to each
edge \; and a central charge, that is a choice of a N-th root ¢ = (zxox3)"/N
(see [HBLO7, Lemma 2|).

To be more precise, for V' the N-dimensional complex vector space generated
by {e1,...,en} and p an irreducible repesentation of T classified by z1, z2,x3 €
C* and ¢ = (xlxgxg)l/N. Up to isomorphism, the action of 7 on V defined by
p is given by:

Xie; = T1¢%€;

Xoe; = T2€i41
o~ 19

X3e; = T3¢ “'eiq

where Z; is an N-th root of x; such that 77273 = ¢. Note that, up to isomor-
phism, p is independent of the choice of the N-th root z; with T1Z2x3 = c.

In particular, for the representation p classified by 1 = o = x3 = 1 and
c € U(N), as p(X;)N = Idy, the spectrum of p(X;) is a subset of U(N). For
h € U(N), denote by V},(X;) the eigenspace of p(X;) associated to the eigenvalue
h. We have the following lemma which will be usefull in the next section:

Lemma 1. For each i € {1,2,3} and h € U(N), dim(V,(X;)) = 1.



Proof. We use the explicit form of the representation p in V' = span{ey,...,en}.
Take 1 = 22 = 1 and 73 = c.

For i = 1, one sees that V},(X;) = span{ey} where h = ¢?*.

For ¢ = 2, the vector oy := ZieNN g ?kie; satisfies Xooy, = ¢* oy, and
{a1,...,ar} form a basis of V. Then V}(X3) is generated by ay.

For ¢ = 3, we use the fact that X; X9 X3e; = ce;, where ¢, the central charge
of p, lies in U(N). O

1.3 Local representation of 7,()\)

Let A be an ideal triangulation of 3. Such a triangulation is composed of m faces
Ti,...,T, and each face T determines a triangle algebra 7; whose generators
are associated to the three edges of T);. It provides a canonical embedding i of
T,(A) into 71 ® ... ® Ty, defined on the generators as follow:

o i(X;) = Xji ® Xy if A; belongs to two distinct triangles 7; and T}, and
Xji € Tj, Xii € Ty, are the generators associated to the edge \; € T} and
A; € T}, respectively.

o i(X;) = [Xji, Xji,] if A; corresponds to two sides of the same face Tj and
Xji, Xij, € T; are the associated generators.

Now, a local representation of 7;()) is a representation which factorizes as
(p1 ® ... ® pp) © i where p; : T, — V; is an irreducible representation of the
triangle algebra 7;. In particular, such a representation has dimension N™
where m = 4g — 4 4+ 2s is the number of faces of the triangulation.

1.4 Classification of these representations
Here we recall [BLO7, Theorem 21| and [HBL07, Proposition 6] respectively:

Theorem 2. (F. Bonahon, X. Liu) An irreducible representation of T4(\) is

determined by its restriction to the center of T,(\) and is classified by a non-zero

complex number x; associated to each edges \;, for each puncture v;, a choice of

a N-th root p; = (:U]fjl ...:U]:Lj")l/N and a choice of a square root ¢ = (pg...ps)"/2.
Such a representation satisfies:

o p(XN) =14,
o p(Pj) = pjld,
e p(H) = cld.

Theorem 3. (H. Bai, F. Bonahon, X. Liu) Up to isomorphism, a local repre-
sentation of Ty(\) is classified by a non-zero complex number x; associated to
the edge \; and a choice of a N-th root ¢ = (:Ul...xn)l/N, Such a representation
satisfies:

o p(XN) = ;14

e p(H) = cld.



1.5 The quantum Teichmiiller spaces and its representations

If one wants to quantize the Teichmiiller space, he has to do it in a canonical way.
The definition of the Chekhov-Fock algebra 7,()) involves the choice of an ideal
triangulation. So we have to understand the behavior when one changes from
an ideal triangulation A to another one X. Set To(\) = C[X:f, ... X;F1], and
T,(\) = C[X!, ..., X/*1],. These algebras admit a division algebras, denoted
by To(A) and T;(\') respectively, consisting of rational fractions in the variables
X; (respectively X/) satisfying some non-commutativity relations.

For each pair of ideal triangulation A and )\, L.O. Chekhov and V.V. Fock

constructed coordinates change isomorphisms
WSy To(A) — Tg(N),

which are the unique isomorphism satisfying naturals conditions (as for example
Wiy, =04, 094, for each A\, X and N\ ideal triangulations of ). See [Liu09]
for more details and explicit formulae of \If%\,.

Now, the quantum Teichmiiller space 7,(X) is defined by:

(D)= [] T/~
)

AEA(S

where A(X) is the set of ideal triangulation of ¥, and the equivalence relation
~ identifies each pair of 7;(\) and T;(\') by the isomorphism W1,,. Note that,
as each coordinates change \I’(;\X is an algebra isomorphism, 7,(X) inherits an
algebra structure, and the 7;()\) can be thought as “global coordinates” on T;(%).

A natural definition for a finite dimensional representation of 7,(X) would
be a family of finite dimensional representation {py : T;(\) — End(V))}xe A®)
such that for each pair of ideal triangulation A and X, py is isomorphic to
P © \Ilg\’)\/. Note that, as pointed out in [HBLO07, Section 4.2], there exists no

algebra homomorphism py : T5(A\) — End(V}) for Vj finite dimensional. In
fact, as 7,(\) is infinite dimensional as a vector space and End(V}) is finite
dimensional, such a homomorphism p) would have non-zero kernel. Hence,
there would exists elements © € To(\) such that py(z) = 0 and so, px(z~")
would make no sense.

So one defines a local representation (respectively irreducible repre-
sentation) of 7,(X) as a family of representation {py : T¢(\) — End(V))}rea(n)
such that for each A\, N € A(X), p) is a local representation (respectively irre-
ducible representation) of 74(\), and py is isomorphic (as representation) to
px o U, whenever py o ¥4,, makes sense. We say that py o UY,, makes sense,
if for each Laurent polynomial X’ € 7,(X'), there exists P, P',Q and Q" € T4(\)
such that:

U (X)) =PQ=Q P e T,(\\);

now, as px(7T;(N\)) € GL(V)), pa(Q) and px(Q’) are invertibles, so we can define:

pr 0 Uan (X') = pA(P)pa(Q) ! = pA(Q') "t pa(P).



A fundamental result in [BLO7] and [HBLOT, Proposition 10| is that for each
pair of ideal triangulations A and )\, there exists a rational map

OaN - cr—C"

such that a local representation px of Ty(N') classified by x} € C* associated to
N and ¢ = («..x))N is isomorphic to py o Wy (whenever it makes sense)
for a representation py of T4(\) classified by x; € C* associated to \; and
¢ = (x1..2,)"/N if and only if ¢ = ¢ and

(1"1, ,.%';1) = (‘P)\A/(x17 ,I'n)

2 Proof of Theorem I

2.1 Special case

Here we prove Theorem [ for a local representation p : T4(Ag) — End(V)
where )\g is special triangulation of 3 and p is classified by weights z; = 1 and
¢ € U(N). Here, ¥ is a genus g > 0 surface with s + 1 punctures vy, ..., .
Recall that m = 49 — 4+ 2(s + 1) and n = 6g — 6 + 3(s + 1) are respectively
the number of faces and edges of A\g. Moreover, we denote by Xwu the action of
X € Ty(Mo) on u € V defined by p.

To decompose p into irreducible factors, one has to look at the eigenspaces
of p(P;) for each puncture invariant P; associated to the puncture v;. Note
that, as p(P;)V = Id, the spectrum of P is contained in U(N).

The idea of the proof is to look at the action of the P; on each factor of a
nice decomposition of V into a tensorial product of vector spaces. It is based
on the following remark:

Remark 1. For a decomposition V = E; ® Eo, if v; € E; satisfies Px; =
hjxj for j = 1,2 where P € {Py,...,Ps} and hj € U(N), then P(x1 ® x2) =
hihox1 ® xo. That is, the eigenspace of P in V associated to the eigenvalue
h € U(N) contains the tensorial product of eigenspaces of P in E; associated to
the eigenvalues hj, for j = 1,2, whenever h = hyhs.

For h = (hy,...,hs) € U(N)*, set
Vo ={u eV, Pu=hu, i=1,..,s}.
Proposition 2. For each h € U(N)*, dim V}, = N™~%.

Proof. Take an ideal triangulation X of 2\ {v1, ..., vs} (which is a one punctured
surface), and for a triangle T" of A, consider the triangulation of T'U {v1, ..., vs}
as in Picture 21

The union of these two triangulations gives an ideal triangulation Ag of X.
Denote by V the tensorial product of all the vector spaces associated to the
triangles of A \ T. As the triangulation X contains 3g — 1 triangles, dlrn(V) =
N3972 (because we do not consider the vector space associated to T'). Denote
by V7 and V'* the j** (resp. k™) vector space associated to the triangle T;
(resp. T7) as in Figure 2 (here, j € {0, ...,s} and k € {1, ..., s}).

For h = (hy,...,hs) € U(N)® and j € {1, ..., s}, define:



Vo Vo

Yo
Figure 2: Triangulation of T'U {vy,...,vs}

. Vﬁ ={z eV V" Pua=hh, k=1,..s}.
Ve ={zeV’ Ba=ha, k=1,..s}

We have the following lemma:

Lemma 2.

7

1%

141

1 ifhy=1Yk#£1

0 otherwise.

. dimV,g: {

L oaf by =1VE & {j,j+1}

. B . i _
. Vjied{l,...,s =1} dimV; { 0 otherwise.

0 (N ifhy=1Yk#s
.dlth—{ 0 otherwise.

Proof. i. If k# 1, vy, is not a vertex of Tp. It follows that P, acts on V° by

1.

the identity; so if hy # 1, V) = {0}.

Now, if hy, = 1 for all k # 1, then Vg = V;) (P1) (as defined in Lemma [I)
which is one dimensional.

Fix j € {1,...,s —1}. For k ¢ {j,j + 1}, vy, is neither a vertex of T} nor
of Tj{. So Pj acts on VJ/ ® V" as the identity. Hence, if hy # 1, then
Vi = {0}

Take hy, = 1 for all k ¢ {j,j + 1} and denote by 7; = C[X*!, Y+ Z+!] |

T = C[X'#L, Y+ Z'#1], the triangle algebras associated to the triangles
Tj and T} respectively (as in Figure [3)).

8



Vj+1

Figure 3: The generators of 7; and 7}’

For ¢;, cg» € U(N) the central charges of the restriction of the representa-
tion to 7; and 7}’ respectively, P; acts on V7 := span{ey,...,en_1} like
¢;Z7t on V' = span{e|,...,e/y_,} like c;»Z’*1 and Pj;1 acts on Vj like
c;Y ! on V] like c;Y’_l. Set ¢j = ¢” and ¢} = ¢¥', we get the following:

2k—1
Pjep, =gq +p€k+1

Pje; = q172l+p,€l+1
It follows that the action of P; on VI ® V" is given by:
Pjey = qz(k_l)+p+p,ek+17l+1 where €, := e @ €.
In the same way, one sees that the action of Pj;1 on VI ® V" is given by:

_ ptp
Piiierg =" P 11

N—-1
Now, for m,n € N, set ayy, , 1= Z q2kmek,k+n, an easy calculation shows
k=0
that:
Pjam,n = q72(m+n)+p+p’am’n
{ Pj+1am,n = q2m+p+p’am,n.

It follows that {a, m, n,m € N} is a base of VIi®V" and, for all hj, hjt1 €
U(N), there exists a unique couple (m,n) € N3, with h; = ¢~ 2(m+n)+p+p’
and hjy1 = @Mt So dim V{l = 1 if and only if hy = 1 for all k ¢
{7, +1}.



iii. If k # s, vy, is neither a vertex of T nor T}, so if hy, # 1, Vj, = {0}.
Suppose that hy =1 for all k € {1,...,s — 1}, then

Vid> @ Vi(P)e VP,
hahp=hs

(where V;' (Ps) and V; = are defined as in Lemma [I]). The direct sum
contains N terms of dimension one, hence dimV;, > N. But, we have
dim(V*@ V") =N>= > dim(V}) > N x N.
hel(N)s

So Vy is N-dimensional.

O

Now, the proof of Proposition [2is straightforward: from Remark [1, we have

VD ® .. ® Vi @V C V.
hOh!.. . h%=h

Writing h/ = (h{, ceny hg) and h = (hy, ..., hs), one notes that the only non-zero
terms in the direct sum are those who satisfy:

hOh! = iy
hihZ = hy
hi1hs = hy

There exists exactly N° different choices for h?,...,h® € U(N)* satisfying the
above relations, and each non-zero vector space of the direct sum has dimension
N™=25 S0 dim V}, > N™ 5. Now, we have

dimV = N™ = Z:mmszﬁxMWi
held(N)s

and so dim V3, = N™° for each h € U(N). O

In particular, it proves the decomposition of Theorem [ for p. In fact, let
Pl Tq(Xo) — End(V(®) be an irreducible representation in the decomposition
of p. It must satisfies p)(X;)N = Idy, ) and p(H) = cldy ), in other word,
p must be associated to the same weights z; = 1 and global charge ¢ € U (N)
than p.

Set hy) € U(N) the weight of p associated to the each puncture vj,
that is, p)(P;) = hg»i).[dv(i). Note that, as p@([Py...Ps]) = pW([H?]) =

hgi)hgi)...hgi)ldw) = CQIdV(i), a necessary condition for p(® to be in the decom-
position of p is to satisfy h(()l)...hgl) = 2. Hence, if p® is in the decomposition
of p, knowing hy) )

for each 7 = 1,...,s uniquely determine héi and so fully

determine p(®).
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Now, as for each h = (hy,....,hs) € U(N)*, W, has dimension N™™* =

N*9-3+(+1) and as an irreducible representation of T4(Xo) has dimension N39 —3+(s+1)

then each space Vj, contains exactly N9 times the representation p(®, classified
by pg = thfl... L p1r=h,.,ps = hs.

2.2 Proof in the global case

Now, to complete the proof of Theorem [I one remarks that the decomposition
of p into irreducible factors only depends on the decomposition of p(P;) into
eigenspaces (for each puncture v;), that is on the possible choices of N-th root

of 2, g (where Pj is associated to the multi-index k; = (k;,, ..., k;,)). But

this choice is discrete and depends continuously on the weights x; associated to
the edge A;, hence does not depend on the choice of x; € C*. It proves Theorem
[ for the triangulation A\g and every weight z; € C*.

Note that the map ¢y, defined in Subsection [[.5]is rational, hence defined
on a Zariski dense open set of C". As we extended the decomposition for all
weights z; associated to each edge of the triangulation Ag, there exists a local
representation {py : Tg(A) — End(V))}rea(s) of T4(X) as defined in Subsection
So, for each A € A(X), px, 0 ¥ ) : Ty(A) — End(V),) makes sense and
is isomorphic to py : T4(A\) — End(Vy). That is, there exists a vector space
isomorphism Ly, : V\ — V), such that, for each X € T,(\),

Pro (T4 A (X)) = Laga 0 pa(X) o Ly L.

However, py, is a local representation of 7;()g), hence there exists an ir-

reducible decomposition of py, given by the decomposition V), = EB Vfo as in

i€l
Theorem [Il That is, for each i € Z, V)fo is stable by p), and has dimension
N3973+s+1.

Using the isomorphism Wy, one gets that for each X € T4(X), pag (Paoa (X))Vi

V)fo. Set V{ := Lgol)\(V)fO), we have dim V} = dim V)fo =39 —3+ s+ 1 (because
Ly, is an isomorphism) so for each X € Ty(\), pA(X)Vy = Vi In other words,
we have a decomposition

=P,

i€

where pf\l) : Tg(A) — End(VY). As each VY as the dimension of an irreducible
representation, we get an irreducible decomposition of py. One easily checks that
it satisfies the conditions of Theorem [II Now we extend this decomposition by
continuity for all weight z; € C* associated to the edge A; of A.
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