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Psalm 2 
 

Why do the heathen rage, and the people imagine a vain thing?  
The kings of the earth set themselves, 
 and the rulers take counsel together, 

 against the Lord, 
 and against his anointed, saying,  
Let us break their bands asunder, 

 and cast away their cords from us.  
He that sitteth in the heavens shall laugh: 

 the Lord shall have them in derision.  
Then shall He speak unto them in his wrath, 

 and vex them in his sore displeasure.  
Yet have I set my king upon my holy hill of Zion.  

I will declare the decree: 
the Lord hath said unto me,  

Thou art my Son; this day have I begotten thee.  
Ask of Me, and I shall give thee the heathen for thine inheritance, 

 and the uttermost parts of the earth for thy possession.  
Thou shalt break them with a rod of iron; 

 Thou shalt dash them in pieces 
 like a potter's vessel.  

Be wise now therefore, O ye kings: 
 Be instructed, ye judges of the earth.  

Serve the Lord with fear, and rejoice with trembling.  
Arm yourself with righteousness, lest He be angry, 

 and ye perish from the way, 
 when his wrath is kindled but a little. 

 Blessed are all they that put their trust in Him.  
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SUMMARY 
 
 
Discrete Element Analysis of Granular Materials 
 
During oil and gas production, several years after drilling a borehole, sand 
particles and small sandstone particles start to break away from the borehole 
surface. These particles can damage the transport pipes and other equipment in a 
short period of time. By simulating this borehole behaviour with the thick-walled 
cylinder test, four phenomena were found which cannot be explained by 
conventional continuum mechanics: 
   1. Despite the compressive stress, failure occurs on the micro level due to 

tension cracks. 
   2. These cracks are not diagonal to, but parallel to, the borehole surface. 
   3. These cracks cause two diametrically opposite breakouts. 
   4. The functional failure of the borehole starts at a higher radial pressure than 

predicted. 
In 1979, Cundall developed a computer model, based on the basic elements of 
granular materials, i.e. the grains themselves and their interactions, to describe 
the behaviour of these materials. Lindhout tried, in 1992, to use this model to 
describe the cylinder test. Due to compaction problems, stability problems and 
the large computational time, this could not be achieved. Therefore a new model 
was developed by the author, which does not use the equations of motion, but the 
equations of equilibrium, to calculate the new grain positions. This model can be 
used both for non-cohesive grains (sand) and for cohesive grains (sandstone). 
The results can generally be described by an advanced Mohr-Coulomb model. 
However, there are a few exceptions. 
Firstly, during loading of a granular structure, many contacts between the grains 
will collapse, not due to shear deformation as Coulomb suggests, but due to 
tension failure. Secondly, these micro cracks always occur in the direction of the 
major principal stress, which might be another direction than the observed failure 
surface. In this way, the axial micro cracks form a diagonal failure surface during 
a biaxial test, but  the axial micro cracks in a cylinder test may form a failure 
surface parallel to the borehole surface. 
During the formation of natural sandstone, the difference between the horizontal 
and vertical stress causes anisotropy in the strength behaviour of this material. 
This or other anisotropies may explain the diametrically opposite breakouts. 
The conclusion that a borehole fails at a higher radial pressure than predicted, 
originates from the definition difference between local failure and functional 
failure and the large rest capacity of a thick-walled cylinder.  
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1. INTRODUCTION 
 
This study on the behaviour of granular materials originates from offshore 
engineering. During oil and gas exploitation, several years after the drilling of a 
borehole, sand particles and small sandstone particles start to break away from 
the borehole surface. The number of particles which is transported by the oil or 
gas, can reach such an amount that the transport pipes and other equipment will 
be damaged, in a short period of time, by the scouring of these particles. The 
only solution up till now is to make a new borehole, which is, especially off 
shore, a huge financial loss. 
Therefore laboratory research has been started to get insight into this problem. 
One of the main characteristic tests to simulate the failure of a borehole is the 
thick-walled cylinder test, which consists of a sandstone cylinder of several 
centimetres with an axial borehole in the middle. By radial compression of this 
cylinder four phenomena were found which cannot be explained by conventional 
continuum mechanics. These are: 
   1. Despite the compressive stress, failure occurs on micro level due to tension 

cracks. 
   2. These cracks are not diagonal to, but parallel to, the borehole surface. 
   3. These cracks cause two diametrically opposite breakouts. 
   4. The failure of the borehole starts at a higher radial confining pressure than 

predicted. According to many researchers, like Ewy and Cook (1990 I), the 
measured strength of the borehole surface is even two to four times as high 
as calculated.  

The idea existed that this could be explained by the specific behaviour of 
granular materials, which is lost in continuum mechanics. Therefore the models 
which describe the materials by their basic elements became more popular. 
De Josselin de Jong and Verruijt (1969) have applied an optical method to 
determine the magnitude and the direction of the contact forces between grains, 
by measuring the rotation of polarised light through these grains made of 
photoelastic materials. In this way the local displacements and forces could be 
studied. 
About ten years later, Cundall developed a computer model, named Ball, to 
describe the behaviour of granular materials. This model is based on the basic 
elements of these materials, i.e. the grains themselves and their interactions. It 
can handle both non-cohesive grains and cohesive grains. The method was 
validated by Cundall and Strack (1979) by comparing force vector plots obtained 
from the computer program Ball, with the corresponding plots obtained from the 
photoelastic analysis, which was done by De Josselin de Jong and Verruijt. The 
correspondence between the plots was sufficiently good to conclude that the 
distinct element method is a valid tool for fundamental research. 



14 

There are two major advantages of computer models in comparison to prototype 
tests. Firstly, all grain displacements, contact forces and micro cracks are known. 
Secondly, one specific sample can be tested many times. One of the major 
problems with Cundall's model was the computational time. According to Ting 
(1989), it is not feasible to simulate more than a few tens of thousands of grains, 
even with the fastest super computers currently available. 
Lindhout (1992) tried to model the cylinder test with Trubal, which is the next 
version of Ball. Due to compaction problems, stability problems and the large 
computation time this could not be done. Therefore this new research project has 
been set up to solve these problems. The idea was that if the quasi-dynamical 
analysis of Cundall, which uses artificial damping, can be replaced by a 
technique which uses the so called finite element method, the model will become 
more useful. 
This model can be used to understand better local stresses and displacements, 
because this micro mechanical analysis can investigate the behaviour of sand and 
sandstone on a very detailed scale. By simulating the actual grain structure, the 
analysis can perhaps bridge the gap between experimental observations and 
theoretical modelling. For Shell, this is of a special importance due to their oil 
and gas production boreholes. If the method is successful there will also be 
interest from other areas, like the mechanics of soft soils, powder technology or 
concrete technology. 
The objective of the present study was to simulate and investigate granular 
mechanical behaviour on a micro scale (elements representing grains) and to 
translate this behaviour into a continuum approach or to determine the limitations 
of such an approach. 
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2. DISCRETE ELEMENT MODELLING 
 
Discrete element modelling, which is also called distinct element modelling, is in 
fact a type of finite element modelling. Every element represents one grain. The 
main difference from the normal finite element modelling is that due to 
deformation some contacts between the grains can be lost and new contacts can 
be made. This causes softening and hardening respectively of the structure. 
Because of this, the global stiffness matrix of the complete structure has to be 
rebuilt constantly. 
For non-cohesive materials there is also a second reason why this matrix has to 
be updated; the behaviour of the contacts, both in the normal and the shear 
direction, is not linear, which means that the stiffnesses, kn  and ks , of these 
contacts, have to be recalculated continuously. 
 
If the boundary conditions of the structure (forces or displacements) are changed, 
then this will effect every grain. All grains will be displaced then in such a way 
that a new force equilibrium is created (quasi-static approach) or a new time step 
is reached (dynamic approach). 
Until recently only the dynamic approach has been worked out, mainly by 
Cundall. His model is based on the equations of motion. In this thesis, mainly the 
quasi-static approach is used, which is based on the equations of equilibrium. 
This approach is completely new. Both models will be worked out for a two-
dimensional rectangular Cartesian (OXY)- field. 
 
 
2.1. Micro modelling 
 
The behaviour of granular structures depends on the individual grains and their 
interaction. In order to be able to model this on a microscopic level, three 
simplifications are made (figure 1). 
The first simplification is made by reducing the number of dimensions. Three-
dimensional computer modelling consumes a lot of time and memory. Besides, 
two-dimensional modelling gains more insight in the results obtained, because of 
its simplicity. 
The second simplification is made to the grain shape. The most common one, a 
circle, reduces the calculation substantially. However, elliptical grains show 
failure at a larger stress ratio than circular grains during a loading test, according 
to Rothenburg and Bathurst (1992). Thus, circular grains will roll easier than 
grains of a more complex shape. 
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Two-dimensional   Circle shaped    Contact behaviour 
 

Figure 1. Simplifications 
 
Cross sections of several types sandstone, like Fontainebleau Sandstone (David 
and Darot, 1993), make clear that the grains in these sandstones can be well 
described by polygons (figure 2). 
 

 
 

Figure 2. Fontainebleau Sandstone 
 

During the formation of sandstone, the stress in the contacts is so high that the 
quartz material in the contact between the grain particles becomes a little bit 
viscous. Thus, the shear forces slowly fade away in time. Because of this 
creeping behaviour, the lateral stress of a one-dimensional compression test on 
sand increases with time under any stress conditions, according to Yamamuro 
(1996). The contact surfaces become flat in time and will fit more and more. The 
modelling of these sandstones with circular grains, will probably not cause too 
large errors as long as the contact behaviour, i.e. the strength and stiffness 
properties, is well modelled. This is because of the fact that the cemented grains 
in the sandstone will hardly roll. 
The description of the contact behaviour between two grains contains the last 
simplification. This behaviour is divided in three parts: 
   1. Normal deformation. 
   2. Shear deformation. 
   3. Slip or crack. 
All differences between real measurements and model results have to be 
explained by these three simplifications. Non-cohesive granular materials, such 
as sand or powders, and cohesive granular materials, such as sandstone or mortar, 
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will be treated separately, because their contact behaviours are different from 
each other. 
 
 
2.1.1. Contact behaviour of non-cohesive granular materials 
 
The force-displacement relation in normal direction of two non-crushing balls 
was solved by Hertz (1881). The definitions of the used micro parameters are 
presented in figure 3. These parameters are also mentioned in appendix 1, 
Symbol list. 
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Figure 3. Definition of micro parameters 
 
The relation between the normal force Fn  and the normal displacement n  is 
given by: 

 ( )F M nn =
3
2  (1) 

 in which: 

  
( )M

rG

n r r d

r
r r

r r

i j

i j

i j

=
−

= + −

=
+

2 2
3 1

2

µ

µν

   

The grain stiffness M  depends on the shear modulus Gµ  and the Poisson's ratio 
ν µ  of the grain material and also on the average size r  of both grains. The 
reason why this relation is not linear is that the contact surface between the 
grains depends on the deformation, so during loading the geometry is not 
constant. This causes in its way the non-linear stress-strain behaviour of non-
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cohesive granular materials. A verification test of this relation is presented in 
appendix 2, Hertzian contact. 
The force-displacement relation in shear direction between two balls was solved 
by Mindlin and Deresiewicz (1953) and verified by Deresiewicz (1958). The 
shear force Fs  is proportional to the shear displacement sh  for the elastic area. 
 F k ss s h=  (2) 
The stiffness in shear direction ks  depends on the normal force: 

 
( )[ ]

k
G rF

s

n
=

−

−

2 3 1

2

2
3

1
3

µ η

µ

ν

ν
 (3) 

But for solving a system of equations, linear relations are necessary, such as: 
 F k nn n=  (4) 
So, the stiffness in normal direction kn  is not constant because it depends on the 
normal displacement: 
 k M nn =  (5) 
Because of this linearisation, the stiffness in shear direction can be related to the 
stiffness in normal direction:  
 k ks n= κ ν  (6) 
 in which: 

  κ
ν
νν

µ

µ

=
−
−

3
1
2

 

This means that the relation between the stiffnesses of the normal and shear 
direction depends only on the Poisson's ratio ν µ  of the grain material. 
Slip or plastic deformation occurs when the shear force exceeds, in comparison 
to the normal force, a certain level which depends on the friction f gg  between 
two grains: 
 if      then   F f F F f Fs gg n s gg n> =  (7) 
 in which: 
  f gg = tanφ µ  
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2.1.2. Contact behaviour of cohesive granular materials 
 
Since the contact surface between two cemented grains remains more or less 
constant, the force-displacement relation in the normal direction between two 
grains is assumed to be linear: 
 F k nn n=  (8) 
The shear force is proportional to shear displacement for the elastic area: 
 F k ss s h=  (9) 
The shear stiffness is related to the normal stiffness: 
 k ks n= κ ν  (10) 
Crack or plastic deformation occurs when the shear force exceeds a certain level: 
 if       then                    so      F f F F F F f Fs gg n t t s gg n> + = =0  (11) 
And if a tension force cut-off Ft  is used, also: 
 if                  then       so      F F break contact Fn t n< − = 0  (12) 
 in which: 
  f gg = tanφ µ  
  F c r c r rt i j= =µ µ

2   or   
 
 
2.2. Motion modelling 
 
The modelling of granular structures can be divided in four phases (see figure 4): 
   1. Creation of the particles. 
   2. Calculation of the boundary conditions such as wall displacements. 
   3. Calculation of the grain displacements and the contact forces. 
   4. Saving of wall forces, displacements or other necessary information. 
In phase 1. all grains are randomly placed between the walls with a grain size of 
one percent of its final size. During the next iterations the grains are blown up to 
fill the volume between the walls. 
In phase 2. the displacements of the stress controlled walls and the new stresses 
of the displacement controlled walls will be calculated.  
In phase 3. all grains will be one by one checked and recalculated. In Cundall's 
model, which is based on the equations of motion, this is done every time step. 
This grain calculation in a motion model consists of three parts: 
 
   A. With the two force-displacement relations, 

   
F k n
F k s

n n

s s h

=

=
 

  all forces on one particular grain are calculated. 
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   B. With these forces and the equations of motion (second law of Newton), the 
acceleration of the grain is determined: 

 

F m x

F m y

M I

x

y

=

=

=

∑
∑
∑ φ

 (13) 

  in which: 

   
M
m

=
=

moment on a grain
mass of a grain

 

 For the next time step, the new position of the grain is found with two 
integration steps: 

 

x
m

F

x x dt

x x dt

=

=

=

∑

∫
∫

1

 (14) 

 This integration is not very stable and therefore small time steps and 
damping are necessary. Extra calculation time and less accuracy are the 
result of this. 

 
   C. All contacts of the grain are checked for: 
     I. Plastic deformation (slip or crack). 
 if      then   F f F F F f Fs gg n t s gg n> + =  (15) 
    where for sand and after cracking: 
 Ft = 0  
    II. Contact breaking. 
 if      then − >F F break contactn t  (16) 
   III. Contact making. 
 if     >        thenn make contact0  (17) 
 
With the new positions, the new forces for part A. can be calculated. In this way, 
for every time step, all contact forces and grain positions are determined. The 
computer models, Ball, Trubal and PFC (particle flow code) from Itasca in 
Minneapolis USA are all based on this method. 
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2.3. Equilibrium modelling 
 
The new model is based on the equations of equilibrium. Only part B in which 
the displacements of the grains are calculated is different from the motion 
modelling: 
 
   A. The first part is the same as the motion model. 
 
   B. In the new approach, equilibrium equations are used instead of equations of 

motion:  
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M
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y
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∑
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 (18) 

By disregarding time, dynamic problems like explosions, vibrations and 
quakes can not be modelled. The three equations form a 3×3  matrix: 
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  in which: 

 
( )
( )

n

s
c
r

c g/

sin
cos

=

=

=

=

number of contacts per grain

radius of the grain

α

α
  

  and: 

   
∆
∆
∆

x x x
y y y

new old

new old

new old

= −
= −
= −φ φ φ

 

All the forces and stiffnesses on one particular grain are placed in this 
matrix. The displacements, and thus also, the new equilibrium positions of 
the grains, can directly be calculated by Gauss elimination. 

 
   C. The third part is the same as the motion model. 
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Although the equilibrium position is directly calculated, the displacement of a 
grain will effect its neighbouring grains. Therefore several iterations through the 
whole structure are necessary to find the total equilibrium state of the grain 
structure. The computer model Grain, written by the author, is based on this 
method. A structure diagram of this model is given in figure 4. 
 

Grain

sprinkle grains

calculate walls

cycle
first guess grains

move wall

calculate grains
check village (wall)

calculate wall displacement

numbers

grain info

calculate wall pressures
elasto-plastic switch

calculate grain displacement
if  n   = 0 : do nothing

truncate

if  n   = 1 : lateral displ.
if  n   > 1 : equilibriumc

c
c

check contacts
move grain

blow up grains

check village (grain)

check neighbours
check friends

make new grains if necessary
repeat until end of simulation
each n  times displace all grains
do for all walls
each n  times displace walls

collect n   and F  , F  , k  , k  , s  , s , c

i

nc s hs

i

n
for all contacts

if   -n   <  r         : make friends

for elasto-plastic modelling
3 x 3 matrix

if    n    > 0     
if   -F   >  c  .r    : break contact2

µn

if ( 2.i < n   ) elastic otherwise plastici
enlarge new grains if necessary

(1)

(2)

(3)

(4)

(A)

(B)

(C)

k   = 0 for plastic calculationss

: make contact

 
 

Figure 4. Schematic overview of the computer program Grain  
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Because the grains can gain and loose contacts during the simulation, not only 
the calculation of the grains but also keeping track of the grain data and contact 
data is important. It is time consuming to check, each time, all possible grain 
contacts. To avoid this, each grain has a list of the contacts between its 
neighbours and also a list of the grains which are nearby but not connected. 
These are called friends. After the grains are sprinkled between several walls 
(Phase 1), the entire group of grains is considered as a village surrounded by city 
walls. Every grain has to check the complete village in order to make its personal 
list of close friends. This has to be done only once after the creation of the grains 
and every time a grain has been displaced outside his defined friend-area. This 
happens only occasionally. In this way only the friends have to be checked for 
contact-making and the neighbours for contact-breaking. This "book-keeping" is 
explained in appendix 3, Discrete element book-keeping. 
 
 
2.4. Elasto-plastic modelling 
 
In fact, both models calculate the shear deformation sh  completely elastically and 
they both cut off the shear forces at shear, as shown in figure 5. 

 
F
F

s

n

tan(     )φµ

s h 

F
F

s

n

tan(     )φµ

s h  
 

Figure 5. Elastic modelling    Figure 6. Elasto-plastic modelling 
 
Especially for a low friction φ µ  and a high shear stiffness ks , a large amount of 
iterations are necessary to model the plastic deformations properly. An effective 
solution is to make the shear stiffness ks  zero after shear is detected, so that the 
shear force will not increase any more.  If the shear force decreases or the normal 
force increases the stiffness has to return to its former value. This elasto-plastic 
modelling, shown in figure 6, iterates much faster. 
Because the shear deformations are unlimited in the plastic state, the elasto-
plastic modelling causes one particular problem. In the same way as a round 
object, for instance a pen, can also be launched by squeezing it between two 
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finger tips, a grain can be launched, when the plastic state is reached, as shown in 
figure 7. 

δ

δ

u

u

1

2

 
 

Figure 7. Squeezing of a grain 
 
The small displacement δ u1  causes a larger displacement δ u2 . Such a large 
displacement will be divided, just as any large displacement, into several smaller 
steps by the procedure "truncate", to prevent the grain from jumping to an empty 
place without noticing potential geometrical limitations. 
Elasto-plastic modelling has been installed in Grain. With this computer model 
all numerical calculations in the following chapters have been done. 
 
 
2.5. Characteristic tests 
 
Five characteristic tests are standardised in Grain to study the micro-mechanical 
behaviour of cohesive and non-cohesive granular materials. The first three are 
sketched in figure 8, the last two in figure 9. 
The most common test, to measure the Young's modulus E  in the elastic phase is 
the one-dimensional compression test. This compression test can also give the 
Poisson's ratio ν , if the horizontal stresses are known. 
With the confined biaxial test, the strains are prescribed, so volumic 
deformations are easily measured. If shear bands occur then the stresses can 
become not homogeneous, especially for cohesive materials. Therefore this test 
will only be used for non-cohesive materials. 
The unconfined biaxial test is suitable to determine both the Young's modulus E  
and the strength parameters c'  and φ ' . The lateral pressure remains constant 
during loading. Because of the rubber membranes (wall number 2 and 4), shear 
bands can occur. 
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Figure 8. 

 
The simple shear test seems to be, in theory, a simple test for measuring the shear 
modulus and the angle of internal friction in a direct way. In practice the results 
are not always found to be consistent and therefore this test is not so often used 
any more. Characteristic of this test is the rotation of the principal directions 
during shearing. 
In the oil and gas industry, the failure of boreholes is important. The cylinder test 
models this phenomenon. A thick-walled sandstone cylinder with a borehole in 
the middle will be radially compressed until it fails. 
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2.6. Motion versus equilibrium 
 
The main advantage of the motion model is that it can handle dynamic problems, 
although this is not necessary for this particular research. The main advantage of 
the equilibrium model is calculation speed. 
When this research was started in 1993, one of the most used motion models was 
New Trubal (NTB) from Itasca, developed by Cundall. This model had no stress 
controlled walls or membranes and also no circular walls, so the only 
characteristic test which could be used to compare Grain and NTB was the 
compression test. The final results of both models were found to be equal, 
although Grain was much faster. For each iteration step of Grain, 4000 iteration 
steps were necessary with NTB. Because NTB was not able to handle certain 
characteristic tests and needed too much calculation time, only Grain is used to 
do the rest of the numerical simulations in this report. 
 
Two years later (February 1995) a new version called Particle Flow Code (PFC) 
was released by Itasca. It had two major improvements: 
   1. PFC could use stress controlled walls, although in a complicated way. 
   2. The calculation speed was much improved. 
In figure 10 we see an identical unconfined biaxial test on 250 cohesive grains 
done by PFC (motion model) and Grain (equilibrium model). 
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Figure 10. Identical biaxial test on 250 cohesive grains by PFC and Grain 
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Because PFC is a motion model, the sample is oscillating between the two 
horizontal walls. This effect will be less marked during the elastic phase if more 
iterations are used. Although the models are based on different basic principles, 
the final results are quite similar. The only difference now is that PFC uses about 
fifty times more iteration steps than Grain. 
Sometimes the results of Grain and PFC are less identical and if a smaller time 
step is chosen (i.e. more iteration steps), the stress-strain behaviour during failure 
can become very unstable for the motion model as demonstrated in figure 11. 
These are not the only problems of this motion model. Waves propagate too 
slowly: Thus, the dynamic elasticity of an assembly of grains is about 50 percent 
lower than the static elasticity. 
Because of these problems, PFC is not used for doing verification. 
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Figure 11. Instability of PFC model 
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3. NON-COHESIVE GRANULAR MATERIALS 
 
 
3.1. Default parameters 
 
Several characteristic tests have been done to measure the influence of a number 
of specific micro parameters, such as relative density, lateral pressure or internal 
friction, on the macro behaviour of non-cohesive granular materials. Most of the 
tests are carried out on a structure of a thousand grains. The default micro 
parameters are chosen to be representative for sand of dense compaction, as 
presented in table 1. If confusion between micro and macro parameters can 
occur, then the micro parameters are marked with a " µ ". 
 

soil data grain size test parameters 
kn  - r  0.1 mm σ 3  1 bar 
Gµ  1000 MPa type A (B) ∆H

H
 4 0 10 5. × −  

ν µ  0.16  r
r
max

min

 4.00 ni  20 

f gg  0.60 H
W

 2.50  
(1.00) 

σ 1,max ( 6 3× σ ) 

f gw  0.00 (∞ )   σ 1,min ( 3 3× σ ) 
c'µ  0 kN/m ng  1000 

(4000) 
  

 
Table 1. Default micro parameters for sand 

 
The making of a compact sample from a large amount of free grains with low 
grain friction can cost more than a day's calculation time because the continuous 
making and breaking of the contacts, i.e. the updating of the matrix, leads 
continuously to new solutions. Once a sample is created, many tests can be done 
with this sample. These tests seldom take more than one hour.  
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3.1.1. Soil data 
 
The tests on sand are based on the non-linear Hertzian contacts and therefore the 
shear modulus Gµ  is used, instead of the linear spring constant kn . The value of 
this shear modulus is not free of controversy. According to the Handbook of 
Chemistry and Physics, it should be about Gµ ≈ ×34 109  Pa  for quartz. If this is 
filled out in Hertz's contact relation, the stiffness of the total grain structure is 
found to be too high. Because of this a lower value of Gµ ≈ ×1 109  Pa  had to be 
chosen, in order to give a more realistic stiffness behaviour. Three analytical 
explanations for this problem do not seem to agree with reality: 
   1. The shear modulus of the grain material cannot be about 30 times smaller, 

because real compression tests on sand grains and on glass pearls (also: 
Gµ ≈ ×34 109  Pa ) show identical macro stiffness behaviour. 

   2. Small ridges on the grain surface with a radius of r rridge grain=
1

2000
 will 

solve the problem analytically (equation 1.), but then the deformation n  of 
the ridge on the grain becomes even larger than the ridge size rridge  itself. 

   3. More complex spheres, for example ellipses, will give a higher strength but 
not a lower stiffness according to Rothenburg and Bathurst (1992). 

This means that the contact behaviour between two grains needs more attention. 
The Poisson's ratio of quartz is about ν µ ≈ 016. . The friction angle is mostly 
between φ µ ≈ °20  and φ µ ≈ °30 . The latter gives a friction between two grains of 
about f gg

II = ≈tan( ) .φ µ 0 60 . Before a test, the grain friction will be temporarily 
decreased to f gg

I = 0 0.  to obtain a high density. The friction between grain and 
wall, for all tests, is zero f gw = 0 , except for the simple shear test, where no 
shearing is allowed, so f gw = ∞ . 
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3.1.2. Grain size 
 
The average grain size is chosen to be r = 0.1 mm. In theory an infinite number 
of grain size distributions can be made, however for most sands the sieve curves 
show a straight line in a logarithmic graph. Those distributions are defined by the 

average grain size r  and the grain size ratio r
r
max

min

 as can be seen in appendix 4, 

Grain size distribution. The probability function of this "Type A" distribution is 
illustrated in figure 12. Also a second distribution "Type B" is used, which can 
be described by a linear function. The shape of the sample (i.e. the whole grain 

structure), for all tests, is rectangular H
W

= 2 50.  except for the simple shear test in 

which the sample is square: H
W

= 100. . All tests are carried out on a sample of a 

thousand grains, because this amount was more than sufficient to get identical 
test results for different samples created with identical micro parameters. Only 
for the simple shear test, 4000 grains were used, because during this test also the 
stresses in the centre of the sample are measured over about a thousand grains. 
 

Type A              Type B 
 

P ( r    r )=P ( r     r )

=f ( r    r ) =f ( r    r )

r
r

r r

rrmax

maxmin

min

1
-

r
r

r r maxmin

r
r

r r maxmin

=

1

<

r
r

r r maxmin

1

<

f( r )  = rrmax min-
rrmax min×3 3

33 × r
3

4

 
Figure 12. Probability function: grain size distribution type A and B 
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3.1.3. Test parameters 
 
The default lateral pressure was set at σ 3 0= =.1 MPa 1 bar . The total sample 

deformation of 4% is reached in a thousand load steps: ∆H
H

= × −4 0 10 5. . Twenty 

iterations per loading step were sufficient to iterate accurately enough to the 
equilibrium state. The cyclic loading of the compression test is between the 3 and 
6 bar. In all cases the depth of a sample is chosen to be equal to the average 
diameter of the grain ( D d r= = 2 ) in order to be able to calculate the stresses. 
 
 
3.2. Micro behaviour versus macro behaviour 
 
3.2.1. Relative Density 
 
When free grains are carefully compressed then a loose structure will be created 
with a maximum volume of pores and a minimum of contacts per grains. In this 
case, the relative density will be zero ( R D. .= 0 ). For two dimensions the 
minimum number of contacts needed for creating a stable structure is on average 
three per grain (for three dimensions this will be four).  
By temporarily decreasing of the friction f gg

I  between the grains, the sample 
will shear to a denser structure. After compaction the friction will be increased to 
a friction level f gg

II  which is necessary for the real test. In this way the relative 
density can be controlled. For a temporary friction of f gg

I = 0 the highest density 
will be found ( R D. .= 1). A maximum density can also be reached by sprinkling 
the grains one by one. A new grain will always create two new contacts for itself 
and one for both neighbours, so the maximum number of contacts per grain will 
be four (for three dimensions, this will be six). 

 
density: low high 
sample I 3.1 4.1 
sample II 3.0 3.9 
sample III 3.0 3.9 
sample IV 3.1 4.0 

 
Table 2. Number of contacts per grain 

 
Table 2 shows the influence of the density on the average number of contacts per 
grain for eight different samples, made by Grain. The results are as expected. For 
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a low density the number of contacts is: nc g/ .≈ 3 0  and for a high density 
nc g/ .≈ 4 0 . 
Figure 13 illustrates that the number of contacts per grain is not constant during a 
confined biaxial test. At failure this number becomes more or less constant 
(nc g/ .≈ 3 3) for all samples. 
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Figure 13. Biaxial test: influence of the density  
on the number of contacts per grain 

 
During loading the number of axial (vertical) contacts increase somewhat, but the 
number of lateral (horizontal) contacts decreases greatly. This can be seen in the 
radar plot in figure 14. The grain-wall contacts are neglected in this plot. Since 
the grain structure used, contains only 4000 grains, there would otherwise be too 
many contacts for which the contact angle is exactly 0, 90, 180 or 270 degrees. 
The decrease in lateral contacts is a sign of failure for granular materials. It 
suggests a failure of the structure by loosening and eventually loss of lateral 
contacts. It seems that granular materials fail because of tension failure. The loss 
of horizontal contacts starts to become clearer when: 

 σ
σ

1

3

2≈  (A.93) 

just as predicted in appendix 7, Biaxial test: analytical. This will not be the 
maximum strength, because the grains still have to roll over each other for a 
complete failure, which requires a higher loading stress. 
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Figure 14. Number of contacts per volume versus the contact angle 
during a biaxial test 
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The Mohr-Coulomb model gives a relation between the angle of internal friction 
and the strength of a non-cohesive materials: 

 ( )
( )

σ
σ

ϕ
ϕ

1

3

1
1

=
+
−

sin '
sin '

 (20) 

 in which: 
  σ 1 = major principal stress  
  σ 3 = minor principal stress  
The density, which is controlled by the friction during compaction f gg

I , has a 
major influence on the strength of these samples as can be seen in figure 15. 
Several conclusions can be drawn from these curves: 
   1. Relative density is an important parameter for strength and elasticity. 
   2. A higher density causes a higher angle of dilatancy. 
   3. During failure the samples with low density will hardly consolidate to 

higher compaction. 
Especially for high density samples the angle of dilatancy is quite large. Perhaps 
this is because in a two-dimensional model grains at failure have to roll 
completely over another grain while in the three-dimensional reality grains can 
pass partially sideways. 
 
Bishop (1954) suggests that the analytical solutions of the angle of internal 
friction by Caquot (1934) agree well with several air-dried non-cohesive granular 
materials. According to these solutions the angle of internal friction for a biaxial 
test depends only on the friction between the grains f gg : 

   A. Triaxial test, where σ σ σ2 3 1= < : ( )sin 'ϕ =
+

15
10 3

f
f

gg

gg

 (21) 

   B. Biaxial test, taking σ σ σ
2

1 3

2
=

− : ( )sin 'ϕ =
3
2

f gg  (22) 

   C. Biaxial test, normal plain strain: ( )tan 'ϕ π
=

2
f gg  (23) 

Unfortunately, the following three important facts are not considered in Caquot's 
solution: 
   1. Higher density gives higher strength. 
   2. Less circular shaped grains cause higher strength. 
   3. An infinite grain friction will not give infinite strength. 
This means that Caquot's solution can be called, at best, an incomplete solution. 
A complete analytical solution for the strength of a non-cohesive granular 
material will be hard to develop. 
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Figure 15. Biaxial test: influence of the density 
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3.2.2. Grain friction 
 
One of the most important micro parameters is the internal friction between the 
grains, f gg

II , after compaction. This parameter marks the transition between 
elastic and plastic deformation on micro level. 
In figure 17, two macro parameters are strongly influenced by an increase of the 
internal friction: 
   1. The strength of the whole structure increases. 
   2. The dilatancy ψ  increases as well. 
 
When the internal friction f gg

II  is zero, the grain structure will shear under every 
circumstance to the maximum relative density. In this way the structure will 
behave like a fluid and the volume will remain constant. This behaviour is very 
clear in the numerical simulations. 
 

     
 

 No rolling  Rolling without shear  Dilatancy and contact breaking 
 

Figure 16. Failure on micro scale 
 

By contrast, a structure with infinite grain friction can collapse only by the 
rolling of the grains. Triangle contact groups do not roll, but quadrangular and 
more angular contact groups are able to deform despite the infinite grain friction 
according figure 16. These rolling groups will act like rolling wedges, causing an 
increase in pore volume (dilatancy) and a decrease in the number of (especially 
lateral) contacts in the shear bands. This dilatancy will be largest for an infinite 
grain friction, because all wedges will be mobilised, and not one will fail because 
of shearing. 
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Figure 17. Biaxial test: influence of the internal friction 



39 

Also another conclusion can be drawn from these results. Even if the grain 
friction is infinite, the strength will not be infinite. This means that for structures 
with a low grain friction the strength is mainly determined by this friction, but for 
a high friction the strength is mainly defined by the rolling of the grains. Other 
tests show that if the rotation of the grains is fixed in combination with an infinite 
grain friction, then an infinite strength is found, which is in agreement with the 
previous theory. 
It can be concluded that non-cohesive granular materials fail because of both 
shearing and rolling, but only the rolling of the grains causes dilatancy and 
contact breaking. 
 
 
3.2.3. Poisson's ratio 
 
The Poisson's ratio of quartz is not the main micro parameter to influence the 
macro Poisson's ratio of the total granular structure. The rotation of the grains is 
much more important. Figure 18 shows that a fixed rotation of the grains strongly 
influences the compression test and the biaxial test. 
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Figure 18. Influence of the rotation of grains 
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In reality the rotation of the grains cannot be hindered, but in Grain this is done 
to show the effect of the rolling of the grains. Without the rotation of these grains 
there will be no lateral displacement. In this case, there is no failure in a biaxial 
test and during a one-dimensional compression test the lateral stress will not 
increase if the rotation of the grains is fixed. 
According to the biaxial tests seen in figure 19, the Poisson's ratio has hardly any 
effect on the results. By an increasing Poisson's ratio, only two parameters are 
somewhat changed: 
   1. The Young's modulus E  increases slightly. 
   2. The angle of internal friction φ '  and therefore the strength of the sample 

also increases slightly. 
The macro Poisson's ratio or the lateral strain coefficient is not influenced by the 
micro Poisson's ratio. This macro behaviour is influenced by the rotation of the 
grains. 
 
 
3.2.4. Lateral pressure 
 
Four tests were done with different lateral pressures on an identical sample. The 
results are shown in figure 20. There are only two macro parameters which are 
influenced by an increase of the lateral pressure: 
  1. The stiffness E  increases. 
  2. The dilatancy ψ  decreases fractionally. 
The angle of internal friction φ '  and the lateral strain coefficient at the beginning 
of the test which can also be called the Poisson's ratio ν begin , are more or less 
constant. 
 

σ 3  φ '  ν begin  ψ  
1 bar 30.2º 0.17 14.2º 
2 bar 31.6º 0.12 11.7º 
3 bar 31.4º 0.12 10.4º 
4 bar 31.6º 0.12   9.8º 

 
Table 3. Biaxial test on sand: influence of the lateral pressure 

 
Despite the non-linear contact behaviour, the results can be described quite well 
with the advanced Mohr-Coulomb model which is discussed in appendix 5, Two-
dimensional continuum model. 



41 

 
 
 
 
 
 
 

1

2

3

4

0 0.01 0.02 0.03 0.04

0.32 =
0.16
0.00

σ 3

σ 1

ε 1

µν

 
 

-0.01

0

0.01

0.02

0.03

0.04

0 0.01 0.02 0.03 0.04

ε tot

ε 1

 
 

Figure 19. Biaxial test: influence of the Poisson's ratio 
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Figure 20. Biaxial test: influence of the lateral pressure 
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The Young's modulus is not constant but depends on the stress. This stiffness 
behaviour of non-cohesive materials has been found in appendix 7, Biaxial test: 
analytical: 

 E Eref
ref

50
0=









σ

σ

β

 (A.89) 
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This theoretical solution is in good agreement with the numerical results of the 
Young's modulus found by Grain, listed in table 4. 
 

σ 3  E50 (Grain)  E50 (theory)  
1 bar 48.2 MPa 50.8 MPa 
2 bar 65.2 MPa 64.0 MPa 
3 bar 76.4 MPa 73.3 MPa 
4 bar 84.1 MPa 80.7 MPa 

 
Table 4. Young's modulus versus lateral pressure 
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3.2.5. Average grain size and shear modulus 
 
There is a direct relation between the average grain size, the stress, the shear 
modulus (non-cohesive materials) or spring constant and micro cohesion 
(cohesive materials). In the computer model Grain the grain sizes can be scaled 
by a factor n  without changing the contact forces, but also the forces can be 
scaled without changing the grain sizes and without any displacements. Table 5 
shows the scale factors of the other parameters. 
 

scaling: r  F  
r  n  - 
F  - n  
σ  1 2n  n  
Gµ  1 2n  n  

k dn  1 2n  n  
c'µ  1 2n  n  

 
Table 5. Scale factors for grain or force sizing  

 
This means that the average grain size has absolutely no influence on the macro 
behaviour of the granular material. It will only influence the forces on micro 
scale. Hence, the results of non-cohesive tests for other shear moduli can be 
found by changing the stresses instead. 
 
 
3.2.6. Grain size distribution 
 
Four samples were made with different grain size distributions, but with an 
identical average grain size. Figure 21 demonstrates that the distribution has 
hardly any influence on the behaviour of the sample during a biaxial test. Only 
the strength increases somewhat with a wider grading of the grain sizes. 
Two conclusions can be drawn from these curves: 
   1. The grain size distribution is not very important. 
   2. A thousand grains are sufficient to make good reproducible samples, 

especially for the elastic zone. 
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Figure 21. Biaxial test: influence of the grain size distribution 
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3.3. Continuum modelling 
 
 
3.3.1. Compression test 
 
Since the biaxial test is covered in detail, it is interesting to see if other 
characteristic tests can be described with the same macro parameters. If the 
numerical vertical stress σ 1  in a compression test is compared with the vertical 
stress σ 1,theory  (dashed line in figure 22) calculated with a Young's modulus 
depending on the stress: 

 E Eref
ref

50
0=









σ

σ

β

 (A.89) 

 in which: 

  

β

σ σ σ σ
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=

=
+

≈

= =
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then it is clear that the theory describes the numerical results quite well. 
Sometimes the Young's modulus is written as a function of vertical stress like 
this: 

 E Eref
v

ref
50

3
3
4

=








σ

σ

β

 (24) 

because the vertical stresses are normally better known than the average pressure. 
 

compression test biaxial test 
Eref  44.4 MPa 44.4 MPa Eref  
β   0.333 0.333 β  

( )σ σ3 1 begin
 0.18 0.17 ( )ε ε3 1 begin

 

( )σ σ3 1 end
 0.35 0.33 ( )ε ε3 1 end

 

 
Table 6. Compression test versus biaxial test 
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For a two-dimensional continuum model the Poisson's ratio is equal to the lateral 
stress coefficient of the compression test and the lateral strain coefficient of the 
biaxial test: 

 ν σ
σ

ε
ε

=






 =







3

1

3

1compression biaxial

 (A.19+22) 

Unfortunately, these coefficients at the beginning of the test are not identical to 
those at the end of a test, so a constant Poisson's ratio cannot be defined. 
Nevertheless, the lateral strain coefficient found at the beginning as well as at the 
end of the compression test are almost equal to the lateral stress coefficients of 
the biaxial test. 

During compression, the stress ratio σ
σ

1

3

 increases constantly, but it can never 

exceed a certain level according the failure criterion: 
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sin( ')

. ' .    with      (25) 

Therefore the lateral stress coefficient in the end is limited by the failure criterion 
as well: 

 .σ
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end end

 (26) 

This causes the bending curve of the lateral stress coefficient in figure 22, as it 
approaches this asymptotic limit. 
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Figure 22. Compression test: Young's modulus and  
Lateral stress coefficient 
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The relative density of the structure in the compression test of figure 23, is very 
important. Low density samples will react less stiffly and will have continuously 
irreversible deformation during cyclic loading, which finally leads to a higher 
density. 
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Figure 23. Compression test: influence of the density 
 
What is very interesting, is the lateral stress coefficient in figure 24. For the 
virgin load path, as well as for the unload path and the reload path, this 
coefficient starts low and ends high, which means that there is a jump in between 
these paths. Because of this, the unload paths are different from the reload paths. 
Therefore a very small hysteresis loop can be seen in the curve of the lateral 
stress σ 3 . The surface of this loop represents the energy loss during the plastic 
deformation.  
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Figure 24. Compression test: Lateral stress coefficient 
 during cyclic loading 
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3.3.2. Confined versus unconfined test 
 
The unconfined biaxial test is in theory a different test than the confined biaxial 
test, because the stresses and not the strains are prescribed. Therefore the 
macroscopic failure mechanisms of both tests can be different, for example, shear 
bands can influence the stresses in a confined biaxial test. But as figure 25 
shows, the curves of the stress behaviour for the confined biaxial test and the 
unconfined test are almost equal. For an unconfined biaxial test, it is more 
complicated to measure the volumic deformations, which makes the confined 
biaxial test more useful for non-cohesive granular materials. 
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Figure 25. Confined biaxial test and unconfined biaxial test are equal 
 
 
3.3.3. Shear band development 
 
Two questions are often heard in discussions about shear bands. The first is about 
the thickness and the second about the direction of the shear band.  
Mülhaus and Vardoulakis (1987) have measured the width of a shear band with 
X-ray photographs of  a fine sand and a medium sand. They have found values of 
respectively 18.5 and 13 times the mean particle diameter. Figure 26 shows a 
numerical simulation of an unconfined biaxial test. The displacements of all four 
thousand particles are drawn. Here a shear band is found of about 5 times the 
average grain diameter. Maybe it is only that thin because of the small ratio 
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between the diameters of the smallest and largest grains or maybe this is caused 
by the circle shaped grains instead of a more complex sphere. 
A second point of interest is the direction of the shear band. Figure 26 shows the 
grain displacements of two different unconfined biaxial tests from 5% to 10% 
deformation. The sample on the right had no wall friction, so the weakest areas 
were at the top and the bottom, only there the grains bend away at failure. The 
sample on the left had its weakest point in the middle because of the 
reinforcement caused by the shear stresses at the walls. A clear shear band is 
formed in the centre with a direction of θ = °± °52 2 . This is the same as 
suggested by the advanced Mohr-Coulomb theory, namely: 

 θ ψ
= °+ = °+

°
≈ °45

2
45 14 2

2
52.  (27) 

 

 
With wall friction         Without wall friction 
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Figure 26. Unconfined biaxial test: displacements of the grains 
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3.3.4. Simple shear test 
 
In Cambridge a shear apparatus was developed by Roscoe (1970) in which (as 
well as possible) a pure angle deformation was imposed. This test, which is 
called the simple shear test is described in appendix 5, Two-dimensional 
continuum model. Three different failure mechanisms have been suggested for 
this test: 
   1. Horizontal shearing, by analogy with the shear law of Coulomb. 
   2. Vertical shearing, according to De Josselin de Jong (1992). 
   3. Lateral contact failure, according to the author. 
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Figure 27. Failure mechanisms 
 
If failure occurs by exceeding the maximum shear stress in a certain direction, 
which is suggested by the Coulomb criterion, then only the stress and 
deformation fields of the horizontal and vertical failure mechanisms can be both 
static and kinematic admitted. In that case, the horizontal stress during failure has 
to be, for the horizontal mechanism: 

 ( )
( )

σ
φ
φ

σxx yy=
+
−

1
1

2

2

sin '
sin '

 (28) 
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and for the vertical mechanism: 

 ( )
( )

σ
φ
φ

σxx yy=
−
+

1
1

2

2

sin '
sin '

 (29) 

When the horizontal stress does not meet these particular values in any (artificial) 
way, no failure can occur according to this Coulomb criterion. This cannot be the 
case. 
If failure takes place by the breaking of the contacts in the direction of the minor 
principal stress, because tension forces can not be absorbed on micro level, then 
only lateral contact failure can occur. This also means, that the shear direction 
can not be obtained from the Coulomb line, because failure does not depend on 
micro shear failure but on micro lateral contact breaking. This statement can 
easily be verified with Grain, by comparing the average rotation of the grains γ µ  
with the rotation of the vertical walls γ . The ratio of these rotations during 
failure is for the horizontal, vertical and lateral mechanism respectively equal to: 

 
γ
γ

µ = 0 0 10 0 5. . .  or    or   (30) 

The dashed line in figure 29 shows that the lateral failure mechanism is the only 

correct one (
γ
γ

µ ≈ 0 5. ). During failure, up to 25% of the contacts are broken, 

which fits with this mechanism as well. Also the equal double sliding of the 
Mohr-Coulomb model will explain the 50% grain rotation, as suggested in 
appendix 5, Two-dimensional continuum model, but this model cannot explain 
the loss of contacts. 
For the correct performance of the simple shear test one has to consider two 
boundary conditions: 
   1. Because of dilatancy during the plastic phase the horizontal and vertical 

strains will not remain at zero. A fixed height or width of the shear box will 
cause increasing wall forces. Therefore the walls have to be stress 
controlled. 

   2. A constant shear strain (ε ε γxy yx= =
1
2

) has to be imposed on the complete 

wall. This means that the grains are not allowed to shear over the wall, so 
the friction between grain and wall has to be infinite ( f gw = ∞ ), but even 
then the grains can roll away, which must be prevented by glueing the 
grains to the wall. 

 
The curves in figure 28 show the effect of neglecting this last boundary condition 
( f gw = 0 60. ). Because of shearing between grain and wall, moments are 
developed at the walls (eccentricity of e H≈ ×01. ), which cause a non-
homogeneous stress field in the simple shear apparatus. This was made clear by 
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Allersma (1987). In his simple shear tests the normal stress distribution was far 
from constant. The shear stress inside a sample, however, appeared to be not so 
much influenced by the incorrect boundary conditions. Therefore much better 
results are obtained if the stress is measured in the interior of a sample. 
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Figure 28. Simple shear test: influence of incorrect boundary conditions 
 
The following table shows the results of the simple shear tests with constant 
boundary conditions, presented in figures 29 and 30. The results obtained can be 
predicted quite accurately with the results of the previous biaxial tests, although 
the shear modulus is somewhat too small. 
 

Test: Gref  φ '  ψ  
Biaxial 19.5 MPa 30.2°  14.2°  

Simple shear I 18.1 MPa 28.6°  16.9°  
Simple shear II 16.7 MPa 32.4°  14.5°  

 
Table 7. Simple shear versus biaxial test 
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Figure 29. Simple shear test I: σ σxx yy= = 1 bar  
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Figure 30. Simple shear test II: σ σxx yy= =1 2 bar ,   bar  
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For the second simple shear test, one phenomenon is more difficult to explain 
with the continuum theory. The maximum shear stress of the horizontal wall is 
higher than the maximum shear stress of the vertical wall. According to the 
continuum theory these should be equal, although the maximum stress of the 
horizontal wall is expected to be larger than the vertical wall because of the 
larger lateral pressure. 
For both simple shear tests it is found that, during the elastic phase and the 
plastic phase, the major principal direction is similar for the (inside) stresses and 
the total strains ( β βσ ε= ). This coaxial behaviour is presented in the figures 31 
and 32. In order to calculate the principal direction of the strains, the strains ε xx ,0  
and ε xx ,0  at the beginning of the test have to be known. These were calculated 
with equation (A.9). The theoretical major principal direction during failure, 
based on the wall stresses, is solved analytically in appendix 5, Two-dimensional 
continuum model: 

 
( )
( )cos( )

sin( ')
2 1β

φ
σ σ

σ σ
=

− −

+
yy xx

yy xx

 (A.14) 

 So: 
  β = °45  for simple shear I 
  β = °64  for simple shear II 
 
With this coaxial relation between stress and strain for the elastic deformation 
( β βσ ε= ) and the plastic deformation ( β βσ ε= ), also the results of a true simple 
shear test can be predicted. In a true simple shear test the horizontal strain 
(ε xx = 0) is kept constant, instead of the horizontal stress (σ xx = 0 ). In figure 33 
the results of a true simple shear test with Grain are compared with the 
continuum theory, described in appendix 5, Two-dimensional continuum model, 
using the parameters of simple shear test I. The almost perfect prediction with 
this bi-linear continuum model suggests that during failure the rolling of the 
grains will be on average in the direction of the minor principal stress. In other 
words, granular materials behave coaxial because the grains escape in the 
direction of the lowest resistance. 
The double sliding model of De Josselin de Jong (1971), which is also mentioned 
in appendix 5, shows that granular materials (can) behave non-coaxial if failure 
occurs because of shear failure. The fact that non-coaxiality cannot be found 
agrees with the conclusion earlier made, that granular materials will fail not 
because of shear failure but because of tension failure. 
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Figure 31.  Simple shear test I: principal directions 
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Figure 32.  Simple shear test II: principal directions 



61 

 
 
 

 
 

 
 

0

1

2

3

0 0.005 0.01 0.015 0.02
γ

τ σ xx

τ inside

and

σ xx

[bar]

 
 

-0.001

0

0.001

0.002

0.003

0 0.005 0.01 0.015 0.02

Theory

γ

ε tot-

Grain

 
Figure 33. True simple shear test: Theory versus Grain 
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4. COHESIVE GRANULAR MATERIALS 
 
 
4.1. Default parameters 
 
In order to gain some insight into the failure mechanism and the moment of 
failure of cohesive granular materials, several unconfined biaxial tests were 
modelled with Grain. The default micro parameters are chosen as representative 
for sandstone of dense compaction, as listed in the following table: 
 

soil data grain size test parameters 
kn  1 MN/m r  0.1 mm σ 3  10 bar 
Gµ  - type A  and B ∆H

H
 4 0 10 5. × −  

ν µ  0.16  r
r
max

min

 4.00 ni  20 

f gg  0.60 H
W

 2.50  
(3.00) 

- - 

f gw  0.00   - - 
c'µ  100 MPa ng  1000 

(4000) 
  

 
Table 8. Default micro parameters for sandstone 

 
 
4.1.1. Soil data 
 
The tests on sandstone are based on the linear contact equations, so the linear 
spring constant kn  is used for all contacts. In practice this spring constant is very 
difficult to measure. Therefore an arbitrary value is chosen. The Poisson's ratio of 
quartz is about ν µ ≈ 016. . The friction angle is about φ µ ≈ °30 , so the friction 
coefficient between two grains will be f gg

II = ≈tan( ) .φ µ 0 60 . Before cementation, 
this friction coefficient will be temporarily decreased to zero f gg

I = 0 0.  to obtain a 
sample of high density. The friction coefficient between grain and wall, for all 
tests, is zero f gw = 0 . The cohesion c'µ  is unknown and is chosen to be 100 MPa 
in order to give the sample more or less the same strength as Castlegate 
sandstone. 
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4.1.2. Grain size 
 
Both the exponential (Type A) and the linear (Type B) grain size distributions of 
the previous chapter (about non-cohesive granular materials), were used for the 
modelling of cohesive granular materials. The shape of the sample for all tests 

was rectangular, H
W

= 2 50. , except for the thick-walled cylinder test in which the 

ratio between the radii of the inner surface and outer surface r
r

1

3

3 00= . . Most of 

the tests were done on a sample of a thousand grains, because this number was 
more than sufficient to get identical test results for different samples created with 
identical micro parameters. A few tests were carried out on four thousand or ten 
thousand grains. 
 
 
4.1.3. Test parameters 
 
The default lateral pressure was chosen to be σ 3 = =10 bar 1 MPa . The total 
deformation of 2% was reached in half an hour on a normal personal computer 

with 500 load steps: ∆H
H

= × −4 0 10 5. . Twenty iterations per loading step were 

sufficient, most of the time, to iterate accurately enough to the equilibrium state. 
In all cases, the depth of the sample was chosen to be equal to the average 
diameter of the grain ( D d r= = 2 ) in order to calculate the stresses. 
 
 
4.2. Micro behaviour versus macro behaviour 
 
4.2.1. Number of grains and shape influence 
 
Several biaxial tests were done to find out how many grains are necessary to 
describe a representative part of a sandstone sample with homogeneous boundary 
conditions.  These are registered in table 9. Figure 34 shows that the stress-strain 
behaviour of sample A with 250 grains differs from the samples B, I and C with 
more grains, so at least 500 grains are necessary to describe a homogeneous 
loaded sample. The stiffness and the strength of the samples with at least 500 
grains are all quite similar. To minimise error, all biaxial tests in this report were 
carried out on at least a thousand grains. The percentage of broken contacts is 
reflected by the dashed line in the same figure. 
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A stout sample shows in figure 35 identical stress-strain behaviour in comparison 
to the three different slender samples I, II and III.  This means that the shape of a 
sample does not influence the failure behaviour. 
 

Sample ng  H W  
A 250 2.5 
B 500 2.5 
I 1000 2.5 
II 1000 2.5 
III 1000 2.5 

stout 1000 0.4 
C 4000 2.5 

 
Table 9. Different samples 

 
The results of the compression tests, confined biaxial tests and unconfined 
biaxial tests can be described with the Mohr-Coulomb theory and these tests all 
give comparable results for the Young's modules and the Poisson's ratio. These 
parameters are listed in the table below. At the beginning of a test, the measured 
values are slightly lower than just before failure, because new (non-cohesive) 
contacts are formed during the compression of a sample. These contacts cause an 
increase in the total stiffness. The elastic parameters listed in the table below are 
measured both for type A and type B grain size distributions.  
 

Test: E  [GPa] ν  
Compression 3.9 - 4.2 0.11 - 0.13 
Confined Biaxial 3.8 - 4.2 0.04 - 0.19 
Unconfined Biaxial 3.9 - 4.2 - 

 
Table 10. Young's modules and Poisson's ratio 
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Figure 34. Biaxial test: different number of grains 
 

 

0

5

10

15

20

25

30

35

0 0.005 0.01 0.015 0.02

σ 3

σ 1

ε 1

σ 3

σ 1

n c,broken

n c,brokenand [%]

I
stout
III
II

 
 

Figure 35. Biaxial test: different shapes 
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4.2.2. Grain size distribution 
 
In reality, it is complicated to make two identical sandstone samples with only 
different grain size distributions. This is modelled with Grain to study the 
influence of the distribution. Figure 36 shows the Mohr circles at failure for the 
two different distribution types.  
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Figure 36. Mohr-Coulomb lines 
 

Distribution type A contains more small grains than large grains, while 
distribution type B is linear.  For both grain size distributions the moment of 
failure of the samples can be accurately described by the Mohr-Coulomb 
parameters c'  and φ ' . The different distributions cause only a negligible 
difference in the strength of the samples. This means that both the average force 
and the deviation of the forces do not depend on the grain size distribution, 
because the formation of micro cracks depends on this average contact force and 
its deviation . 
 

Type  c'  φ '  
A 9.3 MPa 22° 
B 9.6 MPa 22° 

 
Table 11. Cohesion and angle of internal friction 
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4.2.3. Contact forces 
 
In the appendix 7, Biaxial test: analytical, it can be seen that the average normal 
and shear forces for biaxial tests are given by the equations A.73: 

  
F F c s

F F cs
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II

n
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 in which: 

  F V
n dn

I
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= 2 3σ  

 or: 

  F d
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c v
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2

3σ

/

 

These analytical solutions for the average normal and shear forces (dashed lines 
in the figure below) in relation to the angle between the contact and the 
horizontal axis, are in good agreement with the average forces found by 
simulating a sandstone sample of 1000 grains at 10 MPa loading pressure with 
Grain. 
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Figure 37. Biaxial test: average normal and shear forces 
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The radar plot of these forces in figure 38 shows that the normal forces measured 
are almost identical to the analytical solution, however the average normal force 
of the vertical contacts seems to be somewhat too large. This is because there are 
relatively more vertical contacts due to the horizontal walls. The shape of the 
curve of the shear forces is correct, but the forces are in general 20% too low. 
This is probably because of the high correlation ( r = 0 44. ) between the shear 
forces and the square of the contact length, whereas the analytical solution 
assumes no correlation. 
The average normal force will always be positive i.e. pressure forces. Still, it is 
found that failure always occurs due to local tension failure. This means that not 
only the average value of the normal force is important, but also the deviation of 
the forces. So, to determine the moment of failure, the influence of the deviation 
of the forces should also be determined.  
The normal forces are, especially for the lateral (horizontal) contacts, very small. 
During loading the deviation of the forces increases, while the average normal 
force of the horizontal contacts remains constant. So the lateral contacts are 
expected to collapse first due to tension failure. This means that mainly axial 
(vertical) micro cracks are expected, since the cracks are perpendicular to the 
broken contacts. 
 

Fs

Fn

 
 

Figure 38. Biaxial test: average normal and shear forces 
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4.2.4. Failure mechanism 
 
One of the most interesting phenomena of the failure of a sandstone sample is the 
nucleation and growth of a crack. Therefore this is made visible with Grain. 
Figure 39 shows the failure mechanism of a cohesive granular material during a 
biaxial test in detail. If cemented contacts are broken, then a thick line 
perpendicular to the contact is drawn. The horizontal walls are also represented 
by thick lines, the rubber vertical membranes are not shown. 
 

     
 

Phase A       Phase B        Phase C  
 

Figure 39. Failure mechanism of a cohesive granular material 
 
The failure mechanism of this cohesive granular material can be divided into 
three phases: 

A. During loading more and more contact forces become negative as predicted 
in the previous paragraph. The contacts do not break due to shear failure as 
Coulomb suggests but due to tension failure, because the deviation of the 
forces increases during loading, while the average force of the horizontal 
contacts remains constant. 

B. A crack weakens the surrounding area and increases the probability of a 
new crack in this area (second order effect). In this way a failure surface is 
formed. Although this surface is diagonal, the micro cracks are mainly 
vertical, which means that mainly horizontal contacts are broken. This 
phenomenon was also found for concrete and mortar by Stroeven (1973). 
Failure was caused for these materials by axial tensile (cleavage) cracks. 

C. Grains with broken contacts act as rollers between the lower and upper part 
of the sandstone. The resistant vertical force becomes less and less. 
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During the failure of a sample, several failure surfaces can also be formed as 
presented in figure 40. 
 

 
 

Figure 40. Micro cracks during a biaxial test 
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Figure 41 shows the displacements of the 2000 grains of a sandstone structure 
after failure. A second failure surface can also be seen, as in most cases, one 
surface is dominant. 
 

 
 

Figure 41. Displacements during a biaxial test on 2000 grains 
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Figure 42 presents the rotations of the grains in a sample of 4000 grains. Before 
the test all the radial lines on the grains were pointing upwards. These lines 
indicate that only the broken grains within the shear band(s) are rolling.  

 

 
 

Figure 42. Failure surface during a biaxial test on 4000 grains 
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4.3. Continuum modelling 
 
The appendix 7, Biaxial test: analytical, shows that both the stiffness behaviour 
and the strength behaviour of cohesive granular materials can be described with 
the Mohr-Coulomb model. With the analytical solution of the average forces, the 
stiffness behaviour of rock samples has been solved. The Young's modulus and 
the Poisson's ratio of cohesive granular materials are given by: 
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This yields for the default situation: 

 

( )
n

E

c v/ .
.

. .
.

.

.

.
.

=
× ×

×
=

= ×
×

×
+

=

= −
−
+

= −

−

−

−

2 10 1908
8 48 10

180

180 10
2 10

137
137 1

5 20

137 1
137 1

016

4 3

9

6

4

         

 GPa 

                       ν

 (31) 

The elastic behaviour of the numerical sandstone simulations registered in table 
9. can be described by: 

 
E =

=
4 13
01
.
.

 GPa    
ν

 (32) 

The analytical values are based on the assumption that the grains do not rotate, 
which is only the case on average. Therefore, the prediction for the Young's 
modulus is 26% too high, and the Poisson's ratio 26 % too low. If the rotations 
are fixed in Grain, then indeed a negative Poisson's ratio of ν = −0 07.  is found. 
This means that also the rotations of the grains influence the elastic behaviour of 
the sample in an important way. For some sands with a high density, a negative 
Poisson's ratio is found, which is officially possible. This means that in these 
particular cases the grains will hardly rotate.  
Using the numerically measured Poisson's ratio a more accurate Young's 
modulus is found: 

 E n k
dc v
n

1 2−
=

ν /  (A.85) 

So, 

 ( )E = − × ×
× ×

=

−1 01 180 10
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 (33) 
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The strength of a cohesive material depends on the contact strength and the 

normal force distribution. This distribution at isotropic compression ( σ
σ

1

3

1= ) is 

far different from the distribution during loading ( σ
σ

1

3

1> ). At a certain moment, 

even a small number of forces becomes negative (tension). These are the forces 
causing the final failure. These tension forces only occur in the lateral contacts 
( α < °10 ). For a certain axial and lateral stress level the amount of broken 
contacts becomes too large to bear the axial load. This is the beginning of failure. 
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Figure 43. Biaxial test: normal force distribution 
 
Appendix 7, Biaxial test: analytical, shows that the failure behaviour of the 
cohesive granular materials can also be described with Mohr-Coulomb. The 
angle of internal friction is constant and does not even depend on the contact 
force distribution. The cohesion depends only on the strength of a single contact 
and on the number of contacts per micro volume: 
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So, in this case: 

  
φ ' .

' . .

= °

=
×

=

19 5
100 180

16 2
8 0c  MPa  MPa

 

The deviation with the measured angle of internal friction (φ '= °22 ) and 
cohesion (c' .= 9 6 MPa ) of table 11 is not too large. So, an analytical relation 
between the micro parameters and the macro parameters is found for cohesive 
granular materials. 
To summarise, it is analytically demonstrated that both the elastic behaviour and 
the moment of failure can be described with a Mohr-Coulomb model, though 
failure does not occur due to shear failure as Coulomb suggests, but due to the 
tension failure of the lateral contacts. So, the "angle of internal friction" can 
better be called "angle of lateral tension". 
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4.4. Cylinder test 
 
 
4.4.1. Grain versus reality 
 
During radial compression tests on real thick-walled cylinders four phenomena 
were found which could not be explained by the Mohr-Coulomb continuum 
model described in appendix 5: 
   1. Failure occurs on micro level due to tension cracks. 
   2. These cracks are not diagonal to but parallel to the borehole surface. 
   3. These cracks cause two diametrically opposite breakouts. 
   4. Functional failure starts at a higher radial pressure than predicted. 
One of the goals of the present research is to find the reasons for these anomalies. 
Therefore both the cylinder test and the biaxial test were simulated with Grain. 
All cylinder tests were carried out on exactly the same material as the former 
biaxial tests. The only difference with the previous samples is the number of 
grains which in this case were, one, four or ten thousand. 
Just like real cylinder tests, the phenomena mentioned also occurred in the 
cylinder tests with Grain. The following figure shows the micro cracks in a thick-
walled cylinder sample of a thousand cohesive grains made by Grain. 
 

 
 

Figure 44. Tension cracks in a cylinder of 1000 grains 
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After failure many micro cracks (thick lines) parallel to the inner surface are 
found. These are all caused by tension failure. 
The first two phenomena, the tension cracks and their direction, are already 
explained in the previous chapter. Local tension forces can be created only by 
pressure forces and, especially for the contacts in the direction of the minor 
principal stress, the average normal force is relatively very low. Therefore mainly 
micro cracks in the direction of the major principal stress are expected, which 
means parallel tension cracks. In this chapter, the reason why thick-walled 
cylinders fail at a higher compressive stress than predicted will be explained. 
 
 
4.4.2. Radial pressure at failure 
 
The stresses in the sandstone sample during the cylinder test depend on the axial 
and radial pressures. This has been solved analytically in the appendix 8, 
Cylinder test: analytical, for a continuum model with a constant Young's 
modulus. The axial, tangential and radial stresses are found to be: 
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With these equations the radial pressure at failure can be calculated using the 
failure criterion of Mohr-Coulomb: 
 ( ) ( )sin ' 'cos 'φ σ σ φ σ σ1 3 1 32+ + = −c  (A.13) 
The strength parameters c' .= 9 3 MPa  and φ '= °22  (Type B grain size 
distribution) were already determined with biaxial tests. For the cylinder test, the 
lateral stress at the inner surface is zero (σ 3 0= ), so the tangential stress at 
failure will be: 

 σ σ φ
φtt r a

c
,

'cos '
sin '

.= = =
−

=1

2
1

27 6 MPa  (34) 

The ratio between the radii of the inner surface and the outer surface remains 
constant: 

 a
b

=
1
3

 (35) 

The radial pressure at failure depends both on this ratio and the tangential stress 
at the inner surface: 
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So, the radial pressure at failure of this cylinder (Type B) is expected to be: 
  Pr = 12 3.  MPa  
However, the cylinder test on four thousand grains with Grain seems to fail at a 
pressure of about 29.7 MPa, which is much higher than the predicted value. 
This happened also with a sample of ten thousand grains (Type A) where 
Pbreakout = 30 2.  MPa  (figure 45) instead of 12.7 MPa. 
There are two reasons for this large deviation. Firstly, the influence of edge 
effects is neglected. Secondly, there is a definition difference between local 
failure and functional failure.  
Local failure is the moment the strength of a material in a certain area starts to 
reduce. Because the pressure-strain relation of a cylinder test has no maximum, 
the moment when the first cluster of grains starts to break out of the inner surface 
wall, is normally assumed to mark the radial pressure at failure. This is the 
moment the borehole looses its function. This functional failure happens at a 
much higher pressure because of the large rest capacity of a thick-walled cylinder 
test. 
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Figure 45. Cylinder test on 10,000 grains: 
 Radial pressure and percentage of broken contacts 
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But, in fact, this is not the real moment of failure of a cylinder. In the former 
biaxial tests failure occurred at a percentage of broken contacts of about 
nc broken, = 1% . In a cylinder, cracks occur only near the borehole in an area of 
about 10% of the total cylinder surface. The cylinder has failed when 1% of the 
contacts in this particular area is broken. From this point Pfailure  on, more and 
more contacts start to break and the cylinder stiffness and the gradient of the 
curve start to decrease. Therefore this point has to be the radial pressure at 
failure. 
If a borehole is loaded with a radial pressure which is in between this local 
failure pressure and the functional failure pressure, no breakouts can be seen, but 
much lasting damage is done to the borehole. 
 
 
4.4.3. Surface stresses 
 
Figure 46 shows the tangential and radial stresses in a cylinder of four thousand 
grains at a radial pressure of Pr = 14 2.  MPa . The lines with the markers represent 
the stresses measured by Grain, with the sum of the contact forces as mentioned 
in the appendix 6, Micro-macro relation: 

 ( )σ ij i k j k
k

n

V
d F

c

=
=

∑1
1

, ,  (A.41) 

Unfortunately, local strains cannot be measured in this way, by summation of the 
contact displacements over the contacts, according to the same appendix. 
The dotted line in figure 46 is the analytical solution for a sample of constant 
elasticity. The dashed line shows the numerical solution based on the local (not 
constant) elasticities. 
If the stresses of this analytical solution for a sample of constant elasticity are 
compared with the results of Grain then the analytical solution seems to predict 
the stresses quite accurately, except for the fall in the tangential stress at the 
surfaces. This fall can also be seen in the numerical simulation work of Thallak 
(1992). 
This fall occurs because there are less contacts at the surface of a sandstone 
sample than average. Only at a distance of two times the average grain radius can 
this edge effect be considered negligible. In theory the number of contacts per 
volume nc v/  is zero at the surface, 50% of the average value at a distance of one 
grain radius, and at a distance of two radii (one diameter), the amount of contacts 
is almost average. Figure 47 shows this in a cross-section of the cylinder of 4,000 
grains, with a gauge of 51 times the average grain radius. 
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Figure 46. Tangential and radial stresses in the cylinder 
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Figure 47. Number of contacts per volume 
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In appendix 7, Biaxial test: analytical, a linear relation between the Young's 
modulus and this number of contacts per volume is found: 

 E n k
dc v

n=
+/

κ
κ

ν

ν 1
 (A.83) 

This relation has been used to calculate the local Young's moduli. With a 
numerical finite element model, the stresses in the cylinder can be calculated 
using these moduli. Because of the lack of contacts at the surface, the Young's 
modulus will be lower, which explains the fall in the stresses. The numerical 
prediction of the stresses in figure 46, is almost equal to the stresses in Grain, 
even at the surfaces. So, because of a lack of contacts at the boundaries the 
Young's modulus and therefore also the tangential stress will be lower. This 
effect will take place only in a thin layer near the inner surface: a r a d< < + . In 
this area not only are the stresses lower but there are also hardly any lateral 
contacts to break, so failure does not start at the surface ( r a≠ ) but just 
underneath ( r a d= + ). This layer of lower tangential stress is so thin, that it will 
only increase the strength of the cylinder with 4,000 grains by about 34 percent 
and the cylinder of 10,000 grains by about eighteen percent: 
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In reality the borehole is relatively large (a d>> ) so most of the times this edge 
effect can be neglected. 
This theoretical prediction of the radial pressure at failure Pr a d, +  is quite close to 
the pressure Pr failure,  found by Grain. The first breakout will be found at a higher 
pressure. 
 

   Theory Grain  
nc  Type Pr a,  Pr a d, +  Pr failure,  Pr breakout,  

  4,000 B 12.3 MPa 16.5 MPa 15.3 MPa 29.7 MPa 
10,000 A 12.7 MPa 15.0 MPa 15.7 MPa 30.2 MPa 

 
Table 12. Pressure at failure: Prediction versus Grain 

 
Although the bi-linear Mohr-Coulomb model predicts the radial pressure at local 
failure quite well, this model is inappropriate for predicting the radial pressure at 
functional failure, because it can not handle hardening and softening behaviour. 
According Papamichos and Van den Hoek (1995) a tri-linear Cosserat-Mohr-
Coulomb model with hardening and softening gives much better predictions 
concerning functional failure than the conventional continuum models. 
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4.4.4. Cylinder wall breakouts 
 
Laboratory observations of borehole breakouts in several sandstones show very 
often stable breakout shapes, according to Zheng et all (1989) and Ewy and Cook 
(1990 II). In the default cylinders made with Grain, breakouts occur all along the 
borehole surface, but the two diametrically opposite breakouts never occur. 
Maybe this phenomenon depends on the history of a natural sandstone. During 
formation of sandstone the vertical effective stress is about two times higher than 
the horizontal stresses and sometimes also the stress of one horizontal direction is 
larger than the stress of the other perpendicular horizontal direction. These 
different stresses cause different contact forces. Thus, the horizontal contact 
forces will be smaller than the vertical ones. Therefore a horizontal contact will 
form in time a smaller cemented contact surface. In other words, the found macro 
cohesion will be smaller for triaxial samples loaded in the direction of gravity 
than for samples loaded perpendicular to this direction. This can be an 
explanation for the mentioned breakouts. In figure 48 the micro cohesion of the 
horizontal contacts is made two times smaller than the micro cohesion of the 
vertical contacts. A uniform radial pressure of 11.2 MPa is sufficient to create 
two opposite breakouts in this anisotropic sample.  
 

 
 

Figure 48. Two opposite breakouts in a cylinder of 10,000 grains 
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4.5. Three point bend test 
 
A familiar test to measure the strength of a concrete beam is the three point bend 
test. This test is simulated in Grain with a small beam 
(h l d× × = × ×39 8.  cm  102.5 cm 2.00 cm) containing a thousand grains. Just 
like the cylinder test the beam will fail on the edge but this beam has no rest 
capacity, so a sudden failure will occur. 
One of the problems of a real concrete beam is the small number of (gravel) 
particles and contacts so the assumption of a homogeneous material, which is 
necessary for a continuum approach, is not completely valid. The smaller the 
number of particles, the larger the deviation of a group of test results will be. As 
the results of table 13 show, the predicted vertical load at failure is indeed far 
from the numerical simulated value. 
 

Bending test vertical load 
predicted (analytical) 27 kN 
measured (numerical) 43 kN 

 
Table 13. Vertical load at failure 

 
Just before failure, the compressive forces (black lines) in the beam in figure 49, 
show a very clear arch from the left support upwards to the vertical load and 
downwards to the right support. The underside of the beam shows mainly 
horizontal tensile forces (grey lines) with small vertical compressive forces, 
which is analogous with the formation of local lateral tensile forces in the biaxial 
test. In other words, the results are as expected. 
In addition, the crack (thick black lines) in the beam in figure 50, formed during 
failure, starts at the bottom of the beam and grows from weaker area to weaker 
area, which are the larger pores. A crack can also lead to a dead end if the area 
above the crack is too strong. A nice detail is the last remaining contact in the 
failure surface causing a few high tensile and compressive forces on the right of 
the failure surface. 
It is remarkable, that the micro cracks have the same direction as this failure 
surface, which is also the case for the cylinder test but which is definitely not the 
case for biaxial tests. Nevertheless, the micro cracks are always in the direction 
of the major principal stress, i.e. the axial direction. 
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Figure 49. Concrete beam before failure 
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Figure 50. Concrete beam after failure 
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5. CRYSTAL STRUCTURES 
 
A particular case in cohesive granular materials is the crystal structures in which 
all the grains are having the same size. Because of this, these materials have a 
completely regular structure, which causes different behaviour than normal 
cohesive granular materials. 

 

 
 

Figure 51. Crystal structure 
 
On a crystal structure of 15 21 16 20 635× + × =  grains, a biaxial test was done to 
show this behaviour. The structure has almost the same parameters as sandstone. 
The only difference with the previous tests on cohesive granular materials is that 

in this case all grains have the same size, so r
r
max

min

= 1. Because of this, crystal 

structures belong both to the logarithmic grain size distribution (Type A) and the 
linear distribution (Type B). 
The grains all have six contacts in specific directions. All contacts form 
triangular micro structures, so not one quadrangular structure is formed. These 
quadrangular structures were the fundament of failure of non-crystalline 
structures, because they caused tension failure in the contacts in the direction of 
the minor principle direction. That is the reason why crystal structures fail at 
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higher axial stress and via a different failure mechanism. Even though all micro 
parameters are equal to those of sandstone, this crystal structure is extremely 
strong. Figure 52 shows that the sample fails only at 417 MPa! 
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Figure 52. Biaxial test on a crystal structure of 635 grains 
 
In appendix 9, Crystal: analytical, it is found that during the elastic phase of a 
biaxial test there are only three types of contact forces in this crystal, and these 
are solved by: 
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The following figure shows that the numerical results of the contact forces is 
close to the analytical prediction (dashed lines). 
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Figure 53. Biaxial test: Contact forces in a crystal structure 
 
The stiffness ratio, κ ν , is just above one so the horizontal force Ft

'  will never 
become negative, and as a result of this, tension failure can never occur. The 
second criterion for failure is the shear failure, but since the shear force increases 
even more slowly during loading than the normal force, this will happen at a very 
high axial pressure. Therefore this crystal is much stronger than a non-crystal 
sample with identical micro parameters. 
 



89 

 
 
 



90 

6. CONCLUSIONS AND RECOMMENDATIONS 
 
 
6.1. Conclusions 
 

1. Models based on equilibrium will give the same results for quasi-static 
problems as models based on motion. 

 
2. Models based on equilibrium will iterate faster, but cannot be used for 

dynamic problems unlike models based on motion. 
 
3. The results for non-cohesive granular materials can be described with an 

advanced Mohr-Coulomb model. 
 
4. The results for cohesive granular materials can be described with a Mohr-

Coulomb model, but due to softening behaviour only until the plastic phase 
(breaking).  

 
5. An analytical relation between the micro behaviour and the macro 

behaviour is found for cohesive granular materials. 
 
6. Although the Coulomb line describes the moment of failure of a granular 

material quite well, the failure does not occur due to shear failure as 
described, but due to local tensile failure on a microscopic level, which is 
causing micro cracks in the axial direction. 

 
7. Diametrically opposite breakouts near the borehole surface are probably 

caused by anisotropy in the strength behaviour of the sandstone. 
 
8. Boreholes fail at a higher radial pressure than predicted, because of the 

definition difference between local failure and functional failure and the 
large rest capacity of a thick-walled cylinder test. 
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6.2. Recommendations 
 
It was never meant to model a complete geotechnical construction like a dike or a 
tunnel with discrete elements. One hand filled with sand contains one billion 
grains already, so the present computational facilities will always be insufficient 
to model this. Discrete element modelling has been developed to obtain insight 
into the micro behaviour of granular materials, in order to improve the continuum 
models of these materials. A few thousand grains are sufficient to model a 
homogeneous loaded sample. Since several tens of thousands of grains can be 
handled on a normal computer, it has no meaning to increase this number of 
grains. A more fruitful approach would be to improve the three simplifications 
made at the beginning of this research: 
    - A three-dimensional model will probably not gain many additional insights, 

but will make the results more realistic. 
    - A non-cohesive grain structure with more complex grain shapes reacts more 

strongly than a structure with circular grain shapes.  
    - A better description of the contact relation, which can perhaps be obtained 

from laboratory tests, will give more accurate simulations. 
These improvements will cost much work, but may not gain that many additional 
insights. Besides, the behaviour of the discrete models can quite accurately be 
described by an advanced Mohr-Coulomb model. Therefore the question whether 
this amount of work can be justified must be settled first. 
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1. Symbol list 
 
 D  : Depth of structure   = =d r2  
 E   : Young's modulus 
 F   : Force 
 G   : Shear modulus 
 H  : Height of structure 
 O   : Surface of structure 
 P   : Pressure 

 R D. . : Relative density    =
−
−

e e
e e

max

max min

  in which: e
V
V

pores

grains

=  

 V   : Volume of structure 
 W  : Width of structure 
 
 c   : Cos ( )α  
 c'   : Cohesion 
 d   : Distance between centres of two grains 
 e   : Total volumic strain  = ε tot  
 f gg  : Friction between two grains ( )= tan φ µ  
 f gw  : Friction between grain and wall 
 k   : Contact stiffness, spring constant 
 n   : Normal displacement 
 nc   : Number of contacts 
 ng  : Number of grains 
 nc g/  : Number of contacts per grain 
 nc v/  : Number of contacts per micro volume (d 3 ) 
 ni   : Number of iteration per load step 
 nv   : Number of micro volumes per total volume = V d/ 3  
 r   : Radius of grain 
 s   : Sin ( )α  
 sh   : Shear displacement 
 u   : Displacement 
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 α   : Angle between contact and x-axis 
 β   : Angle between major principal direction and x-axis 
 γ   : Angle deformation or rotation 
 ε   : Strain 
 κ ν  : Ratio between stiffness in normal and shear direction 
 ν   : Poisson's ratio 
 σ   : Stress 
 φ '   : Angle of internal friction 
 ψ   : Angle of dilatancy 
 
 ×n  : In normal direction 
 × s  : In shear direction 
 × xx  : In horizontal direction 
 × yy  : In vertical direction 
 ×rr  : In radial direction 
 × tt  : In tangential direction 
 × tot  : In total 

 ×0  : Average value, so: = × + ×1 3

2
 

 ×1  : In major principal direction, often: × yy  
 ×3  : In minor principal direction, often: × xx  
 ×µ  : Of grain material itself, not whole structure 
 ×   : Average value or expectation value 
 ×   : Derivative value 
 × I  : During first phase (i.e. isotropic compression) 
 × II  : During second phase (e.g. biaxial test) 
 ×e  : During elastic phase 
 × p  : During plastic phase 
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2. Hertzian contact 
 
To verify the contact equation by Hertz, a compression test was done on a ball of 
hard polystyrene foam with a radius of r = 74 6. mm. The elasticity parameters 
are measured with a triaxial test (σ 3 0= ) on a cube of the same material: 
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The Young's moduli remain very constant during the test. The figure below 
shows that the prediction of non-virgin compression by Hertz is about 30% too 
high all the time, but the shape of the non-linear behaviour is correct. 
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Figure A.1. Hertzian contact relation of a polystyrene ball 
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3. Discrete element book-keeping 
 
A complex part of discrete element modelling is the book-keeping of all grains, 
walls, contact numbers and their corresponding data. During simulation of a 
granular material new contacts can be made and other contacts can be lost, what 
leads to continuous updating of all information. The method which is used in 
Grain will be explained here.  
In general there are two types of arrays: one for the contact information and 
another for the grain and wall information. In the contact arrays the state of the 
contact (off, shear, non-cohesive or cohesive), the numbers nlow  and nhigh  of both 
grains on both sides of the contact, the forces Fn  and Fs  and the shear 
deformation sh  are stored. For instance the array of contact number 3 in figure 
A.2. will be: 
 

contact  state  nlow  nhigh  Fn  Fs   sh  
3 shear  -1 3 +... + −/ ... + −/ ... 

 
Table A.1 Information on contact 3 
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Figure A.2. 
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The grain and wall arrays contain two parts. In the first part, the data of the grain 
itself are stored: the present position co-ordinates x y, ,φ  and size r  of the grain, 
the position x y0 0,  of the grain, when the last friends backup (F) has been made. 
The second part contains the contact numbers towards the neighbour grains (N) 
and the friend grains which are the grains nearby but not connected (F) to this 
grain. For grain 3 this last part will be: 
 

neighbours 3 7 8    nc = 3 
friends 2 7 9 5  nf = 4  

 
Table A.2 Information on grain 3 

 
Notice that for the neighbours, not the neighbour numbers are registered, but the 
number of contacts between the grain and its neighbour. In this way, the contact 
data can be found. When a contact is broken, the contact number must be 
removed from the arrays of the grain and its neighbour and both grain numbers 
must be placed in each other's friend arrays. Only the neighbours have to be 
checked for contact breaking and the friends for contact making. The friend array 
will be updated in the procedure check village when a grain moves too far away 
from its original position x y0 0, . 
The advantage of this method is that only the necessary data is stored and the 
contact checking is minimal. 
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4. Grain size distribution 
 

100%

0%

Z (r)

r rmaxmin

ln (r)

 
 

Figure A.3. Sieve curve 
 

In theory an infinite number of grain size distributions can be made, however for 
most sands the sieve curves show a rather straight line: 

 
( )

( ) ( )

Z r r

Z r c c r r r r

=
≤

≈ + ≤ ≤

weight of grains 
weight of all grains

      for      1 2 ln min max

 (A.1) 

The weight of a grain can be described by: 
 w c r= 3

3  (A.2) 
Therefore the probability density function for these sands will be: 

 f r r
r r r

r r r=
−

≤ ≤max min

max min
min max

3 3

3 3 4

3         for       (A.3) 

The corresponding grain size distribution can be described with a random 
generator: 

 [ ]r
r

r r
r r

x x= −
−
















 =

−
1 0 13

3 3

3 3

3

min

max min

max min

~ ~ ..      with      random  (A.4) 

This distribution is specified by only two parameters, such as the minimum rmin  
and maximum rmax  grain size or the grain size ratio M  and the average grain 
size r : 

 
M r

r

r r M
M

=

=
−
−

max

min

max

( )
( )

3 1
2 1

2

3

 (A.5) 

The average grain size is not necessarily equal to the mean grain size: 
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 r
r

M
M50

1
2

=
+  (A.6) 

Beside this exponential distribution "Type A", also a linear distribution "Type B" 
is used: 
 ( ) [ ]r r r r x x= + − =min max min

~ ~ ..      with      random 0 1  (A.7) 
This distribution is also specified by the grain size ratio M  and the average grain 
size r : 

 
M r

r

r r M

=

=
+

max

min

min

1
2

 (A.8) 
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5. Two-dimensional continuum model 
 
 
5.1. Stress-strain relation 
 
For comparison of the numerical results obtained with a continuum model, the 
advanced Mohr-Coulomb model was chosen. The two-dimensional stress-strain 
definitions are a little bit different from the three-dimensional definitions, simply 
because there is no third dimension (ν zz = 0 ). Therefore the law of Hooke will 
become: 
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 (A.9) 

(The dot above the symbol implies the material time derivative.) 
This means that during the elastic phase the Mohr circle for the strains has the 

same shape as the one for the stresses, although its size is 1+ ν
E

 times larger and 

the distance to the centre is multiplied by a factor 1− ν
E

. 
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Figure A.4. stresses and strains during the elastic phase 
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The stresses can be described by: 

 

σ σ σ σ σ α

σ σ σ σ σ α
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 (A.10) 

The strains can be described in a similar way, thus: 
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 (A.11) 

During the elastic phase the principal directions for the (incremental) stresses and 
for the (incremental) strains are equal which is called coaxiality: 
 α α α α β βσ ε σ ε σ ε= = =   so:      or:    (A.12) 
Failure occurs according to Coulomb: 
 ( ) ( )sin ' 'cos 'φ σ σ φ σ σ1 3 1 32+ + = −c  (A.13) 
At failure of a non-cohesive granular material, the major principal direction will 
be: 

 
( )
( )cos( )

sin( )
2 1β

φ
σ σ

σ σ
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+
yy xx
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 (A.14) 

During the plastic phase the increments of the strains can be described by: 
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 (A.15) 

 in which: 
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If the increments of the stresses σ  are zero and the plastic deformation remains 
coaxial ( β βσ ε= ) throughout the plastic phase, like this: 
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= tan( )  (A.16) 

then the plastic deformations are defined by: 
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5.2. Characteristic tests 
 
For the confined biaxial test, unconfined biaxial test and the compression test, the 
orientations of the principal stresses are equal to the x- and y-axis: 

 
× = ×

× = ×
1

3

yy

xx

 (A.18) 

The elasticity parameters can be obtained from the confined or unconfined 
biaxial test (σ 3 0= ) during the elastic phase, as follows: 
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 (A.19) 

 in which: 
  ε ε εtot = +1 3  
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Figure A.5. bi-linear idealisation of a 2-D biaxial test 
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In the case of non-cohesive granular materials we also know for the plastic phase 
that: 

 
sin( ')φ

σ
σ
σ
σ
σ σ
σ σ

=
−

+

=
−
+

1

3

1

3

1 3

1 3

1

1  (A.20) 

 sin( )ψ ε
ε ε

=
−
tot

tot 2 1

 (A.21) 

The compression test (ε 3 0= ) remains elastic: 

 
( )E = −

=

1 2 1

1
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1

ν σ
ε

ν σ
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 (A.22) 

For non-cohesive granular materials the Young's modulus depends on the stress: 

 E Eref
ref

=








σ

σ

β

0  (A.23) 

 in which: 

  σ
σ σ

0 2
=

+yy xx  

The simple shear test (σ xx = 0 ) can be solved with the same parameters: 
 τ γ= G  (A.24) 

 
( )
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( )sin 'φ

σ σ τ

σ σ

τ
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σ σ

=
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yy xx

yy xx

2 24

                    if:         

 (A.25) 

 in which: 

 ( )
G E

xy

=
+

=

2 1
2

ν
γ ε

 

The true simple shear test (ε xx = 0) is more complicated because the horizontal 
stress increases during failure. The nine unknown components of the stress, 
elastic strain and plastic strain ( ,σ ε εe p and ) can be solved with the three elastic 
equations (A.9), the three test equations: 
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 (A.26) 

and the three plastic equations A.13, A.16 and A.15 (Coulomb, coaxiality and 
dilatancy), in this case: 
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 in which: 
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Which gives us the incremental stresses and strains of the true simple shear test: 
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 and: 
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5.3. Double sliding 
 
The plastic deformation of several soil models is based on sliding. Sliding means 
essentially that the stresses and therefore also the shapes of the sliding parts 
remain constant. So, there will be no total volume change, or with other words 
the dilatancy is zero. 
If failure of a soil occurs by shear sliding, then there are, because of symmetry, 
two directions in which the maximum shear stress is reached. This idea led to the 
double sliding model proposed in 1959 by De Josselin de Jong. In figure A.6. 
only the left failure surfaces (type A) are shown. 
 

α3

α1

σ1

σ3

θ

 
 

Figure A.6. Sliding causes an axial and lateral rotation 
 

In the same way also a right sliding (type B) can occur. If both the left and the 
right slidings cause a same amount of deformation (a b= ) then the axial rotation 
and the lateral rotation will be zero: 
 if           then    a b= = =α α1 3 0  (A.30) 
Figure A.7. shows such a double sliding failure in a simple shear test. To meet 
the boundary conditions, the sample requires a free rotation of: 

 α γfree =
1
2

 (A.31) 

In case of equal double sliding, the principal directions of the incremental strains 
and the principal directions of the stresses are identical ( β βσ ε= ). This is called 
coaxiality. 
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Figure A.7. Simple shear test according to Mohr-Coulomb 
 
De Josselin de Jong (1971) also published his idea to allow the two deformations 
to be unequal, so: 
 a b≠  (A.32) 
 in which: 

  
a
b

≥
≥

0
0

 

The rotation of the axial direction (figure A.8.), caused by the left sliding, is then: 
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 (A.33) 

and the rotation of the lateral direction, caused by the left sliding, will be: 
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 (A.34) 

These two rotations are not the same, which cannot be corrected with a free 
rotation. This means for an unequal double sliding that the plastic deformations 
are not coaxial. 
With a deformation of: 
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 (A.35) 
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and a shear band angle of: 

 θ π φ= +
1
4

1
2

 (A.36) 

the angle of non-coaxiality i  between the major principal directions of the stress 
and strain is defined by: 

 ( ) ( )tan tan2 2 13

11 33

i a b
a b

=
−

= −
−
+

ε
ε ε

φ  (A.37) 

So, there is a wide range of solutions: 

 − ≤ ≤ +
1
2

1
2

φ φi  (A.38) 

which means for a sliding model there is not a uniqueness at collapse.  
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Figure A.8. Axial and lateral rotation 
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6. Micro-macro relation 
 
 
6.1. Stress 
 
If a region with volume V  is considered, with an on microscopic level non-
uniform stress state, σ µij ,  , which is in equilibrium, then the average stress σ ij  is 
defined by: 

 σ σ µij ij
VV

dV= ∫
1

,  (A.39) 

By using the Gauss's divergence theorem (Drescher and De Josselin de Jong, 
1972), this can be written as: 
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 in which: 
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The summation of the contact forces over all the contacts can be done at once: 

 ( )σ ij i j
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kV
d F

c

=
=

∑1
1

 (A.41) 

For a two-dimensional x-y field, this will give, for circular grains: 
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 in which: 
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 and: 
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( )
( )

s
c
d

=

=

=
=

sin
cos

α

α
distance between centres of two grains
lenght of a contact

 

After every iteration in Grain, the stresses are calculated in this way. It was found 
that these stresses are almost perfectly equal to the boundary stresses. 
 
 
6.2. Strain 
 
Since a relation has been found between the macro stresses and the micro forces 
(σ ij ijF⇔ ) and a relation between the micro forces and the micro displacements 
( F nij ij⇔ ), only the relation between the micro displacements and the macro 
strains (nij ij⇔ ε ) has to be found to solve the relation between the macro 
stresses and the macro strains (σ εij ij⇔ ). Therefore the micro-macro relation of 
the strains can be a key to the complete stress-strain relation. 
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Two-dimensional grain structure   Diamond definitions   
 

Figure A.9. 
 
If a two-dimensional grain structure is considered, then the whole surface O  can 
be divided in diamonds with a surface: 

 ( )O d hk n k
=

1
2

 (A.46) 

So, the total surface of the grain structure will be: 
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With this, the macro strains can be written as: 

 ( )ε δ δ δ δij i j j i i j j i k
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O
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c
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21

 (A.48) 

If the macro strains would only depend on δ d , so h  is assumed to be constant 
(δ h = 0 ), then the strains can be solved: 
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 (A.50) 

 in which:   
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This relation has been found by Kruyt (1994) as well: 

 ( )ε δ δij i
c

j
c

j
c

i
c

c OO
d h d h= +

∈
∑1 1

2
 (A.51) 

The micro-macro relation for the strains seems to be found. But for a two-
dimensional isotropic compression test (δ sh = 0), it becomes clear that h  is not 
constant enough. 
The total strain is defined as: 
 ε ε εtot xx yy= +  (A.52) 
The theory above will give for the isotropic compression test: 
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 (A.53) 

although the correct answer is: 
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 (A.54) 

So, the error is 100%. It has to be concluded that this solution was not correct 
because the influence of δ h  was neglected. The problem is that h  does not only 
depend on the contact itself but also on the positions and therefore the 
deformations and the rotations of the surrounding grains. This means that the 
micro-macro relation for the strains is far more complex than the micro-macro 
relation for the stresses. 
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7. Biaxial test: analytical 
 
 
7.1. Normal and shear forces 
 
During a biaxial test, the average normal force Fn ,α  in a specific direction α in 
the first quadrant will, because of symmetry, be equal to the average forces of the 
other quadrants: 
 F F F Fn n n n, ,( ) ,( ) ,( )α π α π α α= = =− + −  (A.55) 
The function  
 ( )F F Ac Bsn n,α = +2 2  (A.56) 
in which A  and B  are constants, holds this symmetry. 
This is also the case for the shear force Fs,α , although the direction of the forces 
and so the sign changes per quadrant:  
 F F F Fs s s s, ,( ) ,( ) ,( )α π α π α α= − = = −− + −  (A.57) 
The function bellow holds this description: 
 ( )F F Qscs s,α =  (A.58) 

 

F

x

y

x

y

Fn,
s,II

II

I

I

α
α

 
 

Figure A.10. Normal and shear force versus contact angle 
 
During phase I, isotropic compression (σ σxx yy= ), the shear forces are taken as 
zero (Q = 0 ): 
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During phase II, the loading phase, the forces can be described as: 
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If Fn
II  is the average normal force then: 

 A B+ = 2  (A.61) 
So the normal force can be expressed as: 
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The alteration of this force is: 
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Horizontal force equilibrium for a contact yields: 
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which solves the shear force: 
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In the isotropic phase I, a certain average stress σ 0  is expected: 
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The horizontal stress σ xx  and the vertical stress σ yy  are equal to the average 
stress σ 0 : 

 σ σ σ σxx yy c n
I

V
n dF= = = =3 0

1
2

 (A.67) 

So: F V
n dn

I

c

=
2 3σ  (A.68) 

 
The analytical relations of Fn

II
,α  and Fs

II
,α   have been found. These can be checked 

by probabilistic analysis. 
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Table A.3. shows the expectation value E  for several goniometric functions. 
 

E  1 2 3 4 
1/2 s2  c2    
3/8 s4  c4    
1/8 s c2 2     
1/16 s c2 4  s c4 2    

0 s  sc3  s c3  s c3 3  
 

Table A.3. Expectation values 
 
If these are filled out in the relations of Fn

II
,α  and Fs

II
,α  mentioned in (A.42) and 

(A.43), the stresses are found: 
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And in the same way: 
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As long as there is no correlation between d , nc  and α, the analytical solution for 
the biaxial test is correct. 
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During the loading phase II of the biaxial test the lateral pressure σ 3  remains 
constant: 
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So: x F
F

n
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n
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Due to symmetry, the part [ ]Ax c
s

−1
3

 in Fs
II
,α  must be zero, so: 
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1  (A.72) 

The average forces can now be simplified to: 
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 in which: 
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7.2. Elastic behaviour of cohesive materials 
 
The average normal and shear forces were found to be: 
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The alterations of these forces since the isotropic compression are: 
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So, the deformations will be: 
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Figure A.11. Contact definitions 
 
If the grains do not rotate, then the contact definitions will give us: 
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With this, the strains can be solved as: 
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which will give: 

 ∆ ∆ε
κ

σν
yy

n c

V

d k n
=

+






1 1

2 1  (A.78) 

And in the same way: 
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In this way, it is demonstrated that cohesive granular materials can be described 
by a Young's modulus and a Poisson's ratio: 
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Which can also be written as: 
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The elasticity is almost equal to the result of Bathurst and Rothenburg (1988): 
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The number of contacts depends on the volume and the grain sizes, so it is better 
to rewrite this equation. 
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The contact ratio nc v/  depends only on the number of contacts per micro volume. 
For the isotropic compression, the normal and shear forces are: 

  
F F

F

n
II

n
I

s
II

,

,

α

α

σ
σ

=

=

∆

0
 (A.84) 

In the same way, an identical Young's modulus is found: 
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7.3. Elastic behaviour of non-cohesive materials 
 
The stiffness between two grains is not constant for non-cohesive materials: 
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The average stiffness depends on the average pressure σ 0 : 
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This can be filled out in the solution for cohesive structures:  
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which gives for non-cohesive materials: 
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 in which: 
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So, the stiffness behaviour does not depend on the average grain size. 
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7.4. Failure of cohesive materials 
 
The relation between the strength of a granular material and its micro parameters 
has always been one of the most difficult problems in the field of theoretical 
discrete element mechanics. This is because not only average events are 
important, but also the probability that an event will occur. This also applies to 
the failure behaviour of cohesive granular materials. When the first cracks appear 
during a loading test, total failure will not directly occur; the contacts of the 
surrounding grains will take over the load of the broken contacts. Only when a 
particular amount of cracks per volume has weakened the area in such that it 
cannot handle any more load, does total failure occur. One single crack is 
sufficient to cause a chain reaction in the formation of new cracks, which results 
in very sudden, total failure of the structure. The normal force distribution in the 
lateral direction at that moment is schematised in figure A.12. 
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Figure A.12. Probability of micro failure per volume 
 
The average normal force and the contact strength are described by: 
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The amount of contacts per volume which have to be broken for a total failure is 
illustrated by the shaded surface in the figure. Once this surface has passed the 
micro failure criterion, the granular structure is broken. 
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If the percentage of the contacts is small then the beginning of this surface can be 
registered by a factor β   times the increase of the axial stress: 
 ( )e = = −β σ β σ σ∆ 1 1 3  (A.91) 
During loading and at failure the average normal force in the direction of the 
minor principal stress is constant ( F Fn

II
n

I
,α = =0 ), so failure takes place at: 
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These two relations can be combined to: 
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This form is equal to the Mohr-Coulomb criterion: 
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This means that cohesive granular materials (except regular structures such as 
crystals) will fail according the Mohr-Coulomb criterion with: 
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The angle of internal friction is completely constant and does not depend on the 
contact force distribution or the grain size distribution. The cohesion depends 
only on the cohesion between two contacts cµ  and the compaction of the 
granular structure nc v/ . 
 
 
 
 
 
 
 
 
 
 
 



123 

8. Cylinder test: analytical 
 
The stresses in a thick-walled hollow cylinder sample during the test depend on 
the axial and radial pressures, but also on the shape of the sample. For a 
continuum model these stresses can be solved analytically. 
 

  

P

P

r

z

ba

σ

∆ rr

rr

σ

ttσ

ttσ

σzz

σzz

σ rr +

 
 

Figure A.13. Cylinder test   Figure A.14. Equilibrium of element    
 

The sum of the radial forces on the equilibrium element is zero: 
 Fr∑ = 0  (A.96) 
which gives: 
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Axial symmetrical loading can be denoted: 
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so, the strains can be written as: 
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The shear deformations in the directions of the principal stresses are all found to 
be zero: 
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 (A.100) 

With the two constants of Lamé: 
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and the total volumic strain: 
 e rr tt zz= + +ε ε ε  (A.102) 
one can express the main stresses: 
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The mains shear stresses are all zero: 
 τ µ ε µγrz rz rz= = =2 0    etc.  (A.104) 
By filling out equations (A.99) and (A.102) in (A.103), and these last three 
equations in (A.97), the basic differential equation is found: 
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The last part is zero, so (A.105) can be simplified: 
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The general solution of this differential equation is: 

 u Ar B
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The other directions are: 
 ut = 0  (A.108) 
 u D z Cz = +  (A.109) 
where A, B, C and D are integration constants, to be determined from the 
boundary conditions. The general expression for the volume strain, 
corresponding to the solution is: 
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The main stresses can be expressed as: 
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The boundary conditions are: 
  For r a= :   σ rr = 0  
  For r b= :   σ rr rP=  
        σ zz zP=  
In this case the constants A, B  and D are given by: 
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The stresses at the inner surface (r = a) are: 
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Figure A.15. Stresses at the inner surface of the cylinder 

(a b P Pr z =  /  ,   =  1 3 ) 
 
The stresses at the outer surface (r = b) are: 
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Figure A.16. Stresses at the outer surface of the cylinder 

(a b P Pr z =  /  ,   =  1 3 ) 
 
One can see that failure will always occur at the inner surface of the cylinder 
( r a= ) and that the vertical load Pz  is not important for failure as long as: 
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9. Crystal: analytical 
 
One of the most basic structures, in which tension forces can be created only by 
compressive forces, is drawn below. 
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Figure A.17. Basic structure 

 
If shear forces do not exist, then the horizontal contact force Ft  can become 
negative, if the vertical force is too large: 

 F F F Ft v h s= − =
1
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Figure A.18.  
 
If we build up a whole crystal out of this structure without neglecting the shear 
force, then the horizontal stress for each grain is found to be: 
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in which the volume for each grain: 
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Summation over the six contacts, as listed in the table, will give: 
 ( )σ xx t n sC F F F= ⋅ + −2 3' ' '  (A.117) 

in which the constant C depends on the grain radius: 
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In the same way the vertical stress and the shear stress are found: 
 ( )σ yy n sC F F= ⋅ +3 3' '  (A.119) 
 σ xy = 0  (A.120) 
 

k s c Fn  Fs  
1 0 -1 Ft '  0 
2 ½√3 -½ Fn '   Fs '  
3 ½√3 ½ Fn '  −Fs '  
4 0 1 Ft '  0 
5 -½√3 ½ Fn '   Fs '  
6 -½√3 -½ Fn '  −Fs '  

 
Table A.4. Contact forces on one grain 

 
For the horizontal boundary, we know: 
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which is equal to the vertical stress we found before. For the vertical boundary, 
this is different: 
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These result are not equal to the horizontal stress we found before. This means 
that edge actions are formed, especially on the vertical boundaries. 
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During phase I, isotropic compression (σ σxx yy= ), the shear forces are zero, so 
the contact forces can be solved: 
  ( )σ xx t n sC F F F= ⋅ + −2 3' ' '  

  ( )σ yy n sC F F= ⋅ +3 3' '  
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 or: 
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During phase II, for example the biaxial test, the shear forces do not remain zero. 
But because of symmetry, another third relation between the deformations of the 
contacts can be found: 
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Figure A.19. Contact deformations 

 
which is: 
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The following three equations describe the contact forces of the grains, which are 
not near the boundaries, during loading: 
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 or: 
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For a biaxial test the lateral pressure σ xx  is constant ( ∆σ xx = 0 ), so: 
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In practice, the stiffness ratio κ ν  is slightly larger than one, so tension forces will 
never occur and the crystal has a negative Poisson's ratio. The crystal will not fail 
because of tension failure, but because of shear failure which will take place at a 
much higher pressure. This is why crystals structures can be extremely strong. 
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SAMENVATTING 
 
 
Discrete Elementen Analyse van Granulaire Materialen 
 
Tijdens de productie van olie en gas beginnen, enkele jaren na het maken van een 
boorgat, zanddeeltjes en kleine zandsteenbrokjes los te breken van het 
boorgatoppervlak. Deze deeltjes kunnen in een korte tijd de transportleidingen en 
installaties grote schade toebrengen. Door simulatie van het boorgatgedrag met 
de dikwandige-cilinderproef, zijn er vier fenomenen gevonden die niet met de 
conventionele continuümmechanica kunnen worden verklaard: 
   1. Ondanks de drukspanningen, ontstaat het bezwijken op microniveau ten 

gevolge van trekscheuren. 
   2. Deze scheuren staan niet diagonaal op, maar lopen parallel aan, het 

boorgatoppervlak. 
   3. Deze scheuren veroorzaken twee lijnrecht tegenoverliggende uitbraken.  
   4. Het functionele bezwijken van het boorgat begint bij een hogere radiale 

drukspanning dan voorspeld. 
Om het gedrag van granulaire materialen te beschrijven, ontwikkelde Cundall in 
1969 een computermodel die gebaseerd is op de basiselementen van zo'n 
materiaal, namelijk de korrels zelf en hun interacties. Lindhout heeft in 1992 
geprobeerd om met dit model de cilindertest te beschrijven. Als gevolg van 
compactieproblemen, stabiliteitsproblemen en de lange computerrekentijd kon 
zijn doel niet worden gehaald. Daarom is er een nieuw model ontwikkeld door de 
schrijver, die niet de bewegingsvergelijkingen maar de evenwichtsvergelijkingen 
gebruikt om de nieuwe korrelposities te berekenen. Dit model kan zowel voor 
niet-cohesieve korrels (zand) als voor cohesieve korrels (zandsteen) worden 
gebruikt. De resultaten kunnen in het algemeen goed worden beschreven met een 
verbeterd Mohr-Coulomb model, hoewel er een aantal uitzonderingen zijn.  
Ten eerste zullen, tijdens het belasten van een granulaire structuur, veel contacten 
tussen de korrels bezwijken. Niet door schuifdeformatie, zoals Coulomb 
suggereert, maar door bezwijken op trek. Ten tweede ontstaan deze 
microscheuren altijd in de richting van de grootste hoofdspanning, hetgeen een 
andere richting kan zijn dan het waargenomen bezwijkoppervlak. Zo vormen de 
axiale microscheuren tijdens een biaxiaalproef een diagonaal bezwijkoppervlak, 
maar de axiale microscheuren in een cilinderproef kunnen een bezwijkoppervlak 
parallel aan het boorgat vormen. 
Tijdens het ontstaan van een natuurlijk zandsteen veroorzaakt het verschil in 
horizontale en verticale grondspanningen een anisotropie in de sterkte-
eigenschappen van het materiaal. Dit kan de twee tegenoverliggende uitbraken 
verklaren. De conclusie dat een boorgat bij een hogere radiale spanning bezwijkt, 
komt door een verschil in definitie tussen lokaal bezwijken en functioneel 
bezwijken en de grote reststerkte van een dikwandige-cilinder. 
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