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Psalm 2

Why do the heathen rage, and the people imagine a vain thing?
The kings of the earth set themselves,
and the rulers take counsel together,
against the Lord,
and against his anointed, saying,
Let us break their bands asunder,
and cast away their cords from us.
He that sitteth in the heavens shall laugh:
the Lord shall have them in derision.
Then shall He speak unto them in his wrath,
and vex them in his sore displeasure.
Yet have I set my king upon my holy hill of Zion.
[ will declare the decree:
the Lord hath said unto me,

Thou art my Son; this day have I begotten thee.
Ask of Me, and I shall give thee the heathen for thine inheritance,
and the uttermost parts of the earth for thy possession.
Thou shalt break them with a rod of iron;

Thou shalt dash them in pieces
like a potter's vessel.

Be wise now therefore, O ye kings:

Be instructed, ye judges of the earth.

Serve the Lord with fear, and rejoice with trembling.
Arm yourself with righteousness, lest He be angry,
and ye perish from the way,
when his wrath is kindled but a little.

Blessed are all they that put their trust in Him.



ACKNOWLEDGEMENTS

The research reported in this communication has been carried out at the
Department of Geotechnics. I would like to express my gratitude to all my
colleagues for their support. I also want to thank Shell Research B.V., Royal
Shell Exploration and Production Laboratory, for their financial support.



CONTENTS

ACKNOWLEDGEMENTS
CONTENTS
SUMMARY
1. INTRODUCTION
2. DISCRETE ELEMENT MODELLING
2.1. Micro modelling
2.2. Motion modelling
2.3. Equilibrium modelling
2.4. Elasto-plastic modelling
2.5. Characteristic tests
2.6. Motion versus equilibrium
3. NON-COHESIVE GRANULAR MATERIALS
3.1. Default parameters
3.2. Micro behaviour versus macro behaviour
3.3. Continuum modelling
4. COHESIVE GRANULAR MATERIALS
4.1. Default parameters
4.2. Micro behaviour versus macro behaviour
4.3. Continuum modelling
4.4. Cylinder test
4.5. Three point bend test
5. CRYSTAL STRUCTURES
6. CONCLUSIONS AND RECOMMENDATIONS
6.1. Conclusions
6.2. Recommendations
REFERENCES
APPENDIX
CURRICULUM VITAE
SAMENVATTING

11
13
15
15
19
21
23
24
26
29
29
32
46
61
61
62
72
75
82
85
89
89
90
91
93
131
133



10



SUMMARY

Discrete Element Analysis of Granular Materials

During oil and gas production, several years after drilling a borehole, sand
particles and small sandstone particles start to break away from the borehole
surface. These particles can damage the transport pipes and other equipment in a
short period of time. By simulating this borehole behaviour with the thick-walled
cylinder test, four phenomena were found which cannot be explained by
conventional continuum mechanics:

1. Despite the compressive stress, failure occurs on the micro level due to

tension cracks.

2. These cracks are not diagonal to, but parallel to, the borehole surface.

3. These cracks cause two diametrically opposite breakouts.

4. The functional failure of the borehole starts at a higher radial pressure than

predicted.

In 1979, Cundall developed a computer model, based on the basic elements of
granular materials, i.e. the grains themselves and their interactions, to describe
the behaviour of these materials. Lindhout tried, in 1992, to use this model to
describe the cylinder test. Due to compaction problems, stability problems and
the large computational time, this could not be achieved. Therefore a new model
was developed by the author, which does not use the equations of motion, but the
equations of equilibrium, to calculate the new grain positions. This model can be
used both for non-cohesive grains (sand) and for cohesive grains (sandstone).
The results can generally be described by an advanced Mohr-Coulomb model.
However, there are a few exceptions.
Firstly, during loading of a granular structure, many contacts between the grains
will collapse, not due to shear deformation as Coulomb suggests, but due to
tension failure. Secondly, these micro cracks always occur in the direction of the
major principal stress, which might be another direction than the observed failure
surface. In this way, the axial micro cracks form a diagonal failure surface during
a biaxial test, but the axial micro cracks in a cylinder test may form a failure
surface parallel to the borehole surface.
During the formation of natural sandstone, the difference between the horizontal
and vertical stress causes anisotropy in the strength behaviour of this material.
This or other anisotropies may explain the diametrically opposite breakouts.
The conclusion that a borehole fails at a higher radial pressure than predicted,
originates from the definition difference between local failure and functional
failure and the large rest capacity of a thick-walled cylinder.
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1.INTRODUCTION

This study on the behaviour of granular materials originates from offshore
engineering. During oil and gas exploitation, several years after the drilling of a
borehole, sand particles and small sandstone particles start to break away from
the borehole surface. The number of particles which is transported by the oil or
gas, can reach such an amount that the transport pipes and other equipment will
be damaged, in a short period of time, by the scouring of these particles. The
only solution up till now is to make a new borehole, which is, especially off
shore, a huge financial loss.

Therefore laboratory research has been started to get insight into this problem.
One of the main characteristic tests to simulate the failure of a borehole is the
thick-walled cylinder test, which consists of a sandstone cylinder of several
centimetres with an axial borehole in the middle. By radial compression of this
cylinder four phenomena were found which cannot be explained by conventional
continuum mechanics. These are:

1. Despite the compressive stress, failure occurs on micro level due to tension
cracks.

2. These cracks are not diagonal to, but parallel to, the borehole surface.

3. These cracks cause two diametrically opposite breakouts.

4. The failure of the borehole starts at a higher radial confining pressure than
predicted. According to many researchers, like Ewy and Cook (1990 1), the
measured strength of the borehole surface is even two to four times as high
as calculated.

The idea existed that this could be explained by the specific behaviour of
granular materials, which is lost in continuum mechanics. Therefore the models
which describe the materials by their basic elements became more popular.

De Josselin de Jong and Verruijt (1969) have applied an optical method to
determine the magnitude and the direction of the contact forces between grains,
by measuring the rotation of polarised light through these grains made of
photoelastic materials. In this way the local displacements and forces could be
studied.

About ten years later, Cundall developed a computer model, named Ball, to
describe the behaviour of granular materials. This model is based on the basic
elements of these materials, i.e. the grains themselves and their interactions. It
can handle both non-cohesive grains and cohesive grains. The method was
validated by Cundall and Strack (1979) by comparing force vector plots obtained
from the computer program Ball, with the corresponding plots obtained from the
photoelastic analysis, which was done by De Josselin de Jong and Verruijt. The
correspondence between the plots was sufficiently good to conclude that the
distinct element method is a valid tool for fundamental research.

13



There are two major advantages of computer models in comparison to prototype
tests. Firstly, all grain displacements, contact forces and micro cracks are known.
Secondly, one specific sample can be tested many times. One of the major
problems with Cundall's model was the computational time. According to Ting
(1989), it 1s not feasible to simulate more than a few tens of thousands of grains,
even with the fastest super computers currently available.

Lindhout (1992) tried to model the cylinder test with Trubal, which is the next
version of Ball. Due to compaction problems, stability problems and the large
computation time this could not be done. Therefore this new research project has
been set up to solve these problems. The idea was that if the quasi-dynamical
analysis of Cundall, which uses artificial damping, can be replaced by a
technique which uses the so called finite element method, the model will become
more useful.

This model can be used to understand better local stresses and displacements,
because this micro mechanical analysis can investigate the behaviour of sand and
sandstone on a very detailed scale. By simulating the actual grain structure, the
analysis can perhaps bridge the gap between experimental observations and
theoretical modelling. For Shell, this is of a special importance due to their oil
and gas production boreholes. If the method is successful there will also be
interest from other areas, like the mechanics of soft soils, powder technology or
concrete technology.

The objective of the present study was to simulate and investigate granular
mechanical behaviour on a micro scale (elements representing grains) and to
translate this behaviour into a continuum approach or to determine the limitations
of such an approach.

14



2. DISCRETE ELEMENT MODELLING

Discrete element modelling, which is also called distinct element modelling, is in
fact a type of finite element modelling. Every element represents one grain. The
main difference from the normal finite element modelling is that due to
deformation some contacts between the grains can be lost and new contacts can
be made. This causes softening and hardening respectively of the structure.
Because of this, the global stiffness matrix of the complete structure has to be
rebuilt constantly.

For non-cohesive materials there is also a second reason why this matrix has to
be updated; the behaviour of the contacts, both in the normal and the shear
direction, is not linear, which means that the stiffnesses, k, and k_ , of these

contacts, have to be recalculated continuously.

If the boundary conditions of the structure (forces or displacements) are changed,
then this will effect every grain. All grains will be displaced then in such a way
that a new force equilibrium is created (quasi-static approach) or a new time step
is reached (dynamic approach).

Until recently only the dynamic approach has been worked out, mainly by
Cundall. His model is based on the equations of motion. In this thesis, mainly the
quasi-static approach is used, which is based on the equations of equilibrium.
This approach is completely new. Both models will be worked out for a two-
dimensional rectangular Cartesian (OXY)- field.

2.1. Micro modelling

The behaviour of granular structures depends on the individual grains and their
interaction. In order to be able to model this on a microscopic level, three
simplifications are made (figure 1).

The first simplification is made by reducing the number of dimensions. Three-
dimensional computer modelling consumes a lot of time and memory. Besides,
two-dimensional modelling gains more insight in the results obtained, because of
its simplicity.

The second simplification is made to the grain shape. The most common one, a
circle, reduces the calculation substantially. However, elliptical grains show
failure at a larger stress ratio than circular grains during a loading test, according
to Rothenburg and Bathurst (1992). Thus, circular grains will roll easier than
grains of a more complex shape.
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Two-dimensional Circle shaped Contact behaviour
Figure 1. Simplifications
Cross sections of several types sandstone, like Fontainebleau Sandstone (David

and Darot, 1993), make clear that the grains in these sandstones can be well
described by polygons (figure 2).

Figure 2. Fontainebleau Sandstone

During the formation of sandstone, the stress in the contacts is so high that the
quartz material in the contact between the grain particles becomes a little bit
viscous. Thus, the shear forces slowly fade away in time. Because of this
creeping behaviour, the lateral stress of a one-dimensional compression test on
sand increases with time under any stress conditions, according to Yamamuro
(1996). The contact surfaces become flat in time and will fit more and more. The
modelling of these sandstones with circular grains, will probably not cause too
large errors as long as the contact behaviour, i.e. the strength and stiffness
properties, is well modelled. This is because of the fact that the cemented grains
in the sandstone will hardly roll.
The description of the contact behaviour between two grains contains the last
simplification. This behaviour is divided in three parts:

1. Normal deformation.

2. Shear deformation.

3. Slip or crack.
All differences between real measurements and model results have to be
explained by these three simplifications. Non-cohesive granular materials, such
as sand or powders, and cohesive granular materials, such as sandstone or mortar,

16



will be treated separately, because their contact behaviours are different from
each other.

2.1.1. Contact behaviour of non-cohesive granular materials

The force-displacement relation in normal direction of two non-crushing balls
was solved by Hertz (1881). The definitions of the used micro parameters are
presented in figure 3. These parameters are also mentioned in appendix 1,
Symbol list.

Figure 3. Definition of micro parameters

The relation between the normal force F, and the normal displacement n is

given by:
F = M(n): (1)
in which:
221G,
B

n=r,+r,—d

S 2nn
T

The grain stiffness M depends on the shear modulus G, and the Poisson's ratio
v, of the grain material and also on the average size 7 of both grains. The

reason why this relation is not linear is that the contact surface between the
grains depends on the deformation, so during loading the geometry is not
constant. This causes in its way the non-linear stress-strain behaviour of non-
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cohesive granular materials. A verification test of this relation is presented in
appendix 2, Hertzian contact.
The force-displacement relation in shear direction between two balls was solved
by Mindlin and Deresiewicz (1953) and verified by Deresiewicz (1958). The
shear force F, is proportional to the shear displacement s, for the elastic area.

F =k s, ()
The stiffness in shear direction &, depends on the normal force:

. 263[3(1— vq)i_anF

N

3)

2-v,
But for solving a system of equations, linear relations are necessary, such as:

E, =k,n 4
So, the stiffness in normal direction k, is not constant because it depends on the
normal displacement:

k, = M~n (5)
Because of this linearisation, the stiffness in shear direction can be related to the
stiffness in normal direction:

k.=« k, (6)
in which:
1—
K,=3 Y
2— Vv,

This means that the relation between the stiffnesses of the normal and shear
direction depends only on the Poisson's ratio v, of the grain material.

Slip or plastic deformation occurs when the shear force exceeds, in comparison
to the normal force, a certain level which depends on the friction f, between

two grains:
if |F,
in which:

S =tang,

F

n N

> [ F, then

=Sl (7
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2.1.2. Contact behaviour of cohesive granular materials

Since the contact surface between two cemented grains remains more or less
constant, the force-displacement relation in the normal direction between two
grains is assumed to be linear:

E =kn ®)
The shear force is proportional to shear displacement for the elastic area:

F =k, s, )
The shear stiffness is related to the normal stiffness:

k.=« k, (10)
Crack or plastic deformation occurs when the shear force exceeds a certain level:

it |E|>f,F, +F then F, =0 so  |F|=f,F, (11)
And if a tension force cut-off F, is used, also:

if F <-F then break contact so F,=0 (12)

in which:
/ @ tan ¢/1

F =c, 7 or =c,rr,

2.2. Motion modelling

The modelling of granular structures can be divided in four phases (see figure 4):

1. Creation of the particles.

2. Calculation of the boundary conditions such as wall displacements.

3. Calculation of the grain displacements and the contact forces.

4. Saving of wall forces, displacements or other necessary information.
In phase 1. all grains are randomly placed between the walls with a grain size of
one percent of its final size. During the next iterations the grains are blown up to
fill the volume between the walls.
In phase 2. the displacements of the stress controlled walls and the new stresses
of the displacement controlled walls will be calculated.
In phase 3. all grains will be one by one checked and recalculated. In Cundall's
model, which is based on the equations of motion, this is done every time step.
This grain calculation in a motion model consists of three parts:

A. With the two force-displacement relations,
F =kn

F; = ks Sh
all forces on one particular grain are calculated.

19



B. With these forces and the equations of motion (second law of Newton), the

acceleration of the grain is determined:
z F =mXx

S F,=mj (13)
SM=1¢
in which:

M = moment on a grain
m = mass of a grain

For the next time step, the new position of the grain is found with two
integration steps:

1
i=—>F
2
i=[xdt (14)
X = .[Xd t
This integration is not very stable and therefore small time steps and

damping are necessary. Extra calculation time and less accuracy are the
result of this.

C. All contacts of the grain are checked for:

I. Plastic deformation (slip or crack).

it |F)|> f, F, +F then |F|=f_F, (15)
where for sand and after cracking:
F=0
II. Contact breaking.
if —F >F thenbreak contact (16)
ITI. Contact making.
if n> 0 then make contact (17)

With the new positions, the new forces for part A. can be calculated. In this way,
for every time step, all contact forces and grain positions are determined. The
computer models, Ball, Trubal and PFC (particle flow code) from Itasca in
Minneapolis USA are all based on this method.

20



2.3. Equilibrium modelling

The new model is based on the equations of equilibrium. Only part B in which
the displacements of the grains are calculated is different from the motion
modelling:

A. The first part is the same as the motion model.

B. In the new approach, equilibrium equations are used instead of equations of

motion:
> E=0
ZE =0 (18)

> M=0

By disregarding time, dynamic problems like explosions, vibrations and
quakes can not be modelled. The three equations form a 3x3 matrix:

g n, g

> =k, -5k, g(ks—kn)sc dsrk, || Ax | |D.cE +sF,

k=1 k=1 k=1
i(ks—kn)sc i—sz kn—c2 k, i—crks Ay |= isEl—cF; (19)
k=1 k=1 k=1 k=1
Z/gsrks Cg—crks > k, ||Ag i—rFS
| k=1 k=1 k=1 L A k=t i
in which:

n,,, = number of contacts per grain

s = sin(a)
c= cos(a)
r = radius of the grain
and:
Ax=x, —x,
AY=Voow = Vouu
Ag= ¢new - ¢old

All the forces and stiffnesses on one particular grain are placed in this
matrix. The displacements, and thus also, the new equilibrium positions of
the grains, can directly be calculated by Gauss elimination.

C. The third part is the same as the motion model.

21



Although the equilibrium position is directly calculated, the displacement of a
grain will effect its neighbouring grains. Therefore several iterations through the
whole structure are necessary to find the total equilibrium state of the grain
structure. The computer model Grain, written by the author, is based on this
method. A structure diagram of this model is given in figure 4.

Grain
V' / /. . .
{M&%ZZZZZZZZZZZZ%E make new grains if necessary

cycle repeat until end of simulation
,ﬁrst guess grains each n; times displace all grains
Méﬁéﬁ{///////////@ do for all walls

calculate wall displacement each n; times displace walls
move wall
check village (wall)

SN,

Z

%

4

% grain info (A)| collect n¢ and Fp, Fs, kn, ks, sh, S, €
% calculate grain displacement for all contacts

/ if n. =0 : do nothing ‘ _
/ if ne =1 : lateral displ. k¢ = 0 for plastic calculations
/ if n. > 1 :equilibrium (B)| 3 x 3 matrix

/ truncate for elasto-plastic modelling

/ move grain

/ check contacts ©)

/ check village (grain) if -n <r : make friends

/ check friends if n >0 : make contact

é check neighbours if -F,> c,.r? : break contact

G0 "

calculate wall pressures
elasto-plastic switch if ( 2.1 <nj ) elastic otherwise plastic

)

NN

blow up grains enlarge new grains if necessary

Figure 4. Schematic overview of the computer program Grain
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Because the grains can gain and loose contacts during the simulation, not only
the calculation of the grains but also keeping track of the grain data and contact
data is important. It is time consuming to check, each time, all possible grain
contacts. To avoid this, each grain has a list of the contacts between its
neighbours and also a list of the grains which are nearby but not connected.
These are called friends. After the grains are sprinkled between several walls
(Phase 1), the entire group of grains is considered as a village surrounded by city
walls. Every grain has to check the complete village in order to make its personal
list of close friends. This has to be done only once after the creation of the grains
and every time a grain has been displaced outside his defined friend-area. This
happens only occasionally. In this way only the friends have to be checked for
contact-making and the neighbours for contact-breaking. This "book-keeping" is
explained in appendix 3, Discrete element book-keeping.

2.4. Elasto-plastic modelling

In fact, both models calculate the shear deformation s, completely elastically and
they both cut off the shear forces at shear, as shown in figure 5.

S Sh
Figure 5. Elastic modelling Figure 6. Elasto-plastic modelling

Especially for a low friction ¢, and a high shear stiffness k_, a large amount of

iterations are necessary to model the plastic deformations properly. An effective
solution is to make the shear stiffness k, zero after shear is detected, so that the

shear force will not increase any more. If the shear force decreases or the normal
force increases the stiffness has to return to its former value. This elasto-plastic
modelling, shown in figure 6, iterates much faster.

Because the shear deformations are unlimited in the plastic state, the elasto-
plastic modelling causes one particular problem. In the same way as a round
object, for instance a pen, can also be launched by squeezing it between two

23



finger tips, a grain can be launched, when the plastic state is reached, as shown in
figure 7.

Figure 7. Squeezing of a grain

The small displacement ou, causes a larger displacement Su,. Such a large

displacement will be divided, just as any large displacement, into several smaller
steps by the procedure "truncate", to prevent the grain from jumping to an empty
place without noticing potential geometrical limitations.

Elasto-plastic modelling has been installed in Grain. With this computer model
all numerical calculations in the following chapters have been done.

2.5. Characteristic tests

Five characteristic tests are standardised in Grain to study the micro-mechanical
behaviour of cohesive and non-cohesive granular materials. The first three are
sketched in figure 8, the last two in figure 9.

The most common test, to measure the Young's modulus £ in the elastic phase is
the one-dimensional compression test. This compression test can also give the
Poisson's ratio v, if the horizontal stresses are known.

With the confined biaxial test, the strains are prescribed, so volumic
deformations are easily measured. If shear bands occur then the stresses can
become not homogeneous, especially for cohesive materials. Therefore this test
will only be used for non-cohesive materials.

The unconfined biaxial test is suitable to determine both the Young's modulus £
and the strength parameters ¢' and ¢'. The lateral pressure remains constant
during loading. Because of the rubber membranes (wall number 2 and 4), shear
bands can occur.
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Compression test Confined biaxial test ~ Unconfined biaxial test
Figure 8.

The simple shear test seems to be, in theory, a simple test for measuring the shear
modulus and the angle of internal friction in a direct way. In practice the results
are not always found to be consistent and therefore this test is not so often used
any more. Characteristic of this test is the rotation of the principal directions
during shearing.

In the oil and gas industry, the failure of boreholes is important. The cylinder test
models this phenomenon. A thick-walled sandstone cylinder with a borehole in
the middle will be radially compressed until it fails.

|

3 —

[ R O3 {
/|
1

Simple shear test Cylinder test

]

Figure 9.
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2.6. Motion versus equilibrium

The main advantage of the motion model is that it can handle dynamic problems,
although this is not necessary for this particular research. The main advantage of
the equilibrium model is calculation speed.

When this research was started in 1993, one of the most used motion models was
New Trubal (NTB) from Itasca, developed by Cundall. This model had no stress
controlled walls or membranes and also no circular walls, so the only
characteristic test which could be used to compare Grain and NTB was the
compression test. The final results of both models were found to be equal,
although Grain was much faster. For each iteration step of Grain, 4000 iteration
steps were necessary with NTB. Because NTB was not able to handle certain
characteristic tests and needed too much calculation time, only Grain is used to
do the rest of the numerical simulations in this report.

Two years later (February 1995) a new version called Particle Flow Code (PFC)
was released by Itasca. It had two major improvements:

1. PFC could use stress controlled walls, although in a complicated way.

2. The calculation speed was much improved.
In figure 10 we see an identical unconfined biaxial test on 250 cohesive grains
done by PFC (motion model) and Grain (equilibrium model).

(&)

[

30

Grain N PFC
25 1 (equilibrium) ~ \/ (motion)
Vo

20 - vy

15 -

10

0 : : I
0 0.005 0.01 0.015

Figure 10. Identical biaxial test on 250 cohesive grains by PFC and Grain
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Because PFC is a motion model, the sample is oscillating between the two
horizontal walls. This effect will be less marked during the elastic phase if more
iterations are used. Although the models are based on different basic principles,
the final results are quite similar. The only difference now is that PFC uses about
fifty times more iteration steps than Grain.

Sometimes the results of Grain and PFC are less identical and if a smaller time
step 1s chosen (i.e. more iteration steps), the stress-strain behaviour during failure
can become very unstable for the motion model as demonstrated in figure 11.
These are not the only problems of this motion model. Waves propagate too
slowly: Thus, the dynamic elasticity of an assembly of grains is about 50 percent
lower than the static elasticity.

Because of these problems, PFC is not used for doing verification.

O
o3
25 +
1 A PFC
20 /ﬁ \ (motion) e
\ ~/ \ S
15 + e
Grain |
10 + (equilibrium
|
PFC /
5+ (50 times more iterations)
0 ‘ ‘ ‘ €]
0 0.005 0.01 0.015 0.02

Figure 11. Instability of PFC model
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3. NON-COHESIVE GRANULAR MATERIALS

3.1. Default parameters

Several characteristic tests have been done to measure the influence of a number
of specific micro parameters, such as relative density, lateral pressure or internal
friction, on the macro behaviour of non-cohesive granular materials. Most of the
tests are carried out on a structure of a thousand grains. The default micro
parameters are chosen to be representative for sand of dense compaction, as
presented in table 1. If confusion between micro and macro parameters can
occur, then the micro parameters are marked with a " u".

soil data grain size test parameters
k, - 7 0.1 mm o, 1 bar

G, | 1000MPa | gpe | A(B) | AH | 40x10°
H
ni

v, 0.16 e, 4.00 20
rmin
S 0.60 H 2.50 O | (6Xx03)
1/4 (1.00)
o 0.00 (o) Oroin | (3%03)
c'ﬂ 0 kN/m n, 1000
(4000)

Table 1. Default micro parameters for sand

The making of a compact sample from a large amount of free grains with low
grain friction can cost more than a day's calculation time because the continuous
making and breaking of the contacts, i.e. the updating of the matrix, leads
continuously to new solutions. Once a sample is created, many tests can be done
with this sample. These tests seldom take more than one hour.
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3.1.1. Soil data

The tests on sand are based on the non-linear Hertzian contacts and therefore the
shear modulus G, is used, instead of the linear spring constant k,. The value of
this shear modulus is not free of controversy. According to the Handbook of
Chemistry and Physics, it should be about G, ~ 34 x 10’ Pa for quartz. If this is

filled out in Hertz's contact relation, the stiffness of the total grain structure is
found to be too high. Because of this a lower value of G, ~ 1x 10° Pa had to be

chosen, in order to give a more realistic stiffness behaviour. Three analytical
explanations for this problem do not seem to agree with reality:
1. The shear modulus of the grain material cannot be about 30 times smaller,
because real compression tests on sand grains and on glass pearls (also:
G,~34x 10’ Pa) show identical macro stiffness behaviour.

2. Small ridges on the grain surface with a radius of » = will

. 7 .
ridge 2000 grain
solve the problem analytically (equation 1.), but then the deformation n of

the ridge on the grain becomes even larger than the ridge size r,,,, itself.

3. More complex spheres, for example ellipses, will give a higher strength but
not a lower stiffness according to Rothenburg and Bathurst (1992).
This means that the contact behaviour between two grains needs more attention.
The Poisson's ratio of quartz is about v, ~0.16. The friction angle is mostly

between ¢, ~20° and ¢, ~30°. The latter gives a friction between two grains of
about f g’g’ = tan(¢,) ~ 0.60. Before a test, the grain friction will be temporarily
decreased to fgfg =0.0 to obtain a high density. The friction between grain and
wall, for all tests, is zero f,, =0, except for the simple shear test, where no

shearing is allowed, so f,, = .
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3.1.2. Grain size

The average grain size is chosen to be » = 0.1 mm. In theory an infinite number
of grain size distributions can be made, however for most sands the sieve curves
show a straight line in a logarithmic graph. Those distributions are defined by the
r

max

average grain size 7 and the grain size ratio as can be seen in appendix 4,

Grain size distribution. The probability function of this "Type A" distribution is
illustrated in figure 12. Also a second distribution "Type B" is used, which can
be described by a linear function. The shape of the sample (i.e. the whole grain

: H : :
structure), for all tests, is rectangular W 2.50 except for the simple shear test in

which the sample 1s square: %: 1.00. All tests are carried out on a sample of a

thousand grains, because this amount was more than sufficient to get identical
test results for different samples created with identical micro parameters. Only
for the simple shear test, 4000 grains were used, because during this test also the
stresses in the centre of the sample are measured over about a thousand grains.

Type A Type B
f(r=r) f(r=r1)
p— 1 —
Tnax Tmin
T r
I.min T I.max
P(r=r) P(r=r)
1- 1
| T r | T r
Tinin T I'max Tinin T T'max

Figure 12. Probability function: grain size distribution type A and B
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3.1.3. Test parameters

The default lateral pressure was set at o, =0.1 MPa =1 bar. The total sample

deformation of 4% is reached in a thousand load steps: 7 40x107°. Twenty

iterations per loading step were sufficient to iterate accurately enough to the
equilibrium state. The cyclic loading of the compression test is between the 3 and
6 bar. In all cases the depth of a sample is chosen to be equal to the average
diameter of the grain (D = d= 2;) in order to be able to calculate the stresses.

3.2. Micro behaviour versus macro behaviour

3.2.1. Relative Density

When free grains are carefully compressed then a loose structure will be created
with a maximum volume of pores and a minimum of contacts per grains. In this
case, the relative density will be zero (R.D.=0). For two dimensions the
minimum number of contacts needed for creating a stable structure is on average
three per grain (for three dimensions this will be four).

By temporarily decreasing of the friction fgg1 between the grains, the sample

will shear to a denser structure. After compaction the friction will be increased to
a friction level fgg” which is necessary for the real test. In this way the relative

density can be controlled. For a temporary friction of f, g' = 0 the highest density

will be found (R.D.=1). A maximum density can also be reached by sprinkling
the grains one by one. A new grain will always create two new contacts for itself
and one for both neighbours, so the maximum number of contacts per grain will
be four (for three dimensions, this will be six).

density: low high
sample | 3.1 4.1

sample 11 3.0 3.9
sample I1I 3.0 3.9
sample [V 3.1 4.0

Table 2. Number of contacts per grain

Table 2 shows the influence of the density on the average number of contacts per
grain for eight different samples, made by Grain. The results are as expected. For

32



a low density the number of contacts is: n,, ~3.0 and for a high density
n,, ~40.

Figure 13 illustrates that the number of contacts per grain is not constant during a
confined biaxial test. At failure this number becomes more or less constant
(n,, ~3.3) for all samples.

3.8
3.6
3.4

3.2

Figure 13. Biaxial test: influence of the density
on the number of contacts per grain

During loading the number of axial (vertical) contacts increase somewhat, but the
number of lateral (horizontal) contacts decreases greatly. This can be seen in the
radar plot in figure 14. The grain-wall contacts are neglected in this plot. Since
the grain structure used, contains only 4000 grains, there would otherwise be too
many contacts for which the contact angle is exactly 0, 90, 180 or 270 degrees.
The decrease in lateral contacts is a sign of failure for granular materials. It
suggests a failure of the structure by loosening and eventually loss of lateral
contacts. It seems that granular materials fail because of tension failure. The loss
of horizontal contacts starts to become clearer when:

%o (A.93)

63
just as predicted in appendix 7, Biaxial test: analytical. This will not be the
maximum strength, because the grains still have to roll over each other for a
complete failure, which requires a higher loading stress.
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The Mohr-Coulomb model gives a relation between the angle of internal friction
and the strength of a non-cohesive materials:

o _ 1+ sin(¢") (20)
o, 1-sin(¢')
in which:

o, = major principal stress
o, = minor principal stress
. . . . . . . 1
The density, which is controlled by the friction during compaction f, , has a

major influence on the strength of these samples as can be seen in figure 15.
Several conclusions can be drawn from these curves:

1. Relative density is an important parameter for strength and elasticity.

2. A higher density causes a higher angle of dilatancy.

3. During failure the samples with low density will hardly consolidate to

higher compaction.

Especially for high density samples the angle of dilatancy is quite large. Perhaps
this is because in a two-dimensional model grains at failure have to roll
completely over another grain while in the three-dimensional reality grains can
pass partially sideways.

Bishop (1954) suggests that the analytical solutions of the angle of internal
friction by Caquot (1934) agree well with several air-dried non-cohesive granular
materials. According to these solutions the angle of internal friction for a biaxial
test depends only on the friction between the grains f :

. s
A. Triaxial test, where o, = 0, < 0,: sin(g') = 10437 (21)
+
88
B. Biaxial test, taking &, = 2122 sin(¢') = % S (22)
C. Biaxial test, normal plain strain: tan((o') = % S e (23)

Unfortunately, the following three important facts are not considered in Caquot's
solution:

1. Higher density gives higher strength.

2. Less circular shaped grains cause higher strength.

3. An infinite grain friction will not give infinite strength.
This means that Caquot's solution can be called, at best, an incomplete solution.
A complete analytical solution for the strength of a non-cohesive granular
material will be hard to develop.
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Figure 15. Biaxial test: influence of the density

36



3.2.2. Grain friction

One of the most important micro parameters is the internal friction between the
grains, f g[gI , after compaction. This parameter marks the transition between

elastic and plastic deformation on micro level.
In figure 17, two macro parameters are strongly influenced by an increase of the
internal friction:

1. The strength of the whole structure increases.

2. The dilatancy y increases as well.

When the internal friction fgg is zero, the grain structure will shear under every

circumstance to the maximum relative density. In this way the structure will
behave like a fluid and the volume will remain constant. This behaviour is very
clear in the numerical simulations.

No rolling  Rolling without shear  Dilatancy and contact breaking
Figure 16. Failure on micro scale

By contrast, a structure with infinite grain friction can collapse only by the
rolling of the grains. Triangle contact groups do not roll, but quadrangular and
more angular contact groups are able to deform despite the infinite grain friction
according figure 16. These rolling groups will act like rolling wedges, causing an
increase in pore volume (dilatancy) and a decrease in the number of (especially
lateral) contacts in the shear bands. This dilatancy will be largest for an infinite
grain friction, because all wedges will be mobilised, and not one will fail because
of shearing.
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Figure 17. Biaxial test: influence of the internal friction
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Also another conclusion can be drawn from these results. Even if the grain
friction is infinite, the strength will not be infinite. This means that for structures
with a low grain friction the strength is mainly determined by this friction, but for
a high friction the strength is mainly defined by the rolling of the grains. Other
tests show that if the rotation of the grains is fixed in combination with an infinite
grain friction, then an infinite strength is found, which is in agreement with the
previous theory.

It can be concluded that non-cohesive granular materials fail because of both
shearing and rolling, but only the rolling of the grains causes dilatancy and
contact breaking.

3.2.3. Poisson's ratio

The Poisson's ratio of quartz is not the main micro parameter to influence the
macro Poisson's ratio of the total granular structure. The rotation of the grains is
much more important. Figure 18 shows that a fixed rotation of the grains strongly
influences the compression test and the biaxial test.

Ad=0 versus Ad#0

c,and 04 G,and 04

compression
1 1 -
| 81
0 0
G G
3 O3
biaxial
1 ¥ 1 -
1 € 1 &
0 0

Figure 18. Influence of the rotation of grains
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In reality the rotation of the grains cannot be hindered, but in Grain this is done
to show the effect of the rolling of the grains. Without the rotation of these grains
there will be no lateral displacement. In this case, there is no failure in a biaxial
test and during a one-dimensional compression test the lateral stress will not
increase if the rotation of the grains is fixed.
According to the biaxial tests seen in figure 19, the Poisson's ratio has hardly any
effect on the results. By an increasing Poisson's ratio, only two parameters are
somewhat changed:

1. The Young's modulus £ increases slightly.

2. The angle of internal friction ¢' and therefore the strength of the sample

also increases slightly.

The macro Poisson's ratio or the lateral strain coefficient is not influenced by the
micro Poisson's ratio. This macro behaviour is influenced by the rotation of the
grains.

3.2.4. Lateral pressure

Four tests were done with different lateral pressures on an identical sample. The
results are shown in figure 20. There are only two macro parameters which are
influenced by an increase of the lateral pressure:

1. The stiffness E increases.

2. The dilatancy y decreases fractionally.
The angle of internal friction ¢' and the lateral strain coefficient at the beginning

of the test which can also be called the Poisson's ratio v, , are more or less

constant.

O3 ¢' e /4
1 bar 30.2° 0.17 14.2°
2 bar 31.6° 0.12 11.7°
3 bar 31.4° 0.12 10.4°
4 bar 31.6° 0.12 9.8°

Table 3. Biaxial test on sand: influence of the lateral pressure
Despite the non-linear contact behaviour, the results can be described quite well

with the advanced Mohr-Coulomb model which is discussed in appendix 5, Two-
dimensional continuum model.
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Figure 20. Biaxial test: influence of the lateral pressure
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The Young's modulus is not constant but depends on the stress. This stiffness
behaviour of non-cohesive materials has been found in appendix 7, Biaxial test:
analytical:

5
E, = E{;OJ (A.89)
in which: |
1
F=3
o, = %1% 150,
and:

1-v —
Kk =3 :3><1 0'16—137

" T2-v, T 2-016

n.dn_ (00002) x1968
nc/v =—= <= 9 = 190
n, V  8292x10

2

o .G 3 2
ErEf = L nc/v KV
Mi-v,) ") x,+1

2
5 9 3
_(~10° x10 ><1.90J 2%x137

3(1-0.16) 137+1
=444 MPa  at o, =1bar

This theoretical solution is in good agreement with the numerical results of the
Young's modulus found by Grain, listed in table 4.

o, E,, (Grain) E,, (theory)
1 bar 48.2 MPa 50.8 MPa
2 bar 65.2 MPa 64.0 MPa
3 bar 76.4 MPa 73.3 MPa
4 bar 84.1 MPa 80.7 MPa

Table 4. Young's modulus versus lateral pressure
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3.2.5. Average grain size and shear modulus

There is a direct relation between the average grain size, the stress, the shear
modulus (non-cohesive materials) or spring constant and micro cohesion
(cohesive materials). In the computer model Grain the grain sizes can be scaled
by a factor n without changing the contact forces, but also the forces can be
scaled without changing the grain sizes and without any displacements. Table 5
shows the scale factors of the other parameters.

scaling: 7V F
r n -

F - n

o l/n2 n
G, 1/n’ n
k,/d 1/n’ n
', 1/ n’ n

Table 5. Scale factors for grain or force sizing

This means that the average grain size has absolutely no influence on the macro
behaviour of the granular material. It will only influence the forces on micro
scale. Hence, the results of non-cohesive tests for other shear moduli can be
found by changing the stresses instead.

3.2.6. Grain size distribution

Four samples were made with different grain size distributions, but with an
identical average grain size. Figure 21 demonstrates that the distribution has
hardly any influence on the behaviour of the sample during a biaxial test. Only
the strength increases somewhat with a wider grading of the grain sizes.
Two conclusions can be drawn from these curves:

1. The grain size distribution is not very important.

2. A thousand grains are sufficient to make good reproducible samples,

especially for the elastic zone.
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Figure 21. Biaxial test: influence of the grain size distribution
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3.3. Continuum modelling

3.3.1. Compression test

Since the biaxial test is covered in detail, it is interesting to see if other
characteristic tests can be described with the same macro parameters. If the

numerical vertical stress o, in a compression test is compared with the vertical
stress o .., (dashed line in figure 22) calculated with a Young's modulus

depending on the stress:

p
Ej, = Ef[ % J (A.89)
O-ref
in which:

1

p= 3
o +o

o, = 12 2 x150,

E, =444 MPa at o, =1bar

then it is clear that the theory describes the numerical results quite well.
Sometimes the Young's modulus is written as a function of vertical stress like

this:
3 p
E,=: —Emf( % ] (24)
4 O,y
because the vertical stresses are normally better known than the average pressure.
compression test biaxial test
E,, 44.4 MPa 44.4 MPa E,,
B 0.333 0.333 B
(63/61),n 0.18 0.17 (&:/8)),0n
CACAN 0.35 0.33 (&,/¢)

Table 6. Compression test versus biaxial test
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For a two-dimensional continuum model the Poisson's ratio is equal to the lateral
stress coefficient of the compression test and the lateral strain coefficient of the
biaxial test:

y= (ﬁj - (ﬁj (A.19+22)
O-l 81

compression biaxial

Unfortunately, these coefficients at the beginning of the test are not identical to
those at the end of a test, so a constant Poisson's ratio cannot be defined.
Nevertheless, the lateral strain coefficient found at the beginning as well as at the
end of the compression test are almost equal to the lateral stress coefficients of
the biaxial test.

. . . O, . .
During compression, the stress ratio —- increases constantly, but it can never
o
3

exceed a certain level according the failure criterion:

(ﬁj 1S 0p with  g=302° (25)
o/, l=sin(¢")

Therefore the lateral stress coefficient in the end is limited by the failure criterion
as well:

(ﬁj z(ﬁj - 033 (26)
O'1 . O'1 .

nd nd
This causes the bending curve of the lateral stress coefficient in figure 22, as it
approaches this asymptotic limit.
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The relative density of the structure in the compression test of figure 23, is very
important. Low density samples will react less stiffly and will have continuously
irreversible deformation during cyclic loading, which finally leads to a higher
density.

S

[bar]
6 -
high density low density

1 : : : | g
0 0.005 0.01 0.015 0.02

Figure 23. Compression test: influence of the density

What is very interesting, is the lateral stress coefficient in figure 24. For the
virgin load path, as well as for the unload path and the reload path, this
coefficient starts low and ends high, which means that there is a jump in between
these paths. Because of this, the unload paths are different from the reload paths.
Therefore a very small hysteresis loop can be seen in the curve of the lateral
stress o,. The surface of this loop represents the energy loss during the plastic

deformation.
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3.3.2. Confined versus unconfined test

The unconfined biaxial test is in theory a different test than the confined biaxial
test, because the stresses and not the strains are prescribed. Therefore the
macroscopic failure mechanisms of both tests can be different, for example, shear
bands can influence the stresses in a confined biaxial test. But as figure 25
shows, the curves of the stress behaviour for the confined biaxial test and the
unconfined test are almost equal. For an unconfined biaxial test, it is more
complicated to measure the volumic deformations, which makes the confined
biaxial test more useful for non-cohesive granular materials.

S
3
4 -
confined
3
\ unconfined

7
1 : : : | €,

0 0.01 0.02 0.03 0.04

Figure 25. Confined biaxial test and unconfined biaxial test are equal

3.3.3. Shear band development

Two questions are often heard in discussions about shear bands. The first is about
the thickness and the second about the direction of the shear band.

Miilhaus and Vardoulakis (1987) have measured the width of a shear band with
X-ray photographs of a fine sand and a medium sand. They have found values of
respectively 18.5 and 13 times the mean particle diameter. Figure 26 shows a
numerical simulation of an unconfined biaxial test. The displacements of all four
thousand particles are drawn. Here a shear band is found of about 5 times the
average grain diameter. Maybe it is only that thin because of the small ratio
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between the diameters of the smallest and largest grains or maybe this is caused

by the circle shaped grains instead of a more complex sphere.

A second point of interest is the direction of the shear band. Figure 26 shows the
grain displacements of two different unconfined biaxial tests from 5% to 10%
deformation. The sample on the right had no wall friction, so the weakest areas
were at the top and the bottom, only there the grains bend away at failure. The
sample on the left had its weakest point in the middle because of the
reinforcement caused by the shear stresses at the walls. A clear shear band is
formed in the centre with a direction of #=152°+2°. This is the same as

suggested by the advanced Mohr-Coulomb theory, namely:
0= 45°+% =45°+
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Figure 26. Unconfined biaxial test: displacements of the grains
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3.3.4. Simple shear test

In Cambridge a shear apparatus was developed by Roscoe (1970) in which (as
well as possible) a pure angle deformation was imposed. This test, which is
called the simple shear test is described in appendix 5, Two-dimensional
continuum model. Three different failure mechanisms have been suggested for

this test:
1. Horizontal shearing, by analogy with the shear law of Coulomb.
2. Vertical shearing, according to De Josselin de Jong (1992).
3. Lateral contact failure, according to the author.

GYY' ny'
—p-T —- T
[ ]
I
‘ It T
G XX / / GXX GXX / / GXX
‘ — ~G—
[ I
[ \
7| ‘ T
T — T
'ny 'ny
horizontal vertical
Oyy l
—-T
.Y ~ T
— ~G—
T ‘(\
T ~—
lateral

Figure 27. Failure mechanisms

If failure occurs by exceeding the maximum shear stress in a certain direction,
which is suggested by the Coulomb criterion, then only the stress and
deformation fields of the horizontal and vertical failure mechanisms can be both
static and kinematic admitted. In that case, the horizontal stress during failure has

to be, for the horizontal mechanism:
1+ sin’(¢'
o, =S (28)
Y 1-sin’(g) "
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and for the vertical mechanism:
1-sin’(¢))
o . =—">5—7%0
Y 1+sin’(g)
When the horizontal stress does not meet these particular values in any (artificial)
way, no failure can occur according to this Coulomb criterion. This cannot be the
case.
If failure takes place by the breaking of the contacts in the direction of the minor
principal stress, because tension forces can not be absorbed on micro level, then
only lateral contact failure can occur. This also means, that the shear direction
can not be obtained from the Coulomb line, because failure does not depend on
micro shear failure but on micro lateral contact breaking. This statement can
easily be verified with Grain, by comparing the average rotation of the grains y

(29)

with the rotation of the vertical walls y. The ratio of these rotations during
failure is for the horizontal, vertical and lateral mechanism respectively equal to:

74200 or 10 or 05 (30)

4
The dashed line in figure 29 shows that the lateral failure mechanism is the only

correct one (Q ~ 0.5). During failure, up to 25% of the contacts are broken,

which fits with this mechanism as well. Also the equal double sliding of the
Mohr-Coulomb model will explain the 50% grain rotation, as suggested in
appendix 5, Two-dimensional continuum model, but this model cannot explain
the loss of contacts.

For the correct performance of the simple shear test one has to consider two
boundary conditions:

1. Because of dilatancy during the plastic phase the horizontal and vertical
strains will not remain at zero. A fixed height or width of the shear box will
cause increasing wall forces. Therefore the walls have to be stress
controlled.

. 1 :
2. A constant shear strain (¢, =€, = 5;/ ) has to be imposed on the complete

wall. This means that the grains are not allowed to shear over the wall, so
the friction between grain and wall has to be infinite ( f,, =), but even

then the grains can roll away, which must be prevented by glueing the
grains to the wall.

The curves in figure 28 show the effect of neglecting this last boundary condition
(f, =0.60). Because of shearing between grain and wall, moments are

developed at the walls (eccentricity of e~0.x H), which cause a non-
homogeneous stress field in the simple shear apparatus. This was made clear by
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Allersma (1987). In his simple shear tests the normal stress distribution was far
from constant. The shear stress inside a sample, however, appeared to be not so
much influenced by the incorrect boundary conditions. Therefore much better
results are obtained if the stress is measured in the interior of a sample.

inside

0.6 -
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0 0.005 0.01 0.015 0.02

Figure 28. Simple shear test: influence of incorrect boundary conditions

The following table shows the results of the simple shear tests with constant
boundary conditions, presented in figures 29 and 30. The results obtained can be
predicted quite accurately with the results of the previous biaxial tests, although
the shear modulus is somewhat too small.

Test: G, ¢ 74
Biaxial 19.5 MPa 30.2° 14.2°
Simple shearI | 18.1 MPa 28.6° 16.9°
Simple shear I | 16.7 MPa 32.4° 14.5°

Table 7. Simple shear versus biaxial test
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For the second simple shear test, one phenomenon is more difficult to explain
with the continuum theory. The maximum shear stress of the horizontal wall is
higher than the maximum shear stress of the vertical wall. According to the
continuum theory these should be equal, although the maximum stress of the
horizontal wall is expected to be larger than the vertical wall because of the
larger lateral pressure.

For both simple shear tests it is found that, during the elastic phase and the
plastic phase, the major principal direction is similar for the (inside) stresses and
the total strains (= £, ). This coaxial behaviour is presented in the figures 31

and 32. In order to calculate the principal direction of the strains, the strains &,
and ¢, at the beginning of the test have to be known. These were calculated

with equation (A.9). The theoretical major principal direction during failure,
based on the wall stresses, is solved analytically in appendix 5, Two-dimensional
continuum model:

-1 |o,—o
cos2p) - ——L_(2=) (A1)
sin(¢@") (aw + Gxx)
So:
S =45 for simple shear |
S =64° for simple shear II

With this coaxial relation between stress and strain for the elastic deformation
(B, = B,) and the plastic deformation ( 5 = f3,), also the results of a true simple

shear test can be predicted. In a true simple shear test the horizontal strain
(&, =0) is kept constant, instead of the horizontal stress (o, =0). In figure 33

the results of a true simple shear test with Grain are compared with the
continuum theory, described in appendix 5, Two-dimensional continuum model,
using the parameters of simple shear test I. The almost perfect prediction with
this bi-linear continuum model suggests that during failure the rolling of the
grains will be on average in the direction of the minor principal stress. In other
words, granular materials behave coaxial because the grains escape in the
direction of the lowest resistance.

The double sliding model of De Josselin de Jong (1971), which is also mentioned
in appendix 5, shows that granular materials (can) behave non-coaxial if failure
occurs because of shear failure. The fact that non-coaxiality cannot be found
agrees with the conclusion earlier made, that granular materials will fail not
because of shear failure but because of tension failure.
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4. COHESIVE GRANULAR MATERIALS

4.1. Default parameters

In order to gain some insight into the failure mechanism and the moment of
failure of cohesive granular materials, several unconfined biaxial tests were
modelled with Grain. The default micro parameters are chosen as representative
for sandstone of dense compaction, as listed in the following table:

soil data grain size test parameters
k, 1 MN/m r 0.1 mm o, 10 bar
G, - type A and B AH 40x107°
H
v, 0.16 o 4.00 n, 20
S 0.60 H 2.50 - -
/4 (3.00)
S 0.00 - -
', 100 MPa n, 1000
(4000)

Table 8. Default micro parameters for sandstone

4.1.1. Soil data

The tests on sandstone are based on the linear contact equations, so the linear
spring constant &, 1s used for all contacts. In practice this spring constant 1s very

difficult to measure. Therefore an arbitrary value is chosen. The Poisson's ratio of
quartz is about v, ~0.16. The friction angle is about ¢, ~30°, so the friction

coefficient between two grains will be f, f = tan(¢,) ~ 0.60 . Before cementation,
this friction coefficient will be temporarily decreased to zero fgfg =0.0 to obtain a

sample of high density. The friction coefficient between grain and wall, for all
tests, is zero f,,, = 0. The cohesion ¢', is unknown and is chosen to be 100 MPa

in order to give the sample more or less the same strength as Castlegate
sandstone.
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4.1.2. Grain size

Both the exponential (Type A) and the linear (Type B) grain size distributions of
the previous chapter (about non-cohesive granular materials), were used for the
modelling of cohesive granular materials. The shape of the sample for all tests

H : . . :
was rectangular, W =250, except for the thick-walled cylinder test in which the

) .. . r
ratio between the radii of the inner surface and outer surface - = 3.00. Most of

£

the tests were done on a sample of a thousand grains, because this number was
more than sufficient to get identical test results for different samples created with
identical micro parameters. A few tests were carried out on four thousand or ten
thousand grains.

4.1.3. Test parameters

The default lateral pressure was chosen to be o, =10 bar=1MPa. The total
deformation of 2% was reached in half an hour on a normal personal computer

with 500 load steps: N7 =4.0x107. Twenty iterations per loading step were

sufficient, most of the time, to iterate accurately enough to the equilibrium state.
In all cases, the depth of the sample was chosen to be equal to the average
diameter of the grain (D =d = 2r) in order to calculate the stresses.

4.2. Micro behaviour versus macro behaviour

4.2.1. Number of grains and shape influence

Several biaxial tests were done to find out how many grains are necessary to
describe a representative part of a sandstone sample with homogeneous boundary
conditions. These are registered in table 9. Figure 34 shows that the stress-strain
behaviour of sample A with 250 grains differs from the samples B, I and C with
more grains, so at least 500 grains are necessary to describe a homogeneous
loaded sample. The stiffness and the strength of the samples with at least 500
grains are all quite similar. To minimise error, all biaxial tests in this report were
carried out on at least a thousand grains. The percentage of broken contacts is
reflected by the dashed line in the same figure.
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A stout sample shows in figure 35 identical stress-strain behaviour in comparison
to the three different slender samples I, II and III. This means that the shape of a
sample does not influence the failure behaviour.

Sample n, HIW

A 250 2.5

B 500 2.5

I 1000 2.5

11 1000 2.5
111 1000 2.5
stout 1000 0.4
C 4000 2.5

Table 9. Different samples

The results of the compression tests, confined biaxial tests and unconfined
biaxial tests can be described with the Mohr-Coulomb theory and these tests all
give comparable results for the Young's modules and the Poisson's ratio. These
parameters are listed in the table below. At the beginning of a test, the measured
values are slightly lower than just before failure, because new (non-cohesive)
contacts are formed during the compression of a sample. These contacts cause an
increase in the total stiffness. The elastic parameters listed in the table below are
measured both for type A and type B grain size distributions.

Test: E [GPa] v
Compression 39-4.2 0.11-0.13
Confined Biaxial 3.8-42 0.04 -0.19
Unconfined Biaxial 39-42 -

Table 10. Young's modules and Poisson's ratio
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4.2.2. Grain size distribution

In reality, it is complicated to make two identical sandstone samples with only
different grain size distributions. This is modelled with Grain to study the
influence of the distribution. Figure 36 shows the Mohr circles at failure for the
two different distribution types.

ny

[MPa]
20 + —

=
15 1 e Ty
——
10 1 N NN

0 5 10 15 20 25 30 35 40
Figure 36. Mohr-Coulomb lines

Distribution type A contains more small grains than large grains, while
distribution type B is linear. For both grain size distributions the moment of
failure of the samples can be accurately described by the Mohr-Coulomb
parameters ¢' and ¢'. The different distributions cause only a negligible
difference in the strength of the samples. This means that both the average force
and the deviation of the forces do not depend on the grain size distribution,
because the formation of micro cracks depends on this average contact force and
its deviation .

Type c' ¢
A 9.3 MPa 220
B 9.6 MPa 220

Table 11. Cohesion and angle of internal friction
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4.2.3. Contact forces

In the appendix 7, Biaxial test: analytical, it can be seen that the average normal
and shear forces for biaxial tests are given by the equations A.73:

(A.73)
F!" = E[(l—i]cs
s, a 0_3
in which
o2
! n.d
or:
—2
7 _40;
! n

clv

These analytical solutions for the average normal and shear forces (dashed lines
in the figure below) in relation to the angle between the contact and the
horizontal axis, are in good agreement with the average forces found by
simulating a sandstone sample of 1000 grains at 10 MPa loading pressure with
Grain.

F, and F,
[N]
0.5 +

04 1
03 |
02 |

0.1 +

10 20 30 40 50 60 70 80 90

Figure 37. Biaxial test: average normal and shear forces
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The radar plot of these forces in figure 38 shows that the normal forces measured
are almost identical to the analytical solution, however the average normal force
of the vertical contacts seems to be somewhat too large. This is because there are
relatively more vertical contacts due to the horizontal walls. The shape of the
curve of the shear forces is correct, but the forces are in general 20% too low.
This is probably because of the high correlation (» =0.44) between the shear
forces and the square of the contact length, whereas the analytical solution
assumes no correlation.

The average normal force will always be positive i.e. pressure forces. Still, it is
found that failure always occurs due to local tension failure. This means that not
only the average value of the normal force is important, but also the deviation of
the forces. So, to determine the moment of failure, the influence of the deviation
of the forces should also be determined.

The normal forces are, especially for the lateral (horizontal) contacts, very small.
During loading the deviation of the forces increases, while the average normal
force of the horizontal contacts remains constant. So the lateral contacts are
expected to collapse first due to tension failure. This means that mainly axial
(vertical) micro cracks are expected, since the cracks are perpendicular to the
broken contacts.

Figure 38. Biaxial test: average normal and shear forces
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4.2.4. Failure mechanism

One of the most interesting phenomena of the failure of a sandstone sample is the
nucleation and growth of a crack. Therefore this is made visible with Grain.
Figure 39 shows the failure mechanism of a cohesive granular material during a
biaxial test in detail. If cemented contacts are broken, then a thick line
perpendicular to the contact is drawn. The horizontal walls are also represented
by thick lines, the rubber vertical membranes are not shown.
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Figure 39. Failure mechanism of a cohesive granular material

The failure mechanism of this cohesive granular material can be divided into
three phases:

A. During loading more and more contact forces become negative as predicted
in the previous paragraph. The contacts do not break due to shear failure as
Coulomb suggests but due to tension failure, because the deviation of the
forces increases during loading, while the average force of the horizontal
contacts remains constant.

B. A crack weakens the surrounding area and increases the probability of a
new crack in this area (second order effect). In this way a failure surface is
formed. Although this surface is diagonal, the micro cracks are mainly
vertical, which means that mainly horizontal contacts are broken. This
phenomenon was also found for concrete and mortar by Stroeven (1973).
Failure was caused for these materials by axial tensile (cleavage) cracks.

C. Grains with broken contacts act as rollers between the lower and upper part
of the sandstone. The resistant vertical force becomes less and less.

69



During the failure of a sample, several failure surfaces can also be formed as
presented in figure 40.
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Figure 41 shows the displacements of the 2000 grains of a sandstone structure
after failure. A second failure surface can also be seen, as in most cases, one

surface is dominant.
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Figure 41. Displacements during a biaxial test on 2000 grains
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Figure 42 presents the rotations of the grains in a sample of 4000 grains. Before
the test all the radial lines on the grains were pointing upwards. These lines
indicate that only the broken grains within the shear band(s) are rolling.
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Figure 42. Failure surface during a biaxial test on 4000 grains
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4.3. Continuum modelling

The appendix 7, Biaxial test: analytical, shows that both the stiffness behaviour
and the strength behaviour of cohesive granular materials can be described with
the Mohr-Coulomb model. With the analytical solution of the average forces, the
stiffness behaviour of rock samples has been solved. The Young's modulus and
the Poisson's ratio of cohesive granular materials are given by:

E=n, ]z; . " with n, = an”
o (A.83)
K, —1
V=—
K,+1
This yields for the default situation:
(2x107) x 1908
n, = > =1.80
848 x 10
6
E =180x 10 - X 137 =520 GPa (31)
2x107  137+1
V:_1.37—1 016
1.37+1

The elastic behaviour of the numerical sandstone simulations registered in table

9. can be described by:
E =413 GPa

v=01

The analytical values are based on the assumption that the grains do not rotate,
which is only the case on average. Therefore, the prediction for the Young's
modulus is 26% too high, and the Poisson's ratio 26 % too low. If the rotations
are fixed in Grain, then indeed a negative Poisson's ratio of v =—-0.07 is found.
This means that also the rotations of the grains influence the elastic behaviour of
the sample in an important way. For some sands with a high density, a negative
Poisson's ratio is found, which is officially possible. This means that in these
particular cases the grains will hardly rotate.

Using the numerically measured Poisson's ratio a more accurate Young's
modulus is found:

(32)

E k
—— —n n_ A.85
1_ v clv Zd ( )
So,
10°
E=(1-01)x180x ————
( )X X2><2><10_4 (33)

=4.05 GPa
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The strength of a cohesive material depends on the contact strength and the

e e . . . o :
normal force distribution. This distribution at isotropic compression (— =1) is
3

far different from the distribution during loading (i >1). At a certain moment,
3

even a small number of forces becomes negative (tension). These are the forces
causing the final failure. These tension forces only occur in the lateral contacts
(|a| <10°). For a certain axial and lateral stress level the amount of broken

contacts becomes too large to bear the axial load. This is the beginning of failure.

lateral contacts
(lol < 10°)

[%]

30

Figure 43. Biaxial test: normal force distribution

Appendix 7, Biaxial test: analytical, shows that the failure behaviour of the
cohesive granular materials can also be described with Mohr-Coulomb. The
angle of internal friction is constant and does not even depend on the contact
force distribution. The cohesion depends only on the strength of a single contact
and on the number of contacts per micro volume:

sing'= l
3 (A.95)

73
c'= Culley with: n, = dn,
1632 v
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So, in this case:
@'=19.5°

_ 100 MPa x 1.80

1672

The deviation with the measured angle of internal friction (¢'=22°) and

cohesion (c'=9.6 MPa) of table 11 is not too large. So, an analytical relation
between the micro parameters and the macro parameters is found for cohesive
granular materials.

To summarise, it is analytically demonstrated that both the elastic behaviour and
the moment of failure can be described with a Mohr-Coulomb model, though
failure does not occur due to shear failure as Coulomb suggests, but due to the
tension failure of the lateral contacts. So, the "angle of internal friction" can
better be called "angle of lateral tension".

= 8.0 MPa
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4.4. Cylinder test

4.4.1. Grain versus reality

During radial compression tests on real thick-walled cylinders four phenomena
were found which could not be explained by the Mohr-Coulomb continuum
model described in appendix 5:

1. Failure occurs on micro level due to tension cracks.

2. These cracks are not diagonal to but parallel to the borehole surface.

3. These cracks cause two diametrically opposite breakouts.

4. Functional failure starts at a higher radial pressure than predicted.
One of the goals of the present research is to find the reasons for these anomalies.
Therefore both the cylinder test and the biaxial test were simulated with Grain.
All cylinder tests were carried out on exactly the same material as the former
biaxial tests. The only difference with the previous samples is the number of
grains which in this case were, one, four or ten thousand.
Just like real cylinder tests, the phenomena mentioned also occurred in the
cylinder tests with Grain. The following figure shows the micro cracks in a thick-
walled cylinder sample of a thousand cohesive grains made by Grain.

7 0¥ ¢
ATt
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Figure 44. Tension cracks in a cylinder of 1000 grains
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After failure many micro cracks (thick lines) parallel to the inner surface are
found. These are all caused by tension failure.

The first two phenomena, the tension cracks and their direction, are already
explained in the previous chapter. Local tension forces can be created only by
pressure forces and, especially for the contacts in the direction of the minor
principal stress, the average normal force is relatively very low. Therefore mainly
micro cracks in the direction of the major principal stress are expected, which
means parallel tension cracks. In this chapter, the reason why thick-walled
cylinders fail at a higher compressive stress than predicted will be explained.

4.4.2. Radial pressure at failure

The stresses in the sandstone sample during the cylinder test depend on the axial
and radial pressures. This has been solved analytically in the appendix 8,
Cylinder test: analytical, for a continuum model with a constant Young's
modulus. The axial, tangential and radial stresses are found to be:

o.=F

b’ a’

o, :(bz _azj(nr—szr (A.113)
b a’

) L

With these equations the radial pressure at failure can be calculated using the
failure criterion of Mohr-Coulomb:

sir1¢‘(0'1 +03)+2c'cos¢5‘:(01 —03) (A.13)
The strength parameters c¢'=93 MPa and ¢'=22° (Type B grain size

distribution) were already determined with biaxial tests. For the cylinder test, the
lateral stress at the inner surface is zero (o, =0), so the tangential stress at

failure will be:
_ 2c'cosg’
1 —-sing'
The ratio between the radii of the inner surface and the outer surface remains
constant:
a —

1
b 3
The radial pressure at failure depends both on this ratio and the tangential stress
at the inner surface:

Gtt,r:a _ g ’
22 ] -

O, ., =0,

tt,r=a

=27.6 MPa (34)

(35)
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So, the radial pressure at failure of this cylinder (Type B) is expected to be:
P =123 MPa

However, the cylinder test on four thousand grains with Grain seems to fail at a
pressure of about 29.7 MPa, which is much higher than the predicted value.

This happened also with a sample of ten thousand grains (Type A) where
P =30.2 MPa (figure 45) instead of 12.7 MPa.

breakout

There are two reasons for this large deviation. Firstly, the influence of edge
effects is neglected. Secondly, there is a definition difference between local
failure and functional failure.

Local failure is the moment the strength of a material in a certain area starts to
reduce. Because the pressure-strain relation of a cylinder test has no maximum,
the moment when the first cluster of grains starts to break out of the inner surface
wall, is normally assumed to mark the radial pressure at failure. This is the
moment the borehole looses its function. This functional failure happens at a
much higher pressure because of the large rest capacity of a thick-walled cylinder
test.

P, [MPa]
n ¢,broken [%]
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10Xn ¢,broken
40 | N
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Figure 45. Cylinder test on 10,000 grains:
Radial pressure and percentage of broken contacts
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But, in fact, this is not the real moment of failure of a cylinder. In the former
biaxial tests failure occurred at a percentage of broken contacts of about
n =1%. In a cylinder, cracks occur only near the borehole in an area of

c,broken

about 10% of the total cylinder surface. The cylinder has failed when 1% of the
contacts in this particular area is broken. From this point P, on, more and

failure
more contacts start to break and the cylinder stiffness and the gradient of the
curve start to decrease. Therefore this point has to be the radial pressure at
failure.

If a borehole is loaded with a radial pressure which is in between this local
failure pressure and the functional failure pressure, no breakouts can be seen, but
much lasting damage is done to the borehole.

4.4.3. Surface stresses

Figure 46 shows the tangential and radial stresses in a cylinder of four thousand
grains at a radial pressure of P. =14.2 MPa. The lines with the markers represent

the stresses measured by Grain, with the sum of the contact forces as mentioned
in the appendix 6, Micro-macro relation:

o, = %i(dnk F,) (A41)
k=1

Unfortunately, local strains cannot be measured in this way, by summation of the
contact displacements over the contacts, according to the same appendix.

The dotted line in figure 46 is the analytical solution for a sample of constant
elasticity. The dashed line shows the numerical solution based on the local (not
constant) elasticities.

If the stresses of this analytical solution for a sample of constant elasticity are
compared with the results of Grain then the analytical solution seems to predict
the stresses quite accurately, except for the fall in the tangential stress at the
surfaces. This fall can also be seen in the numerical simulation work of Thallak
(1992).

This fall occurs because there are less contacts at the surface of a sandstone
sample than average. Only at a distance of two times the average grain radius can
this edge effect be considered negligible. In theory the number of contacts per
volume 7, 1s zero at the surface, 50% of the average value at a distance of one

v

grain radius, and at a distance of two radii (one diameter), the amount of contacts
1s almost average. Figure 47 shows this in a cross-section of the cylinder of 4,000
grains, with a gauge of 51 times the average grain radius.
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In appendix 7, Biaxial test: analytical, a linear relation between the Young's
modulus and this number of contacts per volume is found:

E=n,, ﬂ K

d x, +1
This relation has been used to calculate the local Young's moduli. With a
numerical finite element model, the stresses in the cylinder can be calculated
using these moduli. Because of the lack of contacts at the surface, the Young's
modulus will be lower, which explains the fall in the stresses. The numerical
prediction of the stresses in figure 46, is almost equal to the stresses in Grain,
even at the surfaces. So, because of a lack of contacts at the boundaries the
Young's modulus and therefore also the tangential stress will be lower. This
effect will take place only in a thin layer near the inner surface: a <r <a+d . In
this area not only are the stresses lower but there are also hardly any lateral
contacts to break, so failure does not start at the surface (r#a) but just
underneath (7 = a +d ). This layer of lower tangential stress is so thin, that it will
only increase the strength of the cylinder with 4,000 grains by about 34 percent
and the cylinder of 10,000 grains by about eighteen percent:

P _sind'
ot 178N g (37)

Ea 1 -sing'-2 a
a

(A.83)

In reality the borehole is relatively large (a >>d ) so most of the times this edge
effect can be neglected.
This theoretical prediction of the radial pressure at failure P

r.a+d

is quite close to

the pressure P, found by Grain. The first breakout will be found at a higher

,failure

pressure.
Theory Grain
nc Typ e Pr,a Pr,a+d r, failure r breakout
4,000 B 123 MPa | 16.5MPa | 153 MPa | 29.7 MPa
10,000 A 127MPa | 15.0 MPa | 15.7MPa | 30.2 MPa

Table 12. Pressure at failure: Prediction versus Grain

Although the bi-linear Mohr-Coulomb model predicts the radial pressure at local
failure quite well, this model 1s inappropriate for predicting the radial pressure at
functional failure, because it can not handle hardening and softening behaviour.
According Papamichos and Van den Hoek (1995) a tri-linear Cosserat-Mohr-
Coulomb model with hardening and softening gives much better predictions
concerning functional failure than the conventional continuum models.
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4.4.4. Cylinder wall breakouts

Laboratory observations of borehole breakouts in several sandstones show very
often stable breakout shapes, according to Zheng et all (1989) and Ewy and Cook
(1990 II). In the default cylinders made with Grain, breakouts occur all along the
borehole surface, but the two diametrically opposite breakouts never occur.
Maybe this phenomenon depends on the history of a natural sandstone. During
formation of sandstone the vertical effective stress is about two times higher than
the horizontal stresses and sometimes also the stress of one horizontal direction is
larger than the stress of the other perpendicular horizontal direction. These
different stresses cause different contact forces. Thus, the horizontal contact
forces will be smaller than the vertical ones. Therefore a horizontal contact will
form in time a smaller cemented contact surface. In other words, the found macro
cohesion will be smaller for triaxial samples loaded in the direction of gravity
than for samples loaded perpendicular to this direction. This can be an
explanation for the mentioned breakouts. In figure 48 the micro cohesion of the
horizontal contacts is made two times smaller than the micro cohesion of the
vertical contacts. A uniform radial pressure of 11.2 MPa is sufficient to create
two opposite breakouts in this anisotropic sample.

Figure 48. Two opposite breakouts in a cylinder of 10,000 grains
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4.5. Three point bend test

A familiar test to measure the strength of a concrete beam is the three point bend
test. This test is simulated in Grain with a small beam
(hxIxd =398 cm x 102.5cm x 2.00 cm) containing a thousand grains. Just
like the cylinder test the beam will fail on the edge but this beam has no rest
capacity, so a sudden failure will occur.

One of the problems of a real concrete beam is the small number of (gravel)
particles and contacts so the assumption of a homogeneous material, which is
necessary for a continuum approach, is not completely valid. The smaller the
number of particles, the larger the deviation of a group of test results will be. As
the results of table 13 show, the predicted vertical load at failure is indeed far
from the numerical simulated value.

Bending test vertical load
predicted (analytical) 27 kN
measured (numerical) 43 kN

Table 13. Vertical load at failure

Just before failure, the compressive forces (black lines) in the beam in figure 49,
show a very clear arch from the left support upwards to the vertical load and
downwards to the right support. The underside of the beam shows mainly
horizontal tensile forces (grey lines) with small vertical compressive forces,
which is analogous with the formation of local lateral tensile forces in the biaxial
test. In other words, the results are as expected.

In addition, the crack (thick black lines) in the beam in figure 50, formed during
failure, starts at the bottom of the beam and grows from weaker area to weaker
area, which are the larger pores. A crack can also lead to a dead end if the area
above the crack is too strong. A nice detail is the last remaining contact in the
failure surface causing a few high tensile and compressive forces on the right of
the failure surface.

It is remarkable, that the micro cracks have the same direction as this failure
surface, which is also the case for the cylinder test but which is definitely not the
case for biaxial tests. Nevertheless, the micro cracks are always in the direction
of the major principal stress, i.e. the axial direction.
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Figure 50. Concrete beam after failure
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A particular case in cohesive granular materials is the crystal structures in which
0.0.0.9,9/04%8!
a4

all the grains are having the same size. Because of this, these materials have a
completely regular structure, which causes different behaviour than normal

cohesive granular materials.

5. CRYSTAL STRUCTURES

Figure 51. Crystal structure

635 grains, a biaxial test was done to
r

show this behaviour. The structure has almost the same parameters as sandstone.
The only difference with the previous tests on cohesive granular materials is that

On a crystal structure of 15x21+16 x 20

1. Because of this, crystal

max __

in this case all grains have the same size, so

min

structures belong both to the logarithmic grain size distribution (Type A) and the

linear distribution (Type B).

r
The grains all have six contacts in specific directions. All contacts form
triangular micro structures, so not one quadrangular structure is formed. These

quadrangular structures were the fundament of failure of non-crystalline
structures, because they caused tension failure in the contacts in the direction of
the minor principle direction. That is the reason why crystal structures fail at
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higher axial stress and via a different failure mechanism. Even though all micro
parameters are equal to those of sandstone, this crystal structure is extremely
strong. Figure 52 shows that the sample fails only at 417 MPa!

500 +
417 MPa
400 1
300 +

200 +

100 +

0 0.01 0.02 0.03 0.04 0.05 0.06
Figure 52. Biaxial test on a crystal structure of 635 grains

In appendix 9, Crystal: analytical, it is found that during the elastic phase of a
biaxial test there are only three types of contact forces in this crystal, and these
are solved by:
o 1 (K'V + 2)0‘1 -K,0,
"6C  (k,+1)

F :LM\@ (A.127)
6C (KV+1)
: _L(K‘V -1)o, +(1(V +3)0'3
"6C (x,+1)
in which:
1
C=——
4372
-V
K,=3 £ =137
2—-v

U
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The following figure shows that the numerical results of the contact forces is
close to the analytical prediction (dashed lines).

F!
[N]
0.020 -

0.015

0.010

0.005

Figure 53. Biaxial test: Contact forces in a crystal structure

The stiffness ratio, x,, is just above one so the horizontal force F " will never

t
become negative, and as a result of this, tension failure can never occur. The
second criterion for failure is the shear failure, but since the shear force increases
even more slowly during loading than the normal force, this will happen at a very
high axial pressure. Therefore this crystal is much stronger than a non-crystal
sample with identical micro parameters.
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6. CONCLUSIONS AND RECOMMENDATIONS

6.1. Conclusions

90

Models based on equilibrium will give the same results for quasi-static
problems as models based on motion.

Models based on equilibrium will iterate faster, but cannot be used for
dynamic problems unlike models based on motion.

The results for non-cohesive granular materials can be described with an
advanced Mohr-Coulomb model.

The results for cohesive granular materials can be described with a Mohr-

Coulomb model, but due to softening behaviour only until the plastic phase
(breaking).

An analytical relation between the micro behaviour and the macro
behaviour is found for cohesive granular materials.

Although the Coulomb line describes the moment of failure of a granular
material quite well, the failure does not occur due to shear failure as
described, but due to local tensile failure on a microscopic level, which is
causing micro cracks in the axial direction.

Diametrically opposite breakouts near the borehole surface are probably
caused by anisotropy in the strength behaviour of the sandstone.

Boreholes fail at a higher radial pressure than predicted, because of the
definition difference between local failure and functional failure and the
large rest capacity of a thick-walled cylinder test.



6.2. Recommendations

It was never meant to model a complete geotechnical construction like a dike or a
tunnel with discrete elements. One hand filled with sand contains one billion
grains already, so the present computational facilities will always be insufficient
to model this. Discrete element modelling has been developed to obtain insight
into the micro behaviour of granular materials, in order to improve the continuum
models of these materials. A few thousand grains are sufficient to model a
homogeneous loaded sample. Since several tens of thousands of grains can be
handled on a normal computer, it has no meaning to increase this number of
grains. A more fruitful approach would be to improve the three simplifications
made at the beginning of this research:
- A three-dimensional model will probably not gain many additional insights,
but will make the results more realistic.
- A non-cohesive grain structure with more complex grain shapes reacts more
strongly than a structure with circular grain shapes.
- A better description of the contact relation, which can perhaps be obtained
from laboratory tests, will give more accurate simulations.
These improvements will cost much work, but may not gain that many additional
insights. Besides, the behaviour of the discrete models can quite accurately be
described by an advanced Mohr-Coulomb model. Therefore the question whether
this amount of work can be justified must be settled first.
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1. Symbol list

> vOTQANE D

R %Y

(ST e

=

s R
o3

o

S S S S

D

epth of structure =d=2r
Young's modulus
Force
Shear modulus
Height of structure
Surface of structure
Pressure

—e
Relative density =———  in which:

Volume of structure
Width of structure

Cos (a)
Cohesion

Distance between centres of two grains
Total volumic strain  =¢,,

Friction between two grains = tan(¢ ﬂ)
Friction between grain and wall

Contact stiffness, spring constant
Normal displacement
Number of contacts

Number of grains

Number of contacts per grain

Number of contacts per micro volume (d°)
Number of iteration per load step

Number of micro volumes per total volume =V /d’

Radius of grain
Sin(a)

Shear displacement
Displacement

pores

e =

grains
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96

A ™M R ™

S Q9 <

<

XX

X X X X

yy

X

r
X
123

X
tot

X
o

X X X
w

RS

X X X X X X|

Angle between contact and x-axis
Angle between major principal direction and x-axis

Angle deformation or rotation

Strain
Ratio between stiffness in normal and shear direction

Poisson's ratio
Stress
Angle of internal friction

Angle of dilatancy

In normal direction

In shear direction

In horizontal direction
In vertical direction
In radial direction

In tangential direction
In total

X, + X
Average value, so: = —

In major principal direction, often: x

In minor principal direction, often: x
Of grain material itself, not whole structure

Average value or expectation value
Derivative value
During first phase (i.e. isotropic compression)

During second phase (e.g. biaxial test)
During elastic phase
During plastic phase



2. Hertzian contact

To verify the contact equation by Hertz, a compression test was done on a ball of
hard polystyrene foam with a radius of » =74.6 mm. The elasticity parameters
are measured with a triaxial test (o, = 0) on a cube of the same material:

E,. =759 MPa
Enon—virgin = 921 MPa
1% =022

The Young's moduli remain very constant during the test. The figure below
shows that the prediction of non-virgin compression by Hertz is about 30% too
high all the time, but the shape of the non-linear behaviour is correct.

n

[mm]
0.4 T —

03 + down __==

02 + =
P =

0.1 1 “Virgin

0.7 X Hertz

0 : : : i F [N]

0 10 15 20

P
/
//V

up

Figure A.1. Hertzian contact relation of a polystyrene ball
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3. Discrete element book-keeping

A complex part of discrete element modelling is the book-keeping of all grains,
walls, contact numbers and their corresponding data. During simulation of a
granular material new contacts can be made and other contacts can be lost, what
leads to continuous updating of all information. The method which is used in
Grain will be explained here.

In general there are two types of arrays: one for the contact information and
another for the grain and wall information. In the contact arrays the state of the
contact (off, shear, non-cohesive or cohesive), the numbers n,,, and n,,, of both

grains on both sides of the contact, the forces F, and F, and the shear
deformation s, are stored. For instance the array of contact number 3 in figure
A2, will be:

contact state M Pyigh /8 F s,
3 shear -1 3 +... +/—. | +/-..

Table A.1 Information on contact 3

Neighbours and Friends
Grain numbers Contact numbers

Figure A.2.

98



The grain and wall arrays contain two parts. In the first part, the data of the grain
itself are stored: the present position co-ordinates x,y,¢ and size r of the grain,

the position x,,y, of the grain, when the last friends backup (F) has been made.
The second part contains the contact numbers towards the neighbour grains (N)

and the friend grains which are the grains nearby but not connected (F) to this
grain. For grain 3 this last part will be:

neighbours 3 7 8 n =3
friends 2 7 9 5 n,=

Table A.2 Information on grain 3

Notice that for the neighbours, not the neighbour numbers are registered, but the
number of contacts between the grain and its neighbour. In this way, the contact
data can be found. When a contact is broken, the contact number must be
removed from the arrays of the grain and its neighbour and both grain numbers
must be placed in each other's friend arrays. Only the neighbours have to be
checked for contact breaking and the friends for contact making. The friend array
will be updated in the procedure check village when a grain moves too far away
from its original position x,,y, .

The advantage of this method is that only the necessary data is stored and the
contact checking is minimal.
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4. Grain size distribution
Z (1)

100% —— — — — — —

In (r)

0% |

min max
Figure A.3. Sieve curve
In theory an infinite number of grain size distributions can be made, however for

most sands the sieve curves show a rather straight line:
weight of grains <r
Z(r)= " L

weight of all grains (A.1)
Z(r) =c +c, ln(r) for r. <r<r_

The weight of a grain can be described by:

w=cp’ (A.2)
Therefore the probability density function for these sands will be:
3 3
fotwlm 3 e gy (A.3)
o= r

max  ''min
The corresponding grain size distribution can be described with a random
generator:

3 3.3
r r_r

min max’ min

-3
3 3
r{ 1 _(rmax rjf} with ¥ = random]0..] (A4)

This distribution is specified by only two parameters, such as the minimum 7,

and maximum 7, grain size or the grain size ratio M and the average grain

size 7 :
M = T
r;nin (AS)
_ 3(M*-1) '
r=r ———=
e 2(M3—1)

The average grain size is not necessarily equal to the mean grain size:
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ro M+1

r_ A.6

e 2NM (A0
Beside this exponential distribution "Type A", also a linear distribution "Type B"
is used:

=t +(f — 7 )X With X = random[0..1] (A7)

This distribution is also specified by the grain size ratio M and the average grain
size 1 :

M = e
rmin (AS)
_ M +1
r= rmin
2
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5. Two-dimensional continuum model

5.1. Stress-strain relation

For comparison of the numerical results obtained with a continuum model, the
advanced Mohr-Coulomb model was chosen. The two-dimensional stress-strain
definitions are a little bit different from the three-dimensional definitions, simply
because there i1s no third dimension (v_ =0). Therefore the law of Hooke will

become:
&, . 1 —-v 0 ||o,
ézyy = E -V 1 0 é'yy (A.9)
Jsxy 0 0 1+v é'xy

(The dot above the symbol implies the material time derivative.)
This means that during the elastic phase the Mohr circle for the strains has the

N T
same shape as the one for the stresses, although its size is e times larger and

the distance to the centre is multiplied by a factor

Oyy» E€

o,., B¢

2 B XX 2 XX
| Exx Oxx ‘ / Oyy> Ee Yy

Figure A.4. stresses and strains during the elastic phase
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The stresses can be described by:
Oun = %(O-l +0,) - %(0-1 —0,)cos(2a)

o, =5(0,+0,)+,(0,—0;)cos(2a) (A.10)
o, =,(0,—0,)sin2a)

The strains can be described in a similar way, thus:

2¢, 2¢,
— =—"—=tan(2e,)
E,—&,. &,—&,
w w . (A.11)
20, 20,
= — =———=tan(2e,)
c,-0, 0,0,

During the elastic phase the principal directions for the (incremental) stresses and
for the (incremental) strains are equal which is called coaxiality:

a,=a, so. a,=a, or: B, =p, (A.12)
Failure occurs according to Coulomb:
sir1¢5‘(0'1 +63)+2c'(:os¢5':(0l —03) (A.13)

At failure of a non-cohesive granular material, the major principal direction will
be:

cos(2f) = -1 (GW — %) (A.14)
sin(¢) (O‘yy + am) .

During the plastic phase the increments of the strains can be described by:
£ = ;'gl[(l — ) -1+ ,u)]cos(Za)
£, :%'1[(1—,u)+%(1+,u)]cos(2a) (A.15)

&, =&+ wsina)

in which:
& | 1+sin(y)
“ {El ~1=sin(w)
because:
sin(y) = 274
&= ¢

If the increments of the stresses ¢ are zero and the plastic deformation remains
coaxial (S, = f,) throughout the plastic phase, like this:

20, 2¢&

=——=tan(2@) (A.16)
c,—0, &,—&,
then the plastic deformations are defined by:
. . (.E' . _
& _ s%n(l//) +cos(2ax) and 22 = Sll’l(l//). cos(2x) (A.17)
£ sin(y) —cos(2a) £ —sin(2)

Yy xy
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5.2. Characteristic tests

For the confined biaxial test, unconfined biaxial test and the compression test, the
orientations of the principal stresses are equal to the x- and y-axis:

X, =X
1 »

><3:><)L

X

(A.18)

The elasticity parameters can be obtained from the confined or unconfined
biaxial test (o, = 0) during the elastic phase, as follows:

O
E="1
&
&
V= —.—3
&
— 1 gt()l
&
in which:
gl()t = 81 + 83
G,
G3
E . 1 \ '
o 1+ sind cos¢' 2¢
3 1-sing' 1-sin¢' = O3
1
“Epot
atan(1-v )

Q

%
%
%
%
%

A\

Figure A.5. bi-linear idealisation of a 2-D biaxial test
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In the case of non-cohesive granular materials we also know for the plastic phase
that:

sin(¢') =
—+1 (A.20)

01+G3
ot

sin(y) = - (A.21)

gt()t - 2'81
The compression test (&, = 0) remains elastic:

(A.22)

For non-cohesive granular materials the Young's modulus depends on the stress:

B
E= E/[ % ] (A.23)
Gref

in which:
o . +o
O-O — yy XX
2
The simple shear test (o, = 0) can be solved with the same parameters:
=Gy (A.24)

2
2
o, ~ O'xx) +4r

(O-W + O-«U) (A.25)

sin(¢') = \/(

G if: o =0
o
in which:
E
2(1+v)

y=2¢,

The true simple shear test (¢, =0) is more complicated because the horizontal
stress increases during failure. The nine unknown components of the stress,
elastic strain and plastic strain (o,¢, and £,) can be solved with the three elastic

equations (A.9), the three test equations:
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&, =0
y=2(&,,+&,,) (A.26)

Eet €y = 0

and the three plastic equations A.13, A.16 and A.15 (Coulomb, coaxiality and
dilatancy), in this case:

c,=Do,,
Eyp = 5(8”” - 6‘)05,17) (A.27)
J+1.
gx’fyp = J— 1 8J’yaP
in which:
D o, 1+ sin’(¢")) — o (1- sin’(¢"))
40xy
20,
F= =
O-yy O

J=+sin(y W1+ F* if o, >0,
=—sin(yW1+F* if o, <o,

Which gives us the incremental stresses and strains of the true simple shear test:
éyy,p . 1 [1+Sin2(l//)+2FJ (A28)

&, ED\1-sin’(y)-2F
and:
’ 2(1+ £
.7 _ ( V)+F 2 +L
o, E o, ED
& &
S E;) .2, (A.29)
o, o,
é-xx _ i
6. D
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5.3. Double sliding

The plastic deformation of several soil models is based on sliding. Sliding means
essentially that the stresses and therefore also the shapes of the sliding parts
remain constant. So, there will be no total volume change, or with other words
the dilatancy is zero.

If failure of a soil occurs by shear sliding, then there are, because of symmetry,
two directions in which the maximum shear stress is reached. This idea led to the
double sliding model proposed in 1959 by De Josselin de Jong. In figure A.6.
only the left failure surfaces (type A) are shown.

G

¢ 0
o

G3

Figure A.6. Sliding causes an axial and lateral rotation

In the same way also a right sliding (type B) can occur. If both the left and the
right slidings cause a same amount of deformation (a = b) then the axial rotation
and the lateral rotation will be zero:
if a=b then a,=a,=0 (A.30)
Figure A.7. shows such a double sliding failure in a simple shear test. To meet
the boundary conditions, the sample requires a free rotation of:
1

free 27 ( )

In case of equal double sliding, the principal directions of the incremental strains
and the principal directions of the stresses are identical (3, = ,). This 1s called

coaxiality.
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Figure A.7. Simple shear test according to Mohr-Coulomb

De Josselin de Jong (1971) also published his idea to allow the two deformations
to be unequal, so:

a+b (A.32)
in which:
a=>0
b>0
The rotation of the axial direction (figure A.8.), caused by the left sliding, is then:
—b).cos’*(0
tan(a, ) = (a ).COS (9)
1-(a- b).51n(9).cos(9) (A.33)
~ (a —b).cos’(6)
and the rotation of the lateral direction, caused by the left sliding, will be:
—b).sin’*(8
tan(a,) = (a—b) .sm (9)
1+ (a-0b). s1n(0).c0s(6’) (A.34)
= (a- b).sinz(ﬁ)
These two rotations are not the same, which cannot be corrected with a free
rotation. This means for an unequal double sliding that the plastic deformations
are not coaxial.

With a deformation of:
£, = (a+b)sin(0)cos(0)

&,, =—(a+b)sin(6)cos(0) (A.35)

&, = (4 ;b) (cosz(é?) — sinz(é'))
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and a shear band angle of:

11
O=—rm+— A.36
R4 (A.36)

the angle of non-coaxiality i between the major principal directions of the stress
and strain is defined by:

tan(Zi) = 241, =4 —b
& — Ex3 a+b

tan(¢) (A.37)

So, there is a wide range of solutions:
1 1
——¢<Li<+— A.38
59 59 (A.38)

which means for a sliding model there is not a uniqueness at collapse.

Figure A.8. Axial and lateral rotation
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6. Micro-macro relation

6.1. Stress

If a region with volume V' 1is considered, with an on microscopic level non-
uniform stress state, o which is in equilibrium, then the average stress o is

defined by:
o, = % [o,,av (A.39)
v

ij.p

By using the Gauss's divergence theorem (Drescher and De Josselin de Jong,
1972), this can be written as:

Ny Neg

1
22t i) (A.40)
k=1 I=1

in which:
n, = number of grains

0, =

n number of contacts per grain

clg

u,,, = i-component of the 1" contact vector of the k" grain

F,,, = j-component of the 1" contact force of the k" grain

The summation of the contact forces over all the contacts can be done at once:
1 HC

o.,=—)> (dF, A4l
=y 2ldF) (A41)
For a two-dimensional x-y field, this will give, for circular grains:
o, = lZ:(d (*F +SCF;-) (A.42)
A=A Tk
1 n. _ 5 -
o, = ;;(d_s F —scF _)k (A.43)
1 n. _ -
o =—> |d|scF —c’F A.44
Xy V ;( | n s | )k ( )
] e _ .
o =—> |d|scF +5F A.45
S 74 kz_:‘( L S.)k ( )

in which:
V' = volume of a structure

F = normal force
F, = shear force
and:
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s = sin(a)
c = cos(a)
d = distance between centres of two grains

= lenght of a contact

After every iteration in Grain, the stresses are calculated in this way. It was found
that these stresses are almost perfectly equal to the boundary stresses.

6.2. Strain

Since a relation has been found between the macro stresses and the micro forces
(0, < F,) and a relation between the micro forces and the micro displacements

(F; < n,), only the relation between the micro displacements and the macro
strains (n; <> ¢,) has to be found to solve the relation between the macro
stresses and the macro strains (o; < &, ). Therefore the micro-macro relation of

the strains can be a key to the complete stress-strain relation.

Two-dimensional grain structure Diamond definitions
Figure A.9.

If a two-dimensional grain structure is considered, then the whole surface O can
be divided in diamonds with a surface:

O, = %(d h,), (A.46)
So, the total surface of the grain structure will be:
7e e 1
0=>0, =25(d h,), (A.47)
k=1 k=1
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With this, the macro strains can be written as:
1 &1
g, = 5;5(561,@ +0d b +5hd, +5hd,) (A.48)

If the macro strains would only depend on 6d, so /4 is assumed to be constant
(0h =0), then the strains can be solved:

. = éé%(&d[hn&] +0s[ seh,+sh]) (A.49)
£, = %i%(&d[kﬂsz] + 85 [-sch, +ch]) (A.50)
in which: _

O = surface of grain structure
o0d = n = normal displacement
0's, = shear displacement
This relation has been found by Kruyt (1994) as well:
g, = %;%(th; +5d;h) (A.51)
The micro-macro relation for the strains seems to be found. But for a two-

dimensional isotropic compression test (0's, = 0), it becomes clear that / is not

constant enough.
The total strain is defined as:

gtot = 8xx + gyy (A.SZ)
The theory above will give for the isotropic compression test:
|
Eu = —;5(&1 k), (A.53)
although the correct answer is:
1 &1
E,=—) —\0dh +oh d
tot 0 kz; 2 ( n n )k
1 &1
=—)> —\edh,+eh d A.54
O ; 2 ( n n )k ( )
2.1

=25 ~(5dh
O;z(é‘ ’1)k

So, the error is 100%. It has to be concluded that this solution was not correct
because the influence of 6/ was neglected. The problem is that # does not only

depend on the contact itself but also on the positions and therefore the
deformations and the rotations of the surrounding grains. This means that the
micro-macro relation for the strains is far more complex than the micro-macro
relation for the stresses.
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7. Biaxial test: analytical

7.1. Normal and shear forces

During a biaxial test, the average normal force F, in a specific direction o in

the first quadrant will, because of symmetry, be equal to the average forces of the
other quadrants:
F -F__-F __ =F (A.55)

n,a n(r-a) n(r+a) n(-a)

The function

F,,=F,(Ac +Bs) (A.56)

in which 4 and B are constants, holds this symmetry.
This is also the case for the shear force F, _, although the direction of the forces

and so the sign changes per quadrant:

F;,a = _F;,(zz—a) = F;,(zﬂa) = _F;,(—a) (A.57)
The function bellow holds this description:
7, = (0sc) (A58)
y y
I _
Fs,(x
AT

Figure A.10. Normal and shear force versus contact angle

During phase I, isotropic compression (o, = o), the shear forces are taken as
zero (O =0):
ana = E'(lc2 + 1s2)

! (A.59)
F,=0
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During phase II, the loading phase, the forces can be described as:
F! =F"(4¢ +Bs’)
Fu=F"(Qsc)

If F" is the average normal force then:

A+B=2 (A.61)
So the normal force can be expressed as:

(A.60)

I/l

F! =F'x(Ac +[2- 4]5") with x = ];, (A.62)
The alteration of this force is:
AF,,=F!-F'! =F/ ([4x-1]c’ +[2x - 4x - 1]5") (A.63)
Horizontal force equilibrium for a contact yields:
AF,
e __C (A.64)
AF,, S

which solves the shear force:
FII — 5?1[

—_SsF" (A.65)
S

s,

3
F' = —E’([Ax — 1]+ [2x - Ax - l]csj
N

In the isotropic phase I, a certain average stress o, is expected:
_ o,+0,

T2
1 &
= 2(dE), (A.66)
1 g1

= _nC dF:‘I
2V

The horizontal stress o, and the vertical stress o, are equal to the average

stress 0 ,:

=0,=0,=0,=n dF’ (A.67)

So: F'="% (A.68)

The analytical relations of F,” and F” have been found. These can be checked

by probabilistic analysis.
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Table A.3. shows the expectation value E for several goniometric functions.

E 1 2 3 4
12 | ¢ 2

38 | & | o

18 | 2o

1/16 2 it

0 s | s | s | 5

Table A.3. Expectation values

If these are filled out in the relations of F,” and F,” mentioned in (A.42) and

(A.43), the stresses are found:
_ 1 &
O-xx = _zdk(czE1 + SCF;)
V k=1 k

- (o Al (e s e e

M)

= 63
And in the same way:
0, =...=0,
o, =..= (A.69)
o, =..=0

As long as there is no correlation between d , n, and o, the analytical solution for
the biaxial test is correct.
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During the loading phase II of the biaxial test the lateral pressure o, remains

constant:
_ o, +to
o, =
2
1+1
o
— 2 3 03
1 T nd/d
=—n,dF,
2V
o
o
So: x=== :
F' 2

3

T
Due to symmetry, the part [ Ax—1]— in F", must be zero, so:
. ,

a=t
X

The average forces can now be simplified to:

— — o
s

63
F" = F[(l—i]cs
s, n 0_3
in which:
Pl 203_V
" nd
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7.2. Elastic behaviour of cohesive materials

The average normal and shear forces were found to be:

S — o
E’[; :EIILCZ+_1SZJ

63
(A.73)
F" = F[(l—i]cs
s, n 0_3
The alterations of these forces since the isotropic compression are:
AF! = F’(ﬁ— 1js2
n,a n 0_3
(A.74)
AF" =-F' (ﬁ - lj sc
: o,
So, the deformations will be:
AF" F'
N F_n(g_ljsz
kn kn 0-3
N:L o (A.75)
As, =—"5=——1" (ﬁ—ljsc
ks anv 0-3
S
d ! ds
a
| de |
I |
Figure A.11. Contact definitions
If the grains do not rotate, then the contact definitions will give us:
e,=ds Ae,, = sAn—cAs,
! ! (A.76)
e .=dc Ae_ =cAn+sAs,
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With this, the strains can be solved as:

1 & [ Ae
Ae =—)>) | —=
(A.77)
1”C
— Z v

n, iz

c

=1 n (2
dkn 0-3 nc i=1 Kv

2V n, 1 1
= — _—6(0'1—63) —_—t—
dk n.dn, 2 2k,

which will give:

V(Hl j
KV
AEW = WAGI (A78)

And in the same way:

1 & ( Ae
A =— — =

n. i=1

V(l 1 ) (A.79)

KV
d kn

n c

1

In this way, it is demonstrated that cohesive granular materials can be described
by a Young's modulus and a Poisson's ratio:

E:Any:kgz nc Kv
A "V +1
Ew Ky (A.80)
Ag . K, —1
V=— = —
Ag, K, +1
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Which can also be written as:

—2
P kn d n, 3—3V#
V. 5-4v
“ (A.81)
_ 1-2v,
5-4v,
The elasticity is almost equal to the result of Bathurst and Rothenburg (1988):
—2
E-kd My where  0<¢ <l (A.82)

The number of contacts depends on the volume and the grain sizes, so it is better
to rewrite this equation.

If 5V:33 and nv:L and nm:ﬂ:dnc
oV n, V
then:
—3
E = nc/v %Ll Wlth nc/v = dl/n‘
ot (A.83)
K,—1
V=-
K,+1

The contact ratio n,,, depends only on the number of contacts per micro volume.
For the isotropic compression, the normal and shear forces are:

Flo— FIE
e o (A.84)
F'=0
In the same way, an identical Young's modulus is found:
E k
—=n, = A.85
1_ v c/v 2d ( )
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7.3. Elastic behaviour of non-cohesive materials

The stiffness between two grains is not constant for non-cohesive materials:

F:l = kﬂn
where: k =M Jn

2 1
so: k,=M3F}
The average stiffness depends on the average pressure o :

221G, (20 V]
$—#) n.d
This can be filled out in the solution for cohesive structures:

p {2VE;G:](2an3d n

M1-v,)) \nd

2 1
_{ )efG . )3 2Kv (00j3
- clv
3(1— #) xk,+1\o,,

which gives for non-cohesive materials:

B
O,
E,=E ref ( J
o-ref

- —2__1
k,=M3F3> = (

\4

V ok, +1

in which:
O, = 1 bar
1
ﬂ_3
1-v
K,=3 =
2— Vv,
n,_dn,
clv I’l V

Vo, G,
By = (1— )C/V K, +1

So, the stiffness behaviour does not depend on the average grain size.
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7.4. Failure of cohesive materials

The relation between the strength of a granular material and its micro parameters
has always been one of the most difficult problems in the field of theoretical
discrete element mechanics. This is because not only average events are
important, but also the probability that an event will occur. This also applies to
the failure behaviour of cohesive granular materials. When the first cracks appear
during a loading test, total failure will not directly occur; the contacts of the
surrounding grains will take over the load of the broken contacts. Only when a
particular amount of cracks per volume has weakened the area in such that it
cannot handle any more load, does total failure occur. One single crack is
sufficient to cause a chain reaction in the formation of new cracks, which results
in very sudden, total failure of the structure. The normal force distribution in the
lateral direction at that moment is schematised in figure A.12.

f(FF,)

isotropic compression

triaxial, at failure

I I Fn
I
| C 2 | F, |
\ € \
I |
Figure A.12. Probability of micro failure per volume
The average normal force and the contact strength are described by:
-2
— ) 2 2
F'-Bo,  with p=2 -2
ncd nc/v (A90)

-2
c,r —ﬂcﬂ

clv

8

The amount of contacts per volume which have to be broken for a total failure is
illustrated by the shaded surface in the figure. Once this surface has passed the
micro failure criterion, the granular structure is broken.
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If the percentage of the contacts is small then the beginning of this surface can be
registered by a factor # times the increase of the axial stress:

e=LFAo, =ﬁ( 0'1—03) (A91)
During loading and at failure the average normal force in the direction of the
minor principal stress is constant (F,,_, = F,"), so failure takes place at:

e=c,7’ +F (A.92)
These two relations can be combined to:

o, =20, +c#% (A.93)
This form is equal to the Mohr-Coulomb criterion:

e

This means that cohesive granular materials (except regular structures such as
crystals) will fail according the Mohr-Coulomb criterion with:

, 1

sing'= 3 so:  @'=19.5°

— (A.95)
c nc/v . d n

c'=—~ with: n, =—-F

162 v

The angle of internal friction is completely constant and does not depend on the

contact force distribution or the grain size distribution. The cohesion depends

only on the cohesion between two contacts ¢, and the compaction of the

granular structure n_, .
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8. Cylinder test: analytical

The stresses in a thick-walled hollow cylinder sample during the test depend on
the axial and radial pressures, but also on the shape of the sample. For a
continuum model these stresses can be solved analytically.

=N

11

]
]
]
]

_
— 77

Oy
- o +AC
/ P
T
-
/
L= —

Figure A.13. Cylinder test Figure A.14. Equilibrium of element

The sum of the radial forces on the equilibrium element is zero:
z F =0 (A.96)
which gives:
oo, O,—-0C
+

- L= (A.97)
or r
Axial symmetrical loading can be denoted:
LA =0 and u, =0 (A.98)
ot
so, the strains can be written as:
ou,
grr =
or
g, =2 (A.99)
r
ou,
gZZ =
oz
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The shear deformations in the directions of the principal stresses are all found to
be zero:

1ou du u,
Yp=——( +t————=0
r ot or r
1ou. ou
iR R A A.100
T PR (A.100)
yrt:é‘uz—i_%:()
or oz
With the two constants of Lamé:
vE p— (A.101)

T 1+ v(1-2v) " 21+ v)

and the total volumic strain:

e=¢, +¢e,+¢&, (A.102)
one can express the main stresses:

o,=2ues, +Ae

o,=2us, +Ae (A.103)

o.=2ues_+Ae
The mains shear stresses are all zero:

r.=2ue_ =puy, =0 etc. (A.104)
By filling out equations (A.99) and (A.102) in (A.103), and these last three
equations in (A.97), the basic differential equation 1s found:

2 2
(2/1+/1)(5 u lou 1 rj+/1 ou,

Y T
or ror r oroz

The last part is zero, so (A.105) can be simplified:
2
ou dow 1, _y (A.106)

or: ror "

The general solution of this differential equation is:

=0 (A.105)

u, = Ar+E (A.107)
r
The other directions are:
u =0 (A.108)
u =Dz+C (A.109)

where 4, B, C and D are integration constants, to be determined from the
boundary conditions. The general expression for the volume strain,
corresponding to the solution is:

ou,

N

oz

e=2A+D with D=

(A.110)
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The main stresses can be expressed as:

o, = 2;1(A—£;j +A(24+ D)
r

Gﬁ=2,u(A+£;)+ﬁ,(2A+D) (A.111)

r
o.=2u(D)+A(24+ D)
The boundary conditions are:

Forr=a: o,=0
For r=b>: o,=P
JZZ:PZ

In this case the constants 4, B and D are given by:

2
PO 7 S i p
2,u(3x1+2,u) b"—a 2/1(3/1+2,u)
2.2
p={1 f“ .y (A.112)
2u| b —a

2
Dol At pa ST Ly
3pud+2u" | b” —a 3ud+2u

If the pressure stresses are taken positive then they will become:
()-ZZ = I)Z

2 2

o, :(bzb zj(ﬂa—zjﬂ (A.113)
—da r
b’ a’

el

The stresses at the inner surface (» = a) are:

O-rr :0

2b°
O-tt = bz —Clz Pr
O-zz = B
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Figure A.15. Stresses at the inner surface of the cylinder
(a=1/3b,P = P)

The stresses at the outer surface (r = b) are:

61‘}" = E
b*+a’
o-tt = bz _az ‘Pr
O-ZZ = PZ
'/m I cyrr cyzz Gtt
0 PP

Figure A.16. Stresses at the outer surface of the cylinder
(a=1/3b,P = P)

One can see that failure will always occur at the inner surface of the cylinder
(7 = a) and that the vertical load P is not important for failure as long as:

2
20" p (A.114)

b*—a* "

0<P<
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9. Crystal: analytical

One of the most basic structures, in which tension forces can be created only by

compressive forces, is drawn below.

Fy
—) <=

I

Figure A.17. Basic structure

If shear forces do not exist, then the horizontal contact force F, can become

negative, if the vertical force is too large:

Fl=23E-F it F=0

A
—p — <
N AF
F '
I / N\
Micro Crystal Horizontal
Structure structure boundary
Figure A.18.

-

(A.115)

~

I=

7

Vertical
boundary

If we build up a whole crystal out of this structure without neglecting the shear

force, then the horizontal stress for each grain is found to be:

y Neg
o, = —Z(czﬂ +scF;)
R = ,

in which the volume for each grain:
V= 6%A 22-%-21’-\/51“27” = 4.3

(A.42)

(A.116)
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Summation over the six contacts, as listed in the table, will give:

o, =C-(2F + F,-3F)) (A.117)
in which the constant C depends on the grain radius:
1
C= A.118
4\/§r2 ( )
In the same way the vertical stress and the shear stress are found:
o, =C-(3F, +3F)) (A.119)
o,=0 (A.120)
k s c F, F
1 0 -1 F' 0
2 | B3| % | E | F
3 A A F' | —-F'
4 0 1 F' 0
5 |-B\3| % F' F'
6 |-%3| % | E' | -F

Table A.4. Contact forces on one grain
For the horizontal boundary, we know:
F,=0, 47
ZFW =0 (A.121)
O, = C(3E1 + \/gF;)

which is equal to the vertical stress we found before. For the vertical boundary,
this 1s different:

F =0, 43
S F, =0 (A.122)
o, =C(F+F -3F)

These result are not equal to the horizontal stress we found before. This means
that edge actions are formed, especially on the vertical boundaries.
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During phase I, isotropic compression (o, = o), the shear forces are zero, so
the contact forces can be solved:
o, =C-(2F +F,~3F))
o, = C-(3E1' + \/§E)
F =0
or:

F=F=% and F =0 (A.123)
3C

n t

During phase II, for example the biaxial test, the shear forces do not remain zero.
But because of symmetry, another third relation between the deformations of the
contacts can be found:

'‘An ‘3As LAt

Figure A.19. Contact deformations

which is:
Lar =L an—L 3 (A.124)
2 2 2 '

The following three equations describe the contact forces of the grains, which are
not near the boundaries, during loading:

Ao, =C-(2AF +AF, —\3AF))
Ao, =C-(3AF, +3AF)) (A.125)

AR = -V aF
K

14

or:
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1 (k,+2)Ac, +Kx Ac,
" 6C (<, +1)
1 K‘V(AO'W - AO‘H)
6C (x,+1)
1 (K'V - I)AO'W + (K'v + S)Aaxx
"6C (<, +1)
For a biaxial test the lateral pressure o

V3 (A.126)

1s constant (Ao, =0), so:

1 (KV+2)0'1—KV0'3
" 6C  (x,+1)

F = %Wﬁ (A.127)
B L(K‘v - 1)0'1 + (K'v + 3)03
‘T 6C (x,+1)

In practice, the stiffness ratio x, is slightly larger than one, so tension forces will

never occur and the crystal has a negative Poisson's ratio. The crystal will not fail
because of tension failure, but because of shear failure which will take place at a
much higher pressure. This is why crystals structures can be extremely strong.
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SAMENVATTING

Discrete Elementen Analyse van Granulaire Materialen

Tijdens de productie van olie en gas beginnen, enkele jaren na het maken van een
boorgat, zanddeeltjes en kleine zandsteenbrokjes los te breken van het
boorgatoppervlak. Deze deeltjes kunnen in een korte tijd de transportleidingen en
installaties grote schade toebrengen. Door simulatie van het boorgatgedrag met
de dikwandige-cilinderproef, zijn er vier fenomenen gevonden die niet met de
conventionele continuiimmechanica kunnen worden verklaard:
1. Ondanks de drukspanningen, ontstaat het bezwijken op microniveau ten
gevolge van trekscheuren.
2. Deze scheuren staan niet diagonaal op, maar lopen parallel aan, het
boorgatoppervlak.
3. Deze scheuren veroorzaken twee lijnrecht tegenoverliggende uitbraken.
4. Het functionele bezwijken van het boorgat begint bij een hogere radiale
drukspanning dan voorspeld.
Om het gedrag van granulaire materialen te beschrijven, ontwikkelde Cundall in
1969 een computermodel die gebaseerd is op de basiselementen van zo'n
materiaal, namelijk de korrels zelf en hun interacties. Lindhout heeft in 1992
geprobeerd om met dit model de cilindertest te beschrijven. Als gevolg van
compactieproblemen, stabiliteitsproblemen en de lange computerrekentijd kon
zijn doel niet worden gehaald. Daarom is er een nieuw model ontwikkeld door de
schrijver, die niet de bewegingsvergelijkingen maar de evenwichtsvergelijkingen
gebruikt om de nieuwe korrelposities te berekenen. Dit model kan zowel voor
niet-cohesieve korrels (zand) als voor cohesieve korrels (zandsteen) worden
gebruikt. De resultaten kunnen in het algemeen goed worden beschreven met een
verbeterd Mohr-Coulomb model, hoewel er een aantal uitzonderingen zijn.
Ten eerste zullen, tijdens het belasten van een granulaire structuur, veel contacten
tussen de korrels bezwijken. Niet door schuifdeformatie, zoals Coulomb
suggereert, maar door bezwijken op trek. Ten tweede ontstaan deze
microscheuren altijd in de richting van de grootste hoofdspanning, hetgeen een
andere richting kan zijn dan het waargenomen bezwijkoppervlak. Zo vormen de
axiale microscheuren tijdens een biaxiaalproef een diagonaal bezwijkoppervlak,
maar de axiale microscheuren in een cilinderproef kunnen een bezwijkoppervlak
parallel aan het boorgat vormen.
Tijdens het ontstaan van een natuurlijk zandsteen veroorzaakt het verschil in
horizontale en verticale grondspanningen een anisotropie in de sterkte-
eigenschappen van het materiaal. Dit kan de twee tegenoverliggende uitbraken
verklaren. De conclusie dat een boorgat bij een hogere radiale spanning bezwijkt,
komt door een verschil in definitie tussen lokaal bezwijken en functioneel
bezwijken en de grote reststerkte van een dikwandige-cilinder.
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