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Abstract— Cloud computing is widely being adopted by many 

companies because it allows to maximize the utilization of 

resources. However, the complexity of cloud computing systems 

with the existence of many cloud providers makes infeasible for 

the end user the optimal or near-optimal resource provisioning 

and utilization, especially in presence of uncertainty of very 

dynamic and unpredictable environment. Hence, adaptive load 

balancing algorithms are a fundamental part of the research in 

cloud computing. We formulate the problem and propose an 

adaptive load balancing algorithm for distributed computer 

environments. We also discuss the energy efficiency of our solution 

for the domain of VoIP computations on federated clouds. 

Keywords— Cloud computing, load balancing, Voice over IP 

(VoIP), power consumption. 

I.  INTRODUCTION  

Cloud computing is a pay-per-use model for enabling on-

demand computing resources. It is defined as a model for 

enabling ubiquitous, convenient, on-demand network access to 

a shared pool of configurable computing resources (e.g., 

networks, servers, storage, applications, and services) that can 

be rapidly provisioned and released with minimal management 

effort or service provider interaction. 

Load balancing is a job distribution decision-making process 

used in many production systems and computing. It is widely 

known as a technique for the efficient utilization of resources, 

and it can be implemented with hardware and software support. 

Jobs arrival rate, communication delay, the variability of the job 

parameters, and other factors affect the performance of the 

systems, to deal with such complex factors it is essential to 

design efficient and scalable load balancing algorithms. Load 

balancing of services, computational jobs, virtual machines 

(VM), virtual storages, and database requests are identified as a 

major concern for the efficient use of cloud computing. This is 

especially relevant for end users when considering that the cloud 

offer is numerous and we address federated clouds. 

A federated cloud is a next frontier of Cloud interoperability 

between private clouds, company clouds, partner clouds, and 

public clouds, wherein some applications are hosted internally 

while others are delivered via multiple cloud providers. It 

provides: Scalability to address peak demands; Collaboration to 

share infrastructure between partners; Multi-site deployments by 

aggregation of infrastructure across distributed data centers; 

Reliability by fault tolerance across sites; Performance by 

deployment of services; Low cost by dynamic cost aware 

resource allocations to reduce the overall infrastructure and 

operational costs; Low energy consumption by power aware 

service provisioning, etc. Federated clouds bring together three 

key stakeholders for a successful use of virtualized 

infrastructures: users, resource providers, and 

technology/software providers. 

Virtualized, dynamically scalable computing resources, 

storages, software, and services add a new dimension to the 

load balancing problem. The manner in which the job allocation 

and re-allocation can be done depends not only on the job 

property and resources, but also users that share resources at the 

same time, in contrast to dedicated resources governed by a 

queuing system.  

The QoS guarantee that has to be delivered to the end users 

is one of the major challenges for cloud computing. For VoIP, it 

comprises requirements on all the aspects of a connection such 

as service response time, throughput, loss, interrupts, jitter, 

latency, resource utilization, and so on. Several ways exist to 

provide QoS: scheduling, admission control, traffic control, 

dynamic resource provisioning, etc. Additional parameters need 

to be considered when classical load balancing techniques are 

used in cloud computing environment: resources are provided 

on demand in dynamic and scalable manner, and services are 

flexible. Cloud computing inherited many features from 

predecessors, clusters, and grid systems, but incorporates its 

own characteristics: scalable performance and storage capacity; 

elasticity; and extended functionality. The development of an 

effective dynamic load balancing algorithm involves many 

important issues: load estimation, load levels comparison, 

performance indices, system stability, amount of information 

exchanged among nodes, job resource requirements estimation, 

job selection for transfer, remote nodes selection, etc. [1]. 

Important aspects of the problem are: distribution of the nodes 

and virtual machine migrations. Scalability of the load balancer 

is also an important aspect. 
Some algorithms are efficient only if the nodes are closely 

located and the communication delays are negligible. However, 
it is necessary to consider communication delay in the cloud 
infrastructure. A heavily loaded node can migrate its VMs to 
reduce the overload. However, determining which VMs need to 
be moved to which destination nodes, and what is the benefit of 
such a migration are questions difficult to answer. 

Energy consumption is determined by hardware efficiency, 
resource management system deployed on the infrastructure, 
and the efficiency of applications running on the system. The 
efficiency is very important due to its impact on users in terms 
of resource usage costs, which are typically determined by the 
total cost of ownership incurred by a resource provider [2]. The 
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goal is to avoid provisioning of more resources than it is required 
by applications. One solution to this problem is to migrate VMs 
from one node to another to consolidate resources and shut down 
idle nodes. Such a Dynamic Component Deactivation (DCD) 
policy switches off parts of the computer system that are not 
utilized. 

In this paper, we focus on both important aspects of the load 

balancing: QoS and energy efficiency. The main beneficiary of 

their optimization is technology/software providers running its 

software on the cloud (e.g. the VoIP provider) that interacts with 

other stakeholders: the owner of the federated cloud and its 

broker, and cloud providers.  

Proposed solutions include adaptive thresholds to determine 

when and where load balancing is initiated, from and to where 

migrations are considered beneficial, and how power 

consumption optimization could be reach.  

II. INTERNET TELEPHONY 

The Internet telephony (VoIP–voice over internet protocol) 
refers to the provisioning of voice communication services over 
the Internet, rather than via the traditional telephone network. 
VoIP services significantly reduce calling rates. While the 
selection of a cloud based VoIP can further reduce costs, add 
new features and capabilities, provide easier implementations, 
uniform deployments, and integrates services that are 
dynamically scalable.  

Other benefits include data availability, integrity, and 
security. VoIP requires that the information regarding clients is 
available in real time. Traditionally, the approach to deal with 
this issue is to invest in a large number of infrastructures to avoid 
loss of call and provide a correct functionality of the VoIP 
service. However, that infrastructure is underutilized. Most of 
servers are not fully used and will be replaced in time due to 
resource degradation. Cloud-based solutions can solve these 
aspects, such that VoIP service providers can avoid large 
investments by using smaller number of resources for one 
solution. 

 

Fig. 1. Cloud VoIP architecture 

To deploy and manage effective telephony tools via clouds a 
variety of factors need to be improved. The most important is 
the utilization of the infrastructure. General VoIP architecture 
includes elements of communication infrastructure that connect 
phones remotely through the Internet. The servers provide 
gateway, interconnection switch, session controller, firewall etc. 
It uses software to emulate a telephone exchange. A drawback 
of this architecture arises when the hardware reaches its 
maximum amount of connections. Traditional VoIP solutions 
are not very scalable. It is necessary to duplicate infrastructure 
or replace existing physical hardware. Fig. 1 shows a cloud 
based VoIP solution. The voice nodes are operated as VMs that 
provide variety of services (call transfer, voice mail, music on 

hold, etc.). The advantage of this architecture consists in 
increased scalability. 

Next step in distributed cloud based VoIP architecture is 
when voice nodes are grouped on data centers geographically. 
However, it has several unsolved problems. To optimize the 
overall system performance, the processor load of the voice 
signal processing over IP (jobs) should be balanced. 

The overload of a processor reduces quality of the call. A 
similar problem could happen with excess of network capacity. 
Furthermore, the processor idle time increases the useless 
expenses of the cloud provider. Load-balancing maximizes 
VoIP system performance by minimizing the number of 
processing units and the inter-processor communications. It is 
necessary to design a multi-level distributed VoIP load balancer 
to improve the local load imbalance in data centers, and new 
techniques to scale on federation of data centers. The most 
important cause of load imbalance in VoIP is the dynamic nature 
of the problem over time (in both computational and 
communication costs). Other causes may include the 
interference from other users that are allowed to use the same 
resources in time-sharing mode, the migration process, the time 
arrival, variability on the utilization process, etc. 

Most load balancing algorithms focus on deterministic 
environments assuming having precise knowledge of the user 
jobs and system parameters. In general, it is impossible to get 
exact knowledge about the system. Parameters like processor 
speed, number of available processors, and actual bandwidth are 
changing constantly over the time. However, load balancing 
algorithms should search how to improve resources and ensure 
Quality of Service in a dynamic context. 

III. FORMAL DEFINITION 

We address load balancing problem in the hierarchical 
federated cloud environment, where clouds of different 
providers collaborate to be able to fulfill requests during peak 
demands. We assume heterogeneous clouds and data centers 
with different number of servers, execution speed, energy 
efficiency, amount of memory, bandwidth, etc.  

A. Infrastructure model 

Let us consider cloud C that consists of m heterogeneous 
nodes (data centers, sites)	D�, D�, … , D	 with relative speeds 
s�, s�, … , s	. Each D�, for all 	i = 1. . m, consists of b� servers 
(blades, boards) and p� processors per board. We assume that 
processors inside one data center are identical and have the same 
number of cores m�.  

We denote the total number of cores belonging to the data 
center D� by m� � = b� ∗ p� ∗ m�, and belonging to all data centers 
of the cloud C by m� = ∑ m� �

	
��� . The processor of data center D� 

is described by a tuple {m�, 	s�, mem�, band�, eff� }, where s� is 
a relative measure of instruction execution speed, mem� is the 
amount of memory (MB), band� is the available bandwidth 
(Mbps), and eff� is energy efficiency (MIPS per watt). A data 
center contains a set of routers and switches that transport traffic 
between the servers and to the outside world. They are 
characterized by the amount of traffic flowing through it (Mbps). 
A switch connects a redistribution point or computational nodes. 
The connections of the processors are static but their utilization 
is changed. The interconnection network architecture is three-
tier architectures that include: access, aggregation, and core 
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layers. The interconnection between clouds will be done through 
public Internet.  

In addition, to satisfy requests during peak demands that 
exceed the capacity of the cloud C, it collaborates with k external 
independent clouds (sites) C�, C�, … , C�. Each cloud C� is 
characterized by the given price per time unit of the allocated 
instances on a pay-as-you-go basis, its energy efficiency 
eff�, eff�, … , eff�, and relative speed s�, s�, … , s�. 

B. Job model 

We consider n independent jobs J�, J�, … , J� that must be 
scheduled on federation of clouds. The job J� is described by a 

tuple {r�, w�} that consist of: its release date r� ≥ 	0, and 

amount of processing work (instructions) 	w�. The release time 

of a job is not available before the job is submitted, and its 
processing work (time) is unknown until the job has completed 
its execution at time c�. A job can be allocated to one cloud only, 

no replication is allowed. Jobs submitted to one cloud can later 
be migrated to another one. We denote the start time of the job 
as st�. 
C. Power consumption 

We define the energy model by considering two 
components: power consumption of the cloud C and external 

resources: E = E'()*+ + E-.+, where E'()*+ = ∑ /0
	
���  is the 

power consumption of m data centers of C, and E-.+ =
∑ E�

-.+�
���  is the power consumption of jobs migrated to the 

external clouds of the federation.  
In this model, we consider three levels of power 

consumptions of resources: turned off (off, standby); turned on 

but not used (idle), and in use (used). We assume that power 

consumption of all system components has a constant part 

regardless of the machine activity. For instance, the processor 

in the off state includes the power consumption related with 

cooling. It can be considered as a stepwise function. 

The power consumption of a core at time t consists of a 

constant part e_off�')3. and two variable parts 	e_idle�
')3., and 

e_used�
')3.:  

e�
')3.6t7 = e)--�

')3. + o�6t7 ∗ 8e�+(.�
')3. + w�6t7 ∗ e_used�

')3.9, 

where o�6t7 = 1, if the core is on at time 	t, otherwise, o�6t7 =
0, and if the core is in operational state at time t, w�6t7 = 1, 

otherwise w�6t7 = 0.  

The power consumption of the processor cores is e:3)'
')3.;6t7 =

∑ e�
')3.6t7	<

��� . The power consumption e�
:3)'6t7 of processor at 

time t consists of a constant part e_off�:3)'
 and one variable parts 

e_idle�
:3)'

:  

e�
:3)'6t7 = e)--�

:3)' + o�6t7 	∗ =e_idle�
:3)' + e:3)'

')3.;6t7> 

where o�6t7 = 1, if the processor is on at time 	t, otherwise, 

o�6t7 = 0. 

The power consumption of processors of a server is  

e;.3?.3
:3)' 6t7 = ∑ e�

:3)'6t7:<
��� . 

The power consumption e�
;.3?.36t7 of a server at time t consists 

of a constant part e_off�;.3?.3 (in the off state) and one variable 

parts e_idle�
;.3?.3:  

e�
;.3?.36t7 = e)--�

;.3?.3 + o�6t7 ∗ 	=e_idle�
;.3?.3 + e;.3?.3

:3)' 6t7> 

where o�6t7 = 1, if the server is on at time 	t, otherwise, o�6t7 =
0. 

The power consumption of the servers in the site is 

e;�@.
;.3?.36t7 = ∑ e�

;.3?.36t7A<
��� .  

The power consumption of the site is  

e�
;�@.6t7 = e�

;�@. + o�6t7 ∗ =e_idle�
;�@. + e;�@.

;.3?.36t7>.  

Total power consumption of the site D�	is E� = ∑ e�
;�@.6t7BCDE

@�� . 

Finally, E�
-.+ = ∑ eff� ∙ w�

�
��� /s� is the total power 

consumption to process jobs on external resources, where eff� is 
the energy efficiency of cloud C� and w�	is the total work of all 

jobs allocated on C�. 

D. Optimization criteria 

In this paper, we use two criteria:	H and /IJKLM . Mean 

latency (service response time) H = 1/N6st� − r�) is the average 

time a user spends waiting for a connection. It reflects load 

balancing latency, network delays, and job waiting time. It 

measures the user satisfaction for the VoIP service. Energy 

consumption /IJKLM allows VoIP providers to measure the 

performance in terms of cost parameters that helps him to 

establish utility margins. 

IV. RELATED WORK 

In this section, we give a brief overview of the load balancing 
algorithms in distributed computer environments. Table I 
presents their main characteristics, and metrics used to study 
quality of the algorithms. Brief description of the most relevant 
algorithms is presented below. Details of other algorithms can 
be found in the referred papers. 

Job-Idle-Queue (JIQ) [6] is a large-scale load balancing 
algorithm dynamically scalable with distributed dispatchers for 
cloud data centers. The central idea is to decouple the discovery 
of the lightly loaded servers based on the job assignment. The 
algorithm consists of two load balancing systems to assign the 
jobs on idle servers. I-queue structures maintain the information 
of the idle processor, when a job arrival the dispatcher assigns 
the job to the first element of its I-queue. If the I-queue is empty, 
the dispatcher directs the job to a randomly chosen processor.  

Task Scheduling based on LB (TSLB) [11] takes into 
account the requirements of users and the load balancing in 
cloud environment. The first level scheduling allocates the user 
applications in to the VMs and, the second level assigns the VM 
to host resources. The demands of resources of the jobs are 
known a priory but can be changed during the execution. In this 
case, VM could be moved to another node with enough free 
resources, or VMs residing on the same node be moved away in 
order to free up resources. 

Honeybee Foraging (HF) [12] dynamically allocates web 
services on servers to regulate the system against demand. This 
algorithm is used for self-organization and global load balancing 
via local server actions. Each server group a virtual servers 
anyone with his own queue of jobs. The notion of “advert board” 
is used to communicate the global colony profit. The idle servers 
read the advert board, chosen an advert and serve the request or 
randomly serve a servers queue request. 

Biased Random Sampling (BRS) [12] is the self-
organization algorithm based on random sampling of the system 
domain, so the node’s load is maintained near to a global mean 
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measure. The load on a server is represented by edges and 
network that provides a measure of initial availability status. The 
nodes accept jobs depending on a value, if the value is equal or 
greater than a threshold the node executes the job, else the job is 
sent to a random neighbor.  

Active Clustering (AC) [12] is self-aggregation algorithm 
for large scale Cloud systems. It connects similar services, 
intended to group instances together by local rewiring the 
network. Algorithms work well when they can delegate 
workload to other nodes that are aware of similar nodes. 

Two-phase scheduling (OLB+LBMM) [14] combines 
Opportunistic Load Balancing (OLB) and Load Balance Min-
Min (LBMM) scheduling. In the first phase, the OLB scheduling 
algorithm assigns tasks to the service manager by the manager. 
In the second phase, LBMM scheduling algorithm chooses the 
suitable node to execute subtasks. 

Compare and Balance (CB) [17] reduces the migration time 
of VMs. Based on sampling to reach the equilibrium, it 
calculates the cost of the nodes in the system. Then, it compares 
its current cost node with other randomly chosen. If the cost of 
current node exceeds the cost of chosen node, then VM is 
migrating with certain probability. 

VM to physical Machine Mapping (VMMP) [21]. First, the 
utilization of resources in the nodes are summed and normalized 

to get weight of each node, the higher weighted of a node 
represents more available resources. Then a probability 
approach is used to select a node, this probability is proportional 
to the weight of a node.  

Power Aware Load Balancing (PALB) [23] is a power aware 
algorithm. It maintains the state of all nodes and decides the 
number of compute nodes that should be operating based on 
utilization percentage. It has three sections: first section assigns 
the VM in a node, second section is used to power on additional 
compute nodes, and last section is responsible for powering 
down idle nodes.  

Self-Organized Agent System for dynamical load-balancing 
(SOAS) [25] is a decentralized algorithm for distributed 
systems. It is based on the sand pile model, where avalanches 
can reconfigure the state of the system. This behavior fits well 
with the idea of non-clairvoyant scheduling with Bags-of-Tasks. 
Avalanches are the load-balance process that results in a new 
allocation of tasks in computing resources. 

V. ADAPTIVE LOAD BALANCING ALGORITHM 

Campos and Scherson proposed a dynamic distributed load 
balancing algorithm named Rate of Change (RoC-LB) [27]. The 
balancer (Bal) makes job distribution decisions at run- 

TABLE I.  LOAD BALANCING ALGORITHMS. 

 Characteristics Metrics  
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VD   •  • •      •  VM •        [3] 

WCAP   • •  •      • Server  • •   • •   [4] 

VWR •   •  •   •   • Server Request • •       [5] 

JIQ  •  •  •      •    • • •     [6] 

LFM •   •  •      •    •     •  [7] 

SVB •   •  •  •  •  •  VM •  •      [8] 

CLBVM •   •  •      •  VM • •  •   •  [9] 

LBVS •         •  • Files   •  • • •   [10] 

TSLB •   •  •    •  •  VM • •  •     [11] 

HF  •  •  •      •  Job  •   •  •  [12] 

BRS  •  •  •      •  Job  •   •  •  [12] 

AC  •  •  •      •  Job  •   •  •  [12] 

ACCLB  •  •        •  Job • •   • •   [13] 

OLB+LBMM •     •    • •    • •       [14] 

ED •   •  • •     • Server Session •    •    [15] 

Carton  •   • •      •   • • •      [16] 

CB  •   • •  •    •  VM •  •      [17] 

TSPBRR •    •      •    •   •     [18] 

ESCE •   •  •    •  •   •   •     [19] 

CLBDM •   •  •      •  Session, VM •   •     [20] 

MR  •              •   •    [26] 

VMMP •   •  •      •   •        [21] 

FBRR •   •  •      •   •   •     [22] 

PALB •   •  •      •   •       • [23] 

LBMM •    • •    •  •  Task •  • •   •  [24] 

Min-Min •    • •    • •    •  • •   •  [24] 

Max-Min •    • •    • •    •  • •   •  [24] 

SOAS  •  •  •      •  Task •      •  [25] 

RoC-LB  •  •  •  • •   •  Task • • • • •    [27] 
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time, locally and asynchronously. Each Bal considers its own 
load; migration does not depend on the load of other Bals. The 
migration decision depends on current load, load changes in the 
time interval (Rate of Change), and current load balancing 
parameters.  

To define WHEN load balancing should be started the 
algorithm considers three thresholds: PQ upper bound, HQ lower 
bound, and RQ critical bound. If the load is larger than PQ then 
the Bal is considered as a source of the load and can satisfy job 
requests. If the predicted load is less than HQ the Bal is 
considered as a sink. When the current load is between these two 
bounds, the Bal is in the neutral state. However, if the load or the 
predicted load fall below RQ, the Bal immediately initiates a 
request for a load.  

We extend this algorithm and present a new Power Aware 

Adaptive Rate of Change (PA-AdRoC) algorithm that is based 

on an adaptive decision policy and energy optimization. 

Adaptability is essential for the efficient use of cloud 

infrastructure. Clouds differ from previous computing 

environments in the way that they introduce a continuous 

uncertainty into the computational process. The uncertainty 

becomes the main feature of the cloud computing and the 

principal difficulty of the efficient resource management. There 

are several major sources of uncertainty: dynamic elasticity, 

dynamic performance changing, virtualization, loosely 

coupling application to the infrastructure, among many others. 

A workload in such an environment is not predictable and can 

be changed dramatically. It is impossible to get exact 

knowledge about the system. Parameters such as an effective 

processor speed, number of available processors, and actual 

bandwidth are changing over the time. 

PA-AdRoC takes into account these uncertainties. The 

accuracy of each balancing decision depends on the actual 

cloud characteristics at the moment of balancing.  

Cloud parameters are changing over time and balancing 

parameters should be adapted to these changes. This adaptive 

approach can cope with different workloads, and cloud 

properties. To adjust PQ, HQ, and RQ, the past information 

within a given time interval can be analyzed to determine an 

appropriate parameters. This interval should be set according to 

the dynamics of the system.  
Let N06S7 be the load of ith Bal at time S. Let ∆06S7 =

6N06S7 − N06S − UV77/UV be the load change during sample 
interval UV=[S − UV, S]. We named it load change speed or load 
consumption speed. The sampling time interval UV is an adaptive 
parameter; finer sampling allows detecting the need to balance 
the system faster, but it generates a larger communication 
overhead. 

Bal uses ∆06S7 as a predictor of the future load. It can be also 
used to estimate the number of sampling intervals to reach an 
idle state. Let YZ06S7 be the response delay of at time S. It is an 
adaptive parameter, and it is defined as the time it takes between 
the initiation of a load request and the reception of load. If the 
time to reach idle state is less than YZ06S7, then Bal must initiate 
a migration request. Let us note that UV and NZ06S7 are 
independent from others Bals.  

Fig. 2 shows possible load balancing scenarios. Solid line 
shows real workload, dashed lines are predicted workloads.  

Let us assume that at time [\ the workload is ]. Based on 
the ∆06S7 calculated on the previous UV interval, predicted 
workload is ]^ = ] − ∆06S7 ∙ UV. However, after UV real 
workload becomes _. Based on this information, new prediction 
_′ is calculated. It depends on the real workload consumption 
speed ∆06S + UV7	. For this example, ∆06S7 is constant and equals 
to two times of UV. Since ]^ is between PQ and HQ the Bal does 
not issue a load request.  

 

 
Fig. 2. Load balancing scenarios. 

At time [0  the Bal immediately initiates a request for load 
regardless of the predicted future load based upon the estimation 
∆06S7 value. Estimation a′ on [b is under RQ but Bal cannot 

initiates a request because the request at [0  is not arrived, a new 
request only can be generate at [c. In PA-AdRoC, unlike RoC-
LB, if the load is larger than PQ then the Bal sends jobs to the 
sinks. 

To define WHERE a load is requested from or send to, each 
Bal keeps two lists. The sink list records Bals that previously 
needed jobs, and source list enrolls Bals that previously offered 
jobs. Bal that initiates a request is considered to be a sink. A sink 
selects a Bal from its source list for a load request, and sends a 
requesting message. The source can accept the request or 
broadcast the request to other Bals from its own source list. Bal 
does not send several load requests at the same time. It has to 
wait an answer for the first request until it sends another 
message. The result of this message is the load coming from 
other Bal or the request comes back as unfulfilled.  

In our algorithm, each element of the source and sink lists 

includes not only IP address like in RoC-LB, but load N06S7, and 

energy efficiency dee0 of the corresponding Bal. This 

information is not accurate and updated dynamically. In our 

case, choosing the sink/source node is a two-parameter problem. 

In the future work, we consider also requested load YN06S7, 

∆06S7, YZ06S7, answer time of the request YS06S7, admissibility of 

Bals, total power consumption /06S7, etc. The goal is to choose 

the most adequate compromise solution. 

VI. CONCLUSIONS 

In this paper, we formulate and discuss load balancing 

problem addressing VoIP in cloud computing federation. We 

overview the last advances of load balancing in distributed 

computer environments to understand the main characteristics of 
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load balancing algorithms. We show that none of these works 

directly addresses the problem space of the considered problem; 

however, they form a valuable basis for our work.  

We define models of cloud federation and energy 

consumption, and propose new distributed adaptive power 

aware load balancing algorithm PA-AdRoC. Adaptability is 

essential characteristic of this algorithm and makes it suitable for 

environment with presence of uncertainty. It makes job 

distribution decisions on-line at run-time, locally and 

asynchronously, taking into account QoS and energy 

consumption. It does not take into account job execution time, 

execution time estimation, topology and communication 

bandwidth. It takes load balancing decisions depending on the 

actual cloud characteristics at the moment of balancing such as 

number of available machines, actual communication delay, 

workload consumption speed, etc. Due to these parameters are 

changing over time, load balancer adapts to these changes. This 

adaptive approach can cope with different workloads, cloud 

properties, and cloud uncertainties such as elasticity, 

performance changing, virtualization, loosely coupling 

application to the infrastructure, parameters such as an effective 

processor speed, number of available processors, and actual 

bandwidth, among many others. To this end, the past 

information within a given time interval can be analyzed to 

determine an appropriate parameters independently by each 

balancer. The time interval for this adaptation should be set 

according to the dynamics of the system. 

The proposed algorithm can be used for a wide range of 

applications. However, further study is required to assess its 

actual efficiency and effectiveness in each domain. This will be 

the subject of future work. Moreover, load balancing in cloud 

environment, where only an admissible subset of resources is 

available to reduce the amount of the network traffic is another 

important issue to be addressed. 
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