
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 0000; 00:1–55
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme

Implementation of regularized isogeometric boundary element
methods for gradient-based shape optimization in

two-dimensional linear elasticity

H. Lian1, P. Kerfriden1, S.P.A. Bordas2,1,∗

1School of Engineering, Cardiff University, Queen’s Buildings, The Parade, Cardiff, CF24 3AA, UK
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SUMMARY

The present work addresses shape sensitivity analysis and optimization in two-dimensional elasticity with
a regularised isogeometric boundary element method (IGABEM). NURBS are used both for the geometry
and the basis functions to discretize the regularised boundary integral equations. With the advantage of
tight integration of design and analysis, the application of IGABEM in shape optimziation reduces the
mesh generation/regeneration burden greatly. The work is distinct from the previous literatures in IGABEM
shape optimization mainly in two aspects: 1) the structural and sensitivity analysis takes advantage of the
regularized form of the boundary integral equations, eliminating completely the need of evaluating strongly
singular integrals and jump terms and their shape derivatives, which were the main implementation difficulty
in IGABEM, and 2) although based on the same CAD model, the mesh for structural and shape sensitivity
analysis is separated from the geometrical design mesh, thus achieving a balance between less design
variables for efficiency and refined mesh for accuracy. This technique was initially used in isogeometric
finite element method and was incorporated into the present IGABEM implementation. Copyright c⃝ 0000
John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper presents an isogeometric boundary element method for shape optimization assuming
a linear, homogeneous, isotropic material. Shape optimization is a process to find the optimal
shape of a component or structure under given constraints and objectives. To achieve automatic
shape optimization, the finite element method (FEM) [1] combined with mathematical programming
algorithms is probably the most commonly used approach [2]. However, a mesh must be created in
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2 H. LIAN, ET AL.

FEM to approximate the geometry and discretize the governing partial differential equation (PDE)
to allow analysis to be performed. Shape optimization is an iterative procedure and geometries vary
at each step, which for a number of existing methods, causes a cumbersome remeshing procedure
(Fig. 4(a)). The meshing/remeshing procedure is time-consuming and far from being automated. It
may happen in industrial practice that the geometry is so complex that available mesh generators
fail, or require significant human intervention. For linear elastic problems, authors report that the
mesh generation step represents as much as 80% of the total time. To alleviate the mesh burden,
numerous works were proposed, and reviewed in [3].

Meshfree/meshless methods Meshfree (meshless) methods [4], refer to a broad collection of
numerical methods, including the smoothed particle hydrodynamics method (SPH) [5], the element-
free Galerkin Method (EFG) [6], the reproducing kernel particle Method (RKPM) [7], the meshless
local Petrov-Galerkin method (MLPG) [8], the hp-cloud method [9], the partition of unity finite
element method (PUFEM) [10], etc. Although different in the way of formulating shape and test
functions, they share the same characteristic of lifting the strict connectivity requirements posed by
the FEM. In contrast to the FEM, meshfree methods do not employ elements in the construction
of the approximation. Instead, a set of nodes associated with a domain of influence are sufficient
(Fig. 1). The connectivity between the nodes determined by the overlapping of these domains of
influence can be defined more flexibly than in the FEM. The application of meshfree methods in
shape optimization can be found in [11, 12, 13]. However, the arbitrariness in the node placement is
relative since the quality of the approximation is known to be dependent on the geometrical location
of the nodes and on the domain of influence of each node. For recent progress in this direction,
the interested readers can refer to the work in [14], where a variational adaptivity approach was
proposed to optimize the support domain size of meshfree shape functions. Since the most widely
employed shape functions in meshfree methods are rational functions, Gauss quadrature is not
sufficient to achieve an exact integration. Background meshes [15] or other advanced techniques
must thus be used, such as direct nodal integration [16, 17, 18], stabilized nodal integration [19],
stress point integration [20, 21], and support-based integration [22, 23], which complicate the
approach and somewhat detract from the “meshfree” concept.

Support domain
Node

Figure 1. Meshfree method domain discretization
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REGULARIZED IGABEM SHAPE OPTIMIZATION IMPLEMENTATION 3

Boundary element methods Boundary Element Methods (BEM) [24, 25, 26, 27, 28] take the
advantage of boundary integral equations to decrease the dimension of the problem by one, i.e. only
line integrals are needed for two-dimensional problems, and surface integrals for three-dimensional
problems. The main advantage of the BEM for shape optimization is that it alleviates the mesh
generation burden because surface mesh generation is much easier and faster than domain mesh
generation. The application of BEM in shape optimization can be read in [29, 30, 31]. However, the
surface meshing of the BEM is still cumbersome for shape optimization in large scale problems.
Moreover, BEM’s advantages are mostly visible in cases where Green’s functions are available.

Implicit boundary methods The main difficulty in mesh generation emanates from the
requirement of the mesh to conform to the (usually arbitrarily complex) geometry of the domain.
To separate the FEM mesh and the geometry representation, implicit boundary methods were
proposed, including immersed boundary methods [32], fictitious domain [33], embedded boundary
[34], virtual boundary [35] and Cartesian grid methods [36]. The Extended finite element method
(XFEM) [37, 15, 38, 39] also falls into this category and its application in shape optimization can
be read in [40, 41, 42, 43]. The advantage of implicit boundary methods over IGA is that it allows a
certain flexibility in the choice of basis functions, which may be different for the field variables and
the geometry of the domain. However, due to the separation of the geometry and the analysis mesh,
the capture of the geometry boundary for domain integration is not a trivial task. Moës [44] proposed
an XFEM-based method for complex microstructures, which was generalized by Moumnassi et al.
[45] to treat arbitrary CAD geometries implicitly, including corners and sharp edges.

mesh

Figure 2. Implicit boundary methods

Isogeometric analysis A recent trend in shape optimization is isogeometric analysis (IGA) [46],
which integrates the geometry and analysis representations. This is achieved by using the data
provided by CAD models directly rather than converting it through a preprocessing routine into
a form suitable for analysis. The main idea is that the meshing procedure is bypassed because
an existing CAD geometry is used directly for analysis, meanwhile keeping the exact geometry.
Yet, in its finite element form, IGA is limited in reaching such benefits, because a mesh (or
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4 H. LIAN, ET AL.

parameterization) for the interior of the domain must be generated, which causes difficulties
and remains an unsolved problem. Moreover, local refinement of the basis functions is difficult
or impossible since tensor product splines are typically used. The application of IGA in shape
optimization can be found in [47, 48, 49, 50, 51].

NURBS-enhanced finite element methods NURBS-enhanced finite element methods (NEFEM)
[52, 53] employ NURBS for the geometric description of the boundary, while keeping the flexibility
of FEM by using polynomial interpolation. In NEFEM, only the elements having an edge or face in
contact with the NURBS boundary are treated using specific interpolation and integration strategy,
whereas interior elements not affected by the NURBS boundary can be defined as standard finite
elements. See Fig. 3. NEFEM possess the advantage of accurate representation of geometry and
alleviate the difficulty of generating interior isogeometric elements. However, NEFEM does not
reduce the complexity in mesh generation compared with FEM.

Figure 3. NURBS-enhanced FEM mesh

Geometry-independent field approximation In the geometry-independent field approximation
(GIFT) [54], different spline spaces for the geometry and the field variables can be chosen
and adapted independently while keeping the exact CAD description and tight CAD integration.
Compared to IGA, GIFT provides the flexibility to choose a spline space more suitable to analysis
than that used in CAD. In addition, refinement operations by knot insertion and order elevation for
analysis can be performed directly in the solution field, independently of the spline space of the
geometry. Similar to IGA, however, GIFT still require a volume parameterization which is an open
problem as mentioned above.

The isogeometric boundary element method (IGABEM) alleviates most of the above difficulties
and allows a truly general and automatic CAD to analysis transitions. It was proposed by the Cardiff
group in [55, 56, 57] and, almost simultaneously by [58]. The idea relies on the fact that both CAD
models and boundary element methods rely on quantities defined entirely on the boundary. With
the advantage of achieving a tight integration of CAD and analysis, IGABEM is a particularly
suitable choice for applications in shape optimization, which is the topic of the present work.
The comparison between FEM and IGABEM in shape optimization procedures can be clearly
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REGULARIZED IGABEM SHAPE OPTIMIZATION IMPLEMENTATION 5

seen in Fig. 4. The shape optimization in three dimensional linear elasticity was conducted
by the IGABEM with NURBS [59]. [60] incorporated T-splines to IGABEM for shape-hull
optimization in hydrodynamic problems. Our work is different in the following aspects: 1) The
approach proposed by [50] in Isogeometric Finite Element Methods to separate the geometry
representation and the field variable representation were incorporated, which can increase
the analysis accuracy with a refined mesh, but limit the number of design variables by using a
coarse mesh concerning the efficiency. 2) Shape sensitivity analyses are carried out in detail in
order to fully verify the method, and the optimization problems have included displacement
minimization, compliance minimization, in addition to stress constraint optimization in [59].
3) More importantly, we use regularized boundary integral equations [64, 65, 66, 56] for
sensitivity analysis, which is in opposition to existing work in the literature [55, 59]. This
avoids the need to compute strongly singular integrals and jump terms and the related shape
derivatives, which is the main difficulty to implement isogeometric boundary element method.
4) From the implementation perspective, our paper gives all required details so that the results
can be fully reproduced.

This paper is organized as follows. Section 2 reviews B-splines and NURBS, which are in
central of IGABEM. Section 3 presents the formulation of IGABEM in a regularized from. Shape
sensitivity analysis with IGABEM is introduced in Section 4. Section 5 demonstrates the IGABEM
shape optimization, followed by numerical examples in Section 6. Finally, Section 7 proposes
conclusions and directions for future work.

2. B-SPLINES AND NURBS

2.1. Knot vector

A knot vector is a set of non-decreasing real numbers in the parametric space:

{ξ1, ξ2, · · · , ξn+p+1} ξA ∈ R, (1)

where A denotes the knot index, p the curve order, and n the number of basis functions or control
points. Each real number ξA is called a knot. The number of knots in a valid knot vector is always
n+ p+ 1. The half open interval [ξi, ξi+1) is called a knot span. See Fig. 5.

Within the knot vector, knots can be repeated. For example, {0, 0, 0, 1, 1, 2, 2, 3, 3, 3} is a valid
knot vector. The knots with different values can be viewed as different break points which divide
the one-dimensional parametric space into different elements. Hence, the physical interpretation
of the knots can be explained as the parametric coordinates of the element edges, while the “knot
span” between two knots with different values can be viewed as the definition of elements in the
parametric space. The insertion of a new knot will split an element, much like h-refinement in FEM.
However, the repetition of existing knots will not increase the number of elements, but can be used
to decrease the order of the basis functions. For example, the knot vector {0, 0, 0, 1, 1, 2, 2, 3, 3, 3}
has 10 knot values and 9 knot spans, [0, 0), [0, 0), [0, 1), [1, 1), [1, 2), [2, 2), [2, 3), [3, 3), [3, 3), but
only 3 elements, [0, 1], [1, 2], [2, 3].
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Initial CAD model

Mesh generation

Shape sensitivity analysis

Structural analysis

Optimizer for new model

Stop criteria
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Figure 4. (a) FEM shape optimization flowchart and (b) IGABEM shape optimization flowchart

0 0 0 0 1 2 3 4 4 4 4

Knot Parametric mesh

Figure 5. Knot vector

It is called open knot vector if its first and last knot values are repeated p+ 1 times, such as
{0, 0, 0, 1, 2, 3, 4, 4, 4} for the NURBS with p = 2. The open knot vector is the standard in CAD,
so all the examples in the present work use open knot vectors. The knot vector values can be
normalized without affecting the resulting B-splines. Therefore {0, 0, 0, 1, 2, 3, 4, 4, 4} is equivalent
to {0, 0, 0, 1/4, 2/4, 3/4, 1, 1, 1}. It is called a uniform knot vector if the knots are uniformly spaced,
for example, {0, 0, 0, 1, 2, 3, 4, 5, 5, 5}.
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REGULARIZED IGABEM SHAPE OPTIMIZATION IMPLEMENTATION 7

2.2. B-spline basis functions

With the concept of a knot vector, we can now define B-spline basis functions using the Cox-de
Boor recursion formula [61, 62]

NA,0(ξ) =

{
1 if ξA ⩽ ξ < ξA+1,

0 otherwise,
(2)

NA,p(ξ) =
ξ − ξA

ξA+p − ξA
NA,p−1(ξ) +

ξA+p+1 − ξ

ξA+p+1 − ξA+1
NA+1,p−1(ξ). (3)

In essence a B-spline basis function is a piecewise polynomial function. The functions are C∞

within elements and Cp−m on element boundaries, where m is the number of knot repetitions.
B-spline basis functions possess the following properties (Fig. 6):

• Local support. The B-spline basis function NA,p is always non-negative in the knot span of
[ξA, ξA+p+1). This is significant for interactive design: the change of one control point only
affects the local part of the curve, providing flexibility in curve modifications.

• Partition of unity.
∑n

A=1 NA,p(ξ) = 1.

• Pointwise non-negativity.

• Weak Kronecker delta property. A weak Kronecker delta property means NA(x) = 0 but
NA(xA) ̸= 1, which is useful for enforcing boundary conditions in engineering analysis,
because only the control points corresponding to boundaries need to be considered.

• Linear independence. This property is essential to construct the approximation space for
numerical analysis.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

ξ

N
A
(ξ
)

Figure 6. B-spline basis functions (p = 3) for knot vector {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}
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8 H. LIAN, ET AL.

The first order derivative of the B-spline basis function is

d

dξ
NA,p(ξ) =

p

ξA+p − ξA
NA,p−1(ξ)−

p

ξA+p+1 − ξA+1
NA+1,p−1(ξ). (4)

The kth order derivatives of the B-spline basis function is given by

dk

dkξ
NA,p(ξ) =

p

ξA+p − ξA

(
dk−1

dk−1ξ
NA,p−1(ξ)

)
− p

ξA+p+1 − ξA+1

(
dk−1

dk−1ξ
NA+1,p−1(ξ)

)
. (5)

In the implementation, an iterative algorithm exists to expand dk

dkξ
NA,p(ξ) in terms of low order

basis functions as the following

dk

dkξ
NA,p(ξ) =

p!

(p− k)!

k∑
j=0

αk,jNA+j,p−k(ξ), (6)

with

α0,0 = 1,

αk,0 =
αk−1,0

ξA+p−k+1 − ξA
,

αk,j =
αk−1,j − αk−1,j−1

ξA+p+j−k+1 − ξA+j
, j = 1, . . . ., k − 1,

αk,k =
−αk−1,k−1

ξA+p+1 − ξA+k
. (7)

2.3. NURBS basis functions

Non-uniform Rational B-Splines (NURBS) [63] are developed from B-splines but can offer
significant advantages due to their ability to represent a wide variety of geometric entities such
as conic sections. NURBS are an important geometric modelling technique in CAD and are seen as
the industry standard with implementation in several commercial software packages. Therefore, all
geometries in the present work are represented by NURBS.

NURBS basis function RA,p is defined as

RA,p(ξ) =
NA,p(ξ)wA

W (ξ)
, (8)

with

W (ξ) =

n∑
A=1

wANA,p(ξ), (9)

where wA denotes a weight associated with each basis function or control point. It can influence
the distance between the associated control point and the NURBS geometry, with higher values
drawing the curve closer to that point (Fig. 7). When all of the weights are equal to 1, the NURBS
curve reduces to a B-spline curve.
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Figure 7. The comparison between NURBS curve with different weights

The derivatives of a NURBS basis function are expressed by

d

dξ
RA,p(ξ) = wA

W (ξ) d
dξNA,p(ξ)− d

dξW (ξ)NA,p(ξ)

(W (ξ))2
, (10)

and
d

dξ
W (ξ) =

n∑
A=1

d

dξ
NA,p(ξ)wA. (11)

2.4. NURBS geometries

A NURBS basis in multi-dimensions can be obtained using tensor product as

RA(ξ|ΞA) ≡
dp∏
i=1

Ri
A(ξ

i
A|Ξi

A), (12)

where i denotes the direction index and dp is the dimension number. Hence NURBS basis functions
in two-dimensions and three-dimensions are written as

Rp,q
A,B(ξ, η) =

NA,p(ξ)MB,q(η)wA,B∑n
Â=1

∑m
B̂=1 NÂ,p(ξ)MB̂,q(η)wÂ,B̂

, (13)

Rp,q,r
A,B,C(ξ, η, ζ) =

NA,p(ξ)MB,q(η)LC,r(ζ)wA,B,C∑n
Â=1

∑m
B̂=1

∑l
Ĉ=1 NÂ,p(ξ)MB̂,q(η)LĈ,r(ζ)wÂ,B̂,Ĉ

. (14)

A NURBS geometry is a mapping from parametric space to physical space through a linear
combination of NURBS basis functions and corresponding coefficients which are called control
points because their physical meaning is a series of points scattered in physical space. A NURBS
curve can be expressed as

x(ξ) =

n∑
A=1

RA,p(ξ)PA, (15)
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10 H. LIAN, ET AL.

where x(ξ) denotes the physical curve of interest, ξ is the coordinate in parametric space, PA the
control points, NA,p the B-spline basis functions of order p. See Fig. 8. NURBS surfaces can be
constructed in a similar way (Fig. 9).

Control point

Curve

Knot

Control polygon

Figure 8. NURBS curve

Figure 9. NURBS surface

Another important interpretation of NURBS geometries is a linear combination of standard B-
spline basis functions and weighted control points

x(ξ) =

n∑
A=1

NA,p(ξ)P̃A, (16)

where P̃A = {wAPA, wA}T are the weighted control points in projective space. NA,p is the standard
B-spline basis function.
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REGULARIZED IGABEM SHAPE OPTIMIZATION IMPLEMENTATION 11

NURBS geometries possess the following properties

• The convex hull property. The NURBS geometry is contained in the convex hull constructed
by the control grid, which is a mesh interpolated by control points. See Fig. 9.

• The variation diminishing property. No plane has more intersections with the curve than it
has with the control grid. This property renders NURBS less oscillatory than Lagrangian
polynomials.

• The transformation invariance property. An affine transformation of a NURBS can be
achieved by applying an affine transformation to the control points.

• Non-interpolatory. The NURBS geometry does not interpolate the control points except at
the starting point of the curve, the end point of the curve and any point whose knot value is
repeated p times.

2.5. Knot insertion in NURBS

Knot insertion is used to enrich the NURBS basis function space. Let Ξ = {ξ1, ξ2, · · · , ξn+p+1} be
a knot vector, P̃ the corresponding weighted control points. If we insert a new knot ξ̄ ∈ [ξk, ξk+1],
the added control point ¯̃P can be obtained as follows without changing the geometry,

¯̃PA =


P̃1

αAP̃A + (1− αA)P̃A−1

P̃n

A = 1,

1 < A < m,

A = m,

(17)

with

αA =


1
ξ̄A−ξA

ξA+p−ξA

0

1 ⩽ A ⩽ k − p,

k − p+ 1 ⩽ A ⩽ k,

A ⩾ k + 1.

(18)

2.6. NURBS element structure

Knot vectors used to define the NURBS basis functions provide natural element structures which
are very useful for numerical analysis using FEM or BEM. We can view the non-zero knot interval
as an element in each dimension. The only difference from isoparametric elements which are widely
used in analysis is that each element in NURBS has a different set of basis functions. To employ
the Gauss-Legendre quadrature rule, we can transfer the space defined on each knot interval into a
standard space Ω̂ [−1,+1], and dΩe = JedΩ̂e, with

Je =
ξb − ξa

2
, (19)

where ξa and ξb are the parametric coordinates of the starting knot and end knot of the element,
respectively. Je is the Jacobian transforming parent elements to parametric elements and varies with
the element.
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12 H. LIAN, ET AL.

3. ISOGEOMETRIC BOUNDARY ELEMENT METHODS

3.1. Isogeometric boundary element method for linear elastostatics

In the linear elastic problem as shown in Fig. 10, the equilibrium equations are expressed as

σij,j + bi = 0, (20)

where i, j denote Cartesian components and range from 1 to 2 in two dimensions, σij are the
components of stress tensor, ϵij the strain tensor, bi the body force. The strain tensor ϵij is defined
by

ϵij =
1

2
(ui,j + uj,i), (21)

where ui is the displacement field and a comma implies a differentiation. The boundary conditions
are

ui = ūi on Su ⊆ S, (22)

σijnj = t̄i on St ⊆ S. (23)

where ūi and t̄i are the prescribed displacements and tractions, respectively, and

Su ∪ St = S, Su ∩ St = ∅. (24)

The displacement boundary integral equation (DBIE) can be written as

Cij(s)uj(s) +−
∫
S

Tij(s,x)uj(x)dS(x) =

∫
S

Uij(s,x)tj(x) dS(x), (25)

where i, j denote Cartesian component and range from 1 to 2 in two dimensional cases. Cij is the
jump term, uj and tj are the displacement field and traction field around the boundary, respectively.
Tij and Uij are the displacement and traction fundamental solutions, which in two-dimensional
elasticity are written as

Uij (s, x) =
1

8πµ(1− ν)

[
(3− 4ν) ln

(
1

r

)
δij + r,ir,j

]
, (26)

Tij (s, x) = − 1

4π(1− ν)r

{
∂r

∂n
[(1− 2ν)δij + 2r,ir,j ]− (1− 2ν)(r,inj − r,jni)

}
,

(27)

where x is the field point on the boundary, s the source point, r = r(x,x) = ||x− s|| the distance
between the source point and field point (Fig. 11), λ = 2νµ/(1− 2ν) is Lamé constant, and
µ = E/2(1 + ν) is shear modulus of elasticity, with E denoting Young’s modulus, and ν Poisson’s
ratio, and δij is the Kronecker delta symbol with the property

δij =

{
0 i ̸= j,

1 i = j.
(28)
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REGULARIZED IGABEM SHAPE OPTIMIZATION IMPLEMENTATION 13

Figure 10. The distance between the source point and field point

Figure 11. The distance beween the source point and field point

Eq. (25) is a singular form and requires an explicit evaluation of jump terms and strongly singular
integrals in IGABEM. To overcome this difficulty, we employ a regularized boundary integral
equation proposed by Liu in [64, 65, 66], which is written as∫

S

Tij (s, x) [uj (x)− uj (s)] dS (x) =

∫
S

Uij (s, x)tj (x) dS (x) . (29)

The regularized form cancels the singularity of the left-hand side of Eq. (29) because

Tij (s, x) [uj (x)− uj (s)] ∼ O
(
1
r

)
O(r) = O(1) in 2D. (30)

The weakly singular integrals in the right-hand side of Eq. (29) can be evaluated using a Telles
transformation [67].

The geometry in Eq. (29) was parameterized using NURBS basis functions

x(ξ) =

n∑
A=1

RA(ξ)PA, (31)
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14 H. LIAN, ET AL.

where A denotes the global index of the basis function, P the control point, ξ the parametric
coordinates of the field point.

The displacement and traction fields around the boundary are discretized using NURBS basis
functions, which is the main difference from the traditional BEM,

uj(ξ) =

n∑
A=1

RA(ξ)ũ
A
j , (32)

tj(ξ) =

n∑
A=1

RA(ξ)t̃
A
j , (33)

where ũA
j and t̃Aj are the nodal unknowns related to displacements and tractions.

Substituting Eqs. (31,32,33) to Eq. (29) leads to a discrete form of regularized BIE

n∑
A=1

∫
S

Tij(ζc, ξ) [RA (ξ) −RA (ζc)] J (ξ) dS (ξ) ũA
j

=

n∑
A=1

∫
S

Uij (ζc, ξ)RA (ξ) J(ξ)dS(ξ)t̃Aj , (34)

where ζc denotes the parametric coordinate of the collocation point and c the global index of the
collocation point. To perform a numerical integration using the Gauss-Legendre rule, the above

e

x

y

Figure 12. The mapping from parent elements to physical space

integral should be transformed into parent elements with the Jacobian J̃e (see Fig. 12). So the above
integral becomes

n∑
A=1

∫ +1

−1

Tij (ζc, ξ) [RA (ξ)−RA (ζc)] J (ξ) J̃e(ξ̃)dS(ξ̃)ũ
A
j
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=

n∑
A=1

∫ +1

−1

Uij (ζc, ξ)RA (ξ) J (ξ) J̃e(ξ̃)dS(ξ̃)t̃
A
j , (35)

where ξ̃ is the intrinsic coordinate of the field point in the parent element. By denoting the terms of
the above equation as

HcA
ij =

∫ +1

−1

Tij (ζc, ξ) [RA (ξ)−RA (ζc)] J (ξ) J̃e(ξ̃)dS(ξ̃), (36)

GcA
ij =

∫ +1

−1

Uij (ζc, ξ)RA (ξ) J (ξ) J̃e(ξ̃)dS(ξ̃), (37)

we can rewrite Eq. (35) in matrix form
Hu = Gt, (38)

where H and G are the matrices collecting the terms of HcA
ij and GcA

ij , respectively. u contains the
nodal displacement parameters, and t the nodal traction parameters. Both u and t include unknown
and known values given by boundary conditions. By swapping the unknowns of both sides of Eq.
(38), we can rearrange it as

Az = By = f . (39)

The vector z contains all the displacement and traction unknowns, y contains all the nodal
parameters given by boundary conditions, A is a coefficient matrix which is usually non-symmetric
and densely populated, and B is a matrix which contains the coefficients corresponding to the
prescribed boundary conditions. The product of B and y yields the vector f on the right-hand side.

3.2. Imposition of boundary conditions

NURBS basis functions lack Kronecker delta property, so the nodal parameters do not possess
a clear physical interpretation. Hence, the boundary conditions cannot be substituted directly into
nodal parameters. In the isogeometric finite element method, this task can be done through Lagrange
multiplier methods, penalty methods, or Nitsche’s method [68]. However, these methods are not
available in collocation IGABEM, because the method is not based on a variational equality.
Hence, a nodal parameter extraction approach should be used, which can be conducted by a point
collocation method or a L2 projection method.

3.2.1. Collocation method The collocation method enforces boundary conditions to be satisfied
at a series of discrete points. To construct the equations, we collocate at a series of points on the
boundary portion prescribed boundary conditions, and evaluate the field values,

u(ξc) = ū(ξc) on Su, (40)

t(ξc) = t̄(ξc) on St, (41)

where Su is the portion of the boundary with displacement boundary conditions, and St with traction
boundary conditions. ξc denotes the collocation point with index c, which can be chosen identical
to that used for constructing IGABEM equations.
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16 H. LIAN, ET AL.

Substituting Eqs.(32, 33) into the above equations and using a matrix form produces

R(ξc)ũ = ū(ξc) on Su, (42)

R(ξc)t̃ = t̄(ξc) on St, (43)

where ũ and t̃ are the column vectors collecting the components of boundary nodal parameters.
R = RI is the shape function matrix with I the identity matrix.

After obtaining ũ and t̃, we can substitute them into the governing equations for analysis.

3.2.2. L2 projection The Galerkin method enforces boundary conditions in an “average” sense, i.e.∫
Su

RTudS =

∫
Su

RTūdS onSu, (44)

∫
St

RTtdS =

∫
St

RTt̄dS on St, (45)

where the shape function R is used as a weighting function. Substituting Eqs.(32) and (33) into the
above equations leads to ∫

Su

RTRũdS =

∫
Su

RTūdS on Su, (46)

∫
St

RTRt̃dS =

∫
St

RTt̄dS on St. (47)

Hence, ũ and t̃ can be obtained by solving the following matrix equations

A1ũ = z1 on Su, (48)

A2t̃ = z2 on St, (49)

where

A1 =

∫
Su

RTRdS on Su, (50)

A2 =

∫
St

RTRdS on St. (51)

and
z1 =

∫
Su

RTūdS on Su, (52)

z2 =

∫
St

RTt̄dS on St. (53)

Because it is integration-free, the collocation method is more efficient than the L2 projection.
However, the L2 projection method is more elegant in the case of geometries with corners where
special care must be taken for choosing collocation point positions. Moreover, collocation methods
may lead to instabilities along interfaces between Dirichlet and Neumann boundary conditions since
the equations are satisfied only pointwise.
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4. SHAPE SENSITIVITY ANALYSIS WITH IGABEM

Shape sensitivity analysis refers to the evaluation of the derivatives of quantities of interest with
respect to design variables. This is a critical step for gradient-based shape optimization, although
its application is not limited to it. In the aspect of sensitivity analysis of finite element method with
NURBS, it is referred to [43, 50]. In the context of boundary integral equations, three methods
are available to conduct sensitivity analysis, 1) finite difference method, 2) adjoint variable method
[69, 70], and 3) implicit differentiation method [71, 72, 73]. Finite difference methods are easy
to implement but the accuracy is limited. The adjoint variable method uses an adjoint state to
obtain a sensitivity expression for each design variable, and is thus particularly useful for a large
number of design variables and a small number of constraints. However, adjoint variables normally
correspond to a concentrated point force, which is not consistent with distributed tractions used in
BEM. The concentrated force is thus approximated using a traction exerted on a small area, which
decreases the accuracy and robustness of the algorithm. Implicit differentiation methods rely on a
direct differentiation of the BIE with respect to the design variables, and generate analytical forms
of BIE sensitivities. Due to its accuracy and convenience for BIE, the present work will employ the
implicit differentiation method, and adopt regularized BIE to generate its differentiation form.

4.1. Implicit differentiation with regularized IGABEM

Different from traditional BEM where the singular BIE was differentiated with respect to the design
variables, In IGABEM we use the regularized form as the basis of shape sensitivity analysis. By
taking the parametric coordinates as the material coordinates which are independent of design
variables, the shape differentiation form of the regularized BIE is∫

S

{
Ṫij (s,x) [uj (x)− uj (s)] + Tij (s,x) [u̇j (x)− u̇j (s)

}
dS (x)

+

∫
S

Tij (s,x) [uj (x)− uj (s)] ˙[dS(x)]

=

∫
S

[
U̇ij (s,x) tj (x) + Uij (s,x) ṫj (x)

]
dS (x)

+

∫
S

Uij (s,x) tj (x) ˙[dS(x)], (54)

We use a superimposed dot ˙(·) to denote the material derivatives. We remark that Ṫij and U̇ij share
the same singularity order with Tij and Uij , respectively. Hence, the equation is still weakly singular.

The shape derivatives of field points are given by

ẋ(ξ) =

n∑
A=1

RA(ξ)ṖA. (55)

We discretize the displacement and traction field around the boundary as

uj(ξ) =

n∑
A=1

RA(ξ)ũ
A
j , (56)
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tj(ξ) =

n∑
A=1

RA(ξ)t̃
A
j , (57)

and we also discretize the shape derivatives of the boundary displacement and traction field as

u̇j(ξ) =

n∑
A=1

RA(ξ) ˙̃u
A
j , (58)

ṫj(ξ) =

n∑
A=1

RA(ξ)
˙̃tAj . (59)

After discretization, Eq. (29) can be expressed by

n∑
A=1

{∫
S

{
Ṫij (ζc, ξ) [RA(ξ)−RA (ζc)] J(ξ)

}
dS(ξ)

}
ũA
j

+

n∑
A=1

{∫
S

{
Tij (ζc, ξ) [RA(ξ)−RA(ζc)]J̇(ξ)

}
dS(ξ)

}
ũA
j

+

n∑
A=1

{∫
S

{Tij (ζc, ξ) [RA(ξ)−RA(ζc)]J(ξ)}dS(ξ)
}
˙̃uA
j

=

n∑
A=1

{∫
S

[
U̇ij (ζc, ξ)RA(ξ)J(ξ) + Uij (ζc, ξ)RA(ξ)J̇(ξ)

]
dS(ξ)

}
t̃Aj

+

n∑
A=1

{∫
S

[Uij (ζc, ξ)RA(ξ)J(ξ)] dS(ξ)

}
˙̃tAj . (60)

The above integral is also evaluated over parent elements where Gauss-Legendre quadrature rules
can be used,

n∑
A=1

{∫ +1

−1

{
Ṫij (ζc, ξ) [RA(ξ)−RA (ζ)] J(ξ)

}
J̃e(ξ̃)dS(ξ̃)

}
ũA
j

+

n∑
A=1

{∫ +1

−1

{
Tij (ζc, ξ) [RA(ξ)−RA(ζ)]J̇(ξ)

}
J̃e(ξ̃)dS(ξ̃)

}
ũA
j

+

n∑
A=1

{∫ +1

−1

{Tij (ζc, ξ) [RA(ξ)−RA(ζ)]J(ξ)} J̃e(ξ̃)dS(ξ̃)
}

˙̃uA
j

=

n∑
A=1

{∫ +1

−1

[
U̇ij (ζc, ξ)RA(ξ)J(ξ) + Uij (ζc, ξ)RA(ξ)J̇(ξ)

]
J̃e(ξ̃)dS(ξ̃)

}
t̃Aj

+

n∑
A=1

{∫ +1

−1

[Uij (ζc, ξ)RA(ξ)J(ξ)] J̃e(ξ̃)dS(ξ̃)

}
˙̃tAj . (61)

The above equation can be assembled to a matrix form, yielding the following:

Ḣu+Hu̇ = Ġt+Gṫ. (62)

where the displacement u and t are vectors containing the displacement and traction nodal
parameters, and H and G are the corresponding coefficient matrices. These values can be obtained
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from the IGABEM structural analysis result. Ḣ and Ġ are the coefficient matrices associated with
the unknown field sensitivities u̇ and ṫ.

The boundary conditions of the sensitivity analysis can be found from the material differentiation
of the boundary conditions prescribed for structural analysis,

u̇j(x) = ˙̄uj(x), on Su (63)

ṫj(x) = ˙̄tj(x), on St (64)

where ˙̄uj and ˙̄tj are the displacement and traction sensitivity boundary conditions, respectively. The
sensitivity boundary condition should be exerted using a nodal parameter extraction scheme similar
to structural analysis procedure with IGABEM. By swapping the unknowns in Eq. (62), a final
matrix form is obtained as

Aż = ḟ + Ȧz (65)

where the matrix A and column vector z are identical to that in IGABEM structural analysis, and ḟ

is formed by imposing sensitivity boundary conditions.

4.2. Sensitivities of fundamental solutions

As shown above, the sensitivities of fundamental solutions play an important role in the implicit
differentiation method. The analytical forms of the displacement and traction fundamental solution
sensitivities U̇ij and Ṫij are derived by taking shape differentiation on Eqs. (26) and (27),

U̇ij(s,x) =
1

8πµ(1− ν)

[
(3− 4ν)

˙(
ln

1

r

)
δij + ˙(r,i)r,j + r,i ˙(r,j)

]
, (66)

Ṫij(s,x) =
−1

4π(1− ν)

˙(
1

r

){
∂r

∂n
[(1− 2ν)δij + 2r,ir,j ]

}
−1

4π(1− ν)

˙(
1

r

)
[−(1− 2ν)(r,inj − r,jni)]

−1

4π(1− ν)r

{ ˙(
∂r

∂n

)
[(1− 2ν)δij + 2r,ir,j ]− 2

∂r

∂n
[ ˙(r,i)r,j + r,i ˙(r,j)]

−(1− 2ν)[ ˙(r,i)nj + r,iṅj − ˙(r,j)ni − r,j ṅi]

}
, (67)

where the superimposed dot ˙(·) denotes the derivative with respect to the given design variable, and

˙(
∂r

∂n

)
= ˙(r,ini) = ˙(r,i)ni + r,iṅi,

˙(
1

r

)
= − ṙ

r2
, (68)

˙(r,i) =
˙(xi − si
r

)
=

(ẋi − ṡi)r − (xi − si)ṙ

r2
,

˙(
ln

1

r

)
= − ṙ

r
. (69)

The Jacobian is
J(ξ) =

√
Ji(ξ)Ji(ξ), (70)
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with
Ji(ξ) =

dxi

dξ
. (71)

The shape derivative of the Jacobian is given by

J̇(ξ) =
J̇i(ξ)Ji(ξ)

J(ξ)
. (72)

Now the sensitivity of the unit outward normal ni can be derived from that of the Jacobian as

ṅi =
˙[

Ji(ξ)

J(ξ)

]
=

J̇i(ξ)J(ξ)− Ji(ξ)J̇(ξ)

J2(ξ)
. (73)

The hypersingular fundamental solutions are

Dkij =
1

4π(1− ν)r
[(1− 2ν)(r,iδjk + r,jδki − r,kδij) + 2r,ir,jr,k], (74)

Skij =
µ

2π(1− ν)r2

{
2
∂r

∂n
[(1− 2ν)δijr,k + ν(r,jδik + r,iδjk)− 4r,ir,jr,k]

}
+

µ

2π(1− ν)r2
{2ν(nir,jr,k + njr,ir,k)} (75)

+
µ

2π(1− ν)r2
{(1− 2ν)(2nkr,ir,j + njδik + niδjk)− (1− 4ν)nkδij}.

Hence the shape derivatives of hypersingular fundamental solutions are

Ḋkij (s, x) =
1

4π(1− ν)

˙(
1

r

)
[(1− 2ν)(r,iδjk + r,jδki − r,kδij) + 2r,ir,jr,k]

+
1

4π(1− ν)r
[(1− 2ν)( ˙(r,i)δjk + ˙(r,j)δki − ˙(r,k)δij)]

+
1

4π(1− ν)r
[2( ˙(r,i)r,jr,k + r,i ˙(r,j)r,k + r,ir,j ˙(r,k))], (76)

Ṡkij (s, x) = Ṡ1
kij (s, x) + Ṡ2

kij (s, x) + Ṡ3
kij (s, x) (77)

with

Ṡ1
kij (s, x) =

µ

2π(1− ν)

˙(
1

r2

){
2
∂r

∂n
[(1− 2ν)δijr,k + ν(r,jδik + r,iδjk)]

}
+

µ

2π(1− ν)

˙(
1

r2

){
2
∂r

∂n
(−4r,ir,jr,k) + 2ν(nir,jr,k + njr,ir,k)

}
+

µ

2π(1− ν)

˙(
1

r2

)
{(1− 2ν)(2nkr,ir,j + njδik + niδjk)},

+
µ

2π(1− ν)

˙(
1

r2

)
{−(1− 4ν)nkδij}, (78)

Ṡ2
kij (s, x) =

µ

2π(1− ν)r2

{
2

˙(
∂r

∂n

)
[(1− 2ν)δijr,k + ν(r,jδik + r,iδjk)]

}
(79)
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+
µ

2π(1− ν)r2

{
2

˙(
∂r

∂n

)
(−4r,ir,jr,k)

}

+
µ

2π(1− ν)r2

{
2

(
∂r

∂n

)
[(1− 2ν)δij ˙(r,k) + ν( ˙(r,j)δik + ˙(r,i)δjk)]

}
+

µ

2π(1− ν)r2

{
2

(
∂r

∂n

)
[−4( ˙(r,i)r,jr,k + r,i ˙(r,j)r,k + r,ir,j ˙(r,k))]

}
,

Ṡ3
kij (s, x) =

µ

2π(1− ν)r2
{2ν(ṅir,jr,k + ni

˙(r,j)r,k + nir,j ˙(r,k))}

+
µ

2π(1− ν)r2
{2ν(ṅjr,ir,k + nj

˙(r,j)r,k + njr,i ˙(r,k))}

+
µ

2π(1− ν)r2
{(1− 2ν)[2(ṅkr,ir,j + nk

˙(r,i)r,j + nkr,i ˙(r,j))]}

+
µ

2π(1− ν)r2
{(1− 2ν)(ṅjδik + ṅiδjk)− (1− 4ν)ṅkδij}. (80)

Tab. I shows the singularity order of the fundamental solution sensitivities, where we can see that
they have the same order as the fundamental solutions.

Kernel Kernel sensitivity Order Singularity type Dimension
Uij U̇ij O(ln(1/r)) weakly singular 2D
Tij Ṫij O(1/r) strongly singular 2D
Dij Ḋkij O(1/r) strongly singular 2D
Sij Ṡkij O(1/r2) hypersingular 2D

Table I. The singularity of kernel function sensitivities

4.3. Stress and displacement shape sensitivity recovery

4.3.1. Evaluate sensitivities at interior points After computing the displacement and traction of
the boundary by solving Eq. (38), we can evaluate the displacement or stress in the domain if
necessary. The displacement and the stress at an interior point results from a straightforward use of
Somigliana’s identities. Ignoring body forces, for the interior displacement field the expression is

ui(S) =

∫
S

Uij(S,x)tj(x)−
∫
S

Tij(S,x)uj(x)dS(x), (81)

and for the interior stress field the expression is

σij(S) =

∫
S

Dkij(S,x)tkdS(x)−
∫
S

Skij(S,x)uk(x)dS(x), (82)

where S denote the interior point, and x the boundary point. The shape sensitivity at interior points
can be obtained by taking shape derivatives of the Somigliana’s identities. So the displacement
shape sensitivity is

u̇i (S) =

∫
S

U̇ij (S,x) tj (x) dS (x) +

∫
Ω

Uij (S,x) ṫj (x) dS (x)

+

∫
Ω

Uij (S,x) tj (x) ˙[dS (x)]−
∫
S

Ṫij (S,x)uj (x) dS (x)
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−
∫
S

Tij (S,x) u̇j (x) dS (x)−
∫
S

Tij (S,x)uj (x) ˙[dS (x)], (83)

and the stress shape sensitivity is

σ̇ij (S) =

∫
S

Ḋkij (S,x) tk (x) dS (x) +

∫
S

Dkij (S,x) ṫk (x) dS (x)

+

∫
S

Dkij (S,x) tk (x) ˙[dS (x)]−
∫
S

Ṡkij (S, x)uk (x) dS (x)

−
∫
S

Skij (S, x)u̇k (x) dS (x)−
∫
S

Skij (S, x)uk (x) ˙[dS (x)]. (84)

4.4. Evaluate stress sensitivities at boundary points

The evaluation of the stress at boundary points can also be done using Somigliana’s equations, but
a singular integral needs to be computed and an integral surface is time-consuming. So a simple
and efficient way consists in recovering the stress by Hooke’s law and Cauchy’s formula from the
displacement, the displacement gradient and the traction fields:

u(ξ) =

n∑
A=1

RA(ξ)u
A, (85)

du(ξ)

dξ
=

n∑
A=1

dRA(ξ)

dξ
uA, (86)

t(ξ) =

n∑
A=1

RA(ξ)t
A. (87)

As shown in Fig. 13, define a local coordinate system such that ê1 is the unit vector in the normal
direction and ê2 is the unit vector in the tangential direction, and the vectors in this system can be
represented as

x̂ = x̂1ê1 + x̂2ê2. (88)

The local tangential vector can be obtained by

ê1 = n, (89)

ê2 =
m

|m|
, (90)

where n is the normal, and m is the tangential vector,

m =
dx(ξ)

dξ
. (91)

The transformation matrix for the quantities from the global coordinate system to the local tangential
system is

A =

[
ê1

ê2

]
=

[
n1 n2

−n2 n1

]
. (92)
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Defining displacements, tractions, strains, and stresses in the local coordinates as ûj , t̂j , ϵ̂ij , and
σ̂ij respectively, ϵ̂22 can be evaluated through the displacement gradient in global coordinates,

ϵ̂22(ξ) = û2,2(ξ) =
∂û2

∂ξ

∂ξ

∂x̂2
= A2j

∂uj

∂ξ

∂ξ

∂x̂2
, (93)

with
∂ξ

∂x̂2
=

1

|m|
. (94)

The stress tensor in the local coordinate system is

σ̂11 = t̂1, (95)

σ̂12 = t̂2, (96)

σ̂22 =

(
E

1− ν2

)
ϵ̂22 +

( ν

1− ν

)
t̂1. (97)

Finally, the stress in the global Cartesian coordinate system can be obtained as

σij = AkiAnj σ̂kn. (98)

Now we consider stress sensitivities. After solving Eq. (65), we can get

Figure 13. Local coordinate system on curve

u̇(ξ) = RA(ξ)u̇
A, (99)

du̇(ξ)

dξ
=

dRA(ξ)

dξ
u̇A, (100)

ṫ(ξ) = RA(ξ)ṫ
A. (101)

And the sensitivity of the tangential vector m is

ṁ =
˙(

dx(ξ)

dξ

)
, (102)
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and

˙|m| =
˙(√

dxi

dξ

dxi

dξ

)
=

˙(
dxi

dξ

)
dxi

dξ

|m|
, (103)

with
˙(

dx(ξ)

dξ

)
=

dRA(ξ)

dξ
ẋA. (104)

The normalized local tangential vector

˙̂e1 = ṅ, (105)

˙̂e2 =
˙(
m

|m|

)
. (106)

Defining the displacements, strains, stresses and tractions in the local coordinates x̂j as ûj , ϵ̂ij , σ̂ij

and t̂j respectively, the corresponding stress components σ̂ij can be written as

˙̂ϵ22(ξ) = ˙̂u2,2(ξ) =

(
A2i

˙dui

dξ

dξ

dx̂2

)
= (Ȧ2i)

dui

dξ

dξ

dx̂2
+A2i

˙(
dui

dξ

)
dξ

dx̂2
+A2i

dui

dξ

(
ḋξ

dx̂2

)
, (107)

with (
ḋξ

dx̂1

)
=

˙(
1

|m1|

)
. (108)

The sensitivity of the transformation matrix from the global coordinate system to the local tangential
system is

Ȧ =

[
˙̂e1
˙̂e2

]
. (109)

The stress sensitivity tensor in the local coordinate system is

˙̂σ11 = ˙̂t1, (110)
˙̂σ12 = ˙̂t2, (111)

˙̂σ22 =

(
E

1− ν2

)
˙̂ϵ22 +

( ν

1− ν

)
˙̂t1. (112)

Transferring the stress sensitivity back to the global Cartesian coordinate system writes

σ̇ij =
(
Aki

˙Anj σ̂kn

)
= (Ȧki)Anj σ̂kn +Aki(Ȧnj)σ̂kn +AkiAnj( ˙̂σkn). (113)

5. SHAPE OPTIMIZATION WITH IGABEM

Shape optimization can be conducted through a gradient-less or gradient-based method. The
gradient-less shape optimization does not require evaluating the shape derivatives, but can be slow to
converge and thus prohibitively time-consuming. Moreover, gradient-less methods are not supported
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by a mathematical theory. Gradient-based methods are thus normally preferred and also used in
the present work. Gradient-based shape optimization methods have a well-sound mathematical
foundation rooted in optimal-control theory. A shape optimization problem can be formulated as
minimizing an objective function

f : Rn → R, (114)

f : t 7→ f(t), (115)

subject to the constraints
gi (t) ⩽ 0 for i = 1, . . . ,m, (116)

tli ⩽ ti ⩽ tui . (117)

where t is a vector of parameters which controls geometrical configurations, also called design
variables. f is the objective function, gi the constraint functions, i the constraint function index, m
the number of constraints. Eq. (117) gives side constraints to limit the search region for the optimum,
where tli and tui are lower and upper bounds of the design variables, respectively. A design is called
feasible if all constraints are satisfied.

To find the minimum value, numerical optimization algorithms employ the gradient of the
objective functions and constraint functions to find the next value within an iterative algorithm,
i.e. (

fk,g
k
i ,

d

dt
fk,

d

dt
gk
i

)
→

(
fk+1,g

k+1
i

)
, (118)

where k denotes the kth iteration step, d
dtfk and d

dtgk are the shape derivatives or sensitivities. A
numerical shape optimization procedure is divided into the following steps:

1. Define the objective function and constraints.

2. Parameterize the boundary and choose the design variables.

3. Evaluate the objective functions and the constraint functions.

4. Evaluate the shape derivatives of the objective and constraint functions.

5. Check whether the convergence criteria are satisfied. Calculate the next set of design variables
if the criteria are satisfied, or stop the iterations otherwise.

From Fig. 4(b), we can find that the steps of meshing/remeshing has been removed in IGABEM
optimization.

5.1. Shape derivatives of the volume and von Mises stress

The displacement and stress shape sensitivities can be obtained from the procedure demonstrated
in Section 4. However, more effort is needed to calculate the sensitivities of some other commonly
used quantities. To be consistent with our CAD and analysis model, the domain integrals involved
should be transformed into boundary integrals.
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• The shape derivatives of area A. The area can be transferred into boundary integral readily by
using the divergence theorem

A =

∫
Ω

dΩ =
1

2

∫
Ω

∇ · xdΩ =
1

2

∫
S

x · ndS =
1

2

∫
S

x · nJ(ξ)xdS(ξ). (119)

So the shape derivatives are

Ȧ =
1

2

∫
S

[x · nJ(ξ)] dS(ξ)

=
1

2

∫
S

[
ẋ · nJ(ξ) + x · ṅJ(ξ) + x · nJ̇(ξ)

]
dS(ξ). (120)

• The shape derivatives of the von Mises stress σvm. The expression of σvm is given by

σvm =

(
3

2
sijsij

) 1
2

, (121)

with sij the components of the stress deviator tensor, which are given by

sij = σij −
1

3
σkkδij . (122)

In two-dimensional problems, the von Mises stress can be written as

σvm =
√

σ2
11 + σ2

22 + 3σ2
12 − σ11σ22, (123)

and its sensitivity is given by

σ̇vm =
(2σ11 − σ22)σ̇11 + (2σ22 − σ11)σ̇22 + 6σ12σ̇12

2σvm
. (124)

5.2. Shape sensitivity transition in NURBS

Numerical analysis always requires a sufficiently refined control mesh to reproduce the solution
accurately. In contrast, a relatively coarse geometrical mesh is preferred in CAD and shape
optimization, because an unnecessary refinement will introduce redundant design variables, leading
to a costly shape sensitivity analysis and oscillatory geometries. To take advantages of refined
meshes for stress analysis, and coarse meshes for model design and optimization, we incorporated
the method proposed by [50] in IGAFEM to evaluate the shape derivatives of the quantities in
refined meshes with respect to the design variables in the meshes before refinement. The approached
is reviewed as below:

Recall the knot insertion algorithm in NURBS for adding new control points while keeping the
geometry unchanged,

¯̃PA =


P̃1

αAP̃A + (1− αA)P̃A−1

P̃n

A = 1,

1 < A < m,

A = m,

(125)
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with

αA =


1
ξ̄A−ξA

ξA+p−ξA

P̃n

A = 1.

1 < A < m,

A = m,

(126)

where P̃ are the weighted control points in NURBS before refinement, ¯̃PA the added weighted
control points by knot insertion or repetition. Given the shape derivatives in the mesh of ˙̃P with
respect to a given design variable, which can be a control point in the same mesh, the shape
derivatives of a weighted point ¯̃PA in the refined mesh can be obtained by taking derivatives in
Eq. (126)

˙̃̄
PA =


˙̃P1

αA
˙̃PA + (1− αA)

˙̃PA−1

˙̃Pn

A = 1,

1 < A < m,

A = m.

(127)

After that, the control point derivatives ˙̄PA is recovered by dividing the weights of
˙̃̄
PA. Now the

shape derivatives transited from a coarse mesh to a refined mesh. Through this approach, the shape
sensitivity analysis mesh is separated from the design mesh. It should be noted that analysis and the
geometry design still share the same model, only in different levels of refinement.

6. NUMERICAL EXAMPLES

We will investigate the performance of IGABEM for sensitivity analysis and shape optimization
through some numerical examples. All the geometries are modelled using NURBS. To study the
accuracy of numerical results (·)h against analytical solutions (·), we define the relative errors as

eL2(·)h =
∥(·)h − (·)∥L2

∥(·)∥L2

, (128)

and maximum errors as
eL∞(·)h =

∥(·)h − (·)∥L2

∥(·)∥L∞

, (129)

with

∥(·)∥L2 =

√∫
S

(·) · (·)dS, (130)

and
∥(·)∥L∞ = max

1⩽i⩽n
|(·)i|. (131)

And the shape sensitivity transition technique is employed. The optimization solver uses the method
of moving asymptotes (MMA) [74].

6.1. Shape sensitivity analysis examples

6.1.1. Lamé problem Consider a thick cylinder subject to uniform pressure p = 105 on the inner
surface in the normal direction. The radius of the inner surface and outer surface is a = 3, and
b = 8, respectively. The material parameters are Young’s modulus E = 105, and Poisson’s ration
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ν =0.3. The analytical displacement and stress in polar coordinates (r, θ) are given by

ur(r, θ) =
pa2

E(b2 − a2)

[
(1− ν)r +

b2(1 + ν)

r

]
, (132)

σrr(r, θ) =
pa2

b2 − a2

(
1− b2

r2

)
, (133)

σθθ(r, θ) =
pa2

b2 − a2

(
1 +

b2

r2

)
. (134)

Choosing the radius of the outer boundary b as the design variable, the analytical displacement and
stress sensitivities are given by

u̇r(r, θ) = − 2Pa2b

E(b2 − a2)2

[
(1− ν)r +

b2(1 + ν)

r

]
+

Pa2

E(b2 − a2)

[
(1− ν)ṙ + (1 + ν)

2br − b2ṙ

r2

]
, (135)

σ̇rr(r, θ) =
−2a2bP

(b2 − a2)2

(
1− b2

r2

)
+

Pa2

b2 − a2

(
2br2 − 2b2rṙ

r4

)
, (136)

σ̇θθ(r, θ) =
−2a2bP

(b2 − a2)2

(
1 +

b2

r2

)
+

Pa2

b2 − a2

(
2br2 − 2b2rṙ

r4

)
, (137)

where the symbol ˙(·) refers to the shape derivatives of the superposed quantities.
Because of the symmetry, only a quarter of the cylinder needs to be modelled as shown in Fig.

14. The geometry is constructed using quadratic NURBS and the minimum number of elements
and control points to represent the geometry are shown in Fig. 15. The shape sensitivity analysis
is performed using a refined mesh with 8 elements on each segment. Figs. 16 and 17 show the
IGABEM solutions of the displacement and stress sensitivities on the bottom edge AB, respectively.
Figs. 18 and 19 show the corresponding errors of the numerical displacement and stress sensitivities.
An excellent agreement between the analytical and numerical solutions is observed. To investigate
the accuracy of shape sensitivities at the interior points, we select the points on the line of
a+ 0.5 ⩽ r ⩽ b− 0.5 and θ = π/4. Supposing the domain points to be linearly varied in the radial
direction, i.e.

ṙ =
b− r

b− a
, (138)

the displacement and stress sensitivities can be evaluated using Eqs. (83) and (84). The numerical
solutions are shown in Figs. 20 and 21, respectively. And the errors are shown in Figs. 22 and 23.
An excellent agreement with the analytical solution is seen again.

Fig. 24 illustrates the convergence of the errors eL2(uh) and eL2(u̇h) against the number of
degrees of freedom. Both the structural analysis and shape sensitivity analysis converge to the
exact results. The reason for the large error in the shape sensitivity analysis compared with that
of structural analysis is due to the fact that the numerical results from the structural analysis are
used in the shape sensitivity analysis, which leads to error accumulation.
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A B

C

D

Figure 14. Definition of Lamé’s problem

 

 

NURBS curve
element edge
control points

Figure 15. Geometric model of Lamé’s problem

6.1.2. Kirsch problem The Kirsch problem is an infinitely large plate with a circular hole, subject
to a far field uniform tension T . This problem can be modelled by extracting a finite domain and
imposing the exact solution as boundary conditions around the boundary. Due to the symmetry, only
a quarter of the plate is modelled, as shown in Fig. 25. The length of the plate is b = 4, and the radius
of the hole is a = 1. The material parameters are E = 105, and ν = 0.3. The traction boundary
conditions on the top and left edge are from the analytical solutions. In the polar coordinates (r, θ),
the analytical solutions for displacements and stresses are given by

ur(r, θ) = −Ta2

4Gr

{
(1 +K)− (1−K)

[
4(1− ν)− a2

r2

]
cos θ

}
, (139)
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Figure 16. Displacement sensitivities on the boundary points for Lamé’s problem
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Figure 17. Stress sensitivities on the boundary points for Lamé’s problem

uθ(r, θ) = −Ta2

4Gr

{
(1−K)

[
2(1− 2ν) +

a2

r2

]
sin 2θ

}
, (140)

and

σrr(r, θ) =
T

2

(
1− a2

r2

)
+

T

2

(
1− 4

a2

r2
+ 3

a4

r4

)
cos 2θ, (141)

σθθ(r, θ) =
T

2

(
1 +

a2

r2

)
− T

2

(
1 + 3

a4

r4

)
cos 2θ, (142)

σrθ(r, θ) = −T

2

(
1 + 2

a2

r2
− 3

a4

r4

)
sin 2θ. (143)
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Figure 18. Displacement sensitivity errors on the boundary points for Lamé’s problem

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Radial coordinates

S
tr

es
s 

se
ns

iti
vi

ty
 e

rr
or

s 
at

 b
ou

nd
ar

y 
po

in
ts

 

 

eL∞
(σ̇rr)

eL∞
(σ̇θθ)

Figure 19. Stress sensitivity errors on the boundary points for Lamé’s problem

with
K = 3− 4ν. (144)

Assuming the design variable to be the hole radius a, the analytical displacement sensitivities are

u̇r(r, θ) = −Ta2

4G

˙(
1

r

){
(1 +K)− (1−K)

[
4(1− ν)− a2

r2

]
cos θ

}
(145)

−Ta2

4Gr

{
−(1−K)

˙(
a2

r2

)
cos θ

}
,

u̇θ(r, θ) = −Ta2

4G

˙(
1

r

){
(1−K)

[
2(1− 2ν) +

a2

r2

]
sin 2θ

}
(146)
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Figure 20. Displacement sensitivities at the interior points for Lamé’s problem
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Figure 21. Stress sensitivities at the interior points for Lamé’s problem

−Ta2

4Gr

{
(1−K)

[
2(1− 2ν) +

a2

r2

]
sin 2θ

}
,

with

˙(
1

r

)
= − ṙ

r2
, (147)

˙(
a2

r2

)
=

2ar2 − 2a2rṙ

r4
.
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Figure 22. Displacement sensitivity errors at the interior points for Lamé’s problem
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Figure 23. Stress sensitivity errors at the interior points for Lamé’s problem

The analytical stress sensitivities are

σ̇rr(r, θ) = −T

2

˙(
a2

r2

)
+

T

2

[
−4

˙(
a2

r2

)
+ 3

˙(
a4

r4

)]
cos 2θ (148)

+
T

2

(
1− 4

a2

r2
+ 3

a4

r4

)
˙(cos 2θ),

σ̇θθ(r, θ) =
T

2

˙(
a2

r2

)
− 3T

2

˙(
a4

r4

)
cos 2θ − T

2

(
1 + 3

a4

r4

)
˙(cos 2θ), (149)

σ̇rθ(r, θ) = −T

2

[
2

˙(
a2

r2

)
− 3

˙(
a4

r4

)]
sin 2θ − T

2

(
1 + 2

a2

r2
− 3

a4

r4

)
˙(sin 2θ),
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Figure 24. eL2
(u) and eL2

(u̇) for Lamé’s problem

(150)

with

˙(
a2

r2

)
=

2ar2 − 2a2rṙ

r4
, (151)

˙(
a4

r4

)
=

4a3r4 − 4a4r3ṙ

r8
. (152)

Fig. 26 shows the NURBS geometry model with the minimum number of control points. The
NURBS order is p = 2 and the knot vector is [0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5]. The analysis model
uses 12 elements per boundary segment.

Figs. 27 and 28 show the IGABEM solutions for the displacement and stress sensitivities on edge
AB, respectively. The corresponding errors are shown in Figs. 29 and 30. Figs. 31 and 32 show the
displacement and stress sensitivities at the interior points along the line a+ 0.5 ⩽ r ⩽

√
2L− 0.5

and θ = 3π/4. And the corresponding errors are shown in Figs. 33 and 34. The domain points are
assumed to be linearly spaced in the radial direction, i.e.

ṙ =


L/ cos θ−r
L/ cos θ−a for θ ⩾ 3π

4 ,

L/ sin θ−r
L/ sin θ−a , for θ < 3π

4 .

(153)

The numerical solutions agree with the analytical solutions very well. And the convergence of the
structural and sensitivity analysis solutions is shown in Fig. 35.
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Figure 25. Definition of the Kirsch problem
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Figure 26. Geometric model of the Kirsch problem
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Figure 27. Displacement sensitivities on the edge AB of the plate
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Figure 28. Stress sensitivities on the edge AB of the plate
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Figure 29. Displacement sensitivity errors on the edge AB of the plate
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Figure 30. Stress sensitivity errors on the edge AB of the plate
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Figure 31. Displacement sensitivities at the interior points of the plate
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Figure 32. Stress sensitivities at the interior points of the plate
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Figure 33. Displacement sensitivities at the interior points of the plate
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Figure 34. Stress sensitivity errors at the interior points of the plate
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Figure 35. eL2
(u) and eL∞(u̇) for the Kirsch problem
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6.2. Shape optimization numerical examples

6.2.1. Cantilever beam The problem is a cantilever beam subject to a distributed traction t̄ = 2

on the beam end (Fig. 36). In the implementation, the traction is imposed on the end element of
the beam bottom segment in the design model(Fig. 37). The initial geometry parameters are length
a = 30 and height b = 6. All of the control point weights are 1. The material parameters are Young’s
modulus E = 210× 103 and Poisson’s ratio ν = 0.3. The optimization objective is to minimize the
displacement of the beam end. The design model to be optimized uses quadratic NURBS curve
with 20 control points and 16 elements, as shown in Fig. 37. The design variables are the vertical
positions of the nine control points on the beam’s top surface. The control points on the bottom
are fixed during optimization, and that on the two sides will be linearly distributed along the y-
direction. The constraint is that the beam area should not be beyond Â = 220. The side constraints
can be seen in Tab. II. The analysis mesh is refined from the design mesh and has 32 elements (Fig.
38). After the iterative procedure (Fig. 40), an optimized design is obtained with the final geometry
shown in Fig. 39. The optimization objective reduces to around 30% meanwhile keeping a smooth
geometry and satisfying the constraints. The final positions of the control points can be seen in Tab.
II. Those are sufficient to construct a CAD model of the structure which can be used immediately
by the designers, and displayed on the CAD software. By comparing Fig. 41 with Fig. 42, we can
see that the stresses on the beam upper surface become smooth after the shape optimization, which
coincides with the prediction of the beam theory. The stress oscillation on the points adjacent to the
beam ends is because the the movement of the control points on the beam ends is restricted after
reaching the corresponding movement bounds.

Figure 36. The definition of the cantilever beam problem

6.2.2. Fillet Consider a fillet subject to a traction t̄ = 100 in the x-direction (see Fig. 43). The
objective is to minimize its area while keeping the von Mises stress below the allowable value
σ̂vm = 125. Due to symmetry, only a half model is needed, as shown in Fig. 43. The length of the
segments are AB = 20, BC = 9, and DE = 9. The Young’s modulus is E = 107, and Poisson’s ratio
ν = 0.3. The initial positions of the control points of the design model are shown in Fig. 44 and the
coordinates are given by Tab. VI in the appendix. For the shape optimization, the design boundary
portion is the curve CD while the vertical positions of the three control points (a, b, c) between CD
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Figure 37. The initial design mesh of the cantilever beam

 

 

NURBS curve
element edge
control points

Figure 38. The analysis mesh of the cantilever beam

Design variable Lower bound Upper bound Initial value Final value
t1 1.5 10 6 1.5001
t2 1.5 10 6 3.0951
t3 1.5 10 6 5.5876
t4 1.5 10 6 6.9434
t5 1.5 10 6 8.2222
t6 1.5 10 6 9.1364
t7 1.5 10 6 9.9619
t8 1.5 10 6 9.9999
t9 1.5 10 6 10.0000

Table II. Design variables in the cantilever beam optimization procedure
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Figure 39. The optimized design for the cantilever beam
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Figure 40. The convergence of the iterative process for the cantilever beam optimization

are set as design variables (Fig. 44). The lower and upper bounds for the design variables are 4.5 and
9, respectively. To exert allowable stress constraints, we set a series of monitoring points along CD
in the analysis mesh as shown in Fig. 45, which is used for structural and sensitivity analysis. The
optimized design of the fillet is shown in Fig. 46, with the final values of design variables in Tab. III.
After the optimization, a smooth stress distribution (Fig. 48) on the monitor points is obtained from
47. The area is reduced to 138.4132 from 145.1602, and the final design agrees with the reported
result using the Boundary Contour Method [75] very well. However, the present method requires no
meshing procedure.

6.2.3. Connecting rod The objective is to minimize the area of a connecting rod without violating
the maximum von Mises stress constraints. Due to the symmetry, only a half is modelled. The
geometry of the initial design and the boundary conditions are shown in Fig. 49. The geometry
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Figure 41. Distribution of von Mises stress on the upper surface before optimization
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Figure 42. Distribution of von Mises stress on the upper surface after optimization

Design variable Lower bound Upper bound Initial value Final value
t1 0 4 5.625 4.6895
t2 0 4 6.750 5.1486
t3 0 4 7.875 6.0814

Table III. Design variables in the fillet optimization procedure

parameters are AB = 110, BC = 90, CD = 10, EF = 9, HA = 15, GE = 30, a = 45, θ = π/4. The
Young’s modulus is E = 107, and Poisson’s ratio ν = 0.3. The pressure is p = 100 in the normal
direction of the half arc. In the structural and shape sensitivity analysis, the traction boundary
condition is exerted through the L2 projection method. The initial positions of the control points
of the design model are shown in Fig. 50 and the coordinates are given by Tab. VII in the appendix.
The design boundary is the line HG while end points G and H are fixed, and its allowable von
Mises stress is σ̂vm = 600. The vertical positions of the four control points on the design curve
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Figure 43. The definition of the fillet problem
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Figure 44. The design mesh of the fillet problem

in the design mesh are set as design variables. The lower bound is [45, 15, 15, 15], and the upper
bound is [70, 70, 70, 70]. The monitoring points are chosen on GH. The mesh for structural and
shape sensitivity analysis is shown Fig. (51). The optimized geometry is shown in Fig. (52), with
the coordinates of the converged control points in Tab. IV.

Design variable Lower bound Upper bound Initial value Final value
t1 45 70 59 53.9400
t2 15 70 48 42.3105
t3 15 70 37 20.2241
t4 15 70 26 15.1259

Table IV. Design variables in the connecting rod optimization procedure

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme



46 H. LIAN, ET AL.

 

 

NURBS curve
element edge
control points

Figure 45. The analysis mesh of the fillet problem
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Figure 46. The optimized design of the fillet

6.2.4. Spanner The objective is to minimize the compliance of a spanner subject to the volume
constraint V ≤ 90. The geometry of the initial design and the boundary conditions are shown in
Fig. 53. The Young’s modulus is E = 210000, and Poisson’s ratio ν = 0.3. The magnitude of the
traction exerted at the spanner end is p = 100. The initial positions of the control points of the design
model are shown in Fig. 54 and the coordinates are given by Tab. VIII in the appendix. The design
variables are the y−coordinates of the points A, B, C, D, E. The points F-K are set to have the
same vertical positions as E, and the symmetric condition is enforced for the spanner. The mesh is
refined for structural and shape sensitivity analysis, as shown in Fig. (51). The optimized geometry
is shown in Fig. (56), with the coordinates of the converged control points in Tab. V.
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Figure 47. Distribution of von Mises stress on the stress monitor points before the optimization (in the curve
segment CD)
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Figure 48. Distribution of von Mises stress on the stress monitor points after the optimization (in the curve
segment CD)

A B
C D

E

FG

H

Figure 49. The definition of the connecting rod problem
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Figure 50. The design mesh of the connecting rod problem
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Figure 51. The analysis mesh of the connecting rod problem

Design variable Lower bound Upper bound Initial value Final value
t1 5 3 6 3.3931
t2 5 2 6 2.2976
t3 5 2 6 2.7169
t4 5 1 6 2.4159
t5 5 0.5 6 1.6148

Table V. Design variables in the spanner optimization procedure

7. CONCLUSIONS

Shape sensitivity analysis and optimization is addressed in this paper using the IGABEM. The
structure is optimized directly from CAD and the output of the structural shape optimization is a
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Figure 52. The optimized design of the connecting rod

x

y

Figure 53. The definition of the spanner problem

CAD model which can be directly visualized in CAD software. IGABEM can achieve a seamless
integration between the CAD and analysis, which is particularly significant in shape optimization.
The numerical examples show the following advantages:

• The meshing procedure is completely bypassed. This is a significant improvement in
computational efficiency, but more importantly in human effort and intervention during the
optimization process.

• We incorporated the algorithm in isogeometric finite element method to evaluate the
sensitivities of quantities on fine meshes used for analysis with respect to the parameters
defined on the coarse meshes provided by CAD. This allows using a coarse mesh for the
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Figure 54. The design mesh of the spanner problem
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Figure 55. The analysis mesh of the spanner problem

geometry to decrease the number of design variables and fine meshes for the analysis to
increase the accuracy of the calculations.

• The returned optimal model can be directly used in CAD without needing any smoothing or
recovery procedure.

• The control mesh provides a natural and elegant choice of design variables.

• The structural and shape sensitivity analysis is performed on an exact geometry.
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Figure 56. The optimized design of the spanner

Future work includes extension to acoustic and electromagnetic shape optimization, where the
advantages of IGABEM can be exhibited fully, without needing to mesh the open domain around the
structure. Acceleration algorithms also must be considered to treat more realistic problems. Using
geometry independent field approximation (GIFT) would provide added flexibility in the choice of
the analysis mesh with respect to the geometrical mesh.
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A. THE CONTROL POINTS OF THE INITIAL GEOMETRIES

Index x y weight Index x y weight

1 0 0 1 13 15.5 4.5 1
2 3.3333 0 1 14 13.875 5.625 1
3 10 0 1 15 12.25 6.75 1
4 16.667 0 1 16 10.625 7.875 1
5 20 0 1 17 9 9 1
6 20 0.75 1 18 7.5 9 1
7 20 2.25 1 19 4.5 9 1
8 20 3.75 1 20 1.5 9 1
9 20 4.5 1 21 0 9 1
10 19.25 4.5 1 22 0 7.5 1
11 17.75 4.5 1 23 0 4.5 1
12 16.25 4.5 1 24 0 1.5 1

Table VI. The control points of the initial geometry of the fillet

Index x y weight Index x y weight

1 0 0 1 13 193.89 38.891 1
2 27.5 0 1 14 193.89 54 1
3 55 0 1 15 193.89 70 1
4 82.5 0 1 16 162.89 70 1
5 110 0 1 17 131.18 70 1
6 110 45 0.70711 18 104.95 59 1
7 155 45 1 19 78.71 48 1
8 200 45 0.70711 20 52.474 37 1
9 200 0 1 21 26.237 26 1

10 205 0 1 22 0 15 1
11 210 0 1 23 0 7.5 1
12 210 22.782 0.92388 24 0 0 1

Table VII. The control points of the initial geometry of the connecting rod
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Index x y weight Index x y weight

1 3 0 1 19 25 3 1
2 2.5 −

√
3/2 1 20 25 6 1

3 2 −
√
3 1 21 22.5 6 1

4 1 −
√
3 1 22 20 6 1

5 0 −(6 +
√
3)/2 1 23 17.5 6 1

6 0 -6 1 24 15 6 1
7 2.5 -6 1 25 12.5 6 1
8 5 -6 1 26 10 6 1
9 7.5 -6 1 27 7.5 6 1
10 10 -6 1 28 5 6 1
11 12.5 -6 1 29 2.5 6 1
12 15 -6 1 30 0 6 1
13 17.5 -6 1 31 0 (6 +

√
3)/2 1

14 20 -6 1 32 0
√
3 1

15 22.5 -6 1 33 1
√
3 1

16 25 -6 1 34 2
√
3 1

17 25 -3 1 35 2.5
√
3/2 1

18 25 0 1 36 3 0 1

Table VIII. The control points of the initial geometry of the spanner

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme


