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Abstract

In this paper an adaptive multiscale method is presented in an attempt to address the lack of separation of
scales in simulation of fracture. This method is set in the context of FE? [20] for which computational ho-
mogenisation breaks down upon loss of material stability (softening). The lack of scale separation due to the
coalescence of microscopic cracks in a certain zone is tackled by a full discretisation of the microstructure
in this zone. Polycrystalline materials are considered with cohesive cracks along the grain boundaries as a
model problem. Adaptive mesh refinement of the coarse region and adaptive initiation and growth of fully
resolved regions are performed based on discretisation error and homogenisation error criteria, respectively.
In order to follow sharp snap-backs in load-displacement paths, a local arc-length technique is developed
for the adaptive multiscale method. The results are validated against direct numerical simulation.
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1. Introduction

In many engineering designs, macroscale models cannot predict the behaviour of complex materials cor-
rectly [49, [17, 146]]. Material failure, heterogeneous materials and multiphase problems may require more
information than is available at the macroscale to construct constitutive relations and obtain material prop-
erties.

Multiscale modelling are aimed at solving problems for which macroscopic considerations are insufficient.
For example, multiscale modelling is applicable to problems with complex material laws that fail to be
determined by macroscopic approaches, or microscopic optimisation problems, where a bridge between
micro and macro is required. Because of the large size of engineering structures, these problems cannot be
solved completely at the micro-level, i.e. by resolving the micro structure explicitly on the whole domain of
interest. Therefore it is reasonable to retain both the macroscopic and the microscopic points of view to find
a practical technique to analyse such problems.

Most of the strategies for hierarchical multiscale modelling rely on homogenisation, which assumes a clear
separation of scale. Hierarchical multiscale is basically an application of this principle using computational
power to evaluate the homogenised properties “on-the-fly”. Once the scale separation is lost, one must go
lower in scale, which leads to hybrid multiscale solvers.

Hierarchical multiscale based on homogenisation fails to model the regions under high strain localisation
due to the lack of scale separation assumption. However, in the case of fracture, these so called hierarchical
multiscale methods cannot be used in the vicinity of cracks, as the separation of scales necessary for their
application is lost.

1.1. Failure-oriented multiscale methods

In the literature, two techniques have been used in order to alleviate the absence of the scale separation
assumption: i) Non-concurrent methods, ii) Concurrent methods.

The first scheme, the non-concurrent mutliscale, tries to extend the applicability of averaging techniques to
fracture (e.g. [44] 3] 163) 150] for special averaging techniques dedicated to established damage bands). In
fracture modelling, a macroscopic crack is represented by e.g. cohesive interface elements, and the associ-
ated constitutive model is derived from homogenisation. In these approaches, the classical homogenisation
technique is modified to obtain a homogenised behaviour of the softening regime, while the microscopic
model loses stability and the scale separation assumption ceases to exist. The principle of the modified
homogenisation technique is based on a decomposition of the averaging procedure into two parts: one av-
eraging over the region of the RVE where it is in the elastic regime and a second averaging over the region
that is undergoing softening. This is a modified homogenisation to get the cohesive law of the macroscopic
crack from the microstructure. Increasing the width of the RVE leads to a more brittle response because
the RVE stores more elastic energy but dissipates a constant amount of energy due to the constant band
of localisation. The idea is to filter out the elastic part so that the energy of the cohesive crack is equated



only to the energy of the part of the RVE that undergoes significant dissipation and damage localisation.
In most of the existing approaches, the direction of propagation is found via macroscopic criteria, although
some progresses have been achieved in the context of bottom up approach [[11]. The latest work on the
non-concurrent multiscale modeling of fracture can be found in [13} 51} 161} 60].

The second scheme, concurrent multiscale, makes use of a concurrent framework and attempt to detect the
zone where the homogenisation fails directly at the microscale (e.g. [33} 162, 23| 41]]). Although the latter
approach is more general, it is “ more costly” in terms of computation. Crack tip properties in a hetero-
geneous structure cannot be accurately determined by replacing the whole structure with a homogenised
medium and calculating the SIF of the crack in that medium. For example, [65] proposed that the crack tip
region must explicitly be retained with the actual microstructure, and at best replace the surrounding region
with the homogenised medium.

The goal of concurrent multiscale fracture modelling is to take advantage of the fact that in fracture prob-
lems, only a small portion of the total domain is of interest [[12]. To reach this goal, a concurrent multiscale
scheme must establish a direct link between the macro and microscale without a prerequisite for scale sep-
aration. In this scheme, both scales (or all scales) are resolved simultaneously. Information is exchanged
between the scales through their common interfaces. For crack propagation, the microscale domain needs
to be adaptively expanded into the new critical regions [62}, 41]. In a failure-oriented concurrent multiscale
method, the main challenges are

e adequately modelling the coupling between the scales,

e determining those regions which must be modelled with a microscale and those for which a macroscale
model is sufficient,

To tackle the first challenge of the failure-oriented concurrent multiscale method, several coupling tech-
niques have been proposed in the literature in order to connect the macroscopic and the microscopic do-
mains in a concurrent manner. These methods differ according to the physics of the problem. They include
the arlequin method [16], mortar element method [[7, 6], Linear multi-point connection (or the strong cou-
pling) [41]]. The latter will be employed in this thesis. [62] investigated three different coupling methods
between coarse and fine scales: the mortar method which connects the fine mesh and coarse mesh through a
non-overlapping interface in an average sense; the arlequin method which connects the two meshes through
overlapping domains; and the strong coupling method which provides a strong non-overlapping connection
between the displacement fields of the fine mesh and coarse mesh.

Different criteria have been employed to determine the scale of modelling in multiscale problems. These
criteria can be either physically oriented (for example based on the level of stress, strain or damage [25,
41]]) or mathematically oriented for example based on the macroscopic discretisation error inherent to the
finite element approximation or the modelling error due to homogenised material properties 70} 24} 159,
64]). However, none of the failure-oriented multiscale methods have employed the modelling error as the
scale adaptation criteria. In [52], both h- and p-adaptivity are used to reduce the discretisation error in
the macroscopic computations, and same authors in [24]] made use of the scale ratio criterion for transition
between the scales. The scale ratio is the ratio of the characteristic length of the macroscopic elements to
the size of the RVE.

[37] proposed a seamless scale-bridging technique that turns from a hierarchical multiscale strategy (classi-
cal homogenisation) to a concurrent multiscale strategy through a four-level procedure. In the first level, the
size of the coarse element is much larger that the size of the RVE which means that the essential assumption
of homogenisation is fulfilled, so the classical homogenisation is carried out (fully scale separation). In
the second level, the size of the coarse element is slightly larger than the size of the RVE, then the local
microscale problems are solved on Quadrature subscale Volume Elements (QSVE) as part of the integration
scheme at the coarse scale (near-complete scale separation). In the third level, where the size of the coarse
element is almost the same or slightly less than the size of the RVE, the microscale problem is solved on a
Subscale Volume Element (SVE) that is identical to the coarse element (partial scale separation). Finally, if



the size of the coarse element is smaller than the size of the RVE, then there is no scale separation, and the
problem is fully resolved at the fine scale. In their work, the coarse mesh was adaptively refined by an error
estimator technique.

[59] studied the influence of microscopic heterogeneity, size of RVE, and macroscopic strain gradient on the
first order homogenisation results. The homogenisation error is defined by comparing the results obtained
form higher order homogenisation with those from the classical homogenisation. They shown that the strain
sensitivity which is the macroscopic strain gradient times the length of RVE has the most influence on the
accuracy of the first order homogenisation. They proposed a scale adaptation criterion based on the level of
strain sensitivity of the coarse elements.

[64] proposed a concurrent adaptive multiscale method for elasticity which the error in the coarse scale
discretization and the modelling error due to homogenisation are controlled.

According to this literature review, those concurrent multiscale methods that address the discretisation and
homogenisation errors are not dealing with fracture and failure phenomena, e.g. [30, 24} [37, 159} 164]. The
failure-oriented multiscale methods in the literature usually have a fixed macroscopic mesh without any con-
trol on the modelling or discretisation errors [62, 41 58, 23]].In this paper, a concurrent multiscale method
will be presented that is designed to model crack propagation through an adaptive expansion of the micro-
scopic region together with a mesh refinement procedure to control the both discretisation error at the coarse
mesh and homogenisation error. The unstructured macroscopic mesh is an advantageous that allow us to
model non-regular shapes.

1.2. Proposed multiscale method

In this work, we propose an adaptive hybrid multiscale method for modelling fracture in a heterogeneous
material composed of orthotropic grains with cohesive interfaces between grains. Instead of a direct solver
the FE? method, derived from the homogenisation technique, is employed to compute the effective behaviour
of the heterogeneous microscopic medium at a much coarser scale in the non-critical region where the
modelling error due to the homogenisation is still low. The coarse scale is discretised with non-structured
triangular finite elements, and adaptive mesh refinement is used to control the discretization error. While
the coarse mesh refinement retains the discretization error at a certain level, the modelling error increases
due to the fact that the finer the coarse elements, the less the scale separation assumption is fulfilled, which
is a key issue for homogenisation. The accuracy of homogenisation is examined by measuring the second
gradient of displacement which is ignored in the first order homogenisation. A critical zone emerges when
the second displacement gradient reaches the critical value, or if the underlying RVE (representative volume
element of microstructure) of the element loses stability due to localisation. Thereafter, a zoom-in process is
triggered to replace the corresponding coarse elements of the critical zone with a high resolution microscale
mesh and gluing it to the coarse scale mesh through a strong coupling technique using Lagrange multipliers.
The high resolution region can gradually be extended to the newly emerged critical zones. A local arc-length
technique is adopted to control the opening of microscopic cohesive cracks.

In the next section[2] the microscale problem is defined. The constitutive model for a polycrystalline material
will be given where the grains are modelled as linear elastic with cohesive interfaces. A thermodynamically
consistent damage model is used for simulation of the cohesive interface between the grains.In Section 3]
the hybrid multiscale method which is a combination of the hierarchical and concurrent multiscale methods
will be introduced. The modelling of polycrystalline materials with the FE*> method will be explained.
Then, a non-overlapping domain decomposition method for non-conforming meshes will be detailed that
allows us to model localisation in critical regions where the FE> method is not valid.In Section {4] the
algorithmic aspect of the proposed adaptive multiscale method will be explained. In order to follow load-
displacement paths, a robust local arc-length technique will be proposed. The coarse mesh refinement based
on Zinkiewicz-Zhu error estimator will be discussed, and introduction of fully resolved microstructure in the
critical regions based on homogenisation error [59] will be explained. Finally, in Section [f] a test case will
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Figure 1: Microscale problem

be simulated with adaptive multiscale method and the results will be verified by direct numerical solution of
the problems.

2. microscopic structure

Two-dimensional grains are modelled as linear elastic materials with cohesive interfaces between the grains.
Only inter-granular fracture is considered, therefore cracks are not allowed to pass through the bulk grains. A
thermodynamically consistent cohesive interface model is adopted to simulate inter-granular cracks. Figure
[I]shows a domain Q occupied by a structure consisting of randomly distributed orthotropic grains undergo-
ing quasi-static small perturbations.

To start with, a boundary value problem of a structure where the polycrystalline material is represented
explicitly is defined.

Given the displacement boundary condition up : 0Qp — R2 and the traction boundary condition F : 0Qy —
R2, find u/ : Q — R? such that, Yéu/ € U,

6Hf(uf,6uf):f O'fzsf(éuf)dQ+f T/ - [su/] dT (1)
o -
- f F-su/dl' =0
0Qn
(@ ) xer+ == (0 +0) [xer-= T/ ([0 1) lyer - )

The superscript f indicate that the variables are at the fine scale. The vector n is a unit vector normal to the
cohesive interface (see Fig. @) ST1/ is the virtual work, u/ € U is displacement field and su/ € U is an
arbitrary virtual displacement field. U and U are collection of trial,u/ , and test functions,su’ respectively,
which can be defined by

U = {uju e H(Q \T'),ulsn, = up} 3)
Uy = {6ulsu € H'(Q/ \ TY), sulsq, = 0} 4)

where H'(Q/ \ I'/) is the Sobolev space of degree one for inside the grains not at the interfaces.



The Cauchy stress tensor, the strain tensor at the fine scale are o/ and &/, and the traction and displacement
jump on the interfaces of grains, I'/, are denoted by T/ and [[u/]] respectively. Figure @ displays the dis-
placement jump [[ii] as differences between the displacement of two slides of an interface. The microscopic
grains are orthotropic material. The constitutive relationship for the grains is given by Hooke’s law:

O'Ifx[ = lex : sf(ulj;t), inQ/ \ 1V, 5

or in Voigt’s form the constitutive equation is given by:

o =clsl ), wxea/\IY, (6)
where C/ is the fourth order stiffness tensor, and C/ is a matrix contains the constant elastic stiffness moduli
of the grains. Note that the tensor form of stress and strain are shown by the same notation as used for
their vector form since they can be distinguished in context. The constitutive relationship for the interface
between grains is based on a cohesive interface model given by:

ST/ (x) = Kyrollw/ (x)], onTY, (7)

where K7 is the tangent stiffness matrix. In Section @] the tangent stiffness matrix K, will be derived as
a thermodynamically consistent function of the history of the displacement jump [[u/] on the interface of
the grains.

2.1. Bulk Grain constitutive law

The stiffness matrix for a 2D orthotropic grain, used in constitutive equation (6], can be written in Voigt
form:

} Ci Cpp O
C'=|Cy Cn 0 |, (8)
0 0 Ceg

where C;; are elastic constants and and C, = Cy;. The subscripts 1 and 2 refer to the material principal
coordinates (see Fig. 2)). To obtain the stiffness matrix in the global coordinate system, the following matrix
transformation is employed:

¢/ =T1,'C'T, ©)

where the transformation matrices are given by

cosZ 0 sin 6 —sin26
TI=T,!'=| sin’6 cos? 6 sin26 |, (10)
0.5sin20 -0.5sin26 cos26

Figure 2] illustrates 6, which is the angle between the material coordinate system, (1,2), and the global
coordinate system, (x,y).

2.2. Cohesive interface model for grain boundaries

The potential failure of the interface between adjacent grains is described by a thermodynamically consistent
cohesive model in the local coordinate system (%,y) (see Fig. [2] and [6). A material point at the cohesive
interfaces is considered as the thermodynamic system. The variation of temperature and heat conduction are
neglected due to isothermal and homogeneous temperature assumptions, respectively.

The free energy function for an isotropic damage is defined by [39]:

Y([all, d) = ¢(d)¥o ([a). 1)



Figure 2: Local coordinates on the boundary of a grain (X, ¥), Local coordinates on the principal direction of the orthotropic grain
(1,2), and global coordinate (x, y).

The damage function is usually chosen as ¢(d) = 1 —d, where d € [0, 1] indicates the level of damage in the
interface. Wy is the energy for an undamaged elastic interface that is defined by ¥y = 0.5[a]” Ko[[i]), where
Ko is the original (initial) stiffness of the interface. The traction-separation law for any arbitrary point at the
cohesive interfaces are given by:

P¥(ald)  dFo(lal)

$(d)

T=—m - olall

= (1 — d)Ko[[al, 12)
This equation is valid for opening crack. Now, it is required to evaluate the damage parameter d. In order to
fulfil the second law of thermodynamics, the damage parameter d must increase monotonically. We choose
a power-law damage evolution for our model [48]]:

0 K < Kini
d) =4 1 - (L) < x< (13)
Kful =Kini Kini < K< Kful
1 K > Kfyl

where n is a material variable. k;,; and kg, are the thresholds of the internal variable « that are associated
with the initiation and the fully damaged conditions of the interface crack respectively. For time ¢ + At, « is
given by:

K+ At = max (ko) ), st = || LI (14)
[ 1
where || - || is L2 norm, [#,]] and [#]] are the normal and tangential component of the displacement jump

[@]. The function ‘max’ does not allow « to decrease, and the Heaviside function H([[ii,]]) prevents the
negative jump in normal direction [[ii,]] < O (associated with compression mode) from having an influence
on the damage variable. Figure [3] shows a schematic profile for the damage parameter d. Due to a lack of
precise knowledge, we assume that the critical fracture energy of modes I and II and the maximum tensile
and shear strengths are equal (G;. = G, and 0 max = Tmax ). The internal variable threshold «i,; assumed to
be zero. The parameters introduced in the damage evolution law, Eq. (T3)), can be evaluated by the following
equations:

[eellunr
G = f T, d[[ﬁn]]a (15)
0
=, ~ dTn _
Omax = {Tn(ﬂun]])‘ m = 0}- (16)



Figure 3: A schematic illustration of a damage evolution function based on Eqs. @ and (]Eb In this figure, &, = 0.2, gy = 0.8
and n = 0.5.

Equation (I3) states that the fracture energy equals to the total work of external load that leads to a fully
opened cohesive interface ([[ii,]] = [«lfn), and Eq. states that the maximum normal stress occurs at the
stationary point of the traction-separation law. In order to follow the loading path of the traction-separation
curve, it is assumed that the normal jump along the interface monotonically increases. Thus we are allowed
to use the normal jump directly in the equation of damage evolution (T3)). Finally by solving Eq. (T3] and
(T6) we find that:

¢ n n
ktat = [l = @ ,a=m+mt—ﬁ (17)
max n+1
o2 m+1)(n+1\"
k, =k = ﬂ, = 18
=BT B <n+m( - ) (18)

where the original stiffness of cohesive interface in normal and tangential directions, &, and k;, are assumed
to be equal. The variations of @ and S versus n are shown in Fig. [ B is limited to 8 € (0, exp(2)), which

means the stiffness coefficients are bound between 0.5% <k, =k < exp(2)%. In the rest of the paper
n = 0.5, and consequently, &k, = k; =. The influence of n on the traction-separation law and overall response
of structure still needs to be studied, however this is beyond the scope of this work, where we assume that a
material model is available and develop general tools able to rely on advances in such material models.
Inspired by [4], the traction-separation relationship and the stiffness matrix of the cohesive interface is
modified to give a non-damageable stiffness in compression loading:

ki (1= d)HA@, D + ki H-[@) 0

T:Kd[[ﬁf]] where K, = 0 k(1 -d) |
(1 —

(19)
The subscript ¢ refers to the tangential direction of the interface and n refers to the normal to the interface
(See Fig. [6). k; and k, are original interface stiffness with dimension of force over length cubed. In order to
avoid the penetration of grains into each other, the original interface stiffness for the closing mode is chosen
to be much larger than the original interface stiffness for the opening mode, &, /k; > 1. It is noted that a very
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Figure 4: Variation of @ and 8 versus n (see Eqs. (I7) and (I8)). Different choice of n can affect the original stiffness of cohesive
cracks (k, oc 8) and the required jump for a fully damaged crack ([u/ [y o @).

large value of k;, causes ill-conditioning of the stiffness matrix in finite element procedure. In this study,
k, /k! = 100. The Heaviside function H does not allow the damage parameter to influence the stiffness of
the cohesive crack in compression mode. Figure [5] shows the traction-separation law for a one-dimension
cohesive interface.

The tangent stiffness of a cohesive element is required for Newton-Raphson iterative solver

_ 4T T +@ od
T 4maf] ~ oral] | od o/ |

1od| k+ ~f ~f
;a[k"(ﬂ(o[[u"]]) ,?HE[[;?%][ﬂaﬁ]]muuﬁ]]),uu{n], Vi> 0
! t

(20)
= Kd —

In the case « = 0 then K7 = Ky.
The constitutive equation of cohesive interface in the global coordinate system is obtained by using the
transformation matrix, Tr:

2h

T =T'K Trw/] where Tr= [ cosfr —sinfr ]

sinfr cosfr

Or is the angle between the global coordinate system and the local coordinate system on the boundary of the
grains which is shown in Fig.
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the critical fracture energy equals G, = 35# and the maximum tensile strength is 0. = 1GPa [56].

2.3. Finite Element Discretization

In order to use Eq. (1)) in the finite element method, first it is changed this equation to the Voigt notation.
Recalling that the tensor and voight notations are the same:

T = f se' ol dQ + f [ou/ 17T/ dr — f su/ Fdr =0. (22)
onrs v o

where 6&/ and o/ are the vector form of virtual strain and stress tensor respectively:

: oou’  osv' (dsul v
se!’ = , 23
[ax ﬁy(0y+3X)] @9
» - T
ol = [a{u ol aﬁy] . (24)

The FE formulation is developed by discretising Eq. (22) spatially. The orthotropic grains discretised by
linear triangular finite elements.The interface of grains is discretized by 4-node cohesive elements with two

integration points (see Fig. @) The approximation of the displacement field u/ and strain &/ in element (e)
are given by:

vx e, uw/(x)=N,U/, (25)
vxe @, &(x)=B,U/, (26)
(27)

where N, is the linear shape function matrix, B, is the matrix of the shape functions derivatives, and U/ is

10



Undeformed configuration Deformed configuration

Figure 6: Local coordinate system on the boundary of a grain, (%, ¥), and displacement jump, [[u]] in the local coordinate system.
It is noted that the translation and rotation of local coordinates due to deformation can be neglected since small deformation is
assumed. The node arrangement in the cohesive element must be based on the following construction: a) Node 1 and Node 3
belong to one grain, and Node 2 and Node 4 belong to the other grain, b) Node 1 has same position of Node 2, and Node 3 has the

same position of Node 4, ¢) Nodes 1 and 3 must be chosen so that their grain fallen in the left side of the path from Node 1 to Node
XX ondh= [7., =117, ) Therefore the displacement

3, d) The unit vectors of the local coordinate system are given by { = i i
X3 — X

jump is defined by: [u/(3)] = w}(®) — /(3.

the nodal displacement vector:

_Mix) 0 Mx 0 Mx 0
N o "0 o 0 N3<x>L’ 29
IN ON; ON-
Boo® RS
B.x) = |0 G 0 & 0 5 (29)
dy ox dy dx dy  dxle
T _gf vi pf v pf v
vl =vl vl uf v uj v|. (30)

where Ulf “and Vif are the the displacement of node i in x- and y-directions respectively. The displacement
jump [[u/] in the cohesive elements (d) can be obtained by defining a matrix that contains the linear shape
functions:

vxel) [w/x) =B,x) U/, 3D
r _ _Nl 0 N2 0 —N3 0 N4 0

Bd(x)‘[ 0 -Ny 0 N» 0 N3 0 Ny’ (32)

U=[or vi Uy V2 Us Vs U V] (33)

where I 5 is the interface between the grains, and the shape functions of cohesive elements are the trace

of the shape functions on the adjacent triangular elements. It is noted that the jump extractor matrix Bg is
designed based on the particular node arrangement that have been explained in Fig. [6]
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Finally, finite element discretization of Eq. (22)) writes:

B

Z M, f |
o/\rf

_ Z M, f

0Qy

st (Uf, sUf) =suf”

ne
T . _ .
B! o/ dQ + ZMd ff B, T/ dr
d=1

d

N,/F dF] =0. (34)

where M, and My, are the boolean matrices that maps respectively the bulk element and the cohesive element
vectors to the corresponding entries of global vectors. The total number of triangular elements and cohesive
elements are np and nc respectively. Since the variational work is zero for any admissible variation of
displacement vector §U/, it is concluded that the residual force vector must be null:

R/ (U/) =i (U) ~ fex = 0, (35)
ng T . nco
£ (U7) :; M, fg o B! o dQ + ; M, f 5 B, T/ dr (36)
np
foxe :; M, fa o N./F dr. (37)

Because of the nonlinear behaviour of the cohesive interface elements, Eq. (35) cannot be solved directly
for U/. The Newton-Raphson procedure is employed to find the solution iteratively. Therefore, Eq. is
linearised with respect to the displacement vector U/:

_ OR/ (U/
R/ (U/ + AUY) ~R/(U) + LAUJC
ou/
ot (U)
—f AR ERLANVN 374
= fin (U7) = foxt + s AU (38)
ot (V)
In the linearised equilibrium equation (38)) the term U7 is the tangent stiffness matrix KJ; that is given
by:
o () ary )
L_ZM(I BfTa“e dQ]MT+ZMd fBFT—ddF M (39)
ousf pu o/ 8Uf an;
where
f f
80‘e _ 80‘e 68 C£ {7 (40)
oul  ogl au’l
1 VA VAP T Y,
d_ _“a OlWla _ g (41)

oul ol au

where C/ is the stiffness matrix of the bulk element e given by Eq. El, and K7 is the stiffness matrix of the
interface element d given by Eq. [21] Then, the tangent stiffness matrix can be written as following:

ng nc
=Y'M, B.”C/B, d|M! + > My| | BY Ku7,B} dr [N, (42)
e=1 Q/\r/ = /

Iy

Finally, by assuming R/ (Uf + AU/ ) = 0, the variation of the displacement at each iteration of the Newton-

12



Raphson solver is obtained by:
-1
AU/ = KJ. R/(U). 43)

In this section, a constitutive model for the polycrystalline microstructure was introduced. A two-dimensional
orthotropic constitutive model is considered for the bulk grains. The interfaces of the grains are modelled
with a thermodynamically consistent damage model and the underlying damage evolution law were ex-
plained. Since the modelling of engineering problems in the grain level is not affordable, a multiscale
method is developed that make it possible to model the engineering problem by considering microscopic
scale. In the next section, two classes of multiscale methods which are the base of the proposed multiscale
technique will be introduced.

3. Hybrid Multiscale Method

This section explains a hierarchical multiscale method, based on computational homogenisation, combined
with a concurrent multiscale method, based on domain decomposition. Homogenisation and domain decom-
position are two bases for a broad range of multiscale methods in solid and fracture mechanics. A hybrid
multiscale method can employ the advantages of both technique. Homogenisation techniques, known as
hierarchical methods, aim at obtaining the average quantities of the constitutive relation for a macroscopic
point by testing at a spatial sample of the heterogeneous microstructure which is called a Representative
Volume Element (RVE). In computational homogenisation methods, the constitutive equations do not need
to be explicitly defined at the macro-level. Incremental macroscopic stress-strain laws are obtained on-the-
fly during the macroscopic solution process by solving the boundary value problem associated with the RVE
at each (quadrature) point of the macroscopic problem. The boundary conditions of the RVE are defined by
macroscopic state variables, e.g., strain or stress. The overall response of the RVE is used to determine the
macroscopic constitutive equation [57, 20, 34]. As explained in introduction, an RVE cannot be found for
the softening regime, and therefore, the homogenisation technique cannot be employed in the area with the
strain localisation.

Domain decomposition method is well suited to the solution of fracture problems in a multiscale framework,
in which the domain is split naturally into fine scale regions and coarse scale regions. The fine scale in
the area of strain localisation with a fine discretisation is glued to the surrounding coarse mesh through
overlapping or non-overlapping coupling methods, and the global solution is obtained by solving fine and
coarse meshes concurrently. For our problem, domain decomposition method is used to model fracture in
polycrystalline materials by splitting the domain into the microscopic sub-domain and macroscopic sub-
domain, which microscopic domain composed of grains with cohesive cracks while the macroscopic sub-
domain is a homogeneous domain.

3.1. Hierarchical Multiscale: FE* Method

In this section, a hierarchical multiscale method based on computational homogenisation for a nonlinear
heterogeneous material (the fracture of polycrystalline materials) is detailed. In this method the effective
material properties are computed by using averaging theorems applied to kinematic and static quantities of
the heterogeneous microscale material. This method is based on the scale separation assumption, which
requires, 1) the gradient of the macroscopic fields are not extensive over the underlying microstructure,
and 2) the fluctuation of the microscopic fields affect the macroscopic behaviour only through their volume
average [8]. Homogenisation provides a bridge between scales by mapping the average of the stress from
the microscale to the macroscale and downscaling the macroscopic deformation tensor to the boundary of
the microscopic RVE. The main advantages of computational homogenisation technique are:

e Computational homogenisation is a general method, even for very nonlinear problems as opposed to
semi-analytical methods, e.g. mean-fields, that require some homogeneity of the micro fields in each
micro phase.

o It does not require for explicit macroscopic constitutive law trough heuristic curve-fitting.
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Figure 7: FE? scheme

e In comparison with semi-analytical mean-field theories, computational homogenisation method po-
tentially is more accurate since there is no approximation of the fields in its underlying RVE.

o It gives useful insight in micro-fields due to the previous point.

In homogenisation method, the macroscopic deformation tensor provides the boundary conditions for the
microscopic RVE. The solution of the boundary value problem for the RVE yields the tangent stiffness mod-
uli and the macroscopic stress tensor which can then be used for calculating the internal force vector at the
macroscale. This hierarchical multiscale method that implicitly defines nonlinear homogenised constitutive
relationships is often called the FE? method [20] since the finite element method is used at both the macro
and micro scales.

3.1.1. Homogenised constitutive law

The coarse scale constitutive law (69) at an arbitrary point X is obtained through homogenisation. The
material point X can be related to a representative volume element (RVE). The RVE, V,(x), must statistically
represents the heterogeneity of the microstructure in the vicinity of the corresponding macroscopic point X.
The relation between o and &€ is obtained by solving a boundary-value problem over the RVE. The volume
average of properties over the RVE is used at the corresponding point x at the coarse scale, Fig.
According to homogenisation, the macroscopic strain, stress, and strain energy at a local point, x, are re-
spectively related to the volume average of the strain and stress fields, and the strain energy of corresponding
microscopic RVE, V,(x). In the following, the homogenisation of the constitutive law of polycrystalline
materials defined in Section ?? will be explained.

e Strain averaging: the volume average of the microscopic strain &/ over an RVE, V,(x), is defined as

the macroscopic strain &° at the associated macroscopic point x [49] :

1
[V (x)]

ex,1) =) = fa ) %(uf ®nr + (0 @np)’) dr, (44)

where |V, (x)| is the surface area of the two-dimensional RVE, nr denotes the unit outward vector
normal to the RVE boundary, dV, and the tensor product operator is denoted by ®.

e Stress averaging: the coarse scale stress o can be defined as the volume average of the microscopic
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stress o/ over the RVE, V,(x)

1
¢ = (o) = fex/ dr 45
TN = (e FVJXN‘L;t e @

In Eq. (@3)), the average stress is defined in terms of the boundary tractions t/, and the local coordinates
at the RVE scale, x/ [49].

e Strain energy averaging (Hill-Mandel condition): the Hill-Mandel condition which expresses the
energy consistency of the micro-macro scale transition states that the volume average rate of work of
any admissible microscale stress and strain rates over an RVE equals the rate of work of the average
stress over the RVE [28]]:

o & = (ol &+t = (o) (&), (46)

where t/ - [/ is the rate of work of traction t/ on the cohesive interfaces. This equality ensures that the
homogenized stiffness tensor defined through the average of stress work equals to the same defined through
the relations of the average of stress-strain. This energy consistency is automatically ensured if the stress
and strain averaging are correctly made.

In order to track down the coarse scale constitutive law (69)), a boundary value problem is defined over the
RVE by imposing the prescribed fully bounded displacement boundary condition that is compatible with
the strain averaging theorem (@4). We recall that the constitutive laws of the fine scale constituents are
explicitly defined. Hence, locally in the coarse domain, we assume the existence of an equilibrated micro
pair (u/, 0/ )defined over V,(x) such that the governing equations introduced in Eqs. (T)), (@) and (3] are
satisfied. The weak form of the governing equations is given by:

vou' e U, f

ol 1 e(su)) dQ + f T/ . [6u/] dl = 0, 47)
V/Ff rf

where V is the RVE domain, and I'/ is all the cohesive interfaces in the RVE.

U = fup e H'(@Q\ V) u,, =upl, (48)
U = {sulou e H'Q'\TV),6u,, =0}, (49)
(50)

This means that the RVE is in static equilibrium without prescribed tractions on the boundary and with-
out volume body force. U/ and U/ are the collections of trial solutions, u/, and test functions, su/,
respectively. The constitutive equations for the microstructure have been discussed in Section ??.

Downscaling kinematic condition: the following Dirichlet boundary condition which satisfies the strain
averaging theorem (#4)) is imposed on the RVE problem:

u,(x/,n = &xnx’ ondQ (51)

where the macroscopic strain tensor €°(X, f) at macroscopic point x and time ¢ corresponding to the RVE
Vs(x). The center of RVEs is considered as the origin of the fine scale coordinate system x/. This particular
choice for the boundary conditions of the RVE problem enforces that the fluctuation of the displacement
field is null over the boundary. The choice of the fluctuation of the displacement field has an influence on
the accuracy of homogenisation which is beyond the scope of this work [26].
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Solving the RVE boundary value problem: The finite element method is used to solve the RVE problem
defined by Eq. (@7), and the Lagrange multiplier technique is adopted to impose the displacement boundary
conditions (31):

RYU, ) =17 — £ — A A=0, (52)
RO(U/) = Ay U/ —uf =0, (53)

where R and R¢ are the residual forces and residual displacements of the RVE, respectively. U/ is the nodal
displacement at the fine scale, A are the Lagrange multipliers, and A, s is a boolean matrix that extracts the
DOFs of the boundary from the total DOFs of the RVE. For our RVE boundary value problem, the equations
for calculation of the external force £, = 0 and the internal force vector fﬁl . is given by Eq. (36). Note that
Eq. is given for a general microscale problem which can be adopted for the RVE boundary value
problem.

The constitutive relationships for the microstructure are given by Eqgs.(5) and (7). The non-linear system
of equations and are linearised and set to zero in order to employ the Newton-Raphson iterative
solver:

R}(Uf + AU, A+ AQ) :R}(Uf , D)+
aR;(Uf ,A) aR;(Uf ,A)
- AU+ —L A

A=0 54
ou/f 0a >4

_ AR (U/
RS(U/ + AUY) =R (UY) + %Auf =0. (55)

The resultant system of equations can be written in matrix form:
Kr  pAl,) (AU RY(U, )
=- ; (56)
pArr 0 A RS(U/)

where the entries of right hand side vector are given by Egs. and (53), and the tangent stiffness of the
& -
RVE, K7, is given by Eq. (42). The Lagrange multipliers A are replaced by pA to improve the condition

number of the global stiffness matrix, as p = max(| Io{,-,- ) is a scalar related to the maximum diagonal entry
of the initial stiffness matrix of RVE. It is calculated once at the beginning of simulation [62].

Up-scaling kinetic condition: After solving the RVE problem, the Lagrange multipliers A represent the
traction on the boundary of the RVE and can be used in Eq. (@3)) to upscale the macroscopic stress:

1
(x, t t' @x/ dr
7D = R fav ®x

1 ; [
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where n,, is the number of the elements that have an edge on the boundary of RVE. N and N, are the shape
functions of the first and second nodes on that edge of element e that is common with the boundary of RVE,
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0V, N aV # 0. The position of the quadrature points on the element edge are given by interpolation of nodal
positions using the finite element shape functions:

S
x| = [Ny Nz]e[ y}] : (58)
y2 e

SAt

The matrix of the node positions [x;, y;]. (i = {1,2}) is constant, and can be out of integral. In the last line
of Eq. (57), f t/N; dI" gives the boundary integral of external traction t/ over external boundary of element
e that in the finite element method, equals the nodal force [Ay,, Ay,].. Therefore, the macroscopic stress in
Voigt form can be computed by:

1
o(x, 1) = D', (59)
Vo (x)]
where
X 0 o 0 - x 0
DT = 0 y{ 0 - y{i 0. yZb. . (60)
0.5y, 05x] 05y 05x) -+ 05y, 05x),

The macroscopic tangent stiffness Cr is determined by finding the relationship between Ao = (Ac”/) and
A&‘ = (Ag’) through the finite element solution of the RVE problem. Recall Egs. (51)) and (59), the variation
of macroscopic stress and strain can be given by:

Aul, = DA&”, 61)
1
AT = DT AL 62)
Vo (

On the other hand, the relation between Au]; and AA can be defined through the Schur complement of the

%
tangent stiffness matrix with respect to the internal nodes of the RVE A1 =Kg AuJI;. Thus the macroscopic
stress-strain relationship can be defined by:

1 o
Ao€ = D’ Ky D A&S, 63
Vo> K ©3)

-1
& <& & <& <&
where Ks=Kp» — KiniK;; Ki». Consequently, the macroscopic tangent stiffness Cr is

D’ Ks D
s D. (64)

1
Cr =
T V.l

An algorithm for the FE? method applied to out problem of fracture in polycrystalline materials is shown in
Figure 3]

3.1.2. Limitations

In the previous section, a computational homogenisation multiscale method was presented. Despite a num-
ber of attractive characteristics, there are a few significant limitations to the this computational homogeni-
sation framework which are described, for instance [35} 26, 22]]. The main limitations of homogenisation
are:

e Bridging scales by homogenisation are only valid if scales are separable. The main shortcomings of
classical homogenisation schemes come from the fundamental implicit assumption that the RVE size
must be negligible in comparison with the macro structural characteristic length (determined by the
size of the macroscopic specimen or the wave length of the macroscopic load) [28]]. While softening
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Figure 8: FE? scheme.

happens, the homogenisation method is strongly sensitive to the variation of both macroscopic mesh
size and RVE size.

o This is a computationally expensive method but it is much cheaper than solving engineering problems
fully at the microscale. However, novel methods aim at reducing this computational effort. For in-
stance nonuniform transformation field analysis, [47]; Model order reduction [32]]) and more heuristic
ones where RVE is deactivated or RVEs are regrouped.

According to the first shortcoming, bridging scales by homogenisation are only valid if scales are separable.
In the critical regions where the scale separation assumption is not fulfilled, the FE> method is bypassed
and a concurrent multiscale method is adopted. In the concurrent multiscale method the scale separation
assumption does not need to be fulfilled, since the microscopic model is solved directly.

In the next section, a concurrent multiscale method based on domain decomposition is detailed, in order to
solve the microscopic problem in critical regions simultaneously with the macroscopic problem.

3.2. Macroscopic problem

When the characteristic length of the problem at the loading scale, L, is considerably larger than the charac-
teristic length of the microstructure, / (see Fig. |1)) computational homogenisation can be employed to search
for an effective displacement field u® € U defined over Q which

Vou® e UL, I = f of : &(6u‘) dQ - f F, -6u‘dl = 0. (65)
Q o0Qn

U and U are collections of trial functions, u, and test functions, du, respectively, which can be defined
by

U = {ulu € H'(Q).uy,, = uD}, (66)
U = {uj e H' Q). 6wy, =0}, (67)

where H' is the Sobolev space of degree one. This is because the solution at the coarse scale is smoothed
through homogenisation, and microscopic cracks at the crystalline scale is represented by reduction in the
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macroscopic stiffness. The Dirichlet boundary condition at all times is given by

u =up,, ondlp. (68)
The Homogenised constitutive law at the coarse scale relates the coarse stress to the history of the coarse
strain, locally at every point of the domain:

|x,7’

o =0t ((s(uc ))m) inQ, (69)

where 0 and &° are the coarse scale stress and strain respectively. In the general framework of homogeni-
sation, the coarse scale constitutive law (69) is not known a priori. It is assumed however that, at lower
scales, the constitutive law of the microstructural heterogeneities is known, or is at least identifiable. The

coarse scale problem Eq. (63) is spatially discretised by triangular linear finite elements. One integration
point suffices for each element. Finally, the finite element discretisation of Eq. (63) can be written as:

_ cT
STI =6U [ZM fg

where N, and B¢ are shape function matrix and derivaties of the shape functions for the triangular linear
coarse elements which are given by (28)) and (29) respectively. o is the vector form of stress, and M, is the
boolean matrix that maps the coarse element vector to the corresponding entries of the global vector. Since
the variational work is zero for any admissible variation of displacement vector 6U¢, it is concluded that the
residual force vector must be null:

B ol dQ - > M, f N.F dr] =0. (70)
c Ie P 0Qy

R (U°) =t (U°) ~ fexe = 0, (71)
where
£ (US) =) M, f B o dQ (72)
(W)= M. |
for = > M, f N, Fdr. (73)
ot Z n

Because of material non-linearity, Eq. (7I)) cannot be solved directly for U¢. The Newton-Raphson pro-
cedure is employed to find the solution iteratively. The linearisation of the coarse scale residual R with
respect to the displacement U is given by:

c

_ OR
R¢ (U° + AU°) = R¢ (U°) +

AU‘ =0, 74
FU° (74)

finally the linearised equilibrium equation for the coarse scale problem can be written as

K7 AU = — (fin (U) — foxo) (75)

where after each iteration, the displacement vector U¢ is updated, and consequently the internal force vector
fine (U°) and the tangent stiffness matrix K7, is updated by solving the underlying RVE problem. The tangent
stiffness matrix is
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where Cr, is the macroscopic tangent stiffness that is computed through the homogenisation of the consti-
tutive law given Eq. (64). When the component of residual force R°(U¢) become “very small” (less than
some convergence tolerance) the Newton-Raphson iterations are stopped, and a new time step is started by
changing the external force fey;.

3.3. Concurrent Multiscale: Domain Decomposition Method

Domain decomposition methods (DDM) can be used for solving a large problem by partitioning it into
smaller subdomains or for solving a problem with different physical models in its sub-domains [40} 18}, 43,
36].

Figure [9] shows the two main classes of Domain decomposition methods: overlapping [16] [27] and non-
overlapping [138, 41]] interface methods. DDM can also be categorised into direct and iterative.

For our problem, a non-overlapping DDM is adopted to solve directly the microscopic problem at a critical
region concurrently along with the coarse scale problem at the region that scales are separable (see Fig. [10).
The domain Q is partitioned into a coarse scale sub-domain Q¢ and a fine scale sub-domain Q/ such that
Q°UQ/ = Qand Q° N QS = 0. The FE?> method is used to solve the microscopic problem on average over
Q°. The finite element method is deployed to directly model the microscopic problem at the fine scale Q7.
Figure |10| depicts schematically the hybrid multiscale scheme for modelling of fracture in polycrystalline
materials. It is assumed that there is an equation that bridges the fine scale to the coarse scale solutions:

R’ (u u ) =0, onIVe (77)

where u/ and u€ are the displacement field at the Q/ and Q¢, respectively.

The Lagrange multiplier technique is used to satisfy the constraint equation At a stationary point,
the variation of the Lagrangian function A with respect to the displacement of the coarse scale 6u®, the
displacement of the fine scale du/, and the Lagrange multipliers 64 vanish and provide the equilibrium
equation for the domain Q:
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where the A are Lagrange multipliers. It is noted that the arbitrary variation of displacement fields must be
null on the Dirichlet boundary, du(x) = 0 Vx € 0Qp. The variation of the virtual works in the coarse
scale 6I1¢ and in the fine scale 6I1/ after discretization by finite elements are given by Egs. (70) and 22)
respectively. In the following, the choice of constraint equation is discussed.

3.4. Coupling Fine-Coarse meshes

Coupling techniques can be divided into two main categories: strong and weak couplings. In strong coupling
the fluctuation of microscopic displacement on the interface vanishes, while in weak coupling techniques
fluctuations exist but its weighted average is zero on the coarse-fine interface. Figure [IT]shows difference
between weak and strong coupling schematically.

For a microstructure with discrete cracks, employing a weak coupling technique increases the condition
number of the global stiffness matrix, and consequently the Newton-Raphson solver requires more iteration
to converge [29,54]]. In other words, weak coupling techniques is more expensive in terms of computational
cost. In this work, the linear multipoint constraint (LMPC) method [}, [19] is adopted to impose a strong
coupling on the displacement at the interface between the fine and the coarse meshes. This coupling tech-
nique is based on Lagrange multipliers that strongly glue the fine solution to the coarse solution along the
common interface. The coarse scale is discretized by linear triangular elements, and as discussed in Section
??, the fine scale has been discretized by linear triangular elements, and four-node cohesive elements. The
strong coupling between the fine scale nodal displacement and the coarse scale displacement at the interface
I'/¢ is obtained by enforcing the micro nodes that belong to a macro edge to follow the edge deformation.

21



/e rse

X

Ay

AVAVAVAYAY,

<

weak coupling strong coupling
i/ =u-u 20 i/ =u-u =0

=~ f _
Jpe0fdl =0
Figure 11: Strong coupling vs. weak coupling in non-overlapping DDM in deformed configuration.

For example, displacement of a fine mesh node i is enforced to follow the displacement of the edge of an
adjacent coarse element e by using the coarse element shape functions N, on the interface

RN (U U)) = U/ - No@)Ug =0, onTf". (81)

where £ is the local coordinate system of the coarse element e at the interface, and uS is the nodal displace-
ment vector of the element (e) on the interface I'/¢. The shape function N, is given by

I-5 0 F 0 )
{0 &
0 1-£ 0 f

N.(O) =

where I, is the length of edge of element () on the interface I'/¢. Figure [12|displays details of the LMPC
method.

Equation (8T) provides the constraint equations for the particular node i. The global constraint equations for
all the nodes on the interface I'/¢ is given by:

R' (UC, U/ ) =AU/ - AU = 0, (83)

The boolean matrix A/ is defined to extract all nodal displacements of the fine mesh that corresponds to the
interface I'/¢, and A€ is a matrix combining the values of shape functions of the coarse nodes on the interface
I'/¢. Note that the coarse mesh is expected to vary due to adaptivity during the multiscale analysis. For this
reason, the structure of the matrix A needs to be recomputed as soon as the coarse mesh is refined.

3.5. Solving the coupled problem

In this coupling technique microscopic cracks with one end on the interface I'/¢ cannot open due to the
strong coupling of displacements imposed by coarse scale continuum displacement (see node i in Fig. [I2)),
as macroscopic displacements are continuous along the coupling region. Even though we are not going to
model plasticity in the grains, it is worth mentioning that the strong coupling of displacements can generate
an artificial plasticity in those grains that are next to the coarse nodes on the interface I'/*. This is due to the
jump of the macroscopic strain along the edge of the coarse elements and also at the coarse nodes.
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Figure 12: Strong coupling between the fine mesh and the coarse mesh using the linear multipoint constraint (LMPC) method.

By substituting the discretized form of Eqgs. (70), (22) and (83) into the stationarity equations of Lagrangian
functions (78)), (79) and a set of nonlinear equations for the domain Q is obtained:

RC (U, ) = £, (U°) - £5, — AT A = 0,
RI(US, 0 =1, (U) - £, + AT 2 =0, (34)
R (U, Uf) = ATU/ - AU = 0.

Equation (84) is a nonlinear equation that needs to be linearised before solving by iterative solvers. The
linearisation of the coarse mesh residual R¢ with respect to its variables is given by:
_ OR¢ OR¢
R (U + AU, A2+ A1) =R (U, ) + —AU + —Ad =
( ’ ) 1 aue¢ 04
T T
£ (U) — o — A A+ K; AU — A7 AL (85)
where K. is the tangent stiffness of the coarse scale problem that was given in Eq. (76). The linearisation of
the fine mesh residual R/ and interface residual R' can be done in the same way. Finally a system of linear
equations is obtained:

KS 0 —pAT|(AU* R
0 Kj pAS [JAU/ b= R/ (86)
-pA¢ pAf 0 Ad R"

Lagrange multipliers, A are replaced by pA to avoid uncontrolled increase of the condition number of the
system of equations, and p = max(|K?|) is a scalar related to the maximum diagonal entry of the initial
stiffness matrix of coarse problem and calculated once at the beginning of the simulation [62]. In Eq. (86)

the external forces £, and fefXt are updated at each increment of the time step while the tangent stiffness

matrices K7, and K‘;, and internal forces f{ and fi{l . are updated at each iteration due to the change in the
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displacement and the Lagrange multipliers:

U= US| + AU, (87)
Ul = U, + AU/, (88)
/l|,' = /l|,'_1 + A/l|,', (89)

where subscripts |i — 1 and |i indicate the results for the previous iteration and the current iteration respec-
tively. In the Newton-Raphson iterative schemes, after each increment, the initial residual forces are out of
balance, Rji—o # 0. The resolution process is stopped when the relative euclidean norm of the residual at

. cOIR . . .
time step i, |||1|1‘-ZL||| is smaller than an acceptable tolerance eg. In this problem, the residual force vector is

composed of the out of balance vector [RC, R/ ]T and residual of the constraint equation RT which may have
values of different orders of magnitude. One must then normalize with predetermined quantities the various
components of the residual or displacements vectors before assessing the convergence. In this DDM, the
residual of the interface constraint is normalized using a scalar parameter, R'* = pR! where p = max (|Kfl|)

4. Solution Procedure

In order to model polycrystalline microstructures, the previous section presented a combination of two
methods: a hierarchical multiscale method based on computational homogenisation (FE?), and a concurrent
multiscale method based on non-overlapping domain decomposition. The FE? method is unable to simulate
materials in the region where localisation occurs (the corresponding RVE is in softening regime) or in a
region where the homogenisation assumptions are not valid. In other words, when the balance equations of
an RVE lose ellipticity, the principle of scale separation is not satisfied for that size of an RVE. Consequently,
the averaging theorem on which FE? relies is not valid in the corresponding region. In contrast, concurrent
multiscale methods can simulate localisation phenomena by splitting the domain into the damaging (or
critical regions) and loading regions.

We propose a hybrid method, a combination of the FE? method and domain decomposition, which removes
these shortcomings. The FE? technique is used in the regions of the structure that are in a loading regime, i.e
not damaging beyond the material stability limit, where representative volume elements satisfy the principle
of scale separation. In the critical regions where localisation occurs, a domain decomposition scheme is used
to solve the problem exactly at the scale of the material heterogeneities. In order to control the precision of
the simulations, error estimation for the up-scaling strategy is carried out at each step of the time integration
algorithm. Based on this estimation, the coarse elements are refined hierarchically where needed. When the
homogenisation error exceeds a critical value, the homogenisation step is bypassed, and the corresponding
critical region is modelled directly at the microscale. First a zoom-in [41] process is performed in which the
critical region fully resolved at the microscale using boundary conditions based on the history of displace-
ment of the corresponding coarse elements. The fully resolved region is coupled to the coarse mesh and
a relaxation process is performed to eliminate the out-of-balance internal forces due to the replacement of
the critical coarse elements by the new finer mesh. Thereafter, the fully resolved region and homogenised
region are solved concurrently in the domain decomposition framework (LMPC) which was explained in
Section[3.4] In order to follow progressive failure, the fully resolved region is adaptively extended.

Inspired by [42]] and [31]], a local arc-length technique is developed for the multiscale domain decomposition
problem which follows the load-displacement curve by imposing a constraint over the maximum increment
for the jump of all cohesive interface within the fully resolved regions. This is detailed in the following
section.

4.1. Error Estimation and Adaptive Mesh Refinement

Errors arisen from the finite element solution of an engineering problem can be categorised into three groups:
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e modelling error: This error is related to the mathematical modelling of the problem, e.g. mathemat-
ical model for the constitutive relationship and boundary conditions. In FE? method, the error in
homogenisation can be interpreted as the modelling error.

e discretisation error: This error arises from representing the continuous solution space of the mathe-
matical model by the discretised solution of finite element method.

e solution error: This source of the error is due to the computational process of the finite element
solution, e.g. numerical integration.

The finite element method provides an approximation for the exact solution, and the difference between
these two solutions is called the discretisation error,e; , which can usually be reduced by the refinement
of elements. Several discretisation error estimators have been developed in the literature which can be
classified as a posteriori and a priori [2,19]. In this thesis, an a posteriori Zienkiewicz-Zhu recovery-based
error estimator is adopted to control the coarse scale discretisation error by the local refinement of coarse
elements.

In addition to the discretisation error, an FE? solution can be polluted by a homogenisation error, e, caused
by the partial fulfilment of the scale separation assumption, the boundary conditions and the finite element
discretisation of the RVE [3759]. In this work, errors emanating from the boundary condition and the
finite element discretisation of the RVE are not considered. In first order homogenisation, it is assumed
that the macroscopic strain is constant in the vicinity of the sampling point corresponding to each RVE.
This assumption is violated in regions with highly localised deformation. In such regions, second order
homogenisation can provide more accurate results in comparison to first order homogenisation since the
gradient of strain field is not truncated in second order homogenisation. The modelling error indicator for
first order homogenisation, proposed by [59], is adopted to measure the homogenisation error in the FE?
method. Thereafter, a critical value can be defined for the first order homogenisation error, which controls
the scale adaptation procedure.

4.2. Homogenisation error

In order to determine the loss of accuracy for first order homogenisation [59] and [64] developed two error
indicators. The main concept of their error indicators is based on the difference between the strain energy
from second order homogenisation and the strain energy from the first order homogenisation. [59] solved
homogenisation of a hyperelastic unit cell with differing degrees of material heterogeneity, and different
deformation and gradient of deformation at the macroscale. By comparing the results from first order and
second order homogenisation, they have shown that the major quantity controlling the deviation from a
first-order framework is L«||VVu€|| which they referred to as the strain-gradient sensitivity. L« is the size
of the RVE, and |[VVu‘|| is the L, norm of the second gradient of the displacement field that can be written

in indicial notation as |[VVu¢|| = _[u Inspiring by [64] and [59]], the strain-gradient sensitivity

cous .
i,jk™"i, jk
en = Ly||[VVu©|| is considered as the error of first order homogenisation e, by assuming that the effect of
microstructure heterogeneity on the homogenisation error is bounded.

Since the second displacement gradient varies proportionally to the inverse of the coarse scale element size
[[VVu©]| o % [59]], coarse mesh refinement on the one hand decrease the discretisation error, and on the other
hand, increases the homogenisation error. The variation of homogenisation error and discretisation error
versus the coarse element size are depicted in Fig. @ In [64], a critical size for the coarse element has
been defined such that if the size of a coarse element is less than the critical size, then homogenisation is
bypassed, since the homogenisation error is beyond the permissible value.

In this work, instead of choosing a critical element size, a critical value for the homogenisation error e
0.01 is directly considered as a flag for adaptation of scale such that if:

crit _
h

Ly||VVuel, > €™, (90)
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Figure 13: The variation of homogenisation error and discretisation error with respect to the coarse element size in FE> [64].

then the corresponding coarse element e must be replaced by a model of the background microscopic struc-
ture. Due to the coarse linear elements employed in this work, the second gradient of the macroscopic
displacement is zero everywhere. Therefore the method proposed in [59] which relies on a non-zero second
displacement gradient, cannot be used directly. To have a non-zero gradient of strain field at the coarse scale,
we propose to adopt the averaging technique used in recovery-based error estimation [68]] to obtain nodal
values of the displacement gradient, and consequently, a constant stepwise second displacement gradient is

obtained over the coarse elements. The displacement gradient tensor for each element Vu® = % can be be
J
obtained in vector form:
c
o N g N g M Ué
X ox ox Ox Vl
o 0 M o M g M e
c c_ ) oy _ Oy dy dy 2
Ve € Q , Vug =4 o = |ov 0 Ny 0 N3 0 Ve . (91)
oy dy dy dy 2
97 0 M o M o | |US
oxJe ox ox ox e Vg
37e

Since linear shape functions are employed, the displacement gradient over each element is constant (see Fig.
[I4). By making use of a simple averaging technique, the nodal value of the displacement gradient tensor are
obtained:

- 1
Vu®=— ) Vu“. 92
= Z u 92)
where V; stands for the nodal value of gradient and n; is the number of elements related to node 1.
Then, an approximation of exact displacement gradient can be obtained by interpolating the nodal values of
displacement gradient:

Vx e Qf, Vwu'(x)= Z Ny (x)Vub, (93)
7

where V* indicates the recovery-based gradient, and N is the nodal shape function that is being used for
displacement interpolation.
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Finally, the second displacement gradient can be derived from the recovery-based first displacement gradient
field:
Vx e, VVUKX) = ) Bi(x)Vug, (94)
I

where B; is a matrix that contains the shape function gradients for node I:

(%0 0 0]
0 % 0 0
% 0 0 0
0 o0 %M o
B=|, o % o | (95)
0 0 0 %
0 0 % 0
0o o0 o 2

and consequently, the second gradient tensor is given in vector form:

% C _ [%u & u *u v v &u Py r
VV*u (X) =la2 W, 9x0y° m’ dxdy’  Oyox’ W’ W] (96)

At the end, the norm of second displacement gradient for each element is approximated by the square root
of the inner product of VV*u‘(x)

IVVUC|| = VVVuc:VVue = /(VV*u¢)? VV+uc 97)
2u
In Figure|14| the evaluation of the second displacement gradient w2 corresponding to a linear interpolation
X

of u, is depicted for a one-dimensional problem.

4.3. Zienkiewicz-Zhu error estimation

In order to control discretisation error at the coarse scale a simple recovery-based error estimator, proposed
by [68]], is employed. The Zienkiewicz-Zhu (ZZ) technique is chosen since it is a computationally cheap
a posteriori error estimator that can easily be incorporated into existing finite element codes. In the ZZ
approach, to calculate the error, an approximation for the exact solution is determined by using an averaging
technique. After solving finite element problems, a point-wise definition of strain and stress errors at the
coarse scale point x € I'“ are given by

es(x) = &' (x) - &°(x) , (98)
e (x) = 0" (x) - 0°(x), 99)

where e; and e, are the approximated error in the strain and stress fields, respectively, and &° and o
are the strain and stress obtained from the finite element solution at the coarse scale. &€* and o are the
approximations of the exact strain and stress which are obtained by interpolating over the nodal values of
strain and stress:

¥x € Q,, &' (x)=N.(x)&, (100)
VxeQ,, o (x) = N,(x)7, (101)

where N, is the matrix of shape functions for the coarse element e, and the nodal averages of stress and
strain are denoted by &, and &, for the nodes of element e. In order to determine the nodal values of stress o
and strain & several methods have been proposed in literature [69, (10, 67]]. In this paper, a simple averaging
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Figure 14: First displacement gradient, Vu, second displacement gradient, VVu, and the recovery-based second displacement
gradient, VV*u, for a one-dimensional problem and linear shape functions.
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technique is used to obtain the nodal value of stress and strain. For example, nodal stress 6 at node [ is
obtained by averaging the stress over all corresponding elements:

S I
o =— . (102)
i e=1

Finally the energy norm of the error for the coarse domain is given by:

1
2
VeeQ', |lell = [Z ||e||£) , (103)
e
where the energy norm of the error for element e is determined by
llell? = f ele, dQ (104)
0

where e, and e, are defined in Eqs. (O8)) and (99), respectively.
The energy norm of error ||e|| is normalised by a weighted energy of the system to obtain the relative per-
centage error 7:

n=— 1009, (105)
Il + el

where the weighted energy of the system is given by:

lul| = (fa*Ts* dQ)z. (106)

A maximum permissible error 7 is defined, and the following condition is checked after each time step:
n<n. (107)

If the condition above is satisfied, the next time step can be started, otherwise, a mesh refinement procedure
is triggered.

4.4. Coarse mesh refinement procedure

After convergence of the hybrid multiscale problem at each time step, the ZZ approach is used to measure
the energy norm of the error at the coarse mesh. If the inequality (I07) is not satisfied one must determine
which elements to refine. According to the ZZ procedure, the following inequality

llelle
€m

> 1, (108)
defines the coarse elements which are to be refined, where |le||; is defined in Eq. (I04), and

e =

2 2\3
(IIUII + [le]] ) (109)

m

and m is the number of coarse elements. The elements which satisfy (I08)) are refined by splitting into four
smaller elements. In order to have a compatible mesh, the adjacent elements are also split. In Fig. the
coarse mesh refinement is depicted. In the adaptive multiscale method after each mesh refinement some
modification is required before starting a new time step:

e RVEs corresponding to the parent elements are copied to the new, finer elements,
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Figure 15: Coarse mesh refinement in FE? method, and copying the RVEs from old mesh to the new mesh. An edge bisection
method is used. The deformed quadrilaterals represents the underlying RVE corresponding to each coarse element.

e matrix A, used in Eq. (83) must be recomputed in order to be compatible with the new configuration
of nodes on the interface of coarse-fine meshes.

e the homogenisation error is computed and the scale adaptation condition (90)) is checked.

- if e, < ezm the microstructure adaptation is bypassed,

- ife, > ezrit the coarse element i is replaced by an explicit representation of the microstrcuture.
The adaptation of fully resolved regions is explained in the next section.

o after mesh refinement or microstructure adaptation the residual force will be out of balance due to
disturbances in the internal force. Thus, a relaxation procedure is required to minimise the residual
force before starting the next time step. See Section 4./

4.5. Adaptive expansion of fully resolved region

The fully resolved regions are adaptively expanded to the new critical zones where the coarse elements have
a modeling error e, > ezri‘ or when their corresponding RVEs have already lost the stability. Figure
demonstrates the procedure of the development of a fully resolved region schematically. The procedure is
slightly different for the initiation of a fully resolved region than the extension of it. A five-step zoom-in
procedure can be employed for the extension of an existing fully resolved region (the right column in Fig.
[16)), while the third step can be skipped for the initiation of the fully resolved region (the left column in Fig.
16)).

A zoom-in procedure is started when a critical zone appears at the coarse scale due to the high homogeni-
sation error. The underlying microstructre of the critical zone is determined by opening a window to the
actual microstructure. It is assumed that the actual geometry of the microstructure is known a priori. In
the third step, if the new critical zone is an extension to an existing fully resolved region, then those grains
that are common between the existing fully resolved region and its extension are attached to the extension
part, and all related data are dismissed. In the fourth step, the extension part is meshed in such a way that
the mesh is compatible with the adjacent coarse mesh and fully matches with the adjacent fully resolved
regions. The fourth step also consists of an equalisation process that solves the new fully resolved region
boundary value problem based on the history of displacement field that has been experienced by the critical
zone. Equalisation process is detailed in Section[4.6] At the end of equalisation process, the displacement
field of the new fully resolved region is compatible with the surrounding meshes, and the level of energy
saved in the high resolution region is approximately equal to the amount of strain energy in the coarse el-
ements before adaptation. The equalisation process will be explained in the next section. In the next step,
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1) Determining the critical zone at the coarse scale

The initiation of the critical zone The extension of the critical zone
|

2) Determining the microscopic resolution of the critical zone
The microstructure of the initial critical zone The microstructure of the extension

oy

\_{ initial fully resolved region /

3) Modification of the microstructure of the extended part of the fully rescf),l;ved region

The grains that are partially in the initial fully
resolved region are attached to the extension

part.

4) Equalisation process for the initial (or the extension of the) fully resolved region according
to the history of displacement field on the common interfaces. (Section 4.6)

AR

5) Coupling the fully resolved region (initial or extended part) to the other part of the

5

domain, and after the relaxation process (Section[4.7)), continue the simulation.

Figure 16: The procedure of the development of the fully resolved region

the Linear Multiple Point Constraint (LMPC) technique is used to couple the the new fully resolved region
to the rest of the domain. Finally, before continuing the simulation, a relaxation procedure is performed to
minimise the out-of-balance residual force as described in Section

4.6. Equalisation process

When the critical coarse elements are replaced by a fully resolved region, it is necessary to ensure that the
high resolution region and critical coarse elements have equivalent strain energy and deformation states. In
our problem, the two physical models are equivalent if the level of damage, or more precisely, their capacity
to store strain energy with the same deformed shape, are equal. The undamaged microstructure saves more
strain energy rather than the coarse scale critical zone due to its un-degraded stiffness. The equalisation
process is performed to acquire an approximately equivalent fully resolved region. In the equalisation pro-
cess, a BVP is defined for the undamaged high resolution domain. The boundary conditions are defined
from the displacements experienced by the critical zone during the simulation up until the current time step
(t € [0, 7]). Figure|17|illustrates equalisation process for a fully resolved region based on the displacement
history of the critical zone. For linear elastic microstructures, the whole history of displacement can be
imposed by a single time step only since the material capacity for storing strain energy is not changed by
loading. Similar to Section [3.4] the LMPC method is adopted to impose the displacement boundary con-
ditions. At this stage, no arc-length technique is required since the external load (displacement history) is
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known for all previous time steps. After accomplishment of the equalisation process, the fully resolved
region is embedded into the coarse scale by making use of the LMPC technique. The coupling technique
between the fine and the coarse meshes was explained in Section, [3.4]

4.7. Relaxation

After the equalisation process, the embedding of the fully resolved region into the coarse scale, and before
starting the new time step, the residual force vector must again be minimised. After every mesh refinement
or adaptation of the high resolution scale, the internal forces change. Therefore, the simulation is continued
at the current time step until the norm of the residual force vector reduced to a certain acceptable tolerance.

5. Local Arc-length technique

When a cohesive interface fails, two operations are performed simultaneously: the traction at the cohesive
interface decreases, and the elastic grains unload. Because the grains are elastic and cohesive crack failure
is not ductile, the energy released by unloaded grains provides more energy than necessary for the cohesive
crack growth. Also due to the unloading in the elastic region a snap-back behaviour is expected. Therefore,
an equilibrium state cannot be found for either an increment of external load or an increment of applied
displacement boundary condition (see Fig. [18)). In another words, load incremental strategy and displace-
ment incremental strategy are not able to trace the solution path in the snap-back regime. The arc-length
method is a numerical procedure that is used to follow the solution path in nonlinear problems. This method
was originally proposed by [66] and [53], developed by [14] and later modified by several researchers. In
the arc-length method, a continuous path of equilibrium can be traced by considering a feasible constraint
equation. The constraint equation adds one unknown variable and one equation to the nonlinear system of
equations. Comprehensive reviews of several arc-length methods can be found in [15} 21]. Two classes of
arc-length methods exist. The first group contains global arc-length techniques which define a constraint
over the whole of the solution space and can follow smooth load-displacement curves [14} 45]]. The second
group are called local arc-length methods. They impose a constraint equation on a local region and can trace
nonlinear solutions with very sharp snap-back [S55, [5]].
In this work, when a fully resolved region occurs in the simulated structure, the incremental force procedure
is switched to a local arc-length procedure. In this local arc-length method, a constraint equation is intro-
duced so that at each time step, the maximum local increment in the displacement jump A[[u/]/(¢n) over the
mid-point ¢, of all the cohesive elements (whose stiffness is positive) takes a predefined value Al over the
current time step [z, t + At]:

VeeTl’, P,Aul]. <Al (110)

T

e

i
ITu/ 1

of the cohesive element e at the last time step [# — Az, ¢]. More detail can be seen in Fig. @}

To control the external load at the coarse scale, this constraint is defined at the fine scale and linked to an
unknown parameter y which is the amplitude of the external load F. The constraint equation (I10) is added
to the system of equilibrium equations (84)), thus the algebraic nonlinear problem to solve, in the concurrent
multiscale phase, reads:

where e refers to the cohesive elements on the cohesive interface I/, and P, =

is the jump direction

RC (U, 4,7) = £, (U°) -y, — AT A =0,
R (U, 4,9) =1, (U) - ot + AT =0,

R (U, U/) = AJU/ - A°UF = 0,
Veel’/, P,BL AU/ <Al

(111)

where Bgm = BL(¢,,) is the jump extractor matrix for the mid-point of the cohesive element e that is given
by Eq. (32). According to [42], the nonlinear Eqs. (I11)) can be solved by linearisation of the first three
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equations, and a direct solution procedure is carried out for the arc-length constraint equation. The linearised
form of the equations is given by:

Ki 0 —pA”l| (65U R (fou
0 KL pA/T |{oU b= — IR/ L+ 3] oy (112)
-pA¢  pAS 0 oA R" 0

Lagrange multipliers A are replaced by pA to avoid the conditioning number of the system of equations
being affected by the heterogeneity of the unknown vector. p was introduced in Eq. (86). Eq. (T12) cannot
be solved, Because dy is unknown, however a relationship between unknown vector on LHS and ¢y can be

found:
oU¢ a‘ b¢
U/ = —{al} +{b/} 5y, (113)
54 al b
where .
ay [KS 0 —pA] (Re
a’t=| 0 K. pAf"| R/}, (114)
ar >_pAC pAf 0 | RF
and 1
by [ K& 0 —pAT]T (£,
{bf}: 0 K. pArT| b (115)
b") |[-pAc pAS 0 | |0

In order to obtain &y, the middle line of Eq.(TT3), 6U/ = —a’/ + b/§y, is substituted into the arc-length
constraint equation (ITI):

A

P,B!

€m

Veel”, (AUL, —a’ +b/oy) < AL (116)

where at each time step, AU/|, = AU/|_| + 6U/|, is the total variation of displacement, and U/}, is the
variation of displacement at the current iteration |; which was replaced by —a/ + b/§y according to Eq.

Rearranging Eq. (T116):

Veel/, f.(oy)=PB, (AUJ, —a’)+P.B] b/oy <Al (117)

where f,(0y) is a linear equation in ¢y which will always yield a value of dy that satisfies f.(0y.) = AL
Therefore, for each cohesive element ¢ an admissible domain S, exists such that:

S, = {616y € R, £.(y) < Al}. (118)

Finally, the common interval between all admissible intervals S provides an admissible interval S, for all
the cohesive elements which have not been fully damaged:

e
Veell and do(Gw) < 1, Sa=[om, 6y, =[)Se. (119)

where 0y; and ¢y, are the minimum and maximum values of the admissible interval S ,. In fact, the variation
of the jump in fully opened cohesive cracks (dead cracks) is not controlled, so their admissible intervals
are not considered when determining the global admissible interval S,. A schematic for the evaluation of
the admissible interval of &y for all cohesive elements is given in Figure 20 However, it is possible that a
common interval cannot be found for all active cohesive elements, in which case, this time step is repeated
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Figure 20: The evaluation of the admissible interval S, for the variational load factor ¢y in the local arc-length method.

Table 1: Material properties and parameters for grain and cohesive interfaces at the microscale.

grain cohesive interface
E v lg Omax = Tmax  Gi1e = Grie Kini n
384.6GPa 0.237 25um 1 GPa 35Jm™2 0 05

with a slightly different (larger/smaller) value of Al. A bound for Al must be considered to avoid very large
jumps at cohesive interfaces. Based on the critical displacement jump of cohesive interfaces [u]lg (see Eq.
(7)), a bound for the maximum variation of displacement jump is determined:

0.01ullfun < Al < [ullfun (120)

In this local arc-length method, an admissible interval for [6y;, &y,] is determined, but the value of §y €
[6¥1, 6y,] which minimises the residuals in Eq. (ITI)) remains unknown. In this work, the maximum varia-
tion of load factor dy, is chosen which maximises the load factor 7.

6. Example Applications

In this section, the proposed adaptive multiscale method for polycrystalline failure presented is tested. A
notched beam under uni-axial load is considered as a test case for the adaptive multiscale method. A direct
numerical solution (DNS) where the whole microstructure is explicitly simulated over the whole computa-
tional domain for comparison of the results.

6.1. Notched Beam

As an example, a single-notched beam under uniaxial load is considered, shown in Fig. 21} The results from
the proposed multiscale framework are compared to those from a direct numerical solution (DNS). The
beam is made of a polycrystalline material, for which the constitutive equations were introduced in Section
??, and the mechanical properties of the grains are given in Table[I] In order to decrease the computational
cost, the FE? method is only implemented in the middle part of the beam (grey region in Fig. , and
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Figure 21: A single-notched beam under uniaxial tensile load.

a constant linear elastic homogenised model with Young’s modulus £ = 386.4 GPa and Poisson’s Ratio
v = 0.237 is considered for the rest of the domain. Furthermore, for the DNS problem, only the middle
region is resolved at the microscale. Distribution of the von Mises stress over the notched beam are shown

in Fig. 22 for the DNS and the adaptive multiscale solution.

As explained in Section [d] the ZZ error estimator is employed for the control of the discretisation error,
and the strain-gradient sensitivity is used as a measurement for the homogenisation error. The maximum
permissible discretisation error is 77 = 5%. If the strain-gradient sensitivity of a coarse element L+||VVu€||,
is higher than the critical value of the homogenisation error then the microstructure is fully resolved for
that element. In this study, ezri‘ = 0.01 is considered as the critical value of homogenisation error. The
distribution of the strain-gradient sensitivity of the coarse mesh is illustrated in Fig. 23] It is observed that
the mostly the coarse elements in the vicinity of the crack tip have the high strain-gradient sensitivity. As
shown in this figure, this homogenisation error indicator can accurately predict the most likely direction of
the crack propagation, which is the main advantage of this scale adaptation criterion. In the literature, the
length scale ratio [62, 24] have been used as the scale adaptation criterion in multiscale fracture modelling.
This usually lead to a large fully resolved region at the coarse scale. In scale adaptation based on the length
scale ratio, if the ratio of the coarse element size to the RVE size is less than a critical value, then the
microstrucute is directly resolved at those elements.

In Fig. the coarse mesh in the vicinity of the fully resolved region is shown. Although some coarse
elements are smaller than the size of a grain, which means that they are at the same scale, according to the
homogenisation error criterion, it is still allowed to use the FE? method. It is worth to mention that, if scale
size ratio was used as scale adaptation criterion, the most of these coarse elements in the vicinity of the
microscopic region must be fully resolved at the microscale, while the strain-gradient sensitivity of those
elements is still less that the critical value eflm =0.01.

For the notched beam, the variation of the external work Wy, total strain energy Wiy, and the dissipated
energy D versus the time steps are shown in Fig. The beam reaches its maximum strain energy at
time step 8. In the next time steps, the arc-length method decreases the external load in order to track
the snap-back behaviour of the load-displacement curve, and therefore, the level of the external work and
the strain energy of the beam drop dramatically (Time step 15). In this stage, the grains around the notch
are separated, and a macro-crack is nucleated. Although the strain energy and the external work show
oscillation, the dissipated energy of the beam is monotonically increasing. This is because the local arc-
length enforces the cohesive cracks to dissipate energy at each time step according to the constraint equation
(TT0). Therefore, even if the external load decreases at least one of the cohesive cracks dissipates energy.
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The adaptive multiscale method

Figure 22: von Mises stress distribution in the notched bar a) DNS, b) Adaptive multiscale solution. Deformation is magnified by
100.
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Figure 23: The distribution of strain-gradient sensitivity L |[VVu©||, at the coarse scale, and the adaptive development of the fully
resolved region.
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Figure 24: Coarse mesh in the adaptive multiscale at Time step 200. Deformation is magnified by 100.

The external work Wey, the total strain energy Wiy and the dissipated energy D of the beam at time 7 are
obtained by the following equations:

-
Wext = f f F . Au(¢) dI' dz, (121)
=0 JoQy
Wint = 0.5 f F-uf(r)drl, (122)
0Qy
D = Wext — Wing, (123)

where ¢ is the time, Au® is the variation of the macroscopic displacement in each time step, and F is the
external traction load on the Neumann boundary, 0Qy.

In Fig. 26] the deformation of the fully resolved region at two time steps is shown: 1) time step 8 when the
domain is experiencing its maximum level of strain energy, and 2) time step 15 when the crack is initiated
and the strain energy of the domain drops.

The energy dissipation in the beam versus the displacement at the tip of the beam is shown in Fig. In
this figure, the result from the adaptive multiscale method is compared with DNS results. It is observed that
the total dissipated energy D obtained from the adaptive multiscale method is less than the dissipated energy
from the DNS for the same displacement. As expected, any variation of displacement causes an increase in
the total dissipated energy.

In Fig. [28] the dissipated energy in terms of crack length is shown for the adaptive multiscale method and
the DNS. In calculating the crack length, the cohesive cracks with the damage parameter d larger than 0.423
is considered as a fully opened crack. This is because the tractionaration law transitions to the softening

regime whend > 1— (%)”. In this study n = 0.5 (See Section . The initially dissipated energy before
n

the macro-crack initiation in the DNS is 10% more than that in the adaptive multiscale method. This is due
to the fact that the larger fully resolved region of the DNS allows the damage to diffuse into a wider area,
and consequently, dissipates more energy before the crack initiation. In contrast, the adaptive multiscale
model dissipates less energy before the macro-crack initiation, because of 1) the small fully resolved region
stops the cohesive cracks on the coarse-fine mesh interface I'/¢ to dissipate energy before initiation of the
first crack, and 2) the coarse elements dissipate less energy due to the small size of the RVE employed for
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Figure 27: The variation of dissipated energy D versus displacement at the Neumann boundary of notched beam (Point A in Fig.

26).

homogenisation. In addition, the rate of energy dissipation in the DNS is higher than that in the adaptive
multiscale method.

The load-displacement curve obtained from the adaptive multiscale method is compared with DNS result
in Fig. [29] It is observed that the adaptive multiscale method shows the higher value for the yield strength
and stiffness in compare to the DNS. It can be seen that the local arc-length method is able to follow a high
oscillatory behaviour of load-displacement curve.

7. Conclusions

For modelling failure in polycrystalline materials, an adaptive multiscale method was developed. A thermo-
dynamically consistent cohesive crack model was implemented to model the interface between the grains,
and the grains were modelled as a linear elastic material. The classical homogenisation technique was
used to obtain the macroscopic response of the heterogeneous microstructure. The Zienkiewicz-Zhu error
estimator was used to control the discretisation error at the coarse scale, and the homogenisation error mea-
surement, devised by [59]] was implemented to control the modelling error. When the homogenisation error
exceeds a critical value, the corresponding coarse element is replaced by underlying microstructure. This
fully resolved region is expanded adaptively in order to control the modelling and discretisation errors that
increase due to the crack propagation. To follow the highly non-linear load-displacement curve, a local
arc-length technique was developed for the adaptive multiscale framework.

The following contributions were made to the existing computational multiscale techniques for the mod-
elling of fracture in polycrystalline materials

e A robust local arc-length technique was designed for concurrent multiscale methods that can follow
sharp snap-back in the load-displacement curve by controlling the opening of cracks at the microscale.
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o The proposed multiscale method for modelling fracture was equipped with 1) an adaptive unstruc-
tured coarse mesh, and 2) a progressive fully resolved region that makes it possible to model crack
propagation.

e A procedure was devised that allows to adaptively expand the fully resolved region, which contains
nonlinear cohesive cracks, into the coarse scale mesh.

o Discretisation and homogenisation model error estimators were employed to control both the adap-
tivity of the coarse mesh and the extension of the fully resolved region. The discretisation error at
the coarse scale was controlled by the Zienkiewicz-Zhu procedure, and strain-gradient sensitivity was
used to measure the homogenisation error. To obtain the second displacement gradient when using
triangular linear elements, an averaging technique was proposed to obtain a smoothed field for the
first displacement gradient. Then the second displacement gradient with Cy continuity was obtained
from the smoothed field of the first displacement gradient.

o The multiscale method was shown, numerically to produce results which are almost identical to direct
numerical simulations.

The fracture of a notched beam under a uniaxial load was modelled by the proposed adaptive multiscale
method. According to the results, one can conclude that:

e The strain-gradient sensitivity criterion is able to predict the direction of the crack propagation by
defining the critical region for scale adaptation.

e The size of the critical region flagged by the strain-gradient sensitivity is smaller than the size of
the critical region flagged by the scale ratio criterion. In other words, it was shown that the FE?
method can be used for coarse elements that are even smaller than the RVE size if the strain-gradient
sensitivity does not exceed its critical value.

o The adaptive multiscale method shows less energy dissipation in comparison to the DNS.
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