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Abstract

A multi-antenna transmitter that conveys independent setsof common data to distinct groups of

users is considered. This model is known as physical layer multicasting to multiple co-channel groups.

In this context, the practical constraint of a maximum permitted power level radiated by each antenna

is addressed. The per-antenna power constrained system is optimized in a maximum fairness sense with

respect to predetermined quality of service weights. In other words, the worst scaled user is boosted by

maximizing its weighted signal-to-interference plus noise ratio. A detailed solution to tackle the weighted

max-min fair multigroup multicast problem under per-antenna power constraints is therefore derived. The

implications of the novel constraints are investigated viaprominent applications and paradigms. What is

more, robust per-antenna constrained multigroup multicast beamforming solutions are proposed. Finally,

an extensive performance evaluation quantifies the gains ofthe proposed algorithm over existing solutions

and exhibits its accuracy over per-antenna power constrained systems.
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I. INTRODUCTION & RELATED WORK

The spatial degrees of freedom offered by multiple antenna arrays are a valuable interference mitigation

resource. Advanced signal processing techniques are currently employed to boost the performance of

the multi-antenna transmitters without compromising the complexity of single antenna receivers. These

beamforming (or equivalently precoding) techniques efficiently manage the co-channel interferences to

achieve the targeted service requirements (Quality of Service–QoS targets). As a result, the available

spectrum can be aggressively reused towards increasing thesystem throughput.

The optimal downlink transmission strategy in the sense of minimizing the total transmit power whilst

guaranteing specificQoS targets at each user, was given in [1], [2]. Therein, the toolof Semi-Definite

Relaxation (SDR) reduced the non-convex quadratically constrained quadratic problem (QCQP) into

a relaxed semi-definite programming instance by changing the optimization variables and disregarding

the unit-rank constraints over the new variable. The solution of the relaxed problem was proven to be

optimal. The multiuser downlink beamforming problem in terms of maximizing the minimumSINR,

was optimally solved in [3]. The goal of the later formulation is to increase the fairness of the system

by boosting theSINR of the user that is further away from a targeted performance.Hence, the problem

is commonly referred to asmax–min fair. In [3], this problem was solved using the principles of

uplink/downlink duality. Therein,Schubert and Bochedeveloped a strongly convergent iterative alternating

optimization algorithm for the equivalent uplink problem.In the same work, the power minimization

problem of [1] was also solved by acknowledging its inherentconnection with the max-min fair problem.

Consequently, a significantly less complex framework to solve the optimal beamforming problem was

established. Extending these works, the practical per-antenna power constraints(PAC) were considered

in [4]. Generalized power constraints, including sum power, per-antenna power and per-antenna array

power constraints were considered in [5], where the proposed max-min fair solution was derived on an

extended duality framework. This framework accounted for both instantaneous and long term channel

state information (CSI). PACs are motivated from the practical implementation of systems that rely on

precoding. The lack of flexibility in sharing energy resources amongst the antennas of the transmitter is

usually the case, since a common practice in multi-antenna systems is the use of individual amplifiers

per antenna. Despite the fact that flexible amplifiers could be incorporated in multi-antenna transmitters,

specific communication systems cannot afford this design. Typical per antenna power limited systems

can be found in multibeam satellite communications [6], where flexible on board payloads are difficult

to implement and in cooperative multicell systems (also known as distributed antenna systems,DAS),

July 1, 2014 DRAFT



3

where the physical co-location of the transmitting elements is not a requisite and hence power sharing

might be infeasible.

A fundamental consideration of the aforementioned works isthat independent data is addressed to

multiple users. However, the new generation of multi-antenna communication standards has to adapt the

physical layer design to the needs of the higher network layers. Examples of such cases include highly

demanding applications (e.g. video broadcasting) that stretch the throughput limits of multiuser broadband

systems. In this direction, physical layer (PHY) multicasting has the potential to efficiently address the

nature of future traffic demand and has become part of the new generation of communication standards.

PHY multicasting is also relevant for the application of beamforming without changing the framing

structure of standards.Such a scenario can be found in satellite communications where the communication

standards are optimized to cope with long propagation delays and guarantee scheduling efficiency by

framing multiple users per transmission [6], [7].

In [8], the NP-hard multicast problem was accurately approximated bySDR and Gaussian randomiza-

tion. The natural extension of the multicast concept lies inassuming multiple interfering groups of users.

A unified framework for physical layer multicasting to multiple co-channel groups, where independent

sets of common data are transmitted to groups of users by the multiple antennas, was given in [9], [10].

Therein, theQoS and the fairness problems were formulated, proven NP-hard and solved for the sum

power constrained multicast multigroup case. In parallel to [9], the independent work of [11] involved

complex dirty paper coding methods. Also, a convex approximation method was proposed in [12] that

exhibits superior performance as the number of users per group grows. Finally, in [13] the multicast

multigroup problem underSPC, was solved based on approximations and uplink-downlink duality [3]. In

the context of coordinated multicast multicell systems1, max–min fair beamforming with per base-station

(BS) constraints has been considered in [14] where eachBS transmits to a single multicast group. Hence,

a power constraint over each precoder was imposed while no optimization weights were considered.This

formulation still considers power sharing amongst the multiple antennas at each transmitter.

Towards deriving the optimal multigroup multicast precoders when a maximum limit is imposed on

the transmitted power of each antenna, a new optimization problem with one constraint per transmit

antenna needs to be formulated. Amid the extensive literature on multigroup multicast beamforming,

1 Coordinated multicell networks consist of connected base stations (BS), with eachBS serving a single multicast group, a

case tackled in [14]. Extending this, the methods presentedherein can be applied in cooperative multicell systems where all

BSs will jointly transmit to several multicast groups [15].
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the PACs have only been considered in [16], where an equally fair multicast multigroup solution is

presented. Extending these considerations, the present work accounts optimization weights. Therefore, a

consolidated solution for the weighted max–min fair multigroup multicast beamforming underPACs is

hereafter presented. The contributions of the present workare summarized as follows

• ThePAC weighted fair multigroup multicast beamforming problem isformulated and solved.

• Practical system design insights are given by examining theimplications of thePACs on multigroup

multicast distributed antenna systems (DAS), modulation constrained systems and uniform linear

array (ULA) transmitters.

• A robust to erroneousCSI multigroup multicast design underPACs is proposed.

• The performance of the solution is evaluated through extensive numerical results under various

system setups.

The rest of the paper is structured as follows. The multigroup multicast system model is presented in

Sec. II while the weighted fair problem is formulated and solved in Sec. III. In Sec. IV, the performance

of the design is evaluated for various system setups along with a robust extension of the derived algorithm

and a weighted multigroup multicast application paradigm.Finally, Sec. V concludes the paper.

Notation: In the remainder of this paper, bold face lower case and upper case characters denote column

vectors and matrices, respectively. The operators(·)T, (·)†, | · |, Tr (·) and || · ||2, correspond to the

transpose, the conjugate transpose, the absolute value, the trace and the Frobenius norm operations,

while [·]ij denotes thei, j-th element of a matrix. The principal eigenvalue of a matrixX are denoted

asλmax(X). Calligraphic indexed characters denote sets.

II. SYSTEM MODEL

Herein, the focus is on a multi-user (MU) multiple input single output (MISO) multicast system.

Assuming a single transmitter, letNt denote the number of transmitting elements andNu the total

number of users served. The input-output analytical expression will read asyi = h
†
ix + ni, whereh†

i

is a 1 × Nt vector composed of the channel coefficients (i.e. channel gains and phases) between the

i-th user and theNt antennas of the transmitter,x is theNt × 1 vector of the transmitted symbols and

ni is the independent complex circular symmetric (c.c.s.) independent identically distributed (i.i.d) zero

mean Additive White Gaussian Noise (AWGN) measured at thei-th user’s receive antenna. Focusing

in a multigroup multicasting scenario, let there be a total of 1 ≤ G ≤ Nu multicast groups withI =

{G1,G2, . . . GG} the collection of index sets andGk the set of users that belong to thek-th multicast

group, k ∈ {1 . . . G}. Each user belongs to only one group, thusGi ∩ Gj =Ø,∀i, j ∈ {1 · · ·G}. Let
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wk ∈ CNt×1 denote the precoding weight vector applied to the transmit antennas to beamform towards

the k-th group. The assumption of independent data transmitted to different groups renders the symbol

streams{sk}Gk=1 mutually uncorrelated and the total power radiated from theantenna array is

Ptot =

G
∑

k=1

wk
†wk (1)

The power radiated by each antenna element is a linear combination of all precoders [4]:

Pn =

[

G
∑

k=1

wkw
†
k

]

nn

(2)

wheren ∈ {1 . . . Nt} is the antenna index. The fundamental difference between the SPC of [10] and the

proposedPAC is clear in (2), where instead of one,Nt constraints are realized, each one involving all

the precoding vectors. A more general constraint formulation to model power flexibility amongst groups

of antennas can be found in [17].

III. M ULTICAST MULTIGROUP BEAMFORMING WITH PER ANTENNA POWER CONSTRAINTS

A. Weighted Max-Min Fair Formulation

ThePAC weighted max-min fair problem is defined as

F : max
t, {wk}G

k=1

t

subject to
1

γi

|w†
khi|2

∑G
l 6=k |w

†
lhi|2 + σ2

i

≥ t,

∀i ∈ Gk, k, l ∈ {1 . . . G},

and to

[

G
∑

k=1

wkw
†
k

]

nn

≤ Pn,

∀n ∈ {1 . . . Nt},

(3)

(4)

where wk ∈ CNt and t ∈ R+. Different service levels between the users can be acknowledged in

this weighted formulation. ProblemF receives as inputs thePACs vectorp = [P1, P2 . . . PNt
] and the

targetSINRs vectorg = [γ1, γ2, . . . γNu
]. Its goal is to maximize the slack variablet while keeping all

SINRs above this value. Thus, it constitutes a max-min problem that guarantees fairness amongst users.

Following the common in the literature notation for ease of reference, the optimal objective value ofF
is denoted ast∗ = F(g,p) and the associated optimal point as{wF

k }Gk=1. Of particular interest is the

case where the co-group users share the same target i.e.γi = γk, ∀i ∈ Gk, k ∈ {1 . . . G}.
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Remark 1: The difference of the present formulation with respect to the weighted max-min fair problem

with SPC presented in [8], [10] lies in theNt power constraints over each individual radiating element.

Additionally, this formulation differs from the coordinated multicell multicasting Max-Min formulation

of [14] since the constraint is imposed on then-th diagonal element of the summation of the correlation

matrices of all precoders, while weights on each usersSINR are also inserted. On the contrary, in [14],

the imposed per base station constraints are translated to one power constraint per each precoder. In the

present work, weights to differentiate theQoS targets between users are also proposed.

B. Per-antenna power minimization

The relation between the fairness and the power minimization problems for the multicast multigroup

case was firstly established in [10]. As a result, by bisecting the solution of theQoS optimization, a solu-

tion to the weighted fairness problem can be derived. Nevertheless, fundamental differences between the

existing formulations and problemF complicate the solution. In more detail, the per-antenna constraints

are not necessarily met with equality (a discussion on this is also given in Sec. IV-B). Therefore, the

fairness problem is no longer equivalent to the sum power minimization underQoS constraints problem.

Since the absence of a related, solvable problem prohibits the immediate application of bisection, a novel

equivalent per-antenna power minimization problem is proposed as

Q : min
r, {wk}G

k=1

r

subject to
|w†

khi|2
∑G

l 6=k |w
†
lhi|2 + σ2

i

≥ γi,

∀i ∈ Gk, k, l ∈ {1 . . . G},

and to
1

Pn

[

G
∑

k=1

wkw
†
k

]

nn

≤ r,

∀n ∈ {1 . . . Nt},

(5)

(6)

with r ∈ R+. ProblemQ receives as inputSINR constraints for all users, defined before asg, as well

as the per antenna power constraint vectorp of (4). The introduction of the slack-variabler, a common

practice in convex optimization [18], constraints the power consumption of each and every antenna.

Subsequently, at the optimumr∗, the maximum power consumption out of all antennas is minimized

and this solution is denoted asr∗ = Q(g,p). The generic difference of the present min-max formulation

and the formulation proposed in [14] lies in the per antenna constraint (6). Instead of constraining the

power of each antenna, the authors of [14] impose a constraint over each precoder that serves a common
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multicast group. In the case tackled herein, the number of constraints is increased from one toNt, while

each constraint is a function of all multigroup precoders asthe summation in (6) reveals. The following

claim reveals the relation between the described problems.

Claim 1: ProblemsF andQ are related as follows

1 = Q (F (g,p) · g,p) (7)

t = F (g,Q (t · g,p) · p) (8)

Proof: Similar to the line of reasoning in [14] the above claims willbe proven by contradiction. Starting

with (7), let t∗ = F(g, p) denote the optimal value ofF with associated variable{wF
k }Gk=1. Also, let

r̂ = Q (t∗ · g, p) be the optimal value ofQ at the point{wQ
k }Gk=1. Then, assuming that̂r > 1, the vectors

{wF
k }Gk=1 satisfy the feasibility criteria ofQ and produce a lower optimal value thus contradicting the

optimality of{wQ
k }Gk=1 and opposing the hypothesis. Alternatively, assuming thatr̂ < 1 then the solutions

{wQ
k }Gk=1 can be scaled by the non-negativer̂. The vectors{r̂ ·wQ

k }Gk=1 are feasible solutions toF which

provide the same optimal objective value with however some remaining power budget. Therefore, the

power could be scaled up until at least one of thePACs is satisfied with equality and a higher objective

value would be derived thus again contradicting the hypothesis. Consequently,̂r = 1. The same line of

reasoning is followed to prove (8). Letr∗ = Q(t · g, p) denote the optimal value ofQ with associated

solution{wQ
k }Gk=1. Assuming that the optimal value ofF under constraints scaled by the solution ofQ

is different, i.e.̂t = F (g, Q (t · g, p) · p) with {wF
k }Gk=1, the following contradictions arise. In the case

where t̂ < t, then the precoders{wQ
k }Gk=1 are feasible solutions toF which lead to a higher minimum

SINR, thus contradicting the optimality of̂t. Alternatively, if t̂ > t then the solution set{wF
k }Gk=1 can be

scaled by a positive constantc = t/t̂ < 1. The new solution{cwF
k }Gk=1 respects the feasibility conditions

of Q and provides a lower optimal value, i.e.c · r∗, thus again contradicting the hypothesis. As a result,

t̂ = t �.

C. Semidefinite Relaxation

ProblemQ belongs in the general class of non-convexQCQPs for which theSDR technique is proven

to be a powerful and computationally efficient approximation technique [19]. The relaxation is based on

the observation that|w†
khi|2 = w

†
khih

†
iwk = Tr(w†

khih
†
iwk) = Tr(wkw

†
khih

†
i ). With the change of
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variablesXi = wiw
†
i , Q can be relaxed toQr

Qr : min
r, {Xk}G

k=1

r

subject to
Tr (QiXk)

∑G
l 6=k Tr (QlXk) + σ2

i

≥ γi,

∀i ∈ Gk, k, l ∈ {1 . . . G},

and to
1

Pn

[

G
∑

k=1

Xk

]

nn

≤ r

and to Xk � 0, ∀n ∈ {1 . . . Nt},

(9)

(10)

whereQi = hih
†
i , r ∈ R+ , while the constraint rank(Xi) = 1 is dropped. Now the relaxedQr is

convex, thus solvable to an arbitrary accuracy. This relaxation can be interpreted as a Lagrangian bi-dual

of the original problem [18]. The weighted max-min fair optimization is also relaxed as

Fr : max
t, {wk}G

k=1

t

subject to
1

γi

Tr (QiXk)
∑G

l 6=k Tr (QlXk) + σ2
i

≥ t,

∀i ∈ Gk, k, l ∈ {1 . . . G},

and to

[

G
∑

k=1

Xk

]

nn

≤ Pn,

∀n ∈ {1 . . . Nt},

and to Xk � 0,

(11)

(12)

(13)

which, however, remains non-convex due to (11), as in detailexplained in [10]. However, this obstacle

can be overcome by the following observation.

Claim 2: ProblemsFr andQr are related as follows

1 = Qr (Fr (g,p) · g,p) (14)

t = Fr (g,Qr (t · g,p) · p) (15)

Proof: Follows the steps of the proof ofClaim 1 and is therefore omitted.�

D. Gaussian Randomization

Due to the NP-hardness of the multicast problem, the relaxedproblems do not necessarily yield unit

rank matrices. Consequently, one can apply a rank-1 approximation overX∗. Many types of rank-1

July 1, 2014 DRAFT



9

approximations are possible depending on the nature of the original problem. The solution with the

highest provable accuracy for the multicast case is given bythe Gaussian randomization method [19].

In more detail, letX∗ be a symmetric positive semidefinite solution of the relaxedproblem. Then, a

candidate solution to the original problem can be generatedas a Gaussian random variable with zero

mean and covariance equal toX∗, i.e. ŵ ∽ CN(0,X∗). After generating a predetermined number of

candidate solutions, the one that yields the highest objective value of the original problem can be chosen.

The accuracy of this approximate solution is measured by thedistance of the approximate objective

value and the optimal value of the relaxed problem and it increases with the predetermined number of

randomizations [10], [19]. Nonetheless, an intermediate problem dependent step between generating a

Gaussian instance with the statistics obtained from the relaxed solution and creating a feasible candidate

instance of the original problem still remains, since the feasibility of the original problem is not yet

guaranteed.

E. Feasibility Power Control

After generating a random instance of a Gaussian variable with statistics defined by the relaxed problem,

an additional step comes in play to guarantee the feasibility of the original problem. In [8], the feasibility

of the candidate solutions, as given by the Gaussian randomization, was guaranteed by a simple power

rescaling. Nevertheless, since in the multigroup case an interference scenario is dealt with, a simple

rescaling does not guarantee feasibility. Therefore, an additional optimization step is proposed in [10] to

re-distribute the power amongst the candidate precoders. To account for the inherently differentPACs,

a novel power control problem with per antenna power constraints is proposed. Given a set of Gaussian

instances,{ŵk}Gk=1, the Multigroup Multicast Per Antenna power Control(MMPAC) problem reads as

SF : max
t, {pk}G

k=1

t

subject to
1

γi

|ŵ†
khi|2pk

∑G
l 6=k |ŵlhi|2pl + σ2

i

≥ t,

∀i ∈ Gk, k, l ∈ {1 . . . G}

and to

[

G
∑

k=1

ŵkŵ
†
kpk

]

nn

≤ Pn,

∀n ∈ {1 . . . Nt},

(16)

(17)

with {pk}Gk=1 ∈ R+. ProblemSF receives as input thePACs as well as theSINR targets and returns

the maximum scaled worstSINR t∗ = S(g,p) and is also non-convex likeF . The difference of this
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problem compared to [10] lies in (17).

Remark 2:A very important observation is clear in the formulation of the power control problem. The

optimization variablep is of sizeG, i.e. equal to the number of groups, while the power constraints are

equal to the number of antennas,Nt. In each constraint, all the optimization variables contribute. This

fact prohibits the total exploitation of the available power at the transmitter. Once at least one of the

Nt constraints is satisfied with equality and remaining power budget, then the rest can not be scaled up

since this would lead to at least one constraint exceeding the maximum permitted value.

F. Bisection

The establishment of claims 1 and 2, allows for the application of the bisection method, as developed

in [8], [10]. The solution ofr∗ = Qr

(

L+U
2 g,p

)

is obtained by bisecting the interval[L,U ] as defined

by the minimum and maximumSINR values. Sincet = (L+ U)/2 represents theSINR, it will always

be positive or zero. Thus,L = 0. Also, if the system was interference free while all the usershad the

channel of the best user, then the maximum worstSINR would be attained, thusU = maxi{PtotQi/σi}.
If r∗ < 1, then the lower bound of the interval is updated with this value. Otherwise the value is assigned

to the upper bound of the interval. Bisection is iterativelyperformed until an the interval size is reduced

to a pre-specified valueǫ. This value needs to be dependent on the magnitude ofL andU so that the

accuracy of the solution is maintained regardless of the region of operation. After a finite number of

iterations the optimal value ofFr is given as the resulting value for whichL andU become almost

identical. This procedure provides an accurate solution tothe non-convexFr. Following this, for each

and every solution{ŵk}Gk=1, the power of the precoders needs to be controlled. Consequently, problem

SF can be solved using the well established framework of bisection [18] over its convex equivalent

problem, which reads as

SQ : min
r, {pk}G

k=1

r

subject to
|ŵ†

khi|2pk
∑G

l 6=k |ŵ
†
lhi|2pl + σ2

i

≥ γi,

∀i ∈ Gk, k, l ∈ {1 . . . G},

and to
1

Pn

[

G
∑

k=1

ŵkŵ
†
kpk

]

nn

≤ r,

∀n ∈ {1 . . . Nt},

(18)

(19)

ProblemSQ is an instance of a linear programming (LP) problem.
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Remark 3: For completeness, the possible reformulation of the non-convex problemSF into the

following geometric problem (GP) is considered, thus surpassing the need for bisection:

SF
GP : min

t, {pk}G

k=1

t−1

s. t.
G
∑

l 6=k

|ŵlhi|2pl + σ2
i ≤ t−1

γi
|ŵ†

khi|2pk,

∀i ∈ Gk, k, l ∈ {1 . . . G}

and to

[

G
∑

k=1

ŵkŵ
†
kpk

]

nn

≤ Pn,∀n ∈ {1 . . . Nt},

(20)

G. Complexity

An important discussion involves the complexity of the employed techniques to approximate a solution

of the highly complex, NP-hard multigroup multicast problem underPACs. Focusing on the proposed

algorithm (cf. Alg. 1), the main complexity burden originates from the solution of aSDP. The present

work relies on the CVX tool [18] which calls numerical solvers such as SeDuMi to solve semi-definite

programs. The complexity of theSDR technique has been exhaustively discussed in [19] and the

references therein. To calculate the total worst case complexity of the solution proposed in the present

work, the following are considered.

Initially, a bisection search is performed overQr to obtain the relaxed solution. This bisection runs

for Niter = ⌈log2 (U1 − L1) /ǫ1⌉ whereǫ1 is the desired accuracy of the search. Typicallyǫ1 needs to

be at least three orders of magnitude below the magnitudes ofU1, L1 for sufficient accuracy. In each

iteration of the bisection search, problemQr is solved. ThisSDP hasG matrix variables ofNt × Nt

dimensions andNu + Nt linear constraints. The interior point methods employed tosolve thisSDP

require at mostO
(√

GNt log(1/ǫ)
)

iterations, whereǫ is the desired numerical accuracy of the solver.

Moreover, in each iteration not more thanO(G3N6
t +GN3

t +NuGN2
t ) arithmetic operations will be

performed. The increase in complexity stems from increasing the number of constraints, i.e.Nt + Nu

constraints are considered instead of onlyNu as in [10]. However, this increase is not significant, since

the order of the polynomial with respect to the number of transmit antennas is not increased. The solver

used also exploits the specific structure of matrices hence the actual running time is reduced. Next, a

fixed number of Gaussian random instances with covariance given by the previous solution are generated.

The complexity burden of this step is given by the following considerations. For each randomization, a

second bisection search is performed this time over theLP SQ. An ǫ−optimal solution of this problem
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can be generated with a worst case complexity ofO(G3.5 log(1/ǫ)) [20] . The second bisection runs for

Niter = ⌈log2 (U2 − L2) /ǫ2⌉ iterations, which are significantly reduced since the upperboundU2 is now

the optimal value of the relaxed problem. Moreover, the Gaussian randomization is executed for a fixed

number of iterations. The accuracy of the solution increases with the number of randomizations [8], [10],

[19]. Finally, the complexity burden can be further reducedby the reformulation of the non-convexSF

into theGP, SF
GP which is efficiently solved by successive approximations ofprimal-dual interior point

numerical methods [18]. Thus the need for the second bisection can be surpassed.

Input: Nrand,p,g,Qi, σ
2
i ∀i ∈ {1 . . . G}

Output: {wopt
k }Gk=1, t

∗
opt of F {wout

k }Gk=1 t∗out

begin
Step 1: Solve topt = Fr (g,p) by bisectingQr

(

L+U
2 g,p

)

, (see Sec. III-F). Let the associated

point be{wopt
k }Gk=1.

if rank(Xopt
k ) = 1,∀ k ∈ {1 . . . G} then

{wout
k }Gk=1 is given byλmax(X

opt).

else

Step 2: : GenerateNrand precoding vectors{ŵk}Gk=1, (see Sec. III-D ).t∗(0) = 0;

for i = 1 . . . Nrand do
Step 3: SolveSF (g,p) by bisectingSQ

(

L+U
2 g,p

)

to get a{wcan
k }Gk=1 with t∗(i).

if t∗(i) > t(i−1) then
t∗out = t∗(i), {wout

k }Gk=1 = {wcan
k }Gk=1

end

end

end

end
Algorithm 1: Fair multigroup multicasting underPACs.

IV. PERFORMANCEEVALUATION & A PPLICATIONS

A. Multigroup multicasting over Rayleigh Channels

The performance of linear multicast multigroup beamforming under per antenna power constraints is

examined for a system withNt = 5 transmit antennas,G = 2 groups andNu = 4 users. Rayleigh fading

is considered, thus the channels are generated as Gaussian complex variable instances with unit variance

July 1, 2014 DRAFT



13

and zero mean. For every channel instance, the approximate solutions of the max-min fairSPC and the

proposedPAC problems are evaluated usingNrand = 100 Gaussian randomizations [10]. The results are

averaged over one hundred channel realizations, while the noise variance is normalized to one for all

receivers and allSINR targets are assumed equal to one.

The achievable minimum rate is plotted for theSPC and thePAC optimization in Fig. 1 with respect

to the total transmit power in dBWs. Noise is assumed normalised to one. For fair comparison, the

total power constraintPtot [Watts] is equally distributed amongst the transmit antennas whenPACs are

considered, hence each antenna can radiate at mostPtot/Nt [Watts]. The accuracy of the approximate

solutions for both problems, given by comparing the actual solution to the relaxed upper bound [8], [10],

is clear across a wide range ofSNR. Nevertheless, the accuracy due to thePACs is slightly reduced. This

accuracy degradation is intuitively justified. A Gaussian randomization instance is less likely to approach

the optimal point when the number of constraints is increased while the same number of Gaussian

randomizations are performed (Nrand = 100). Towards quantifying the gains of the proposed solution,

the performance of theSPC solution re-scaled to respect thePACs is also included in Fig. 1. Re-scaling

is achieved by multiplying each line of the precoding matrixwith the square root of the inverse level of

power over satisfaction of the corresponding antenna. In Fig. 1 it is clear that more than 1 dB of gain

can be obtained by the proposed method over the suboptimal re-scaling approach.

A significant issue for theSDR techniques in multicast applications is the tightness of the approximate

solution versus an increasing number of receivers per multicast. In the extreme case of one user per

group, it was proven in [1] that the relaxation provides an optimal solution. Thus the solution is no

longer approximate but exact. However, the increasing number of users per group degrades the solution,

as depicted in Fig. 2 for both problems. It is especially noticed that thePAC system suffers more than the

SPC of [10] as the number of users per multicast group increases.An attempt to solve this inaccuracy,

but only under sum power constraints, is presented in [12].

B. Power Consumption in DAS

The main difference between theSPC and thePAC optimization problems is the utilization of the

available on board power in each system architecture. In [10], the sum power constraint is always satisfied

with equality, since any remaining power budget can be equally distributed to the precoding vectors and

the solution is further maximized. On the contrary, thePAC system includesNt constraints which are

coupled via the precoders. According to the relation between F andQ, i.e. (7), the ratio of transmitted

power over the power constraint (i.e.r) is one. Since this ratio applies for at least one of theNt power
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Fig. 1. Minimum user rate withSPC andPAC. Results forNu = 4 users,Nt = 5 antennas,L = 2 groups andρ = 2 users

per group.

constraints, if one is met with equality and the remainingNt − 1 are not, then no more power can be

allocated to the precoders. Let us assume a channel matrix with one compromised transmit antenna, i.e.

H =






















2.94∠41◦ 11∠−25◦ 4.4∠50◦ 6.6∠−4◦

13.2∠−150◦ 4.8∠14◦ 15.2∠−7◦ 4.8∠−37◦

12∠−155◦ 1.5∠163◦ 13.5∠−105◦ 3.9∠−46◦

0.02∠−53◦ 0.03∠−66◦ 0.03∠120◦ 0.03∠−129◦

5.66∠137◦ 9.2∠49◦ 13∠−175◦ 2.45∠126◦























T

,

where4 users, divided into2 groups, are served by5 antennas. One of the antennas (the4-th antenna) has

severely degraded gains towards all users. This practical case can appear in aDAS where the physical

separation of the transmit antennas not only imposes per antenna constraints but can also justify highly
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Fig. 2. MinimumSINR with SPC andPAC versus an increasing ratio of users per groupρ = Nu/G, for Ptot = 10 dBW.

unbalanced channel conditions around the environment the antennas. The power utilization of the solution

of the optimization for each of the two problems is defined as the total transmitted power over the total

available powerPtot, that is Pu =
(

∑G
k=1wk

†wk

)

/Ptot, and is plotted versus an increasing power

budget in Fig. 3. It is clear that in the low power regime the available power is not fully utilized. As

the available power increases, however, the power consumption of thePAC increases. This result is in

accordance with the optimality of equal power allocation inthe high power regime and renders thePAC

formulation relevant for power limited systems. Further insights for thisPAC system are given in Fig.

4, where the power utilization of each antenna is shown, for different total power budgets. Interpreting

these results, it can be concluded that thePAC problem is highly relevant for power-over-noise limited

systems. Otherwise, in the high power regime, the solution of the SPC problem with less constraints

could be also used as an accurate approximation.
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Fig. 3. Total power consumption of aPAC system versus available power.

C. Weighted Fairness Paradigm

To the end of establishing the importance of the weighted optimization, a simple paradigm is elaborated

herein. Under the practical assumption of a modulation constrained system, the weighted fair design

can be exploited for rate allocation towards increasing thetotal system throughput. More specifically,

the considered system employs adaptive modulation and allocates binary phase shift keying (BPSK)

modulation if the minimumSINRi in the k-th group is less than the ratio for which the maximum

modulation constrained spectral efficiency is achieved. This ratio is simply given bylog2M , whereM

is the modulation order. Hence forBPSK, γ2 = 0 dB, and so forth. If for some groupk, mini SINRi ≥
γ2, ∀i ∈ Gk, then quaternary phase shift keying (QPSK) is used for all users in the group. Forward error

correction is not assumed. Let there be a two antenna transmitter that serves four users grouped into two
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Fig. 4. Per-antenna consumption in aPAC system versus transmit power.

groups. The considered channel matrix reads as

H =





0.2∠106◦ 90∠−69◦ 0.5∠−99◦ 0.5∠61◦

0.8∠111◦ 120∠−112◦ 1∠127◦ 1.5∠49◦





T

.

The attributes of the specific channel matrix depict one possible instance of the system where one user

with a good channel state (i.e. user two) is in the same group with a jeopardized user, namely user one.

On the other hand, the second group contains relatively balanced users in terms of channel conditions.

For an un-weighted optimization (i.e.g = [1 1 1 1]) the spectral efficiency of each user is shown in

Fig. 5. Baring in mind that each user is constrained by the minimum group rate, the actual rate at

which all users will receive data is 0.52 [bps/Hz]. Both groups achieve the same spectral efficiency since

the minimumSINRs and hence the minimum rates are balanced between the groups. Subsequently, a

modulation constrained multicast transmitter will employBPSK for all users. By heuristically choosing

the constraint vector to beg = [1 1 5.3 5.3] each user rate is modified. As depicted in Fig. 5 both users
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in the second group are achieving adequateSINR to support a higher order modulation. This gain is

achieved at the expense of the rates of the users of the first group. Following this paradigm, the weight

optimization can lead to an improved modulation assignmentand thus higher throughput in practical

systems. Hence, the weighted formulation offers the substantial degrees of freedom to maximize the total

throughput of a modulation constrained multicast system byproperly allocating the rates amongst the

groups.
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Fig. 5. Modulation constrained paradigm.

D. Uniform Linear Arrays

To the end of investigating the sensitivity of the proposed algorithm with respect to the angular

separation of co-group users, a uniform linear array (ULA) transmitter is considered. Assuming far-field,

line-of-sight conditions, the user channels can be modeledusing Vandermonde matrices. For this important

special case, theSPC multicast multigroup problem was reformulated into a convex optimization problem
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and solved in [21], [22]. These results where motivated by the observation that inULA scenarios, the

relaxation consistently yields rank one solutions. Thus, for such cases, theSDR is essentially optimal

[8]. The fact that theSDR of the sum power minimization problem is tight for Vandermonde channels

was established in [22]. Let us consider aULA serving4 users allocated to2 distinct groups. In Fig.

6, its radiation pattern for co-group angular separationθa = 35◦ is plotted. The symmetricity due to the

inherent ambiguity of theULA is apparent. Clearly, the multigroup multicast beamforming optimizes the

lobes to reduce interferences between the two groups. TheSPC solution, re-scaled to respect thePACs

are also included in Fig. 6. The superiority of the proposed solution is apparent.

In Fig. 7, the performance in terms of minimum user rate over the area with respect to an increasing

angular separation is investigated. When co-group users are collocated, i.e.θa = 0◦, the highest perfor-

mance is attained. As the separation increases, the performance is reduced reaching the minimum when

users from different groups are placed in the same position,i.e. θa = 45◦. In Fig. 7, the tightness of the

relaxation for theSPC problem [22] is clear. However, the same does not apply for the proposedPAC.

As co-group channels tend to become orthogonal, the approximation becomes less tight. Nevertheless,

Nrand = 200 randomizations are sufficient to maintain the solution above the re-scaledSPC, as shown in

Fig. 7. Consequently, the proposed solution outperforms a re-scaled to respect the per-antenna constraints,

SPC solution, over the span of the angular separations.

Remark 4:The semidefinite relaxation of the per-antenna power minimization problem inULA trans-

mitters is not always tight.

For every optimum high rank set of matrices{Xopt
k }Gk=1, there exists a set of rank one positive

semidefinite matrices{X̄opt
k }Gk=1, i.e. rank(X̄opt

k ) = 1,∀k ∈ {1 . . . G}, which is equivalent with respect

to the power received at each user, i.eTr(Xopt
k Qi) = Tr(X̄opt

k Qi),∀i ∈ Gk, k, l ∈ {1 . . . G}. This result

is based on the Riesz-Féjer theorem on real valued complex trigonometric polynomials [22]. Therefore,

the Vandermonde channels impose a specific structure to theSPC solution that allows for a convex

reformulation. The difference in the case tackle herein lies in theNt PACs, i.e.
[

∑G
k=1Xk

]

nn
≤ Pn,∀n ∈

{1 . . . Nt}, in which the channel structure is not involved. Thus, a rank-1 matrix is equivalent in terms

of per user received power [22] but not necessarily in terms of per-antenna consumed power, as shown

herein.

E. Robust Design underPACs

When beamforming under uncertainty is considered, three different designs can be realized [23].

Namely, the probabilistic design, where acceptable performance is guaranteed for some percentage of
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time, the expectation based design that requires knowledgeof the second order channel statistics but

cannot guarantee any outage performance and the worst-casedesign. The latter approach guarantees a

minimumQoS requirement for any error realization.

Focusing on a worst-case design, let us assume an elliptically bounded error vector. In this context,

the actual channel is given ashi = h̄i + ei whereh̄i is the channel available at the transmitter andei is

an error vector bounded bye†iCiei ≤ 1. The hermitian positive definite matrixCi defines the shape and

size of the ellipsoidal bound. ForCi = 1/σ2
ǫ INt

, then ||ei||22 ≤ σ2
ǫ and the error remains in a spherical

region of radiusσǫ [24]. This spherical error model is mostly relevant when thefeedback quantization

July 1, 2014 DRAFT



21

0 5 10 15 20 25 30 35 40 45

0.4

0.5

0.6

0.7

0.8

0.9

1

co-group user angular separation θa

M
in
.
U
se
r
R
a
te

b
p
s/
H
z

 

 
Upper Bound - PAC
Solution - PAC
Upper Bound - SPC
Solution-SPC
Solution - SPC (rescaled)

Fig. 7. ULA performance for increasing co-group user angular separation.

error of a uniform quantizer at the receiver is considered [25]. The proposed design is formulated as

FRB : max
t, {wk}G

k=1

t

s. t.
1

γi

|w†
k

(

h̄i + ei
)

|2
∑G

l 6=k |w
†
l

(

h̄i + ei
)

|2 + σ2
i

≥ t,

∀i ∈ Gk, k, l ∈ {1 . . . G},

and to

[

G
∑

k=1

wkw
†
k

]

nn

≤ Pn,∀n ∈ {1 . . . Nt},

(21)

(22)

and involves the channel imperfections only in theSINR constraints. The novelty ofFRB over existing

robust multicast formulations lies in (22). TheSINR constraints ofFRB, i.e. (21), are over all possible

error realizations and cannot be handled. However, by applying the S-lemma [18], the error vector in

(21) can be eliminated. This procedure is analytically described in [26]. Thus,FRB can be converted

to a SDP and solved efficiently using the methods described in Sec. III. The performance gain of the
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proposed robust design for aULA with Nt = 2 transmit antennas, servingNu = 6 users is given in

Fig. 8, versus an increasing error radiusσǫ, for different user per group configurations,ρ. These results

exhibit the significant gains of the proposed technique as the error and the group sizes increase.
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Fig. 8. Robust performance for various user per group configurations.

To establish the importance of the novel formulation, the performance in terms of minimum user rate

over 1000 error realizations is given in Fig. 9, versus a widerange of the error radiusσǫ for the proposed

FRB as well as the existingSPC solutions re-scaled to respect the per-antenna constrains. For this figure, a

ULA with Nt = 3 transmit antennas is considered, servingNu = 6 users partitioned intoL = 2 multicast

groups. The co-group angular separation isθa = 10◦ and the number of Gaussian randomizations chosen

is Nrand = 200 andNrand = 1000 for the high and low precision curves respectively. According to Fig. 9,

the proposed robustPAC formulation (i.e.FRB) outperforms existing solutions, in a per-antenna power

constrained setting, for a wide range of channel error radius. However, as the error radius increases, a

slight performance degradation is noted, especially for the low precision results. To further investigate
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on this result, the following remark is given.

Remark 5: The semidefinite relaxation of robust multigroup multicasting underPACs yields non rank-1

solutions with higher probability as the channel errors increase.

The accuracy of the minimum rate results of Fig. 9, is presented in Fig. 10. The accuracy is measured

by the distance of the randomized solution from the upper bound given by the relaxation, following

the standards of Sec. IV-A and [8], [10]. In Fig. 10, the results are also normalized by the value of

the upper bound. According to these results, the probability for the SDR to yield rank-1 solutions is

reduced as the error radius increases, for all problems. Theaccuracy reduction of theSDR technique

as the channel errors increase was also reported via simulations in [27], but for unicast scenarios. What

is more,FRB yields non rank-1 solutions as the errors increase, with higher probability than theSPC

problem. However, 1000 randomizations are sufficient to reduce the inaccuracy of all solutions to less

than 7%, as illustrated in Fig. 10. It is therefore concludedthat although the relaxation of the robust

formulations does not consistently yield rank-1 solutions, especially for higher values of error radius, the

Gaussian randomization can provide solutions with adequate accuracy. Finally, the proposed solutions

surpass the performance of existing approaches, in practical per-antenna power constrained settings.

V. CONCLUSIONS

In the present work, optimum linear precoding vectors are derived under per antenna power constraints,

when independent sets of common information are transmitted by an antenna array to distinct co-channel

sets of users. The novel weighted max–min fair multigroup multicast problem underPACs is formulated.

An approximate solution for this NP-hard problem is presented based on the well established methods of

semidefinite relaxation. The performance of the weighted max–min fair multigroup multicast optimization

is examined under various system parameters and important insights on the system design are gained.

Moreover, an application paradigm of the new system design is described while robust to imperfect

CSI extensions are given. Consequently, an important practical constraint towards the implementation of

physical layer multigroup multicasting is alleviated.
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