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I. INTRODUCTION & RELATED WORK

The spatial degrees of freedom offered by multiple antenrzgya are a valuable interference mitigation
resource. Advanced signal processing techniques arentiyremployed to boost the performance of
the multi-antenna transmitters without compromising tbenplexity of single antenna receivers. These
beamforming (or equivalently precoding) techniques edfily manage the co-channel interferences to
achieve the targeted service requirements (Quality of iS®r)oS targets). As a result, the available
spectrum can be aggressively reused towards increasingy#tem throughput.

The optimal downlink transmission strategy in the senseiofmizing the total transmit power whilst
guaranteing specifi€oS targets at each user, was given[in [1], [2]. Therein, the tdoBemi-Definite
Relaxation §DR) reduced the non-convex quadratically constrained qtiadpsoblem QCQP) into
a relaxed semi-definite programming instance by changiagoftimization variables and disregarding
the unit-rank constraints over the new variable. The satutf the relaxed problem was proven to be
optimal. The multiuser downlink beamforming problem innter of maximizing the minimunsINR,
was optimally solved in[[3]. The goal of the later formulaties to increase the fairness of the system
by boosting theSINR of the user that is further away from a targeted performaHegce, the problem
is commonly referred to asnax—min fair In [3], this problem was solved using the principles of
uplink/downlink duality. ThereinSchubert and Bochdeveloped a strongly convergent iterative alternating
optimization algorithm for the equivalent uplink problemn. the same work, the power minimization
problem of [1] was also solved by acknowledging its inhertnection with the max-min fair problem.
Consequently, a significantly less complex framework tosesahe optimal beamforming problem was
established. Extending these works, the practical pesrauat power constraini®AC) were considered
in [4]. Generalized power constraints, including sum povpar-antenna power and per-antenna array
power constraints were considered [in [5], where the praposax-min fair solution was derived on an
extended duality framework. This framework accounted fothbinstantaneous and long term channel
state information (SI). PACs are motivated from the practical implementation of systénat rely on
precoding. The lack of flexibility in sharing energy res@g@mongst the antennas of the transmitter is
usually the case, since a common practice in multi-antegatesis is the use of individual amplifiers
per antenna. Despite the fact that flexible amplifiers coeldnisorporated in multi-antenna transmitters,
specific communication systems cannot afford this desigpic@l per antenna power limited systems
can be found in multibeam satellite communicatidns [6], ehiéexible on board payloads are difficult

to implement and in cooperative multicell systems (alsovkm@s distributed antenna systen¥\S),
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where the physical co-location of the transmitting eleragatnot a requisite and hence power sharing
might be infeasible.

A fundamental consideration of the aforementioned workthé&t independent data is addressed to
multiple users. However, the new generation of multi-anéeecommunication standards has to adapt the
physical layer design to the needs of the higher networkrtayiEexamples of such cases include highly
demanding applications (e.g. video broadcasting) thatdtrthe throughput limits of multiuser broadband
systems. In this direction, physical layd?HY) multicasting has the potential to efficiently address the
nature of future traffic demand and has become part of the ma&@rgtion of communication standards.
PHY multicasting is also relevant for the application of beammfimg without changing the framing
structure of standards.Such a scenario can be found ititeatelmmunications where the communication
standards are optimized to cope with long propagation detayd guarantee scheduling efficiency by
framing multiple users per transmissian [6] [7].

In [8], the NP-hard multicast problem was accurately appnaxed bySDR and Gaussian randomiza-
tion. The natural extension of the multicast concept lieasauming multiple interfering groups of users.
A unified framework for physical layer multicasting to mplé co-channel groups, where independent
sets of common data are transmitted to groups of users by titgola antennas, was given inl[9], [10].
Therein, theQoS and the fairness problems were formulated, proven NP-haddsalved for the sum
power constrained multicast multigroup case. In paratie]9], the independent work of [11] involved
complex dirty paper coding methods. Also, a convex appration method was proposed in [12] that
exhibits superior performance as the number of users pampggoows. Finally, in[[18] the multicast
multigroup problem unde$PC, was solved based on approximations and uplink-downliredigu[3]. In
the context of coordinated multicast multicell systgmnsax—min fair beamforming with per base-station
(BS) constraints has been considered in [14] where @&&lransmits to a single multicast group. Hence,
a power constraint over each precoder was imposed while timiaation weights were considered.This
formulation still considers power sharing amongst the iplétantennas at each transmitter.

Towards deriving the optimal multigroup multicast precsdehen a maximum limit is imposed on
the transmitted power of each antenna, a new optimizatiobl@m with one constraint per transmit

antenna needs to be formulated. Amid the extensive litexatim multigroup multicast beamforming,

! Coordinated multicell networks consist of connected baatioss BS), with eachBS serving a single multicast group, a
case tackled in[14]. Extending this, the methods presehedin can be applied in cooperative multicell systems ez

BSs will jointly transmit to several multicast grougs [15].
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the PACs have only been considered in [16], where an equally fairtioagt multigroup solution is
presented. Extending these considerations, the presektagoounts optimization weights. Therefore, a
consolidated solution for the weighted max—min fair muttigp multicast beamforming und®ACs is

hereafter presented. The contributions of the present wmksummarized as follows

« The PAC weighted fair multigroup multicast beamforming problenfasmulated and solved.

« Practical system design insights are given by examiningnipdications of thePACs on multigroup
multicast distributed antenna systemA{S), modulation constrained systems and uniform linear
array (ULA) transmitters.

« A robust to erroneou§’SI multigroup multicast design und@&ACs is proposed.

« The performance of the solution is evaluated through extensumerical results under various

system setups.

The rest of the paper is structured as follows. The multigrowlticast system model is presented in
Sec[Tl while the weighted fair problem is formulated andvedlin Sec[Tll. In Sed. 1V, the performance
of the design is evaluated for various system setups alotiganiobust extension of the derived algorithm
and a weighted multigroup multicast application paradi§imally, Sec[V concludes the paper.

Notation In the remainder of this paper, bold face lower case anduggee characters denote column
vectors and matrices, respectively. The operateys, (-)', | - |, Tr(-) and|| - ||2, correspond to the
transpose, the conjugate transpose, the absolute vakedrabe and the Frobenius norm operations,
while [-];; denotes the, j-th element of a matrix. The principal eigenvalue of a maXixare denoted

as \nq:(X). Calligraphic indexed characters denote sets.

[I. SYSTEM MODEL

Herein, the focus is on a multi-useM{) multiple input single outputNIISO) multicast system.
Assuming a single transmitter, 16, denote the number of transmitting elements a¥ig the total
number of users served. The input-output analytical espraswill read asy; = h}x + n;, Wherehj
is al x N; vector composed of the channel coefficients (i.e. channielsgand phases) between the
i-th user and theV; antennas of the transmittex, is the V; x 1 vector of the transmitted symbols and
n; is the independent complex circular symmetric (c.c.s.gpwhdent identically distributed (i.i.d) zero
mean Additive White Gaussian NoisaWGN) measured at thé-th user’s receive antenna. Focusing
in a multigroup multicasting scenario, let there be a tofall &< G < N, multicast groups withiZ =
{G1,Ga,...Ga} the collection of index sets and;, the set of users that belong to ttketh multicast

group, k € {1...G}. Each user belongs to only one group, tiysn G; =@Vi,j € {1---G}. Let
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wy, € CV*1 denote the precoding weight vector applied to the transniirmas to beamform towards
the k-th group. The assumption of independent data transmitiadiffierent groups renders the symbol

streams{sk}fz1 mutually uncorrelated and the total power radiated fromahtenna array is

G
Piot = Zwkka (1)
k=1

The power radiated by each antenna element is a linear catidninof all precoders [4]:

G
zwkw;] @
k=1 "

n

P, =

wheren € {1...N;} is the antenna index. The fundamental difference betweeSRIC of [10] and the
proposedPAC is clear in [2), where instead of on&}; constraints are realized, each one involving all
the precoding vectors. A more general constraint formaato model power flexibility amongst groups

of antennas can be found in J17].

[1l. M ULTICAST MULTIGROUP BEAMFORMING WITH PER ANTENNA POWER CONSTRAINTS
A. Weighted Max-Min Fair Formulation

The PAC weighted max-min fair problem is defined as

F: max ¢
tv {wk‘}kq:1

112

. 1 h;

subject to— — |w"% d 5
750, [wih? + o

> t, ®3)

Vi € G, k,l € {1...G},

G
and to [Z wkwq < Py, (4)
k=1 nn
Vn € {1Nt}a

wherew;, ¢ CM andt ¢ RT. Different service levels between the users can be ackmigetd in
this weighted formulation. Proble# receives as inputs theACs vectorp = [P, P ... Py,] and the
targetSINRs vectorg = [v1,72, ... 7w, |- Its goal is to maximize the slack variablevhile keeping all
SINRs above this value. Thus, it constitutes a max-min problemh glwarantees fairness amongst users.
Following the common in the literature notation for easeeajerence, the optimal objective value Bf

is denoted as* = F(g,p) and the associated optimal point f&; }$ . Of particular interest is the

case where the co-group users share the same target ey, Vi € Gy, k € {1...G}.
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Remark 1 The difference of the present formulation with respech®mweighted max-min fair problem
with SPC presented in [8],.[10] lies in théV; power constraints over each individual radiating element.
Additionally, this formulation differs from the coordired multicell multicasting Max-Min formulation
of [14] since the constraint is imposed on thdh diagonal element of the summation of the correlation
matrices of all precoders, while weights on each useiNR are also inserted. On the contrary, inl[14],
the imposed per base station constraints are translatedet@@ver constraint per each precoder. In the

present work, weights to differentiate tk@S targets between users are also proposed.

B. Per-antenna power minimization

The relation between the fairness and the power minimiagpimblems for the multicast multigroup
case was firstly established [n [10]. As a result, by bisectire solution of th€)oS optimization, a solu-
tion to the weighted fairness problem can be derived. Needsss, fundamental differences between the
existing formulations and probleth complicate the solution. In more detall, the per-antennestraints
are not necessarily met with equality (a discussion on thialso given in Sed._1ViB). Therefore, the
fairness problem is no longer equivalent to the sum poweimmation underQoS constraints problem.
Since the absence of a related, solvable problem prohi@tétimediate application of bisection, a novel

equivalent per-antenna power minimization problem is pseg as

Q: min r
Tv {Wk}g:‘l

[wihy?
G
> itk ’WzThiP to

subject to 5 = Yo (5)

7

Vi€ G, k,l e {1...G},

G
1
and to o [Z kaL] <, (6)
k=1 nn
Vn € {1Nt}7

with » € R*. ProblemQ receives as inpusINR constraints for all users, defined beforegasas well
as the per antenna power constraint vegtaf (4). The introduction of the slack-variable a common
practice in convex optimizatiori [18], constraints the powensumption of each and every antenna.
Subsequently, at the optimuni, the maximum power consumption out of all antennas is miréohi
and this solution is denoted a8 = Q(g, p). The generic difference of the present min-max formulation
and the formulation proposed in[14] lies in the per antenmastraint [6). Instead of constraining the

power of each antenna, the authors[ofl [14] impose a constraér each precoder that serves a common
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multicast group. In the case tackled herein, the number n$tcaints is increased from one A4, while
each constraint is a function of all multigroup precodersh@ssummation in[(6) reveals. The following
claim reveals the relation between the described problems.

Claim 1 ProblemsF and Q are related as follows

1=9(F(g,p) 8P (7)
t=F(g Q(t g p) P (8)

Proof: Similar to the line of reasoning in [14] the above claims vl proven by contradiction. Starting
with (@), lett* = F(g, p) denote the optimal value of with associated variabléw! }& . Also, let
7= Q(t*-g, p) be the optimal value of at the point{w,?},f:l. Then, assuming that> 1, the vectors
{w,f}f:1 satisfy the feasibility criteria o and produce a lower optimal value thus contradicting the
optimality of {wg}gzl and opposing the hypothesis. Alternatively, assumingithatl then the solutions
{w,?},f:l can be scaled by the non-negativelhe vector@!j-wg}gz1 are feasible solutions t& which
provide the same optimal objective value with however soermeaining power budget. Therefore, the
power could be scaled up until at least one of B¥Cs is satisfied with equality and a higher objective
value would be derived thus again contradicting the hypashe€Consequently; = 1. The same line of
reasoning is followed to prov¢l(8). Let = Q(t - g, p) denote the optimal value a with associated
solution {w}¢_ . Assuming that the optimal value & under constraints scaled by the solution@f

is different, i.edi = F (g, Q(t-g, p)-p) with {wl}&_, the following contradictions arise. In the case
wheret < t, then the precoder«{swl?},fz1 are feasible solutions t& which lead to a higher minimum
SINR, thus contradicting the optimality @f Alternatively, if# > ¢ then the solution sefw} }¢_, can be
scaled by a positive constant= ¢/t < 1. The new solutiof{cw? }_, respects the feasibility conditions
of Q and provides a lower optimal value, i€.r*, thus again contradicting the hypothesis. As a result,

t=1¢0.

C. Semidefinite Relaxation

Problem@ belongs in the general class of non-con@XQPs for which theSDR technique is proven
to be a powerful and computationally efficient approximatiechnique[[19]. The relaxation is based on

the observation thaw!h;[> = wihjh!w; = Tr(wihih!w;) = Tr(w,wlh;h!). With the change of
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variablesX; = wiwj, Q can be relaxed t@,

Q,: min r
) {Xk}gzl

subject to

Tr (QiXy) - 9
Zgékﬂ(Qsz)JrU?_% 9)

Vi € G, k,l e {1...G},

G
Z Xk] <r (10)
k=1

nn

and to

L
P,

andto Xy >0, Vne{l... N},

where Q; = hih;f, r € RT , while the constraint rarf&;) = 1 is dropped. Now the relaxe@, is
convex, thus solvable to an arbitrary accuracy. This reéiaracan be interpreted as a Lagrangian bi-dual

of the original problem[[18]. The weighted max-min fair opization is also relaxed as

Fr: max t
tv {Wk}gzl
. 1 Tr (Q; X
subject to— —5 F(QiXx) 5 >t (12)
Vi € G, k,l e {1...G},
G
and to [Z Xk] <P, (12)
k=1 nn
Vn € {1Nt}a
andto X = 0, (13)

which, however, remains non-convex due[fal (11), as in detelained in [[10]. However, this obstacle
can be overcome by the following observation.

Claim 2: ProblemsF, and Q, are related as follows
1=9,(F (gp)-8Pp) (14)

t:fr(gagr(t'gJ))'p) (15)

Proof: Follows the steps of the proof @laim 1and is therefore omitted]

D. Gaussian Randomization

Due to the NP-hardness of the multicast problem, the relaxetlems do not necessarily yield unit

rank matrices. Consequently, one can apply a rank-1 appsiian overX*. Many types of rank-1
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approximations are possible depending on the nature of tiggnal problem. The solution with the
highest provable accuracy for the multicast case is givethByGaussian randomization method|[19].
In more detail, letX* be a symmetric positive semidefinite solution of the relapesblem. Then, a
candidate solution to the original problem can be generatd Gaussian random variable with zero
mean and covariance equal ¥, i.e. w -~ CN(0,X*). After generating a predetermined number of
candidate solutions, the one that yields the highest dbgeetlue of the original problem can be chosen.
The accuracy of this approximate solution is measured bydikg&ance of the approximate objective
value and the optimal value of the relaxed problem and iteiases with the predetermined number of
randomizations[[10],[[19]. Nonetheless, an intermediatsblem dependent step between generating a
Gaussian instance with the statistics obtained from thexeel solution and creating a feasible candidate
instance of the original problem still remains, since thasfkility of the original problem is not yet

guaranteed.

E. Feasibility Power Control

After generating a random instance of a Gaussian varialtlestatistics defined by the relaxed problem,
an additional step comes in play to guarantee the feagibilithe original problem. In[8], the feasibility
of the candidate solutions, as given by the Gaussian rarmdtion, was guaranteed by a simple power
rescaling. Nevertheless, since in the multigroup case terfémence scenario is dealt with, a simple
rescaling does not guarantee feasibility. Therefore, alitiadal optimization step is proposed in [10] to
re-distribute the power amongst the candidate precodersic€ount for the inherently differeifACs,

a novel power control problem with per antenna power coimtras proposed. Given a set of Gaussian

instances;{\?vk},?:l, the Multigroup Multicast Per Antenna power Contr(MIMPAC) problem reads as

S max t
t7 {pk}kG:I
~ T2
. 1 h;
subject to— — ‘“:’“ i\ P 5>t (16)
Vi 3 [Wihipr + o
Vi€ Gy, k,l e {l...G}
G
and to [Z v?/k\?vzpk] < P, (17)
k=1 nn
Vn € {1Nt},

with {pk}gzl € R*. ProblemS” receives as input thPACs as well as théSINR targets and returns

the maximum scaled wors{INR ¢* = S(g,p) and is also non-convex likg¢. The difference of this
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problem compared td [10] lies ib (1L7).

Remark 2:A very important observation is clear in the formulation bétpower control problem. The
optimization variablep is of sizeG, i.e. equal to the number of groups, while the power conssare
equal to the number of antennds;. In each constraint, all the optimization variables cdmtt@. This
fact prohibits the total exploitation of the available poveg the transmitter. Once at least one of the
N, constraints is satisfied with equality and remaining poweidet, then the rest can not be scaled up

since this would lead to at least one constraint exceediagrtaximum permitted value.

F. Bisection

The establishment of claims 1 and 2, allows for the appbeeatf the bisection method, as developed
in [8], [1Q]. The solution ofr* = Q, (L;—Ug,p) is obtained by bisecting the interval, U] as defined
by the minimum and maximurSINR values. Since = (L + U)/2 represents th8INR, it will always
be positive or zero. Thud, = 0. Also, if the system was interference free while all the udead the
channel of the best user, then the maximum wBIStR would be attained, thu8 = max;{ P;,tQ; /0 }.

If r* < 1, then the lower bound of the interval is updated with thisiealOtherwise the value is assigned
to the upper bound of the interval. Bisection is iterativprformed until an the interval size is reduced
to a pre-specified value This value needs to be dependent on the magnitude ahdU so that the
accuracy of the solution is maintained regardless of thénegf operation. After a finite number of
iterations the optimal value aF, is given as the resulting value for which andU become almost
identical. This procedure provides an accurate solutiothéonon-convex?,. Following this, for each
and every solutior{\?vk},?:l, the power of the precoders needs to be controlled. Conadgugroblem
St can be solved using the well established framework of hisedfL8] over its convex equivalent

problem, which reads as

S¢: min r
T {pk}§:1
& |2
subject to— |W"3T iI"p > v, (18)
>k W hilpy + oF
Vi € G, k,l € {1...G},
L [&
andto - [Z vAvkvAVka] <, (19)
" Le=1 nn
Vn € {1Nt}7

ProblemS< is an instance of a linear programming (LP) problem.
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Remark 3 For completeness, the possible reformulation of the ramvex problemS” into the

following geometric problem(@P) is considered, thus surpassing the need for bisection:

Sé:p: min ¢!

t7 {pk}kczl
G t_l

s. Y [WihyPp + 0 < —|Wihil?pr, (20)
l#k i

Vi € G, k,l e {l...G}

G

and to [Z wkw,tpk] <P, Vne{l...N;},
k=1 nn

G. Complexity

An important discussion involves the complexity of the eoyeld techniques to approximate a solution
of the highly complex, NP-hard multigroup multicast prableinderPACs. Focusing on the proposed
algorithm (cf. Alg. 1), the main complexity burden origiratfrom the solution of 8DP. The present
work relies on the CVX tool[[18] which calls numerical solsesuch as SeDuMi to solve semi-definite
programs. The complexity of th8DR technique has been exhaustively discussed in [19] and the
references therein. To calculate the total worst case aitplof the solution proposed in the present
work, the following are considered.

Initially, a bisection search is performed ovgy. to obtain the relaxed solution. This bisection runs
for Ny = [logy (U — L) /e1] Wheree; is the desired accuracy of the search. Typicallyneeds to
be at least three orders of magnitude below the magnitudé$ aof; for sufficient accuracy. In each
iteration of the bisection search, probled) is solved. ThisSDP hasG matrix variables ofN; x Ny
dimensions andV,, + N, linear constraints. The interior point methods employedsdive thisSDP
require at mostO (/GN;log(1/e)) iterations, where is the desired numerical accuracy of the solver.
Moreover, in each iteration not more th& GNP + GN} + N,GN}?) arithmetic operations will be
performed. The increase in complexity stems from increadie number of constraints, i.&; + N,
constraints are considered instead of oMy as in [10]. However, this increase is not significant, since
the order of the polynomial with respect to the number ofgraih antennas is not increased. The solver
used also exploits the specific structure of matrices hemeeattual running time is reduced. Next, a
fixed number of Gaussian random instances with covarianemdiy the previous solution are generated.
The complexity burden of this step is given by the followimmnsiderations. For each randomization, a

second bisection search is performed this time ovedfAeS?. An e—optimal solution of this problem
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can be generated with a worst case complexity¢f>° log(1/¢)) [20] . The second bisection runs for
Niter = [log, (Us — Lo) /eo] iterations, which are significantly reduced since the upfypemdU; is now
the optimal value of the relaxed problem. Moreover, the Geunsrandomization is executed for a fixed
number of iterations. The accuracy of the solution increagiéh the number of randomizatioris [8], [10],
[19]. Finally, the complexity burden can be further redutgdthe reformulation of the non-conves¢
into the GP, Sgp which is efficiently solved by successive approximationgmal-dual interior point

numerical methods [18]. Thus the need for the second bectn be surpassed.

Input: Nyong, P, g, Qi,02 Vi€ {1...G}
Output: {szt}kG:v Copt of F {qut}gzl tout
begin
Step 1: Solvet,,; = F, (g, p) by bisectingQ, (£4%g,p), (see SedII:F). Let the associated
point be {w"'}& .
if rank(X?) = 1,V k € {1...G} then
| {woutyd s given by \,q. (XOPY).
else
Step 2: : GenerateN,.,,,q precoding vectordw}¢ |, (see Sed 1D )t’(ko) =0;

for i =1... Npgng dO

Step 3: Solve S” (g, p) by bisectingS< (£4%g, p) to get a{w¢m}& | with -
if f(kz) > t(i—l) then

tout = s {wi Hiy = Wi
end

end

end

end
Algorithm 1: Fair multigroup multicasting unddrACs.

V. PERFORMANCEEVALUATION & A PPLICATIONS
A. Multigroup multicasting over Rayleigh Channels

The performance of linear multicast multigroup beamfomgnimder per antenna power constraints is
examined for a system withv; = 5 transmit antennag; = 2 groups andV,, = 4 users. Rayleigh fading

is considered, thus the channels are generated as Gaussigieg variable instances with unit variance
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and zero mean. For every channel instance, the approxirohtgosis of the max-min faiSPC and the
proposedPAC problems are evaluated using.,,,; = 100 Gaussian randomizatioris [10]. The results are
averaged over one hundred channel realizations, while tiige rvariance is normalized to one for all
receivers and alfINR targets are assumed equal to one.

The achievable minimum rate is plotted for tiBC and thePAC optimization in Fig[1l with respect
to the total transmit power in dBWs. Noise is assumed nosedlito one. For fair comparison, the
total power constrainf,; [Watts] is equally distributed amongst the transmit anganwhenPACs are
considered, hence each antenna can radiate at mggtV; [Watts]. The accuracy of the approximate
solutions for both problems, given by comparing the actoalt®on to the relaxed upper bourid [8], [10],
is clear across a wide range ®RR. Nevertheless, the accuracy due to B#eCs is slightly reduced. This
accuracy degradation is intuitively justified. A Gaussiandomization instance is less likely to approach
the optimal point when the number of constraints is incrdasbile the same number of Gaussian
randomizations are performedVy(,,q = 100). Towards quantifying the gains of the proposed solution,
the performance of the8PC solution re-scaled to respect tRACs is also included in Fig. 1. Re-scaling
is achieved by multiplying each line of the precoding mawixh the square root of the inverse level of
power over satisfaction of the corresponding antenna. ¢n Fiit is clear that more than 1 dB of gain
can be obtained by the proposed method over the suboptinsglating approach.

A significant issue for th&€DR techniques in multicast applications is the tightness efapproximate
solution versus an increasing number of receivers per caslti In the extreme case of one user per
group, it was proven in[]1] that the relaxation provides arirogl solution. Thus the solution is no
longer approximate but exact. However, the increasing rarrobusers per group degrades the solution,
as depicted in Fid.12 for both problems. It is especially cedithat thePAC system suffers more than the
SPC of [10] as the number of users per multicast group increasesattempt to solve this inaccuracy,

but only under sum power constraints, is presented ih [12].

B. Power Consumption in DAS

The main difference between tigC and thePAC optimization problems is the utilization of the
available on board power in each system architecturé. |h {th® sum power constraint is always satisfied
with equality, since any remaining power budget can be dygdatributed to the precoding vectors and
the solution is further maximized. On the contrary, {&C system includesV; constraints which are
coupled via the precoders. According to the relation betwEeand Q, i.e. (@), the ratio of transmitted

power over the power constraint (i.€). is one. Since this ratio applies for at least one of Mepower
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Fig. 1.  Minimum user rate witttPC and PAC. Results forN, = 4 users,N, = 5 antennas[ = 2 groups andy» = 2 users

per group.

constraints, if one is met with equality and the remainisig— 1 are not, then no more power can be

allocated to the precoders. Let us assume a channel mattixame compromised transmit antenna, i.e.

H=

[ 2.94/41° 11£-25° 4.4/50° 6.6£—4°
13.2/—150°  4.8/14° 15.2/—7° 4.84-37°
12/—155° 1.5/163° 13.5£—105° 3.94—46° )
0.02£-53°  0.03£—66° 0.03£120° 0.03£—129°

i 5.66£137° 9.2/49° 13/£-175° 2.45/126° |

where4 users, divided int@ groups, are served dyantennas. One of the antennas @hé antenna) has
severely degraded gains towards all users. This practacs¢ can appear inBAS where the physical

separation of the transmit antennas not only imposes penaatconstraints but can also justify highly
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Number of Users per group p = N, /G

Fig. 2. Minimum SINR with SPC and PAC versus an increasing ratio of users per grapug N, /G, for Piot = 10 dBW.

unbalanced channel conditions around the environmentritemaas. The power utilization of the solution
of the optimization for each of the two problems is definedrestotal transmitted power over the total
available powerP,,, that is P, = (Zle wkka> /P,ot, and is plotted versus an increasing power
budget in Fig[B. It is clear that in the low power regime thaikable power is not fully utilized. As
the available power increases, however, the power consoimet the PAC increases. This result is in
accordance with the optimality of equal power allocatiothia high power regime and renders h&C
formulation relevant for power limited systems. Furthesigits for thisPAC system are given in Fig.
[, where the power utilization of each antenna is shown, fiberént total power budgets. Interpreting
these results, it can be concluded that F¥eC problem is highly relevant for power-over-noise limited
systems. Otherwise, in the high power regime, the solutiothe SPC problem with less constraints

could be also used as an accurate approximation.
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Fig. 3. Total power consumption of RAC system versus available power.

C. Weighted Fairness Paradigm

To the end of establishing the importance of the weightethopation, a simple paradigm is elaborated
herein. Under the practical assumption of a modulation waimed system, the weighted fair design
can be exploited for rate allocation towards increasingtthal system throughput. More specifically,
the considered system employs adaptive modulation andaadle binary phase shift keyin@PSK)
modulation if the minimumSINR; in the k-th group is less than the ratio for which the maximum
modulation constrained spectral efficiency is achieveds Tétio is simply given bylog, M, where M
is the modulation order. Hence f®PSK, v, = 0 dB, and so forth. If for some groujp, min; SINR; >
v, Vi € G, then quaternary phase shift keyingi¥SK) is used for all users in the group. Forward error

correction is not assumed. Let there be a two antenna tréesrtiiat serves four users grouped into two
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Fig. 4. Per-antenna consumption irPAC system versus transmit power.

groups. The considered channel matrix reads as

T
0.2£106° 90£-69° 0.5£-99° 0.5£61°

0.87111° 120£-112° 1/£127° 1.5£49°

The attributes of the specific channel matrix depict one iptssinstance of the system where one user
with a good channel state (i.e. user two) is in the same grdtipavjeopardized user, namely user one.
On the other hand, the second group contains relativelynbath users in terms of channel conditions.
For an un-weighted optimization (i.g = [1 1 1 1]) the spectral efficiency of each user is shown in
Fig. [H. Baring in mind that each user is constrained by theimim group rate, the actual rate at
which all users will receive data is 0.52 [bps/Hz]. Both gvswachieve the same spectral efficiency since
the minimumSINRs and hence the minimum rates are balanced between the gi®ulpsequently, a
modulation constrained multicast transmitter will empBFSK for all users. By heuristically choosing

the constraint vector to bg = [1 1 5.3 5.3] each user rate is modified. As depicted in [Fig. 5 both users
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in the second group are achieving adeqUdsR to support a higher order modulation. This gain is
achieved at the expense of the rates of the users of the fogpgFollowing this paradigm, the weight
optimization can lead to an improved modulation assignnaemt thus higher throughput in practical
systems. Hence, the weighted formulation offers the subatalegrees of freedom to maximize the total
throughput of a modulation constrained multicast systenpimperly allocating the rates amongst the

groups.

[ 1Equal Weights
I Optimized Weights

1.2

T

H
i
i
|
|
|
i
|
|
i
I
i
|
i
|
i
I
I
i
|
|
|
i
|

o
®

o
==

o
=

Spectral Efficiency [bps/Hz]

1 2 3 4
G User Index Gy
Group Index

Fig. 5. Modulation constrained paradigm.

D. Uniform Linear Arrays

To the end of investigating the sensitivity of the proposégbdthm with respect to the angular
separation of co-group users, a uniform linear arfi@i,4) transmitter is considered. Assuming far-field,
line-of-sight conditions, the user channels can be modsdaty Vandermonde matrices. For this important

special case, thePC multicast multigroup problem was reformulated into a cornwptimization problem
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and solved in[[21],[]22]. These results where motivated k& dbservation that iVLA scenarios, the
relaxation consistently yields rank one solutions. Thas,duch cases, th8DR is essentially optimal
[8]. The fact that theSDR of the sum power minimization problem is tight for Vanderrderchannels
was established in [22]. Let us considelU&A serving4 users allocated t@ distinct groups. In Fig.
[6, its radiation pattern for co-group angular separafipe= 35° is plotted. The symmetricity due to the
inherent ambiguity of th& LA is apparent. Clearly, the multigroup multicast beamfograptimizes the
lobes to reduce interferences between the two groupsSPii&solution, re-scaled to respect tRACs
are also included in Fid.] 6. The superiority of the proposaldton is apparent.

In Fig.[d, the performance in terms of minimum user rate okerdrea with respect to an increasing
angular separation is investigated. When co-group usersdalocated, i.ed, = 0°, the highest perfor-
mance is attained. As the separation increases, the penfiaens reduced reaching the minimum when
users from different groups are placed in the same positierd, = 45°. In Fig.[4, the tightness of the
relaxation for theSPC problem [22] is clear. However, the same does not apply ferptoposedAC.

As co-group channels tend to become orthogonal, the appedixin becomes less tight. Nevertheless,
Nrana = 200 randomizations are sufficient to maintain the solution &btne re-scale8PC, as shown in
Fig.[1. Consequently, the proposed solution outperfornesscaled to respect the per-antenna constraints,
SPC solution, over the span of the angular separations.

Remark 4. The semidefinite relaxation of the per-antenna power miration problem inULA trans-
mitters is not always tight.

For every optimum high rank set of matricéxzpt},f:l, there exists a set of rank one positive
semidefinite matrice$X "1 |, i.e. rank(X") = 1,Vk € {1...G}, which is equivalent with respect
to the power received at each user, TEX"'Q;) = Tr(X"'Q;), Vi € Gy, k,1 € {1...G}. This result
is based on the Riesz-Féjer theorem on real valued compigpnbmetric polynomials [22]. Therefore,
the Vandermonde channels impose a specific structure tGRte solution that allows for a convex
reformulation. The difference in the case tackle heremiletheN; PACs, i.e. [Zle Xk} < P,,Vn €
{1... N}, in which the channel structure is not involved. Thus, a rankatrix is equﬁalent in terms
of per user received power [22] but not necessarily in teringes-antenna consumed power, as shown

herein.

E. Robust Design unddtACs

When beamforming under uncertainty is considered, thréfereint designs can be realized [23].

Namely, the probabilistic design, where acceptable pevéoce is guaranteed for some percentage of
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Fig. 6. ULA beampattern foPAC and re-scale®PC solutions.

time, the expectation based design that requires knowlefigee second order channel statistics but
cannot guarantee any outage performance and the worstdeaggm. The latter approach guarantees a
minimum QoS requirement for any error realization.

Focusing on a worst-case design, let us assume an elllptivalinded error vector. In this context,
the actual channel is given &s = h; + e; whereh;, is the channel available at the transmitter @nds
an error vector bounded l:qgciei < 1. The hermitian positive definite matri; defines the shape and

size of the ellipsoidal bound. FaE; = 1/021y,, then||e;||3 < o2 and the error remains in a spherical

region of radiuss. [24]. This spherical error model is mostly relevant when fidedback quantization
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Fig. 7. ULA performance for increasing co-group user angular separati

error of a uniform quantizer at the receiver is considerés].[Zhe proposed design is formulated as

Fre: max t
L, {Wk}gzl
T (1 2
1 h; +e;
t— G|w,€T(_+e)| >t 1)
Vi Zl;ﬁk |Wl (hl + el-) |2 + o
Vi€ G, k,le{1...G},
G
and to [ZWWL] < Py, ¥ne{l...N;}, (22)
k=1 nn

and involves the channel imperfections only in 8I&NR constraints. The novelty aFzz over existing

robust multicast formulations lies il (22). TI#8NR constraints ofFz, i.e. (21), are over all possible
error realizations and cannot be handled. However, by applthe S-lemmal[18], the error vector in
(1) can be eliminated. This procedure is analytically dbsd in [26]. Thus,Fzz can be converted

to a SDP and solved efficiently using the methods described in S@cTHe performance gain of the
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proposed robust design for@LA with N, = 2 transmit antennas, serviny, = 6 users is given in
Fig.[8, versus an increasing error radigs for different user per group configurations, These results

exhibit the significant gains of the proposed technique asetinor and the group sizes increase.

1 —e— Robust, p =3
\ -x—-Non-Robust, p =3
0.9* \ +R0bust, P = 2
—¥— Non-Robust, p = 2
0.l N —o— Robust, p =3
- N —+- Non-Robust, p =1
s \'\
= 0.7r x
o,
==}
2 0.6r
=
Ao
g 0.5
)
g 0.4
S
0.
0.2
0.1

Fig. 8. Robust performance for various user per group corgtmns.

To establish the importance of the novel formulation, theggenance in terms of minimum user rate
over 1000 error realizations is given in Fig. 9, versus a walege of the error radius, for the proposed
Fri as well as the existingPC solutions re-scaled to respect the per-antenna constraonshis figure, a
ULA with N; = 3 transmit antennas is considered, serviig= 6 users partitioned intd, = 2 multicast
groups. The co-group angular separatiofijs= 10° and the number of Gaussian randomizations chosen
iS Nyana = 200 and NV,.,q = 1000 for the high and low precision curves respectively. Accogdio Fig[9,
the proposed robustAC formulation (i.e.Frg) outperforms existing solutions, in a per-antenna power
constrained setting, for a wide range of channel error mdiowever, as the error radius increases, a

slight performance degradation is noted, especially ferldw precision results. To further investigate
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on this result, the following remark is given.

Remark 5The semidefinite relaxation of robust multigroup multioag underPACs yields non rank-1
solutions with higher probability as the channel errorgéase.

The accuracy of the minimum rate results of Fig. 9, is pre=iint Fig. 10. The accuracy is measured
by the distance of the randomized solution from the uppembogiven by the relaxation, following
the standards of Sec. IV-A and]|[8],_[10]. In Fig. 10, the réswre also normalized by the value of
the upper bound. According to these results, the probgbiit the SDR to yield rank-1 solutions is
reduced as the error radius increases, for all problems.atlaracy reduction of th8DR technique
as the channel errors increase was also reported via siondah [27], but for unicast scenarios. What
is more, Frp yields non rank-1 solutions as the errors increase, witldrigorobability than th&SPC
problem. However, 1000 randomizations are sufficient taicedthe inaccuracy of all solutions to less
than 7%, as illustrated in Fig. 10. It is therefore conclutteat although the relaxation of the robust
formulations does not consistently yield rank-1 solutiogspecially for higher values of error radius, the
Gaussian randomization can provide solutions with adegaaturacy. Finally, the proposed solutions

surpass the performance of existing approaches, in pahgé@r-antenna power constrained settings.

V. CONCLUSIONS

In the present work, optimum linear precoding vectors arevelé under per antenna power constraints,
when independent sets of common information are tranginityean antenna array to distinct co-channel
sets of users. The novel weighted max—min fair multigrouticast problem undePACs is formulated.
An approximate solution for this NP-hard problem is preedriiased on the well established methods of
semidefinite relaxation. The performance of the weighteg-man fair multigroup multicast optimization
is examined under various system parameters and importaigthis on the system design are gained.
Moreover, an application paradigm of the new system desigdeiscribed while robust to imperfect
CSI extensions are given. Consequently, an important pracasstraint towards the implementation of

physical layer multigroup multicasting is alleviated.

REFERENCES

[1] M. Bengtsson and B. Ottersten, “Optimal and suboptinnah$mit beamforming,” irHandbook of Antennas in Wireless
Communications CRC Press, 2001, pp. 18-1-18-33.

[2] ——, “Optimal downlink beamforming using semidefinite topization,” in Proc. of Annual Allert. Conf. on Commun.
Control and Computingvol. 37. Citeseer, 1999, pp. 987-996.

July 1, 2014 DRAFT



24

118 | ——Robust, SPC (re-scaled)
T ‘ ‘ | -—+— Non-Robust, SPC (re-scaled)
& | | | —e— Robust, PAC (high precision)
N | —*- Non-Robust, PAC
NN | |+ Robust, PAC (low precision)
g 0.9
7
208
O
=
= 0.7F
>
~ 0.6
k=
=
0.5-
0.4r
0.3

Fig. 9. Minimum user rate versus increasi@§l error.

[3] M. Schubert and H. Boche, “Solution of the multiuser déiwk beamforming with individual SINR constraintslEEE
Trans. Veh. Technolvol. 53, no. 1, pp. 18-28, 2004.

[4] W. Yu and T. Lan, “Transmitter optimization for the mulintenna downlink with per-antenna power constrainSEE
Trans. Signal Processvol. 55, no. 6, pp. 2646-2660, June 2007.

[5] G. Dartmann, X. Gong, W. Afzal, and G. Ascheid, “On the lityeof the max min beamforming problem with per-antenna
and per-antenna-array power constraintEEE Trans. Veh. Technolvol. 62, no. 2, pp. 606619, Feb 2013.

[6] D. Christopoulos, P.-D. Arapoglou, S. Chatzinotas, &dOttersten, “Linear precoding in multibeam satcoms: ficat
constraints,” inProc. of 31st AIAA International Communications SatelByestems Conference (ICSSElprence, IT, Oct.
2013.

[7] D. Christopoulos, S. Chatzinotas, and B. Otterstenafif@ based precoding in satellite communications: A mutica

July 1, 2014 DRAFT



25

0.98

Accuracy
o
©
o

o
O
S

—— Robust, SPC-upper bound

—x— Robust, SPC-exact

-—O~-Robust, PAC-upper bound

0.9+ —+ Robust, PAC-exact (high precision)
—— Robust, PAC-exact (low precision)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

2

O¢

Fig. 10. Accuracy of the semidefinite relaxation versus ameiasingCSI error.

approach,” inProc. of IEEE Adv. Satellite Multimedia Systems (ASMS) Ca0f4, submitted.

[8] N. Sidiropoulos, T. Davidson, and Z.-Q. Luo, “Transméamforming for physical-layer multicastingEEE Trans. Signal
Process. vol. 54, no. 6, pp. 2239-2251, 2006.

[9] E. Karipidis, N. Sidiropoulos, and Z.-Q. Luo, “Transnfieamforming to multiple co-channel multicast groups,Piroc.
of 1st Int. Workshop on Comput. Adv. in Multi-Sensor Adapbc€ss. (CAMSARYR005, pp. 109-112.

[10] —, “Quality of service and max-min fair transmit beamhing to multiple co-channel multicast grouptEE Trans.
Signal Process.vol. 56, no. 3, pp. 1268-1279, 2008.

[11] Y. Gao and M. Schubert, “Group-oriented beamforming faulti-stream multicasting based on quality-of-service
requirements,” inProc. of 1st Int. Workshop on Comput. Adv. in Multi-Sensoaptd Process. (CAMSAPR005, pp.
193-196.

[12] A. Schad and M. Pesavento, “Max-min fair transmit beammfing for multi-group multicasting,” inProc. of Int. ITG
Workshop on Smart Ant. (WSA012, pp. 115-118.

July 1, 2014 DRAFT



26

[13] Y. C. B. Silva and A. Klein, “Linear transmit beamforngjriechniques for the multigroup multicast scenarl&EE Trans.
Veh. Techno).vol. 58, no. 8, pp. 4353-4367, 2009.

[14] Z. Xiang, M. Tao, and X. Wang, “Coordinated multicastab&orming in multicell networks,”JEEE Trans. Wireless
Commun.vol. 12, no. 1, pp. 12-21, 2013.

[15] S. Chatzinotas, M. Imran, and R. Hoshyar, “On the maltiprocessing capacity of the cellular MIMO uplink chanirel
correlated Rayleigh fading environmentEEE Trans. Wireless Commurvol. 8, no. 7, pp. 3704-3715, July 2009.

[16] D. Christopoulos, S. Chatzinotas, and B. Ottersten,ultroup multicast beamforming under per antenna power
constraints,” inProc. of IEEE Int. Commun. Conf2014, accepted.

[17] G. Zheng, S. Chatzinotas, and B. Ottersten, “Generitimdpation of Linear Precoding in Multibeam Satellite Sysis,”
IEEE Trans. Wireless Commurvol. 11, no. 6, pp. 2308 —2320, Jun. 2012.

[18] S. Boyd and L. Vandenbergh€onvex optimizatian Cambridge Univ. Press, 2004.

[19] Z.-Q. Luo, W.-K. Ma, A.-C. So, Y. Ye, and S. Zhang, “Semiihite relaxation of quadratic optimization problem&EE
Signal Processing Magvol. 27, no. 3, pp. 20-34, 2010.

[20] Y. Ye, Interior point algorithms: theory and analysis John Wiley & Sons, 2011, vol. 44.

[21] E. Karipidis, N. Sidiropoulos, and Z.-Q. Luo, “Convesahsmit beamforming for downlink multicasting to multipte-
channel groups,” ifProc. of IEEE Int. Conf. on Acoustics, Speech and Signal RI@ASSP)vol. 5, May 2006.

[22] ——, “Far-field multicast beamforming for uniform lineantenna arrays,/EEE Trans. Signal Processvol. 55, no. 10,
pp. 4916-4927, Oct 2007.

[23] A. Gershman, N. Sidiropoulos, S. Shahbazpanahi, M gBeon, and B. Ottersten, “Convex optimization-based ffaam
ing,” IEEE Signal Processing Magvol. 27, no. 3, pp. 62-75, 2010.

[24] M. Shenouda and T. Davidson, “Convex conic formulasiari robust downlink precoder designs with quality of sesvic
constraints,"IEEE J. Select. Topics Signal Processl. 1, no. 4, pp. 714-724, Dec. 2007.

[25] N. Jindal, S. Vishwanath, and A. Goldsmith, “On the diyabf Gaussian multiple-access and broadcast chann&gE
Trans. Inf. Theoryvol. 50, no. 5, pp. 768-783, May 2004.

[26] Z. Chen, W. Zhang, and G. Wei, “Robust transmit beamfogrfor multigroup multicasting,” iInEEE Vehic. Tech. Conf.
(VTC Fall), Sept 2012, pp. 1-5.

[27] G. Zheng, K.-K. Wong, and B. Ottersten, “Robust cogmitbeamforming with bounded channel uncertaintiéEEE
Trans. Signal Processvol. 57, no. 12, pp. 4871-4881, Dec. 2009.

July 1, 2014 DRAFT



	I Introduction & Related Work
	II System Model 
	III Multicast Multigroup Beamforming with Per Antenna Power Constraints
	III-A Weighted Max-Min Fair Formulation
	III-B Per-antenna power minimization
	III-C Semidefinite Relaxation
	III-D Gaussian Randomization
	III-E Feasibility Power Control 
	III-F Bisection
	III-G Complexity

	IV  Performance Evaluation & Applications
	IV-A Multigroup multicasting over Rayleigh Channels
	IV-B Power Consumption in DAS 
	IV-C Weighted Fairness Paradigm
	IV-D Uniform Linear Arrays
	IV-E Robust Design under PACs

	V Conclusions
	References

