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Kurzfassung

Austauschgekoppelte magnetische Nanokomposite gelten als vielversprechende Kan-

didaten für zukünftige Permanentmagnete. Diese Nanokomposite bestehen aus ei-

ner hartmagnetischen Phase (auf Seltene Erden basierende Legierungen) die mit

einer weichmagnetischen, seltenerdmetallfreien Phase austauschgekoppelt ist. Die

seltenerdmetallreiche hartmagnetische Phase liefert hohe magnetische Anisotropie

und die seltenerdmetallfreie Phase, welche üblicherweise auf 3d Übergangsmetal-

len basiert, liefert entsprechend hoher Sättigungsmagnetisierung und hohe Curie-

Temperatur. Bei entsprechend optimierter Mikrostruktur ließen sich zum einen die

Energieprodukte, im Vergleich zu den derzeitigen Dy-Nd-Fe-B Magneten, drama-

tisch erhöhen, zum andern könnten auf Grund der verringerten Menge an den teuren

Metallen Nd und Dy erhebliche Kosten gespart werden. Das Verständnis der Mecha-

nismen, die in diesen Materialien zur Koerzivität führen, gilt dabei als Schlüssel zur

Entwicklung von geeigneten Permanentmagneten. In dieser Arbeit wurde ein zwei-

phasiges Nd2Fe14B/Fe3B Nanokomposit während des magnetischen Umkehrprozes-

ses mit Hilfe der magnetischen Neutronenkleinwinkelstreuung (SANS) untersucht.

Diese Methode bietet die exklusive Möglichkeit die magnetische Mikrostruktur von

Volumenmaterialien auf den relevanten Längenskalen von ∼ 1− 100 nm zu untersu-

chen. Die Verwendung der direkten Fouriertransformation erlaubte die Berechnung

von Korrelationsfunktionen der Spinfehlorientierung C(r). Die aus diesen Daten be-

stimmten Korrelationslängen lC stellen ein Maß für die räumliche Ausdehnung von

Magnetisierungsinhomogenitäten dar. Die Feldabhängigkeit von lC weist auf einen

Magnetisierungsumkehrprozess hin, welcher in hohem Maße durch homogene Ro-

tation der Magnetisierung der hartmagnetischen Nd2Fe14B Partikel gesteuert wird.

Darüber hinaus konnte in einem mikromagnetischen Ansatz die Austauschsteifig-

keitskonstante A experimentell bestimmt werden.
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Abstract

Exchange-coupled magnetic nanocomposites are considered to be promising candi-

dates for future permanent magnet applications. These nanocomposites consist of a

hard magnetic phase (based on rare-earth metal alloys), which provides high magne-

tic anisotropy and which is exchange coupled to a soft magnetic rare earth free phase,

which provides a high saturation magnetization and Curie-temperatur. For suitable

microstructures one could achieve on the one hand side dramatically increased ener-

gy products, in comparison to state-of-the-art Dy-Nd-Fe-B magnets. On the other

hand side – due to the reduced amount of rare earth metals – expenses could be sa-

ved significantly. The understanding of the coercivity mechanisms in these materials

is crucial for the development of nanocomposite permanent magnets. In the present

work, the magnetization reversal of a two-phase Nd2Fe14B/Fe3B nanocomposite has

been studied by means of magnetic small angle neutron scattering (SANS). This

technique exclusively provides access to information of the magnetic microstructure

in the bulk of the material and on the relevant length scales of ∼ 1 − 100 nm. Di-

rect Fourier-transformation allowed the calculation of the correlation function of the

spin misalignment C(r). From this data, the correlation length lC has been obtained.

The parameter lC is a measure for the spatial extent of magnetization inhomogenei-

ties. The field dependence of lC indicates a magnetization reversal process, which

is widely governed by homogeneous rotation of the magnetization within the hard

magnetic Nd2Fe14B particles. In addition, in terms of a micromagnetic approach,

the exchange stiffness constant A was determined experimentally.
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Kapitel 1

Einleitung

Im zwanzigsten Jahrhundert wurden viele verschiedene Permanentmagnete entdeckt

und Techniken zu deren Herstellung etabliert. Anwendung finden Permanentmagne-

te in zahllosen Produkten des täglichen Gebrauchs, wie beispielsweise in Quarz Ana-

loguhren, Kopfhörern, Mikrowellen, Mobiltelefonen, Computern, Windkraftanlagen

oder Fahrzeugen [1, 2]. Heutige Hochleistungsmagnete basieren auf Seltenen Erden

(wie z.B. Pr, Nd, Sm, Dy, Tb), welche die notwendige magnetische Anisotropie lie-

fern, was zu einem hohen Koerzitivfeld Hc führt, und auf 3d Übergangsmetallen (Fe,

Co), welche für hohe eine Sättigungsmagnetisierung Ms und hohe Curie-Temperatur

sorgen. Prominentestes Beispiel sind Nd-Fe-B basierte Legierungen, welche mit Ener-

gieprodukten von bis zu (BH)max ∼ 480KJ/m3 gefertigt werden können. Das Ener-

gieprodukt eines Magneten ist das Produkt aus magnetischer Flussdichte B und

dem Magnetfeld H und ist ein Maß für die im Magneten gespeicherte Energie.

Diese Nd-Fe-B basierten Legierungen besitzen Marktanteile von über 60%, ein

Anteil, der mit Raten von mehr als 12% jährlich anwächst [1]. Stärkste Wachstums-

sektoren sind hierbei energiebezogene Anwendungen. Beispielsweise beinhaltet die

neuste Version des Hybridmotors eines Toyota Prius ≈ 0.8 kg Nd-Dy-Fe-B Magnete

[3], ein Material, welches auch in den modernen, auf Permanentmagneten basie-

renden Generatoren verwendet wird, wie sie beispielsweise in Windkraftturbinen

im Einsatz sind. Der Einsatz permanentmagnetbasierter Motoren und Generatoren

erscheint durch die bauartbedingten Vorteile wie reduzierte Masse und gesteiger-

te Effizienz im Vergleich zu Induktionsmotoren/generatoren als alternativlos [1, 4]
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KAPITEL 1. EINLEITUNG

(vgl. Abb 1.1). Solche Motoren und Generatoren für Fahrzeuge bzw. Windkrafttur-

binen gelten als Hauptantrieb für den steigenden Bedarf an Permanentmagneten, der

aus dem allgemeinen Trend hin zu alternativen Energien resultiert. Die Kapazitäten

der weltweit betriebenen Windkraftanlagen haben sich in den letzten zehn Jahren

alle drei Jahre verdoppelt und umfassten im Jahr 2013 Kapazitäten von ≈ 320GW,

ein Wert, der für das Jahr 2020 auf ≈ 2000GW geschätzt wird [5]. Auch der Markt-

anteil an Hybrid- und Elektrofahrzeugen wird weiter wachsen. Sind beispielsweise

bis zum Jahre 2004 in den USA 200.000 Hybridfahrzeuge verkauft worden, waren es

im Jahr 2013 schon über 3 Millionen [6].

Abbildung 1.1: Vorteile eines mit Permanentmagneten arbeitenden Motors [PM]

gegenüber eines herkömmlichen, mit Spulen arbeitenden Induktionsmotors [IM]

(aus [4]).

In einer Studie [7] des “Joint Research Center” der Europäischen Kommission

in Zusammenarbeit mit dem Fraunhofer-Institut für System- und Innovationsfor-

schung ISI (im November 2013 veröffentlicht), wurde auf Grundlage der Pläne der

EU zur Energiewende der zukünftige Bedarf an Permanentmagneten abgeschätzt

und die Versorgung der Seltenen Erden Nd und Dy für die Jahre 2020 bis 2030 als

kritisch eingestuft. Laut dieser Studie soll allein in der EU ein Bedarf an Dy entste-

hen der 25% der weltweiten Versorgung entspricht. Allgemein wird, auch angesichts

steigender Weltmarktpreise für Seltene Erden, deutlich, dass Forschung auf dem Ge-

biet der Permanentmagnete notwendig ist. Da bis jetzt keine seltenerdmetallfreien

Materialien bekannt sind, die die notwendige Koerzitivität bereitstellen würden, gilt

im Moment die gezielte Modifikation der Mikrostruktur der zur Zeit verwendeten

magnetischen Legierungen als aussichtsreichste Perspektive um Material und Kosten
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KAPITEL 1. EINLEITUNG

einzusparen.

Als vielversprechende Kandidaten gelten hierbei austauschgekoppelte Nano-

komposite, die die hohe Koerzitivität von hartmagnetischen Materialien mit ho-

her Magnetisierung von seltenerdmetallfreien Weichmagneten kombinieren könnten

[1, 8]. Im Jahre 1989 stellten Coehoorn et al. [9] ein zweiphasiges Nanokomposit vor,

in dem die Austauschkopplung der beiden Phasen eine gesteigerte remanente Magne-

tisierung (“remanence enhancement”) und ein gesteigertes Energieprodukt bewirkt.

Aufbauend auf diesem Material – ein feinkörniges System aus Nd2Fe14B und Fe3B –

stellten Kneller und Hawig im Jahr 1991 ein mikromagnetisches Simulationsmodell

vor [10]. Diese Simulationen zeigten, dass bei geeigneter Mikrostruktur, in Bezug

auf Abmessung und Verteilung der beiden Phasen, austauschgekoppelte Nanokom-

posite eine neue Möglichkeit bieten, Permanentmagnete mit hohem Energieprodukt

zu fertigen. Diese Arbeit erweckte große Aufmerksamkeit und seitdem wurden zahl-

reiche Nanokomposit-Systeme in Form von Ribbons, Pulvern und dünnen Schichten

vorgestellt [11–21]. Viele theoretische Arbeiten untersuchten den Einfluss von ver-

schiedensten Anordnungen und Abmessungen der beiden Phasen auf das zu erzie-

lende Energieprodukt [22–28]. Beispielsweise zeigten Skomski und Coey [29], dass in

einer Vielschichtlegierung aus Sm2Fe17/FeCo bei idealer Mikrostruktur ein Energie-

produkt zu erzielen wäre, das mehr als dem Doppelten der herkömmlichen Nd-Fe-B

Magneten entspricht.

In dieser Arbeit soll ein austauschgekoppeltes, schmelzgesponnenes, zweipha-

siges Nanokomposit bestehend aus Nd2Fe14B und Fe3B untersucht werden. Die

kristallographischen Richtungen dieses Werkstoffs und somit auch die magnetisch

leichten Achsen sind statistisch gleichverteilt. Ein ferromagnetisches nanokristalli-

nes Material mit dieser Eigenschaft wird als random anisotropy Ferromagnet be-

zeichnet [30, 31]. Ein Ensemble nicht wechselwirkender Stoner-Wohlfahrt-Partikel

mit zufälliger Verteilung der leichten Achsen würde eine Remanenz von 0.5Ms auf-

weisen [32]. Aufgrund der in diesem Material wirkenden Austauschkopplung be-

sitzt das vorliegende Material jedoch eine magnetische Remanenz von ≈ 0.7Ms.

Die Austauschwechselwirkung führt in austauschgekoppelten nanokristallinen Ma-

terialien im Allgemeinen außerdem zu einer Erhöhung der Koerzitivität [33]. Ohne

Austauschkopplung würde das Nukleationsfeld des zweiphasigen Materials durch
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KAPITEL 1. EINLEITUNG

das signifikant kleinere Nukleationsfeld der weichmagnetischeren Phase bestimmt

werden. Als Schlüssel zur Herstellung von geeigneten austauschgekoppelten Perma-

nentmagneten gilt gerade das Verständnis dieser zugrunde liegenden Koerzitivitäts-

mechanismen [1, 8].

Die allgemein beobachteten Abweichungen der in den magnetischen Werk-

stoffen realisierten Koerzitivfeldstärken von der theoretisch maximalen Koerzitiv-

feldstärke (= Anistropiefeldstärke HA) [34], – dies ist als Brown’sches Paradoxon

bekannt [35]– werden in der Literatur mikrostrukturellen Defekten und den da-

mit verbundenen magnetostatischen Streufeldern zugeordnet, welche als Quelle für

umgekehrt magnetisierte Domänen angesehen werden [36, 37]. Eine experimentel-

le Beobachtung der Domänenstruktur während der Ummagnetisierung ist mit den

gängigen Methoden nur an dünnen Schichten oder an der Oberfläche von Volumen-

materialien durchführbar. Abbildung 1.2 zeigt einen Überblick über diese Techniken

und stellt diese in Verbindung mit der dabei erzielbaren Informationstiefe.

Abbildung 1.2: Überblick über gängige Methoden zur Beobachtung von ma-

gnetischen Domänen in Abhängigkeit von der erzielbaren Informationstiefe (aus

[38]).

Es ist ersichtlich, dass mit den aufgeführten Methoden keine Informationen aus
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KAPITEL 1. EINLEITUNG

einem Vollmaterial zu erhalten sind. Als Ausnahme kann hier die Libovicky Methode

genannt werden [39, 40], welche an einem Fe-Si System angewendet wurde. Während

einer Wärmebehandlung bildet dieses System Ausscheidungen, die sich entlang der

lokalen Magnetisierungsrichtung anordnen. Somit lässt sich die Magnetisierung ein-

frieren und durch schichtweises abtragen der Probe die innere Domänenstruktur in-

direkt sichtbar machen. Arbeiten an diesem System zeigen, dass diese Struktur von

der der Oberfläche abweichen kann. Dieser Umstand lässt sich für nahezu alle magne-

tischen Vollmaterialien annehmen, da die Magnetisierung der Oberfläche einer Probe

aus Energieminimierungsgründen jede Art von freier magnetischer Ladung vermei-

det. Auch Untersuchungen mittels Magnetometrie ergeben lediglich makroskopische

Informationen in Form der Netto-Magnetisierung einer Probe. Um die Eigenschaf-

ten der Permanentmagnete weiter zu optimieren, ist aber gerade das Verständnis des

Ummagnetisierungsprozesses und der tiefere Einblick in die dazugehörige magneti-

sche Mikrostruktur – und zwar nicht nur an der Oberfläche – von großer Wichtigkeit.

Als experimentelle Methode zur Untersuchung von magnetischen Strukturen, die

auf relevanten Längenskalen im Nanometerbereich Informationen aus dem gesam-

ten Probenvolumen (bis zu cm dicken Proben) liefert, kann die magnetische SANS

(Small-Angle Neutron-Scattering) genannt werden.

Die Verwendung von Neutronen bietet dem Experimentator einzigartige

Möglichkeiten. Auf Grund ihrer Ladungsneutralität dringen Neutronen tief in Ma-

terie ein und können durch ihr magnetisches Moment mit der Magnetisierung der

Probe wechselwirken. Die Streuung in der SANS resultiert aus Fluktuationen der

Streulängenprofile (nuklear wie magnetisch). Die magnetische SANS zum Beispiel

resultiert aus nanoskaligen Variationen in Stärke und Orientierung der Magnetisie-

rung.

Etablierte Analysemethoden beruhen auf der Verwendung von Formfaktoren,

die die geometrischen Gegebenheiten der Mikrostruktur auf einfache geometrische

Formen wie Zylinder und Kugeln mit scharfen Grenzflächen reduzieren. Während

für die nukleare Streuung an beispielsweise sphärischen oder zylindrischen Partikeln

die Annahme von scharfen Grenzflächen gerechtfertigt ist, ist diese für die magneti-

sche SANS an kontinuierlichen Magnetisierungsprofilen ungeeignet. In vielen Arbei-

ten, z.B. [41–43], werden homogen (oder schrittweise homogen) gesättigte Partikel
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KAPITEL 1. EINLEITUNG

angenommen und es findet eine Analyse des Streubeitrags der longitudinalen Streu-

amplitude M̃z statt. Die magnetische Streuung wird dabei beschrieben durch den

Streuquerschnitt:
dΣM

dΩ
(q) =

Np

V
∆ρ2mag V

2
p F 2(q) sin2 α . (1.1)

Hierbei bezeichnen ∆ρ2mag = b2H(∆M)2 den magnetischen Streulängendichtekon-

trast, F (q) den Partikelformfaktor, Np und Vp die Partikelanzahl bzw. das Parti-

kelvolumen und V das durchstrahlte Probenvolumen. Da dieses Modell keine ma-

gnetischen Wechselwirkungen beinhaltet und die transversalen Magnetisierungskom-

ponenten vernachlässigt sind, kann eine mögliche Feldabhängigkeit nur durch den

Term sin2 α berücksichtigt werden. Nimmt man α als Winkel zwischen Streuvektor

q und lokaler Magnetisierung an, so ergeben sich bei azimuthaler Mittlung – in der

senkrechten Streugeometrie k0 ⊥H (s. Abb. 2.1) – Erwartungswerte für sin2 α zwi-

schen 1/2 und 2/3 für den gesättigten bzw. den entmagnetisierten Zustand [41, 44].

Diese vergleichsweise geringe Differenz reicht nicht aus, um die in verschiedenen

Arbeiten beobachtete, teilweise sehr hohe Feldabhängigkeit der Streuintensität zu

beschreiben. In [45] findet sich eine Untersuchung mittels magnetischer SANS an

Cobalt-Nanostäben, die in einer nicht-magnetischen Matrix eingebettet sind. Die

beobachteten Feldabhängigkeiten von bis zu einem Faktor 8 können nicht durch den

Term sin2 α beschrieben werden. Weitere Beispiele finden sich für nanokristalline

Vollmaterialien wie in [46], wo für nanokristallines Cobalt und Nickel ein Anstieg

der Intensität von mehreren Größenordnungen beobachtete wurde.

Gerade Vollmaterialien mit durchschnittlichen Korngrößen von nur wenigen

Nanometern zeichnen sich durch einen hohen Volumenanteil an Defekten wie Ver-

setzungen und insbesondere Grenzflächen aus. Die mit diesen Defekten assoziierten

Anisotropiefelder üben zusätzliche Drehmomente auf die magnetischen Momente

aus, mit der Konsequenz, dass nicht nur der Verlauf der Magnetisierungskurve be-

einflusst wird [47–49], sondern, im Vergleich zum Ein- oder Grobkristall, auch höhere

Feldstärken zur Sättigung notwendig werden [50, 51]. In anderen Worten, in Gegen-

wart von äußeren Magnetfeldern führen Defekte zu einer räumlich ausgebreiteten

Abweichung der magnetischen Momente von der durch das Feld vorgegebenen Ma-

gnetisierungsrichtung. Dies wird allgemein als Spinfehlorientierung bezeichnet. Sol-

che Inhomogenitäten lassen sich durch die Magnetisierungskomponenten senkrecht
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zur angelegten Feldrichtung charakterisieren. Fluktuationen dieser Komponenten lie-

fern Beiträge zur Streuung, was durch transversale Streuamplituden M̃x und M̃y in

den Streuquerschnitten berücksichtigt werden kann. Intuitiv ist klar, dass die räum-

liche Ausdehnung dieser gestörten Bereiche mit der Stärke des angelegten Feldes

variiert, was eine Feldabhängigkeit ihrer Streubeiträge zur Folge hat.

In einigen, in den letzten Jahren durchgeführten Studien [51–57] wurden Me-

thoden vorgestellt, die diese Streubeiträge berücksichtigen. Durch mikromagnetische

Ansätze war man dabei in der Lage, die Feldabhängigkeiten dieser Streubeiträge

zu beschreiben und durch die explizite Ausnutzung der Feldabhängigkeit intrinsi-

sche magnetische Materialparameter zu bestimmen. Darüber hinaus wurde darge-

legt, dass durch eine direkte Fouriertransformation Korrelationsfunktionen berech-

net werden können, die Informationen über charakterische Ausdehnungen von Ma-

gnetisierungsinhomogenitäten in Abhängigkeit der angelegten Magnetfelder liefern.

Ziel dieser Arbeit ist es, diese Methoden zur direkten Untersuchung der ma-

gnetischen Mikrostruktur eines zweiphasigen Nd-Fe-B Nanokomposites während des

magnetischen Umkehrprozesses anzuwenden. Eine Bestimmung der charakteristi-

schen magnetischen Längenskalen und die Rückschlüsse daraus auf die magnetische

Mikrostruktur, stellen dabei das zentrale Element dieser Arbeit dar.

Die vorliegende Arbeit gliedert sich wie folgt: Kapitel 2 gibt einen Überblick

über die grundlegenden theoretischen Modelle, die zur Auswertung der Neutronen-

streuexperimente genutzt wurden. In Kapitel 3 werden die verwendeten experimen-

tellen Methoden zur Herstellung und Charakterisierung der Probe sowie die ma-

gnetische SANS beschrieben. In Kapitel 4 erfolgt die Präsentation und Diskussion

der Ergebnisse dieser Arbeit. Kapitel 5 fasst die wichtigsten Resultate noch einmal

zusammen und liefert Vorschläge für Experimente, die auf den Ergebnissen dieser

Arbeit aufbauen könnten.
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Kapitel 2

Theoretische Grundlagen der

SANS

Die Neutronenkleinwinkelstreuung (SANS = Small Angle Neutron Scattering) ist

für die Untersuchung von magnetischen Materialien oftmals eine alternativlose Me-

thode und Gegenstand umfangreicher einführender Standardwerke mit experimen-

tellem oder theoretischem Fokus [58–61]. In diesem Kapitel werden einige theore-

tische Konzepte vorgestellt. Zunächst wird der elastische differentielle Streuquer-

schnitt definiert und es werden die grundlegenden Ausdrücke für die nuklearen und

magnetischen SANS-Streuquerschnitte diskutiert. Anknüpfend daran wird ein mi-

kromagnetischer Ansatz vorgestellt, der sowohl qualitative als auch quantitative

Aussagen über die experimentellen Ergebnisse zulässt. Danach wird gezeigt, wie die

aus den experimentellen Daten berechneten Korrelationsfunktionen der Spinfehlori-

entierung und deren Korrelationslängen die Möglichkeit bieten, die charakteristische

Ausdehnung von Gradienten in der Magnetisierung zu quantifizieren. Wie zu sehen

sein wird, basiert die Auswertung der Streudaten auf der Ausnutzung der starken

Feldabhängigkeit der durch Defekte in der Mikrostruktur verursachten Spinfehlori-

entierungsstreuung.
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2.1 Grundgrößen der Neutronenstreuung

Da in den durchgeführten Experimenten keine Energieauflösung der gestreuten Neu-

tronen stattfand, soll der Ausgangspunkt für die theoretische Behandlung der nu-

klearen SANS der elastische differentielle Streuquerschnitt [58, 60]

dσ

dΩ
=

n

ΦdΩ
(2.1)

sein, wobei n die Anzahl der Neutronen bezeichnet, die pro Sekunde in das Raum-

winkelelement dΩ gestreut werden. Normiert wird hierbei auf den Neutronenfluss

Φ, der gegeben ist durch die Anzahl der Neutronen, die pro Einheitsfläche (senk-

recht zur Strahlrichtung) und pro Sekunde für einen Streuprozess zur Verfügung

stehen. Da das Raumwinkelelement die Einheit sr (Steradiant) hat, ergibt sich für

die Dimension des differentiellen Streuquerschnitts cm2 sr−1. Um Vergleichbarkeit

zwischen verschiedenen SANS-Messungen herzustellen, wird für experimentelle Be-

trachtungen der makroskopische differentielle Streuquerschnitt

dΣ

dΩ
=

N

V

dσ

dΩ
(2.2)

eingeführt. Dieser ergibt sich aus Gl. (2.1) durch Multiplikation mit der Atomzahl-

dichte, d.h. der Anzahl N an Streuzentren im durchstrahlten Probenvolumen V .

Zur Behandlung eines Streuprozesses betrachte man die elastische Streuung

einer Welle (Neutron) an einem ortsfesten Streuzentrum. Elastisch bedeutet dabei,

dass die Energie der einlaufenden Welle gleich der der gestreuten Welle ist und es

gilt:

|k0| = |k| =
2π

λ
. (2.3)

Hierbei sind k0 und k die Wellenvektoren der ein- bzw. auslaufenden Welle mit der

Wellenlänge λ (vgl. Abb. 3.6). Die für diesen Streuprozess gültige Gesamtwellen-

funktion lässt sich für große Abstände r vom Streuzentrum finden als [62]:

Ψ(r, ϕ) = eikz + f(2ϕ)
eikr

r
. (2.4)

Der erste Term auf der rechten Seite beschreibt die einfallende, ebene Welle in z-

Richtung, der zweite Teil stellt die auslaufende Kugelwelle dar; f(2ϕ) bezeichnet

hier eine zentrale Größe der allgemeinen Streutheorie, die Streuamplitude (mit dem
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Streuwinkel 2ϕ, vgl. Abb. 3.6), deren Betragsquadrat im behandelten Fall gerade

dem differentiellen Streuquerschnitt entspricht.

Die Wellenlängen der in der Kleinwinkelstreuung verwendeten Neutronen sind

von der Größenordnung 10−10m und damit viel größer als die Reichweite der Kern-

kräfte (< 10−14 m). In der Theorie der nuklearen Streuung wird die Kurzreichwei-

tigkeit der Kernkräfte durch das sogenannte Fermi-Pseudopotential modelliert [58].

Unter diesen Gegebenheiten, bei denen keine Auflösung der inneren Struktur des

Atoms möglich ist, hat die gestreute Welle eine sphärische Symmetrie, und somit ist

die Streuamplitude eine Konstante und nicht länger eine Funktion des Streuwinkels

2ϕ. In der Literatur wird diese Konstante als Streulänge bn bezeichnet [63]:

f(2ϕ) = −bn. (2.5)

Das Minuszeichen in Gl. (2.5) stellt eine Konvention dar, mit der die Streulänge

für repulsive Kernpotentiale einen positiven Wert erhält; bn kann hier als ein Maß

für die Stärke der Wechselwirkung zwischen Neutron und Nukleus verstanden wer-

den. Das Wesen dieses Parameters wird deutlich bei einer äquivalenten Betrachtung

der Streuung an einer harten Kugel, bei der die Streulänge gerade dem Kugelradi-

us entspricht [64]. Die Streulänge ist im Allgemeinen eine komplexe Größe, wobei

der imaginäre Anteil die Abhängigkeit der Wechselwirkung von der Wellenlänge

des Neutrons ausdrückt. Dieser Anteil ist relevant für Streuprozesse an Atomkernen

bei denen Absorptionseffekte auftreten. Beispielsweise natürliches Bor, welches aus

2 stabilen Isotopen 10B und 11B besteht, wobei ersteres einen um mehrere Größen-

ordnungen erhöhten Absorptionsquerschnitt aufweist [65]. Die Mehrzahl der Nuklide

begünstigt diese Absorptionsphänomene nicht, womit die Streulänge im Allgemeinen

als reelle Größe und bn als unabhängig von der Wellenlänge des Neutrons betrach-

tet werden kann. Ihr Wert (typischerweise einige fm = 10−15 m) ist abhängig vom

Kernpotential und variiert stark mit der Atomsorte und deren Isotopen [63].
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2.2 Nuklearer und magnetischer Neutronenstreu-

querschnitt

Im Gegensatz zur nuklearen Streuung beruht die magnetische Neutronenstreuung

auf einer anisotropen Wechselwirkung. In diesem Fall zwischen dem von den un-

gepaarten Elektronen des Atoms erzeugten magnetischen Moment und dem ma-

gnetischen Moment des Neutrons. Die Ausdehnung der Elektronenhülle, welche die

Reichweite des Wechselwirkungspotentials bestimmt, ist von der Größenordnung

der Wellenlänge der verwendeten Neutronen. Durch die Richtungsabhängigkeit der

magnetischen Momente kann im Gegensatz zur oben beschriebenen nuklearen Neu-

tronenstreuung für die gestreute Welle keine sphärische Symmetrie vorausgesetzt

werden. Das bedeutet, dass die Streuamplitude nicht a-priori streuwinkelunabhängig

ist.

Im Rahmen einer Dipolapproximation kann die magnetische SANS analog zur

nuklearen SANS über das Konzept der magnetischen Streulängendichte (Magneti-

sierung) beschrieben werden (siehe unten). In der Arbeit von Halpern und Johnson

[44] wird die Wechselwirkung, die dem magnetischen Streuprozess zu Grunde liegt,

als Dipol-Dipol Wechselwirkung approximiert. Ein zentrales Resultat, welches den

anisotropen Charakter des Dipolfeldes widerspiegelt, ist die Tatsache, dass nur die

zum Streuvektor q senkrechte Komponente des atomaren magnetischen Moments

zur Streuung beiträgt, was sich in dem sogenannten Halpern-Johnson Vektor Q

[44] manifestiert. Dieser tritt in den folgenden Gleichungen für die spinabhängigen

Streuquerschnitte nach Moon et. al. [66] auf. Unter Vernachlässigung des atomaren

Kernspins lassen sich die makroskopischen, differentiellen Streuquerschnitte angeben

als [66–69]:

dΣ

dΩ

±±

=
1

V

∑

i,j

e−iqxi,j
[
bn,ib

∗
n,j ± bn,ib

∗
m,jQ

∗
z,j ± b∗n,jbm,iQz,i + bm,ib

∗
m,jQz,iQ

∗
z,j

]
(2.6)

und

dΣ

dΩ

±∓

=
1

V

∑

i,j

e−iqxi,jbm,ib
∗
m,j

[
Qx,iQ

∗
x,j +Qy,iQ

∗
y,j ∓ iez(Qi ×Q∗

j)
]
. (2.7)

Hierbei bezeichnen bn,i und bm,i die nukleare bzw. die magnetische Streulänge des

i-ten Atoms, wobei * die komplex konjugierte Größe markiert und xi,j = xi − xj
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gesetzt wurde. Der Halpern-Johnson Vektor [44] ist definiert als

Q = e(e ·mi)−mi, (2.8)

wobei e = q

|q|
und mi = (mx,i,my,i,mz,i) die Einheitsvektoren in Richtung des

Streuvektors bzw. des magnetischen Moments darstellen. Die atomare magnetische

Streulänge ist durch bm = 2.7 · 10−15 mF (2ϕ)µa/µB gegeben, wobei µa das atomare

magnetische Moment und µB das Bohrsche Magneton bezeichnen. Für Streuung in

Vorwärtsrichtung kann der magnetische Formfaktor F näherungsweise als 1 ange-

nommen werden [70].

Die Gleichungen (2.6) und (2.7) beschreiben den Streuprozess in Abhängigkeit

des Polarisationszustandes der Neutronen vor und nach der Streuung für eine un-

iaxiale Polaristionsanalyse (Polarisation und Polarisationsanalyse entlang derselben

Achse). Dabei entspricht die Quantisierungsachse am Probenort der Achse in der

das angelegte Feld orientiert ist (H‖ez). Man liest die hochgestellte Angabe der Po-

larisation in horizontaler Richtung. Zum Beispiel beschreibt (++) in Gleichung (2.6)

einen Streuprozess bei dem der Spin des einkommenden Neutrons -orientiert in Pola-

risationsrichtung (+)- unverändert bleibt und keine Spinumkehr erfährt. Demzufol-

ge beinhalten diese Gleichungen vier mögliche Streuprozesse: je zwei Non-Spin-Flip(
dΣ
dΩ

++
bzw. dΣ

dΩ

−−
)
und zwei Spin-Flip Prozesse

(
dΣ
dΩ

+−
bzw. dΣ

dΩ

−+
)
. Der von der Po-

larisation der einkommenden Neutronen abhängige Term ∝ Qi ×Q∗
j in Gleichung

(2.7) beschreibt die Streuung an nicht inversionssymmetrischen chiralen magneti-

schen Strukturen [71–73]. Für den in dieser Arbeit untersuchten polykristallinen

ferromagnetischen Werkstoff können solche Strukturen vernachlässigt werden und

es gilt dΣ
dΩ

+−
= dΣ

dΩ

−+
[74]. In einem Experiment mit einem polarisierten einkom-

menden Neutronenstrahl, bei dem die Polarisation der gestreuten Neutronen nicht

analysiert wird, mißt man die beiden sogenannten SANSPOL-Streuquerschnitte

dΣ

dΩ

+

=
dΣ

dΩ

++

+
dΣ

dΩ

+−

(2.9)

und
dΣ

dΩ

−

=
dΣ

dΩ

−−

+
dΣ

dΩ

−+

. (2.10)

Aus diesen ergibt sich der SANS-Streuquerschnitt für unpolarisierte Neutronen zu:

dΣ

dΩ
=

1

2

(
dΣ

dΩ

+

+
dΣ

dΩ

−)
. (2.11)
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2.3 SANS-Querschnitte eines Ferromagneten

Für die SANS, die in einem q-Bereich auflöst, welcher keine Informationen auf ato-

marer Skala liefert1, ist es üblich, anstatt den Streulängen bn und bm die Streulängen-

dichten [56, 75, 76]

N(x) =
∑

α

bn,αρα(x) (2.12)

M (x) =
∑

α

µαρα(x)mα(x) . (2.13)

zu verwenden. Hierbei bezeichnen ρα, µα und mα die atomare Dichte, das atomare

magnetische Moment bzw. den Einheitsvektor in Richtung der Magnetisierung der

Atomsorte α. An die Stelle der Komponenten des atomaren magnetischen Moments

tritt eine kontinuierliche Magnetisierungsverteilung M (x).

In den in der magnetischen SANS gebräuchlichsten Streugeometrien ist das

äußere Magnetfeld H senkrecht bzw. parallel zum Wellenvektor des einkommen-

den Neutronenstrahls orientiert (siehe Abbildung 2.1). Für diese beiden Geometrien

erhält man folgende Ausdrücke für die Halpern-Johnson Vektoren [44]:

Q =




−mx

−my cos
2 θ +mz sin θ cos θ

−mz sin
2 θ +my sin θ cos θ




(2.14)

für k0⊥H‖ez und θ als Winkel zwischen ez und q ∼= (0, sin θ, cos θ);

Q =




−mx sin
2 θ +my sin θ cos θ

−my cos
2 θ +mx sin θ cos θ

−mz




(2.15)

für k0‖H‖ez und θ als Winkel zwischen ex und q ∼= (cos θ, sin θ, 0).

1 Man vergleiche den typischen q-Bereich der SANS von etwa 0.01 nm−1 < q < 5 nm−1, was

Realraumlängen von ∼ 1− 300 nm entspricht.
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Abbildung 2.1: Schematische Darstellung der gebräuchlichsten Streugeometri-

en in der magntetischen SANS. (links) Äußeres Magnetfeld H‖ez senkrecht zum

Wellenvektor k0‖ex des einkommenden Neutronenstrahls. (rechts) k0‖H‖ez. Der

Winkel θ beschreibt die Orientierung des Streuvektors q in der Detektorebene. In

der Kleinwinkelapproximation wird die Komponente von q entlang des einkom-

menden Neutronenstrahls vernachlässigt.

In einer Kontinuumsapproximation werden die diskreten Summen in (2.6) bzw.

(2.7) durch Integrale über das Probenvolumen V ersetzt. Unter Verwendung der

Fouriertransformierten Ñ(q) von N(x) und M̃ (q) von M (x),

Ñ(q) =
1

(2π)3/2

∫
N(x)e−iqxd3x (2.16)

bzw.

M̃ (q) =
1

(2π)3/2

∫
M(x)e−iqxd3x (2.17)

ergeben sich die Streuquerschnitte in Kontinuumsdarstellung. Mit Hilfe der

Gleichungen (2.14) und (2.15) findet sich in der transversalen Streugeometrie

(k0⊥H‖ez) der SANSPOL-Streuquerschnitt zu

dΣ

dΩ

±

=
8π3

V
b2H

[ |Ñ |2
b2H

∓ (ÑM̃∗
z + Ñ∗M̃z) sin

2 θ ± (ÑM̃∗
y + Ñ∗M̃y) sin θ cos θ

+|M̃x|2 + |M̃y|2 cos2 θ + |M̃z|2 sin2 θ − (M̃yM̃
∗
z + M̃zM̃

∗
y ) sin θ cos θ

]
.

(2.18)

Für die longitudinale Geometrie (k0‖H‖ez) erhält man den SANSPOL-
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Streuquerschnitt

dΣ

dΩ

±

=
8π3

V
b2H

[ |Ñ |2
b2H

∓ (ÑM̃∗
z + Ñ∗M̃z) + |M̃x|2 sin2 θ + |M̃y|2 cos2 θ + |M̃z|2

−(M̃xM̃
∗
y + M̃yM̃

∗
x) sin θ cos θ

]
.

(2.19)

Der totale (nukleare und magnetische) makroskopische differentielle SANS-

Streuquerschnitt für unpolarisierte Neutronen ergibt sich daraus zu:

dΣ

dΩ
=

8π3

V
b2H

[ |Ñ |2
b2H

+ |M̃x|2 + |M̃y|2 cos2 θ + |M̃z|2 sin2 θ

−(M̃yM̃
∗
z + M̃zM̃

∗
y ) sin θ cos θ

] (2.20)

für k0⊥H‖ez und

dΣ

dΩ
=

8π3

V
b2H

[ |Ñ |2
b2H

+ |M̃x|2 sin2 θ + |M̃y|2 cos2 θ + |M̃z|2

−(M̃yM̃
∗
x + M̃xM̃

∗
y ) sin θ cos θ

] (2.21)

für k0‖H‖ez.

Wie die Gleichungen (2.20) und (2.21) zeigen haben diese Streuquerschnitte

durch die über Q eingegangenen trigonometrischen Funktionen eine Abhängigkeit

vom Winkel θ (vgl. Abb. 2.1). Die Streuamplituden Ñ und M̃x,y,z sind Funktionen

vom Impulsübertragsvektor q und dadurch, je nach gegebener Mikrostruktur, eben-

falls abhängig vom Winkel θ. Somit sind vielfältige Arten von anisotropen Streubil-

dern möglich wie z.B. die sogenannte Kleeblattanisotropie mit Intensitätsmaxima

entlang der Detektordiagonalen, welche in der zweiphasigen eisenbasierten Legie-

rung NANOPERM gefunden wurde [56]. Die auf den 2D-Detektorbildern sichtba-

ren Anisotropien können ausgenutzt werden, um Rückschlüsse auf die dominanten

Streubeiträge zu ziehen. Für statistisch isotrope Mikrostrukturen ist die nukleare

SANS ∝ |Ñ |2 isotrop, d.h. unabhängig vom Winkel θ und die beobachteten Aniso-

tropien können der magnetischen Streuung zugeordnet werden. Die in der magneti-

schen SANS wohl bekannteste Form der Winkelanisotropie ist die sin2 θ-Anisotropie,
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die bei vollständiger magnetischer Sättigung aus nanoskaligen Variationen in der

Stärke der Magnetisierung resultiert. In nicht vollständig gesättigten Mikrostruk-

turen treten Fluktuationen in den transversalen Magnetisierungskomponenten Mx

und My mit zugehörigen Fourierkoeffizienten M̃x und M̃y auf, die entsprechend

den obigen Streuquerschnitten Anlass zur sogenannten Spinfehlorientierungsstreu-

ung geben. Aufgrund der Winkelabhängigkeiten der Streuamplituden |M̃x,y|2 können
vielfältige Arten von Winkelanisotropien in den Streubildern sichtbar werden (vgl.

Abb. 2.2).

2.4 Mikromagnetismus und SANS

2.4.1 Mikromagnetische Gleichungen

Wie Heisenberg gezeigt hat, kann Ferromagnetismus durch quantenmechanische Be-

trachtung erklärt werden, indem eine Austauschenergie zwischen benachbarten Spins

berücksichtigt wird [77]. Eine vollständig analytische, quantenmechanische Beschrei-

bung ferromagnetischer Phänomene an Volumenmaterialien kann nur in stark ver-

einfachten Fällen durchgeführt werden. Hinzu kommt, dass für die Beschreibung

von realen Festkörpern die magnetische Anisotropieenergie sowie die magnetosta-

tische Energie nicht vernachlässigt werden können [78]. In der Summe erschwert

dies eine vollständige analytische Diskussion von makroskopischen, magnetischen

Festkörpern.

Eine Möglichkeit zur theoretischen Behandlung stellt die von W.F. Brown Jr.

entwickelte Kontinuumstheorie des Mikromagnetismus dar [49, 78, 79], deren Ziel-

setzung die Berechnung M (x) ist, des Magnetisierungsvektorfeldes als Funktion des

Ortes. Im Rahmen dieser Theorie werden üblicherweise die folgenden vier Energie-

beiträge berücksichtigt: Zeeman Energie, magnetostatische Energie, magnetokristal-

line Anisotropieenergie, Austauschenergie.

Als Zeeman Energie EZ wird der Wechselwirkungsbeitrag zwischen äußerem

Magnetfeld H und Magnetisierung M bezeichnet. In einem homogenen Magnetfeld

ist dieser Energiebeitrag dann minimal, wenn die magnetischen Momente entlang des

äußeren Feldes ausgerichtet sind. Diese Wechselwirkung kann ausgedrückt werden
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durch

EZ = −µ0

∫

V

MHd3x , (2.22)

wobei µ0 = 4π10−7TmA−1 die Permeabilität des Vakuums bezeichnet und V die

Integration über das Probenvolumen kennzeichnet.

Die magnetostatische Energie EM beschreibt die Wechselwirkung zwischen der

Magnetisierung und des von ihr selbst erzeugten Magnetfelds Hd(x). Diese Ener-

gie basiert auf der magnetodipolaren Wechselwirkung und kann im Rahmen der

sogenannten Lorentz Kontinuumsapproximation als [78]

EM = −1

2
µ0

∫

V

MHdd
3x = +

1

2
µ0

∫

all space

H2
dd

3x (2.23)

geschrieben werden. Das Feld Hd lässt sich im Rahmen der Magnetostatik gemäß

Hd(x) = −∇U(x) aus dem magnetischen, skalaren Potential

U(x) =
1

4π

(
−

∫

V

∇ ·M (x′)

|x− x′| d3x′ +

∫

S

n ·M (x′)

|x− x′| d2x′
)

(2.24)

bestimmen; n bezeichnet hier den Einheitsvektor in Richtung der Probennorma-

len. Gleichung (2.23) beinhaltet das Polvermeidungsprinzip, nachdem die magne-

tostatische Energie eine positiv definite Größe ist und die zur Minimierung dieser

Energie günstigste Magnetisierung, jegliche Art von magnetischen Volumenladun-

gen (−∇ ·M ) und Oberflächenladungen (n ·M ) vermeidet. Die Quellen von Hd

sind somit Inhomogenitäten in der Stärke und Orientierung der Magnetisierung.

Die magnetokristalline Anisotropieenergie EA bezeichnet den Teil der magne-

tischen Energie eines ferromagnetischen Kristalls, welcher von der Orientierung der

Magnetisierung relativ zu den Kristallachsen abhängt. Ursache dieser Wechselwir-

kungsenergie ist die Spin-Bahn-Kopplung in Kombination mit dem kristallelektri-

schen Feld. Mit Hilfe eines phänomenologischen Ausdrucks für die Anisotropie-

Energiedichte ω kann EA formal durch [79]

EA =

∫

V

ω[x,M (x)]d3x (2.25)

ausgedrückt werden. Die Funktion ω[x,M (x)] ist eine gerade Funktion in den Kom-

ponenten des Magnetisierungsvektors und reflektiert die unterliegende Symmetrie

des Kristallgitters. Für Systeme mit kubischer (“c”) und uniaxialer Anisotropie
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(“u”) kann ω durch die reduzierten Magnetisierungskomponenten m = M/Ms =

(mx,my,mz) als [49]

ωc = K1(m
2
xm

2
y +m2

xm
2
z +m2

ym
2
z) +K2(m

2
xm

2
ym

2
z) + .... (2.26)

bzw.

ωu = Ku1(1−m2
z) +Ku2(1−m2

z)
2 + .... = Ku1 sin

2 γ +Ku2 sin
4 γ .... (2.27)

ausgedrückt werden. In den Gleichungen (2.26) und (2.27) bezeichnen die K’s die

temperaturabhängigen Anisotropiekonstanten und γ den Winkel zwischen dem Ma-

gnetisierungsvektor und der Anisotropieachse.

Ausgehend vom Heisenbergoperator für die Wechselwirkung zwischen diskreten

atomaren Spins lässt sich die Austauschenergie EX für kubische und (ideal) hexago-

nal dichtest gepackte Kristallsysteme in einer Kontiuumsapproximation durch [80]

EX =

∫

V

A

M2
s

[(∇Mx)
2 + (∇My)

2 + (∇Mz)
2]d3x (2.28)

ausdrücken, wobei Ms die Sättigungsmagnetisierung und A die Austauschsteifig-

keitskonstante bezeichnen. Der Parameter

A =
JS2c

a
(2.29)

ist hierbei durch das Austauschintegral J , die Spinquantenzahl S (in Einheiten von

~) und die Gitterkonstante a gegeben, wobei c = 1, 2, 4 für sc, bcc bzw. fcc struk-

turierte Einheitszellen; für (ideal) hexagonal dichtest gepackte Systeme ist c = 2
√
2

und a die Distanz zwischen den nächsten Nachbaratomen. A ist eine materialspe-

zifische Konstante und soll unter anderem in dieser Arbeit experimentell bestimmt

werden.

Im statischen Gleichgewicht muss die Variation der totalen magnetischen Ener-

gie verschwinden und es gilt:

δE = δ(EZ + EM + EA + EX) = 0 . (2.30)

Eine Variationsrechnung führt zum zentralen Element von Brown’s mikromagneti-

schem Ansatz, der Balance-of-Torques Gleichung,
[
H +Hd(x) +Hp(x) +

2A

µ0M2
s

∇2M (x)

]
×M (x) = 0. (2.31)
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Diese drückt aus, dass im statischen Gleichgewicht kein Drehmoment, verursacht

durch ein effektives Magnetfeld (Klammerausdruck), auf M (x) wirkt. Neben dem

Austauschfeld finden sich in diesem effektiven Magnetfeld das äußere Feld H , das

magnetostatische Feld Hd(x) und das magnetische Anisotropiefeld Hp(x). Diese

Gleichung repräsentiert einen Satz nichtlinearer partieller Differentialgleichungen,

die in allgemeiner Form nicht analytisch gelöst werden können [48]. Dennoch liefern

diese Gleichungen den Ausgangspunkt für eine theoretische Behandlung. Unter der

Annahme, dass nur kleine Fehlorientierungen vorliegen (Mx ≪Mz und My ≪Mz),

was für ferromagnetische Materialien nahe der magnetischen Sättigung erfüllt ist

(H ‖ ez), lassen sich diese Gleichungen linearisieren und mit den entsprechenden

Randbedingungen lösen. In [81] konnte für eine allgemeine Orientierung des Wel-

lenvektors q = (qx, qy, qz) folgende Lösungen für die “Streuamplituden” M̃x(q) und

M̃y(q) gefunden werden:

M̃x(q) = Ms

(
hx − M̃z

qxqz
q2

)(
Heff +Ms

q2y
q2

)
−Ms

qxqy
q2

(
hy − M̃z

qyqz
q2

)

Heff

(
Heff +Ms

q2x+q2y
q2

) , (2.32)

M̃y(q) = Ms

(
hy − M̃z

qyqz
q2

)(
Heff +Ms

q2x
q2

)
−Ms

qxqy
q2

(
hx − M̃z

qxqz
q2

)

Heff

(
Heff +Ms

q2x+q2y
q2

) . (2.33)

Hierbei bezeichnen hx(q) und hy(q) die Komponenten des Fourier-transformierten

Anisotropiefeldes, welches Informationen über die Mikrostruktur der Probe enthält

(z.B. Kristallitgröße, Gitterverzerrungen oder kristallographische Textur) [46]. Die

Größe

Heff(q,Hi) = Hi

(
1 + l2Hq

2
)

(2.34)

bezeichnet das effektive Magnetfeld, welches von q = |q|, dem internen Magnet-

feld Hi = H − NdMs (Nd: Entmagnetisierungsfaktor) und der Austauschlänge des

internen Feldes

lH(Hi) =
√
2A/(µ0MsHi) (2.35)

abhängt. Die feldabhängige Größe lH charakterisiert die Ausdehnung von Gradienten

in der Magnetisierung (siehe Kapitel 2.4.4). Weiter findet sich in den Gleichungen

(2.32) und (2.33) der longitudinale Fourierkoeffizient M̃z ∝ ∆M , welcher Sprüngen

in der Magnetisierung an internen Grenzflächen Rechnung trägt [81].
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Die Gleichungen (2.32) und (2.33) lassen sich entsprechend den beiden bereits

erwähnten SANS-Geometrien (vgl. Abb. 2.1) auf die 2D Detektorebenen projizieren.

Für k0⊥H‖ez setzt man q = (0, qy, qz) und erhält:

M̃x(q) = Ms
hx(q)

Heff

, (2.36)

M̃y(q) = Ms

hy(q)− M̃z(q)
qyqz
q2

Heff +Ms
q2y
q2

. (2.37)

Analog erhält man für k0‖H‖ez und q ∼= (qx, qy, 0):

M̃x(q) = Ms

hx

(
Heff +Ms

q2y
q2

)
− hy Ms

qxqy
q2

Heff

(
Heff +Ms

q2x+q2y
q2

) , (2.38)

M̃y(q) = Ms

hy

(
Heff +Ms

q2x
q2

)
− hx Ms

qxqy
q2

Heff

(
Heff +Ms

q2x+q2y
q2

) . (2.39)

2.4.2 Mikromagnetische Gleichungen der SANS

I. k0⊥H‖ez

Die Gleichungen (2.36) bis (2.39) bieten die Möglichkeit, experimentelle SANS-

Daten mittels mikromagnetischer Theorie sowohl qualitativ als auch quantitativ

zu analysieren. Dazu spaltet man den Streuquerschnitt, wie er in (2.20) und (2.21)

gegeben ist, wie folgt auf:

dΣ

dΩ
(q) =

dΣres

dΩ
(q) +

dΣM

dΩ
(q) , (2.40)

wobei
dΣres

dΩ
(q) =

8π3

V
b2H

(
|Ñ |2
b2H

+ |M̃z|2 sin2 θ

)
(2.41)

den magnetfeldunabhängigen Residuen-Streuquerschnitt beschreibt, welcher in der

magnetischen Sättigung gemessen werden kann, und durch

dΣM

dΩ
(q) = SH(q)RH(q, θ,Hi) + SM(q)RM(q, θ,Hi) (2.42)
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der mikromagnetische magnetfeldabhängige Streubeitrag beschrieben wird. Es sei

darauf hingewiesen, dass Gleichung (2.42), welche sich durch Einsetzten von (2.36)

und (2.37) in (2.20) in diese Form bringen lässt, Gültigkeit im Bereich der Annähe-

rung an die magnetische Sättigung besitzt. Weitere Details dazu findet man in

[81, 82], wo

SH(q) =
8π3

V
b2H h2(q) (2.43)

als Streufunktion des magnetischen Anisotropiefeldes und

SM(q) =
8π3

V
b2H M̃2

z (q) , (2.44)

als Streufunktion der longitudinalen Magnetisierung eingeführt werden. Weiterhin

sind mit

RH(q, θ,Hi) =
p2

2

(
1 +

cos2 θ
(
1 + p sin2 θ

)2

)
(2.45)

und

RM(q, θ,Hi) =
p2 sin2 θ cos4 θ
(
1 + p sin2 θ

)2 +
2p sin2 θ cos2 θ

1 + p sin2 θ
(2.46)

die entsprechenden Responsefunktionen definiert, wobei p(q,Hi) = Ms/Heff(q,Hi)

eine dimensionslose Funktion von q und Hi ist. Die so definierten Streufunktionen

SH und SM sind in der Hochfeldnäherung feldunabhängig und beinhalten Infor-

mationen über die Mikrostruktur der Probe. Insbesondere enthält (2.43) den Term

h2(q), die Fourier-Transformierte des Anisotropiefeldes, dessen Stärke und räumli-

che Struktur im Wesentlichen durch die Mikrostruktur der Probe (Kristallitgröße,

Gitterverzerrungen) bestimmt wird. Die Responsefunktionen aus (2.45) und (2.46)

hängen explizit vom angelegten Magnetfeld, dem Betrag und der Richtung des Streu-

vektors und den magnetischen Wechselwirkungsparametern ab. Gleichung (2.40)

beschreibt somit die Spinfehlorientierungsstreuung dΣM

dΩ
(q) als Superposition zwei-

er Streubeiträge. Zum einen wird die räumliche Struktur der Spinfehlorientierung

durch Sprünge in Betrag und Orientierung der Magnetisierung bestimmt. Zum an-

deren sind es Variationen in Orientierung und Stärke des Anisotropiefeldes, die zu

räumlich inhomogenen Magnetisierungsfluktuationen führen.

Abbildung 2.2 zeigt in Kontur-Darstellung den Übergang (bei festgehaltenem

externen Magnetfeld) zwischen magnetostatisch dominierter (SMRM) und Aniso-

tropiefeld dominierter (SHRH) Spinfehlorientierungsstreuung [81]. Bei festem Feld
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(µ0Hi = 2.0T) wird der Übergang durch Hp/∆M bestimmt, was dem Verhältnis

zwischen Anisotropiefeldstärke Hp ∝ h(q) und dem Sprung in der Magnetisierung

∆M ∝ M̃z(q) entspricht. Erkennbar ist für die magnetostatisch geprägte Spinfehl-

orientierungsstreuung (Hp/∆M ≪ 1) eine sogenannte Kleeblattanisotropie [Abb.

2.2(a)] mit Intensitätsmaxima entlang der Detektordiagonalen, welche für anstei-

gendes Hp/∆M in eine cos2 θ Anisotropie [Abb. 2.2(c)] mit Maxima entlang der

Magnetfeldrichtung übergeht.

Abbildung 2.2: Kontur-Darstellung von dΣM/dΩ für k0⊥H [Gl. (2.42)] bei

festem horizontalem internen Magnetfeld µ0Hi = 2.0T. Werte für Hp/∆M von

(a) bis (c): 0.2, 1.6, 8. Gelbe Farbe korrespondiert mit einer “hohen Intensität”,

blaue Farbe mit einer “niedrigen Intensität”. Die Funktionen h2(q) und M̃2
z (q)

wurden mit Hilfe des Kugelformfaktors (Radius R = 8nm) beschrieben (aus [81]).

Für polykristalline Ferromagnete mit zufällig verteilten Anisotropieachsen und

für den Fall, dass keine kristalline Textur vorliegt, können (zusätzlich zur nuklearen

Streuung) die beiden Fourierkoeffizienten h2(q) und M̃2
z (q) als vom Winkel θ un-

abhängig angenommen werden [81], und der Streuquerschnitt (2.40) kann azimuthal

über den Winkel θ gemittelt werden (
∫ 2π

0
(...)dθ). Man erhält

dΣ

dΩ
(q) =

dΣres

dΩ
(q) + SH(q)RH(q,Hi) + SM(q)RM(q,Hi) , (2.47)

mit

RH(q,Hi) =
p2

4

(
2 +

1√
1 + p

)
(2.48)
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und

RM(q,Hi) =

√
1 + p− 1

2
. (2.49)

Abbildung 2.3: Mikromagnetische Responsefunktionen RH [durchgezogene Li-

nie, Gl. (2.48)] und RM [gestrichelte Linie, Gl. (2.49)] für die senkrechte Streu-

geomtrie k0⊥H als Funktion des Parameters p(q,Hi) = Ms/Heff(q,Hi) (aus [81]).

Abbildung 2.3 zeigt die beiden Responsefunktionen als Funktion des Parame-

ters p(q,Hi) = Ms/Heff(q,Hi). Man erkennt, dass für hohe Feldstärken (p≪ 1) der

Parameter RM gegenüber RH dominiert und umgekehrt für (p ≫ 1). Dieser Über-

gang ist analog zu dem in Abbildung 2.2 gezeigten ein Übergang von magnetostatisch

dominierter zu Anisotropiefeld dominierter Spinfehlorientierungsstreuung.

II. k0‖H‖ez

Analog zur transversalen Streugeometrie ergibt sich für die longitudinale Geometrie

[81]

dΣ

dΩ
(q) =

dΣres

dΩ
(q) +

dΣM

dΩ
(q) (2.50)
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als Summe aus dem Residuen-Streuquerschnitt

dΣres

dΩ
(q) =

8π3

V
b2H

(
|Ñ |2
b2H

+ |M̃z|2
)

(2.51)

und dem Spinfehlorientierungsstreuquerschnitt

dΣM

dΩ
(q) = SH(q)RH(q,Hi) . (2.52)

Im Gegensatz zum transversalen Fall ist hier die Responsefunktion unabhängig vom

Winkel θ,

RH(q,Hi) =
p2

2
, (2.53)

so dass man unter der Annahme einer isotropen nuklearen SANS und einer isotropen

Anisotropiefeldmikrostruktur und nach azimuthaler Mittelung den folgenden Aus-

druck für den totalen nuklearen und magnetischen SANS-Streuquerschnitt erhält:

dΣ

dΩ
(q) =

dΣres

dΩ
(q) + SH(q)RH(q,Hi) . (2.54)

Wie in Abschnitt 4.3.5 gezeigt wird, können die Gleichungen (2.47) bis

(2.54) benutzt werden, um die Austauschsteifigkeitskonstante A aus experimentellen

SANS-Daten zu bestimmen.

2.4.3 Korrelationsfunktion der Spinfehlorientierung

Folgt man der allgemeinen Definition der Autokorrelation [83], so lässt sich für die

Spinfehlorientierung eine Autokorrelationsfunktion definieren als

C(r) =
1

V

∫
Mp(x)Mp(x+ r)

M2
s

d3x . (2.55)

Hierbei bezeichnet

Mp(x) = M (x)− 〈M〉 (2.56)

die Abweichung der lokalen Magnetisierung M (x) von der mittleren Magnetisierung

〈M〉, welche durch das angelegte Magnetfeld vorgegeben ist. Mp(x) entspricht im

Hochfeldfall der transversalen Magnetisierungskomponente. Unter Verwendung des
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Faltungstheorems der Fouriertheorie [83] kann C(r) [Gl. (2.55)] ausgedrückt werden

durch

C(r) =
1

V

∫
|m(q)|2 ei q·r d3q , (2.57)

wobei m(q) die Fourier-Transformierte der reduzierten transversalen Magnetisie-

rung Mp/Ms darstellt,

m(q) =
1

(2π)3/2

∫
Mp(x)

Ms

e−i q·x d3x . (2.58)

In [51] wurde gezeigt, dass C(r) aus gemessenen Spinfehlorientierungsstreuquer-

schnitten gemäß

C(r) =
k

r

∞∫

0

dΣM

dΩ
(q) sin(qr) q dq (2.59)

bestimmt werden kann, wobei k eine Konstante ist. In SANS-Experimenten ist der

zugängliche q-Bereich üblicherweise beschränkt auf 0.01 nm−1 . q . 5 nm−1. Um

aus experimentellen Streuquerschnitten dΣM

dΩ
die Korrelationsfunktion C(r) mittels

Gleichung (2.59) zu berechnen, ist es notwendig, die Messdaten zu q → ∞ und

q → 0 zu extrapolieren.

Aus den mikromagnetischen Gleichungen findet man für k0⊥H und unter Ver-

nachlässigung des magnetostatischen Feldes [52]:

m(q) =
h(q)

Heff(q,Hi)
. (2.60)

Gleichung (2.60) ist gültig für Heff ≫ Ms. Damit lässt sich für gegebenes h(q)

die reduzierte transversale Magnetisierung und die Korrelationsfunktion wie folgt

berechnen:

Mp(x)

Ms

=
1

(2π)3/2

∞∫

0

h(q)

Heff(q,Hi)
ei q·x d3q , (2.61)

C(r,Hi) =
4π

V r

∞∫

0

h2(q)

H2
eff(q,Hi)

sin(qr) q dq . (2.62)

Für magnetische Materialien mit homogener Austauschwechselwirkung und

Sättigungsmagnetisierung ist die Vernachlässigung des magnetostatischen Feldes Hd
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Abbildung 2.4: Einfluss des magnetostatischen Feldes Hd auf die Korrelations-

funktion C(r) der Spinfehlorientierung für eine sphärische Inklusion in einer ma-

gnetischen, anisotropiefeldfreien Matrix. Das Anisotropiefeld der Kugel verläuft

vom Mittelpunkt zum Rand hin linear ansteigend, d.h. Hp(r) = Hp1(r/R1)

(µ0Hp1 = 0.1T, R1 = 10nm). Durchgezogene Linie: ohne Hd; gestrichelte Li-

nie: mit Hd (aus [52]). Copyright (2010) by The American Physical Society

in der Annäherung an die Sättigung gerechtfertigt [52]. Diesen Umstand verdeut-

licht Abbildung 2.4, welche numerisch berechnete Korrelationsfunktionen (mit und

ohne Hd) zeigt. Als Modell für h2(q) diente eine sphärische magnetische Inklusion

mit einem vom Mittelpunkt zum Rand hin linear ansteigenden Anisotropiefeld; wie

bereits erwähnt, wurden konstante Werte für A und Ms angenommen. Man erkennt,

dass für genügend hohe Felder die Berücksichtigung von Hd vernachlässigbar wenig

Beitrag zu C(r) liefert.

In Abbildung 2.5 sind Ergebnisse für Mp/Ms und C(r) für ein Modell gezeigt,

in dem innerhalb der Kugel statt einem linear ansteigenden ein homogenes Ani-

sotropiefeld Hp(r) = konstant angenommen wurde. Man sieht, dass Mp/Ms sowie

C(r) für höhere Felder geringere Werte annehmen. Mit anderen Worten, dieses Mo-

dell spiegelt wider, dass im realen Festkörper Spinfehlorientierungen mit steigendem

Feld unterdrückt werden. Außerdem erkennt man den langreichweitigen Charakter

der Spinfehlorientierungen, was mit der Erwartung übereinstimmt, dass Störungen

in der Magnetisierung durch die Austauschwechselwirkung verschmiert werden.
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Abbildung 2.5: (a) Berechnete reduzierte transversale Magnetisierung Mp/Ms

und (b) Korrelationsfunktionen C(r) als Funktion des Abstandes r vom Mittel-

punkt einer sphärischen Inklusion mit homogenem Anisotropiefeld in einer ma-

gnetischen, anisotropiefeldfreien Matrix. (µ0|Hp| = 0.1T, R1 = 10nm) (aus [52]).

Copyright (2010) by The American Physical Society

Für das einfache Modell der sphärischen Inklusion mit konstantem Anisotro-

piefeld lässt sich h2 ausdrücken durch [52]

h2(q, R1) =
H2

p1

(2π)3
F 2(q, R1) , (2.63)

mit

F (q, R1) = 3V1
[sin(qR1)− qR1 cos(qR1)]

(qR1)3
, (2.64)

dem Kugelformfaktor. Mit Hilfe von (2.63) und (2.64) lässt sich (2.62) in kompakter

Form angeben als

C(r) =
KR4

H2
i

∞∫

0

J0(qr) J
2
1 (qR)

(1 + l2H q2)2
dq , (2.65)

wobei K = 8H2
pV

−1 gesetzt wurde und lH(Hi) =
√

2A/(µ0MsHi) der bereits

zuvor eingeführten Austauschlänge des Feldes entspricht. Mit J0 und J1 sind die

sphärischen Bessel-Funktionen der nullten und ersten Ordnung bezeichnet. Glei-

chung (2.65) kann verwendet werden, um experimentelle Korrelationsfunktionen

quantitativ auszuwerten. Abbildung 2.6 zeigt die Ergebnisse eines globalen Fits der

Gleichung (2.65) an experimentellen Korrelationsfunktionen von nanokristallinem
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Abbildung 2.6: Magnetfeldabhängigkeit der Korrelationsfunktion der Spinfehl-

orientierung von nanokristallinem Co (a) und Ni (b) mit mittleren Korngrößen

von 10 nm (Co) und 49 nm (Ni). Werte für das interne Magnetfeld µ0Hi (in mT)

von oben nach unten: (a) 54, 80, 107, 243; (b) 190, 570, 800, 1240. Durchgezoge-

ne Linien: Globaler Fit der Gleichung (2.65) an die experimentellen Daten. Die

Sättigungsmagnetisierung wurde als Ms = 1434 kA/m (Co) und Ms = 522 kA/m

(Ni) angenommen (aus [84]).

Co und Ni [84]. In dieser Analyse konnten die Austauschsteifigkeitskonstante A zu

35 ± 1 pJ/m (9.2 ± 0.1 pJ/m) und der Anisotropiefeldradius R zu 14.3 ± 0.2 nm

(13.6± 0.1 nm) für Co bzw. Ni ermittelt werden. Die Austauschsteifigkeitskonstante

ist in guter Übereinstimmung zu Ergebnissen aus [49, 55]. Der Anisotropiefeldradius

charakterisiert die Ausdehnung von Bereichen homogener Anisotropie. In [57] wurde

diese Ausdehnung für Co als von der Größenordnung der Partikelgrößen (∼ 10 nm)

abgeschätzt, wohingegen für Ni gefolgert wurde, dass die Variationen im Anisotro-

piefeld auf Skalen, die kleiner als die Partikelgrößen (∼ 50 nm) sind, existieren. Die

gefunden Ergebnisse, basierend auf Gleichung (2.65), bestätigten diese Resultate.
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Abbildung 2.7: Ein mikrostruktureller Defekt, mit dem ein magnetisches Ani-

sotropiefeld Hp(x) assoziiert ist, verursacht eine räumlich ausgedehnte Störung in

der Magnetisierung, welche durch die Transversalkomponente Mp(x) beschrieben

wird. In der Annäherung an die magnetische Sättigung klingt diese Störung mit

der charakteristischen Länge lH ab (aus [55]).

2.4.4 Korrelationslänge der Spinfehlorientierung

Eine weitere Möglichkeit der quantitativen Auswertung bietet die Korrelationslänge

lC der Spinfehlorientierung. lC kann definiert werden als der Wert von r, bei dem

die Korrelationsfunktion auf einen Wert C(r = lC) = C(r = 0)/e abgefallen ist.

Diese Definition liefert die exakte Korrelationslänge für den Fall von exponenti-

ell abklingenden Magnetisierungsinhomogenitäten. Damit lässt sich nicht nur die

Feldabhängigkeit von C(r) quantifizieren, sondern lC bietet die Möglichkeit, die

räumliche Ausdehnung von Magnetisierungsgradienten zu charakterisieren. Zur Mo-

tivation dieser Vorgehensweise betrachtet man die Austauschlängen, die entspre-

chend der jeweiligen Feldbeiträge in Gleichung (2.31) benannt sind als (i) die Aus-

tauschlänge des internen Feldes lH =
√
2A/(µ0MsHi), (ii) die Austauschlänge des

Streufeldes lM =
√

A/(µ0M2
s ) und (iii) die Austauschlänge des Anisotropiefeldes

lK =
√

A/K [49]. Sie sind charakteristische Längen, die in den Lösungen der li-

nearisierten mikromagnetischen Gleichungen zu finden sind und deren Bedeutung

anhand eines einfachen Modells ersichtlich wird (vgl. Abb.2.7).

Betrachtet man eine Punktstörung im Kristallgitter, so bewirkt die damit ver-

bundene Variation des magnetischen Anisotropiefeldes eine Störung in der Magneti-
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Abbildung 2.8: Feldabhängigkeit der Korrelationslängen für verschiedene Mo-

delle einer sphärischen magnetischen Inklusion in einer anisotropiefeldfreien Ma-

trix (log-log Skala). Angegeben sind verschiedene funktionale Verläufe des Ani-

sotropiefeldes innerhalb der Inklusion. Horizontale schwarze Linie: Radius der

Inklusion R1 = 10nm; rote durchgezogene Linie: lc(Hi) = R1 +
√

2A/(µ0MsHi);

Gepunktete Linie lC = lH (aus [52]). Copyright (2010) by The American Physical

Society

sierung, welche über die Austauschkopplung an benachbarte magnetische Momente

übertragen wird. Da die Austauschwechselwirkung benachbarte Spins parallel zu-

einander auszurichten versucht, ist diese Störung über eine gewisse Längenskala

verschmiert. In einer eindimensionalen Behandlung dieses Problems ergeben sich

(im Hochfeldfall) exponentiell abfallende Lösungen für die transversalen Magneti-

sierungskomponenten [49]

Mp/Ms ∝ e−x/l , (2.66)

wobei für l, je nach dominantem Feld, die entsprechenden Austauschlängen einzu-

setzen sind [48, 49]. Für große angelegte Magnetfelder fallen demnach die Spinfehl-

orientierungen mit einer charakteristischen Länge lH ab, d.h. in diesem Modell hat

die transversale Komponente in einem Abstand lH von der Störquelle nur noch den

1/e fachen Wert. Es lässt sich leicht über (2.55) nachvollziehen, dass lC für den be-

schriebenen Fall der Punktstörung dann genau dieser Austauschlänge lH entspricht.

Auch im Falle von realen Festkörpern, in denen die Spinfehlorientierungen nicht

notwendigerweise exponentiell abfallen, bietet die Definition von lC die Möglichkeit,

die Korrelationsfunktionen und deren Feldabhängigkeit zu quantifizieren. lC dient
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als Maß dafür, über welche charakteristische Länge Störungen in der Magnetisierung

abfallen. In verschiedenen Arbeiten wurde gezeigt, dass die phänomenologische For-

mel

lC(H) = L+

√
2A

µ0MSHi

(2.67)

geeignet ist, um die Feldabhängigkeit von experimentell bestimmten lC zu beschrei-

ben [55, 57]. Der feldunabhängige Parameter L kann dabei der “Größe” des mi-

krostrukturellen Defekts zugeordnet werden. Für das oben beschriebene Modell ei-

ner sphärischen, magnetischen Inklusion mit homogenem, magnetischem Anisotro-

piefeld in einer magnetischen, anisotropiefeldfreien Matrix ist in [52] gezeigt, dass

bei einer Beschreibung von lC durch Gleichung (2.67) der Parameter L dem Radi-

us der Inklusion entspricht. In Abbildung 2.8 sind feldabhängig Korrelationslängen

lC für verschiedene funktionale Verläufe des Anisotropiefeldes innerhalb der Inklu-

sion gezeigt. Neben dem zuvor genannten Fall eines homogenen Anisotropiefeldes

wurden ein zum Rand hin exponentieller Abfall, ein Abfall beschrieben durch ein

Potenzgesetz sowie ein Kugelschalen Modell für das Anisotropiefeld angenommen.

Man erkennt, dass L für große angelegte Magnetfelder auch für diese Modelle der

Größe des unterliegenden Defekts (Radius der Inklusion) zugeordnet werden kann,

und das Gl.(2.67) eine sehr gute Beschreibung der feldabhängigen Korrelationen lie-

fert. Die innere Struktur des magnetischen Anisotropiefeldes spielt offenbar nur eine

untergeordnete Rolle.
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Kapitel 3

Experimentelle Methoden

Im Folgenden wird die Herstellung und mikrostrukturelle Charakterisierung des mit-

tels Neutronenkleinwinkelstreuung (SANS) untersuchten nanokristallinen hartma-

gnetischen Werkstoffs thematisiert. Die Proben wurden in der Arbeitsgruppe von

Herrn Prof. Dr. Kiyonori Suzuki von der Monash Universität in Melbourne, Au-

stralien, synthetisiert. Nach einem kurzen Überblick über die Probenpräparation,

Materialeigenschaften und mikrostrukturellen Analysemethoden, werden die expe-

rimentellen Aspekte der SANS vorgestellt.

3.1 Probensynthese

Eine mögliche Methode zur Herstellung von nanokristallinen Materialien ist die

kontrollierte Kristallisation aus einem amorphen metallischen Zustand heraus. Aus-

gangspunkt für die Synthese der vorliegenden Proben ist die amorphe Komposition

Nd5Fe74Cr3B18, welche mittels des Schmelz-Spin-Verfahrens präpariert wurde [85].

Hierbei sei erwähnt, dass zum Zweck der Untersuchung mittels Neutronenstreuung

das Bor Isotop 11B verwendet wurde, da natürliches B eine sehr hohe Absorption für

kalte Neutronen aufweist. Abbildung 3.1 zeigt eine schematische Skizze des Schmelz-

Spin-Verfahrens: eine Schmelze der Ausgangskomposition wird unter Druck auf ein

sich drehendes Kupfer-Rad gespritzt. Eine genügend klein gewählte Austrittsblen-

de formt einen dünnen Strahl aus Schmelze. Ist der Strahl fein genug, so können

bei Kontakt mit dem üblicherweise mit flüssigem Stickstoff gekühlten Rad Abkühl-
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Abbildung 3.1: Schematischer Aufbau eines Schmelz-Spinners. Eine metallische

Schmelze wird unter Druck auf ein sich drehendes mit flüssigem Stickstoff gekühl-

tes Kupfer-Rad gespritzt. Der Strahl muss dabei entsprechend dünn sein, um hohe

Abkühlraten zu gewährleisten. Es entstehen amorphe metallische Bänder. Das In-

set zeigt Stücke solcher Bänder, positioniert auf einem SANS-Probenhalter.

raten von bis zu 107 K/s erreicht werden, wodurch die natürliche Kristallisation

verhindert werden kann. Dieser Prozess wurde im vorliegenden Fall unter Argon At-

mosphäre bei einer Oberflächengeschwindigkeit des Rades von 20m/s durchgeführt

[86]. So entstehen amorphe metallische Bänder mit einer Breite von ∼ 2.5mm und

einer Dicke von ∼ 20µm. Diese bilden wie beschrieben den Ausgangspunkt für die

Herstellung der nanokristallinen Proben durch kontrollierte Kristallisation mittels

Wärmebehandlung. Hierbei sind hohe Heizraten von besonderer Bedeutung, um die

Entstehung von metastabilen Phasen wie α-Fe, Nd2Fe23B3 und Nd1.1Fe4B4 während

des Erwärmens zu unterdrücken. Durch die hohen Heizraten wird die Probe schnell

genug in den entsprechenden Temperaturbereich erwärmt, in welchem die Kristalli-

sation der favorisierten Phasen, Fe3B und Nd2Fe14B, stattfindet [86–88]. Die amor-

phen Bänder wurden dazu in einem Infrarot-Ofen in einem evakuierten Glasrohr

(p < 10−3 Pa) bei Heizraten von ∼ 1.7K/s bei 953K für 600 s wärmebehandelt.
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Tabelle 3.1: Intrinsische magnetische Parameter von Nd2Fe14B bzw. Fe3B.

K1: erste uniaxiale Anisotropiekonstante; Ms: Sättigungsmagnetisierung; A: Aus-

tauschsteifigkeitskonstante [90–92].

K1 (MJ/m3) Ms (T) A (pJ/m)

Nd2Fe14B 4.5 1.61 12.5

Fe3B −0.32 1.62 12.5

Untersuchnungen mit Mößbauer-Spektroskopie [87] zeigen, dass die so präparierten

Proben einen Volumenanteil an Nd2Fe14B (Fe3B) von etwa 48% (52%) aufweisen.

Im Ergebnisse und Diskussion-Kapitel werden Untersuchungen mittels Röntgendif-

fraktometrie und Transmissionselektronenmikroskopie vorgestellt, die die Frage nach

den Kristallitgrößen behandelt.

3.2 Materialeigenschaften

In diesem Abschnitt sollen kurz die wichtigsten magnetischen Materialeigenschaften

vorgestellt werden. Wie oben erwähnt, kristallisieren die beiden ferromagnetischen

Phasen aus einem amorphen Präkursor. Es entsteht ein Polykristall mit zufällig

orientierten Kristallachsen. Da die magnetische Anisotropie der Körner im Wesent-

lichen durch die Kristallstruktur bestimmt wird (magnetokristalline Anisotropie),

sind die magnetisch leichten Achsen1 ebenfalls zufällig orientiert. Ein solcher Ferro-

magnet wird in der Literatur als random anisotropy magnet bezeichnet [30, 89]. In

Tabelle 3.1 sind die wichtigsten intrinsischen Materialparameter von Nd2Fe14B und

Fe3B aufgelistet. Hierbei sei erwähnt, dass für die Austauschkonstante der Fe3B-

Phase keine experimentellen Daten zur Verfügung stehen und in der Literatur nur

theoretische Abschätzungen zu finden sind.

In Abbildung 3.2 ist die Magnetisierungskurve des Nanokomposites dargestellt.

Bevor der qualitative Verlauf diskutiert wird, soll folgende kurze Überlegung vor-

angehen. Würde man beide Phasen getrennt voneinander untersuchen, so würden

1 Als leichte Achse wird diejenige Richtung in einem Kristall bezeichnet, in der die Magnetisie-

rung in Bezug auf die Anisotropieenergie am energetisch günstigsten ausgerichtet ist.

39



Materialeigenschaften

sich auf Grund der stark unterschiedlichen Anisotropiekonstanten unterschiedliche

Hysteresen ergeben [93]. Signifikant wäre dabei ein um etwa eine Größenordnung

vergrößertes Koerzitivfeld der Nd2Fe14B Phase.2 Betrachtet man die Magnetisie-

rungshysterese für das vorliegende Nanokomposit (Abb. 3.2), so erkennt man einen

Verlauf, der dem eines einphasigen Materials entspricht. Mit anderen Worten, es ist

keine Superposition zweier Hystereseschleifen (entsprechend der beiden Phasen) zu

erkennen, was darauf hinweist, dass zwischen beiden Phasen eine Austauschkopp-

lung vorliegt [93]. Untermauert wird dies dadurch, dass das experimentelle Verhält-

nis der remanenten Magnetisierung zur Sättigungsmagnetisierung Mr/Ms
∼= 0.7

beträgt, und damit signifikant erhöht ist im Vergleich zum idealisierten Stoner-

Wohlfarth Wert von 0.5, der für ein isotropes Ensemble von wechselwirkungsfreien

Eindomänenpartikeln zu erwarten wäre. In der Literatur wird dieser Effekt als re-

manence enhancement bezeichnet und ist in nanokristallinen Materialien bekannt

[9, 49, 94–96]. Wie man außerdem aus Abb. 3.2 entnehmen kann, ergibt sich für die

vorliegende Probe ein Koerzitivfeld von µ0Hc = 0.55T.

2 Ausgehend vom Stoner-Wohlfart Modell: Hc ∝ K1/Ms [32]

40



Transmissionselektronenmikroskopie

 !"#  #"$  %"# $"$ %"# #"$ !"#

 &'$

 ($

$

($

&'$

 

 

!

!"! #$$!%

 
 
!
"

#

$

%
&

'
(

!

 

 

 

 

!!&%'()*+

 

!

,-

.

/'

01

23/'

4

2

"!"!4  !5

6

7

Abbildung 3.2: Magnetisierungskurve des Nd2Fe14B/Fe3B Komposites als

Funktion des angelegten Magnetfeldes. Die magnetische Remanenz beträgt hierbei

Mr
∼= 0.7Ms. Das Koerzitivfeld ergibt sich zu µ0Hc

∼= 0.55T.

3.3 Transmissionselektronenmikroskopie

Die Karlsruhe Nano Micro Facility (KNMF). am Karlsruhe Institut für Technologie

(KIT), gewährt nach erfolgreicher Proposal Einreichung den Zugang zu state of the

art Mikro- und Nanotechnologien, wie dem abberationskorrigierten Transmissions-

elektronenmikroskop FEI TITAN 80−300 [97]. Im Rahmen der vorliegenden Arbeit

wurden in dieser Einrichtung eine Probenpräpartion mittels der fokusierten Ionen-

strahltechnik (Focused Ion Beam, FIB) und verschiedene im Folgenden beschriebene

Materialanalysen mit dem zuvor genannten Instrument durchgeführt.

3.3.1 EFTEM

Die Kombination eines Transmissionseletronenmikroskops (TEM) mit einem abbil-

denden Energiefilter (EFTEM) erlaubt die Abbildung einer Elementverteilung. Eine

schematische Darstellung der EFTEM Analysemethode ist in Abbildung 3.3 ge-
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Abbildung 3.3: Schematische Darstellung von Analysemethoden in einem Trans-

missionselektronenmikroskop. In der Weitwinkel-Dunkelfeldabbildung (High-

Angle Annular Dark-Field, HAADF) werden Elektronen, die inkohärent elastisch

unter großen Winkeln an Atomkernen gestreut wurden, auf einem ringförmigen

HAADF-Detektor registriert. Die Verwendung von Ablenkspulen (nicht einge-

zeichnet) und eines sehr feinen Elektronenstrahls erlaubt den Betrieb im Raster-

modus (HAADF-STEM). Die Streuwinkel weisen eine Abhängigkeit von der Kern-

ladungszahl Z auf, was in diesem Modus eine Kontrastabbildung in Bezug auf die

Elementverteilung zulässt. In der energiegefilterten Transmissionselektronenmi-

kroskopie (Energy Filtered TEM, EFTEM) werden die transmitierten Elektronen

durch ein magnetisches Prisma gelenkt, welches diese in Bezug auf ihre Energie-

verluste auftrennt (Electron-Energy-Loss Spectroscopy, EELS). Durch einen ener-

gieselektierenden Schlitz werden Elektronen mit einem bestimmten Energieverlust

ausgewählt und durch eine elektronenoptische Einheit auf einem CCD-Detektor

abgebildet. Fallen Atome, die in Folge des Elektronenbeschusses ionisiert wurden,

in den Grundzustand zurück, können Photonen mit charakteristischen Energien

frei gesetzt werden und mit Hilfe der energiedispersiven Röntgenspektroskopie

(Energy-Dispersive X-Ray, EDX) analysiert werden.
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zeigt. Eine dünne Probe wird mit hochenergetischen Elektronen durchstrahlt und

das entstandene Bild in ein magnetisches Prisma geleitet. Die Elektronen ionisie-

ren beim durchdringen der Probe einzelne Atome durch herausschlagen von inneren

Elektronen, die auf unbesetzte Energieniveaus angehoben werden. Die transmitier-

ten Elektronen besitzen somit je nach Ionisationsprozess eine bestimmte verringerte

Energie. Das magnetische Prisma trennt die Elektronen entsprechend ihres Energie-

verlustes zu einem Spektrum auf (Electron Energy Loss Spectroscopy, EELS) in dem

der Ionisationsprozess durch eine elementspezifische Ionisationskante charakterisiert

wird. Abhängig von der chemischen Zusammensetzung und der Probendicke liegt die

Nachweisempfindlichkeit im Bereich von 0.1 bis 1 at% [98]. Durch die Verwendung

eines energieselektierenden Schlitzes – dieser selektiert Energien an diesen Ionisati-

onskanten – und einer elektronenoptischen Einheit, bestehend aus einem komplexen

Arrangement von magnetischen Linsen, können somit Elektronen abgebildet werden,

welche einen charakteristischen, einem chemischen Element zuordenbaren Energie-

verlust aufweisen. Auf diese Weise entsteht eine Darstellung der Elementverteilung

eines chemischen Elements, Li bis U mit einer lateralen Auflösung von etwa 1−3 nm
[99, 100].

3.3.2 HAADF-TEM

Eine weitere Möglichkeit, Werkstoffe in Bezug auf ihre Kristallstruktur und ihre che-

mische Zusammensetzung zu charakterisieren bietet die Rastertransmissionselektro-

nenmikroskopie (Scanning Transmission Electron Microscopy, STEM). Analog zum

Rasterelektronenmikroskop (SEM) bestrahlt ein feiner Elektronenstrahl, geführt mit

Hilfe von Ablenkspulen, die Probe zeilenförmig. Die laterale Auflösung wird hierbei

im Wesentlichen durch die Strahldicke bestimmt, die im Bereich von 0.2 nm und

kleiner liegen kann. Die von den einzelnen Positionen entstehenden Bilder werden

sequentiell aufgezeichnet. Durch Detektion von inkohärent unter großen Winkeln

gestreuten Elektronen in einem ringförmigen Detektor erhält man die sogenannten

Weitwinkel-Dunkelfeldabbildungen (HAADF-STEM)[vgl. Abb. 3.3]. Die Streuwin-

kel nehmen mit der Kernladungszahl Z zu, wodurch in der HAADF-STEM eine

Kontrastabbildung infolge von Variationen in der chemischen Zusammensetzung der

Probe möglich wird [101]. Zur Analyse der chemischen Zusammensetzung kann in
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den entsprechenden Bereichen entweder komplementär eine energiedispersive Rönt-

genspektroskopie (EDX) [102] oder eine EELS Untersuchung durchgeführt werden.

3.4 Probencharakterisierung durch XRD

Zur Mikrostrukturanalyse des in dieser Arbeit untersuchten Werkstoffs wurden

Röntgendiffraktogramme an einem Labordiffraktometer XPert Pro der Firma Pana-

lytical B.V. durchgeführt. In den beiden nachstehenden Abschnitten werden einige

Grundlagen zur verwendeten Analysemethode nach Klug und Alexander [103] vor-

gestellt.

3.4.1 Bragg-Streuung

Zur Analyse der Mikrostruktur der vorliegenden Proben wurden Röntgendiffrak-

togramme in Bragg Brentano (θ − θ) Geometrie aufgenommen. Diese Messungen

stellen eine Art der Pulverdiffraktion dar, bei der man annimmt, dass eine homo-

gene Verteilung der Ausrichtung der Kristallite vorliegt. Abbildung 3.4 zeigt ein

typisches θ − θ Diffraktogramm einer nanokristallinen Probe mit hcp-Struktur. Die

im Folgenden beschriebene Analysemethode beruht darauf, dass Röntgenstrahlen an

Elektronenhüllen der Gitteratome streuen und genau dann konstruktiv interferieren,

wenn die Bragg-Bedingung

2dhkl sin θ = λ (3.1)

erfüllt ist. Diese drückt aus, dass konstruktive Interferenz dann auftritt, wenn Rönt-

genstrahlen an den Gitteratomen benachbarter Netzebenen im Abstand dhkl streuen

und einen Gangunterschied besitzen, der einem ganzzahligen Vielfachen ihrer Wel-

lenlänge λ entspricht. Bei konstanter, monochromatischer Wellenlänge erhält man

bei entsprechendem Streuwinkel 2θ scharfe Intensitätsmaxima. In dieser idealisier-

ten Modellvorstellung geht man von unendlich ausgedehnten Kristalliten aus. Die

Abmessungen der Kristallite in den untersuchten Proben weisen aber nur einige

Nanometer auf. Zudem variiert, bedingt durch inhomogene Mikroverzerrungen, der

Netzebenenabstand dhkl. Beides führt zu einer Reflexbreite δ2θ. Homogene Mikro-

verzerrungen dagegen tragen zu einer Verschiebung der Reflexposition bei.
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Abbildung 3.4: Röntgendiffraktogramm einer nanokristallinen edelgaskonden-

sierten Holmium Probe. Aufgetragen ist die Intensität gegen den Streuwinkel 2θ.

Wie für ein nanokristallines Material charakteristisch, sind die Bragg-Reflexe stark

verbreitert. Beiträge zu dieser Verbreiterung liefern das Instrument, die endliche

Korngröße und die inhomogenen Mikroverzerrungen.

3.4.2 Kristallitgröße und Mikroverzerrung

Über die Reflexbreiten lässt sich nach der Methode von Klug und Alexander [103] die

volumengewichtete mittlere Korngröße Dvol bestimmen. Dabei macht man sich zu

Nutze, dass die einzelnen Anteile der Reflexverbreiterung unterschiedliche Abhängig-

keit von den Streuwinkeln zeigen und dadurch getrennt werden können. Der Beitrag

der endlichen Kristallitgröße zur Reflexaufweitung δ2θ kann dabei mit Hilfe der

Scherrer-Formel angegeben werden:

|δ2θ|Kg =
4

3

Cλ

Dvol cos θ
, (3.2)

wobei C die Scherrer-Konstante bezeichnet, welche als geometrischer Faktor die

Form der Kristallite berücksichtigt. In den vorliegenden Messungen wurde nach [104]

eine Scherrer-Konstante von 0.83 gewählt. An dieser Stelle sei angemerkt, dass die

Scherrerformel eine empirisch gefundene Formel darstellt. Im Gegensatz dazu kann
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man die Reflexverbreiterung durch die Mikroverzerrung direkt durch eine Variation

der Netzebenenabstände dhkl in der Bragg-Gleichung beschreiben:

|δ2θ|Mv = 2 tan θ

∣∣∣∣
δdhkl
dhkl

∣∣∣∣ . (3.3)

Die Mikroverzerrung e ist definiert als e = 1
2
| δdhkl
dhkl

|.
Als Maß für die Reflexbreite wurde stets die Halbwertsbreite FWHM benutzt.

Bevor diese jedoch in die Anteile |δ2θ|Kg und |δ2θ|Mv zerlegt werden kann, muss

man den Beitrag der instrumentellen Verbreiterung subtrahieren. Die instrumen-

telle Verbreiterung wird durch die endliche Linienbreite der Wellenlänge, die Blen-

dengeomtrie und die endliche Auflösung des Detektors verursacht. Mit Hilfe einer

Referenzprobe, im vorliegenden Falle Lanthanhexaborit, lässt sich die instrumentelle

Verbreiterung in Abhängigkeit des Streuwinkels 2θ messen, woraus sich eine Geräte-

funktion ergibt. Damit können die ermittelten Halbwertsbreiten korrigiert werden.

Die so bestimmten Breiten setzen sich dann nur noch aus einer gaussförmigen Ver-

breiterung durch die Mikroverzerrung und einer lorentzförmigen Verbreiterung durch

die endliche Korngröße zusammen.

Transformiert man die Streuwinkel und die entsprechenden Ausdrücke für die

Reflexbreiten gemäß

q =
4π sin θ

λ
(3.4)

in den reziproken Raum, so kann man nach [103] für die Überlagerung der beiden

Verbreiterungen näherungsweise folgenden Zusammenhang angeben:

δqKg

δq
= 1−

(
δqMv

δq

)2

. (3.5)

Damit lässt sich nachstehende modifizierte Williamson-Hall Beziehung herleiten:

(δq)2

q2
=

4

3

2πC

Dvol

δq

q2
+ 4e2. (3.6)

Trägt man (δq)2

q2
gegen δq

q2
auf und passt an die Datenpunkte eine Ausgleichsgerade

an (vgl. Abbildung 3.5), so kann man aus der Steigung die mittlere Korngröße Dvol

und aus dem Achsenabschnitt die Mikroverzerrung e bestimmen.
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Abbildung 3.5: Modifizierter Williamson-Hall Plot anhand dessen die volumen-

gewichtete mittlere Korngröße Dvol (Steigung) und die Mikroverzerrung (Achsen-

abschnitt) gemäß Gleichung (3.6) bestimmt werden können.

3.5 Experimentelle SANS

Auf Grund der besonderen Eigenschaften der Neutronen hat sich die Neutronen-

streuung zu einer der essentiellen Methoden zur Untersuchung magnetischer Mate-

rialien entwickelt. Zum einen ist ihre Masse und damit ihre de Broglie-Wellenlänge

in der Größenordnung der interatomaren Abstände, zum andern sind Neutronen auf

Grund ihrer Ladungsneutralität in der Lage tief in Materie einzudringen und darüber

hinaus mit den Atomkernen zu interagieren. Die herausragende Eigenschaft ist aber

die Tatsache, dass Neutronen ein magnetisches Moment besitzen (µn = −1.93µK)

und dadurch mit den magnetischen Momenten der Atome wechselwirken. Das ver-

setzt Experimentatoren in die Lage, magnetische Eigenschaften mit Hinblick auf

die zu Grunde liegenden Spinstrukturen zu untersuchen. In der magnetischen SANS

untersucht man Strukturen wie z.B. Magnetisierungsfluktuationen, die charakteri-

stische Realraumlängen von 1 − 300 nm aufweisen, was einem q-Bereich von etwa

0.01− 5 nm−1 und je nach Wellenlänge Streuwinkeln 2ϕ ≤ 10◦ entspricht.
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Abbildung 3.6: Schematischer Aufbau eines SANS-Experiments. Der Ge-

schwindigkeitsselektor dient zur Monochromatisierung des einfallenden Neutro-

nenstrahls. Um die Strahldivergenz zu verringern, wird ein Kollimator, im We-

sentlichen bestehend aus Aperturblenden, nachgeschaltet. Die an der Probe ein-

treffenden Neutronen (Wellenvektor k0) werden an der Probe unter dem Streu-

winkel 2ϕ in Richtung k gestreut und am Detektor registriert. Der Streuvektor q

ist definiert als q = k − k0 (|q| = 4π sinϕ
λ ).

3.5.1 Aufbau der SANS

Abbildung 3.6 zeigt schematisch den experimentellen Aufbau eines SANS-

Instruments. Abhängig von der Temperatur des Moderators3 weist der einkommen-

de Neutronenstrahl eine Maxwell-Boltzmann-Verteilung auf und wird z.B. durch

einen Geschwindigkeitsselektor monochromatisiert. Mittels Aperturblenden, welche

bei verschiedenen Abständen zuschaltbar sind, wird der Strahl bis zum notwendi-

gen Maß kollimiert. Gemäß des Streuquerschnitts (vgl. Kapitel 2.3) des zu untersu-

chenden Materials werden die Neutronen teilweise an der Probe gestreut, der Rest

wird absorbiert oder durchdringt die Probe und wird in einem sogenannten Beam-

stop (Strahlstopper) aufgefangen. Die gestreuten Neutronen werden an einem 2D

Detektor registriert. Üblicherweise werden hierzu 3He Flächenzähler verwendet. In

der nuklearen Reaktion, welche der Neutronenbeschuss auf ein 3He Target auslöst,

wird ein Ladungsträger in Form eines Protons freigesetzt. In den einzelnen mit 3He

3Der Moderator dient zum einen zum Kühlen des Reaktors, zum andern werden schnelle Neu-

tronen auf thermische Energie abgebremst [105].
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Tabelle 3.2: Details zu den verwendeten SANS-Instrumenten. Aufgeführt sind

der maximale Fluss am Probenort, der verfügbare Wellenlängenbereich inklusive

der Wellenlängenverbreiterung, der zugängliche q-Bereich sowie die Bauart der

Detektoren. Am QUOKKA und D11 sind 3He Detektoren im Einsatz, an der

KWS-1 wird ein 6Li Szintillationsflächendetektor verwendet.

Instrument QUOKKA D11 KWS-1

max. Fluss (cm−2s−1) 4× 107 1× 108 1.5× 108

λ (Å) 4.5− 40 4.5− 40 4.5− 12
∆λ
λ
(FWHM) 10% 9% 10%

q-Bereich (nm−1) 0.04− 7 0.003− 10 0.007− 5

Detektor 3He 3He 6Li Sz.

gefüllten Kammern (Pixelelemente) des Detektors werden diese Protonen mittels

Hochspannung zu speziell angeordneten Leitern abgeführt und der dadurch erzeug-

te Stromimpuls als Streuereignis in den Zählern registriert. Aus der Position der

Pixelelemente lassen sich diese Streuereignisse mit dem Streuvektor q korrelieren.

Ähnlich dem Aufbau des 3He Detektors befinden sich auf den ebenfalls gebräuchli-

chen Szintillationsdetektoren Pixelelemente, in denen, abhängig von der Intensität

der einfallenden Neutronen, Lichtblitze erzeugt werden, die per Photomultiplier zu

mess- und zählbaren Stromimpulsen weiterverarbeitet werden.

Für diese Arbeit wurden Experimente an verschiedenen SANS-Instrumenten

durchgeführt; am QUOKKA-Instrument am OPAL-Reaktor in Sydney (Austra-

lien), an der KWS-1 Anlage am FRM2-Reaktor in Garching (Deutschland) und

am Instrument D11 am ILL in Grenoble (Frankreich). Experimentelle Details, wie

verfügbare Wellenlänge oder maximaler Neutronenfluss am Probenort lassen sich

aus Tabelle 3.2 entnehmen. In den genannten Experimenten wurde die Probe exter-

nen Magnetfeldern ausgesetzt, die, je nach Bauart des verwendeten Kryomagneten,

verschieden gerichtet waren: senkrecht zum Neutronenstrahl am QUOKKA (hori-

zontal, µ0Hmax = 10T) und der KWS-1 (vertikal, µ0Hmax = 5T) und parallel zum

Neutronenstrahl am D11 (µ0Hmax = 16T). Dazu vergleiche man Abbildung 2.1.
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3.5.2 Datenreduktion

In SANS-Experimenten werden die gemessenen Streuintensitäten (Rohdaten) durch

verschiedene Faktoren verfälscht und müssen, wie nachstehend beschrieben, kor-

rigiert werden [106]. Zum Beispiel entsteht Streuung an den Aperturen und dem

Probenhalter, was zur sogenannten Background -Streuung führt. Hinzu kommt, dass

die Detektorzellen unterschiedliche Effizienz aufweisen, was ebenfalls berücksichtigt

werden muss. Um Vergleichbarkeit zwischen Experimenten an verschiedenen Instru-

menten oder Proben desselben Materials mit verschiedenen Abmessungen herzustel-

len, werden die Daten zusätzlich auf absolute Einheiten normiert. Diese Korrekturen

machen die Messung der Transmission der Probe TS = TS+C/TC erforderlich. Dar-

unter versteht man den Anteil an Neutronen, welcher die Probe durchdringt ohne

gestreut oder absorbiert zu werden. Dazu wird im Gegensatz zu den Streumessun-

gen der Beamstop herausgefahren und die Intensität des Primärstrahls gemessen.

Notwendig sind hierbei Messungen der Transmission der Probe im Probenhalter

(TS+C) und des leeren Probenhalters (TC). Diese sowie alle nachträglich erwähnten

Messungen werden auf die Zählzeit oder auf die Anzahl der in einem Strahlmonitor

detektierten Neutronen normiert. Letzteres bietet den Vorteil auf Variationen im

Neutronenfluss sensitiv zu sein.

Die in den Pixelelementen (i, j) registrierten Streuereignisse werden bezüglich

des Backgrounds nach folgender Formel korrigiert [106]:

IS(i, j) = [IS+C(i, j)− Ir(i, j)]−
TS+C

TC

· [IC(i, j)− Ir(i, j)] . (3.7)

Hierbei bezeichnen IS die backgroundkorrigierte Streuintensität der Probe, IS+C die

gemessenen Rohdaten, was der Streuung der Probe im Probenhalter entspricht, IC

die Messung des leeren Probenhalters und Ir den Detektor-Untergrund. Beiträge zu

letzterem liefern die natürliche Untergrundstrahlung, Neutronen von nahestehenden

Experimenten und unkontrollierbare Ladungsströme im Detektor. Zur Bestimmung

von Ir wird die Probenapertur mit einem neutronenabsorbierenden Material ver-

deckt und bis zur statistischen Signifikanz der Zählereignisse gemessen. Die Korrek-

tur bezüglich des leeren Probenhalters (IC) deckt neben der Streuung am Proben-

halter auch Beiträge von Streuung an Strahlfenstern, Aperturkanten, Luftpartikel in

der Flugbahn der Neutronen sowie den Saum des Primärstrahls um den Beamstop
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ab. Die Intensitäten, gemessen in den einzelnen Pixelelementen, werden außerdem

auf die Effizienz der Detektorzelle normiert. Eine entsprechende Effizienzkarte des

2D-Detektors, welche über eine Messung eines isotropen Vorwärtsstreuers bestimmt

wird, ist in der Regel für jedes Instrument vorliegend. Die Normierung auf absolute

Einheiten wird nach folgendem Zusammenhang durchgeführt [106]:

dΣ(q)

∆Ω
(q) =

IS(i, j)

φSASǫddSTS+C∆Ωd

. (3.8)

Hierbei bezeichnet dΣ(q)
∆Ω

den auf das Streuvolumen V = ASdS, welches sich aus der

bestrahlten Fläche AS und der Dicke dS der Probe berechnet, normierten absolu-

ten makroskopischen Streuquerschnitt, φS den Fluss an der Probe (Neutronen pro

Einheitsfläche und Sekunde), ∆Ωd den von der Detektorzelle abgedeckten Raum-

winkel (≈ Zellenfläche/Proben-Detektorabstand2) und ǫd die Detektoreffizienz. Zur

Durchführung dieser Normierung muss die Dicke der Probe gemessen werden und

die Skalierung durch scal = φSASǫd bestimmt werden. Für Letzteres gibt es zwei

gängige Methoden. Zum einen kann im gleichen instrumentellen Setup und im ver-

wendeten Probenhalter eine Referenzprobe gemessen werden, deren absoluter Streu-

querschnitt bekannt ist. Zum anderen gibt es die Methode der direkten Messung die-

ser Skalierung.4 Dazu benutzt man die Messung des Primärstrahls durch den leeren

Probenhalter (TC), was der Anzahl an Neutronen entspricht, welche die bestrahlte

Fläche AS durchdrungen haben, skaliert mit der Detektoreffizienz. Berücksichtigt

man, dass diese Messung ebenfalls auf die Zählzeit normiert wird, erhält man da-

durch den Skalierungsfaktor scal = φSASǫd. Im Verlauf der beiden beschriebenen

Datenreduktionen ergeben sich, wie man leicht nachvollziehen kann, die gleichen

Ergebnisse. Die relativen Fehler, die bei diesen Reduktionen auftreten, werden übli-

cherweise mit 5− 10% angegeben [106].

4 Dazu sei erwähnt, dass diese Methode die Messung der Detektoreffizienz voraussetzt. Bei der

Methode der Messung einer Referenzprobe kann für den Fall, dass ein isotroper Streuer verwendet

wird auch die Detektoreffizienz berücksichtigt werden.
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Kapitel 4

Ergebnisse und Diskussion

In diesem Kapitel werden die Ergebnisse dieser Arbeit vorgestellt und diskutiert.

Zuerst liegt der Fokus auf der Analyse der nuklearen Mikrostruktur mittels Röntgen-

diffraktion (XRD) und Transmissionselektronenmikroskopie (TEM). Dann wird die

Neutronenkleinwinkelstreuung thematisiert, wobei zunächst die 2D-Detektordaten

im Vordergrund stehen. Anschließend werden azimutal gemittelte Streuquerschnitte

gezeigt und diskutiert. Aus diesen werden die magnetischen Streudaten extrahiert,

um damit eine Autokorrelationsfunktion zu bestimmen. Nach der Diskussion der

ermittelten Korrelationslängen werden zum Abschluss die Ergebnisse der mikroma-

gnetischen Analysen vorgestellt.

4.1 Mikrostruktur der Probe

Um aussagekräftige Analysen im Hinblick auf die magnetische Mikrostruktur durch-

zuführen, sind Informationen über die nukleare Mikrostruktur notwendig. Thema

dieses ersten Abschnitts sind zu diesem Zweck durchgeführte Untersuchungen mit-

tels Röntgendiffraktion (XRD) und Transmissionselektronenmikroskopie (TEM).

Abbildung 4.1 zeigt ein Röntgendiffraktogramm des Nd2Fe14B/Fe3B Nanokompo-

sites, aufgenommen in Bragg-Brentano-Geometrie unter Verwendung von Kupfer

Kα Strahlung. Die Röntgenreflexe sind, wie für nanokristalline Festkörper bekannt,

sehr verbreitert. Neben der gerätespezifischen instrumentellen Verbreiterung lässt

sich dies auf die endliche Anzahl an Netzebenen in den Kristalliten sowie auf in-
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Abbildung 4.1: Röntgendiffraktogramm des Nd2Fe14B/Fe3B Nanokomposites

(Kupfer Kα, Bragg-Brentano-Geometrie). Die stark verbreiterten Reflexe weisen

auf Partikelgrößen im Nanometerbereich hin. Die rote und die blaue Linie zeigen

die Messdaten bzw. den im Fit verwendeten Untergrund. Die lilafarbenen bzw.

grünen Striche zeigen die Referenz-Reflexe von Nd2Fe14B und Fe3B, entnommen

aus der JCPDS-PDF Datenbank Ref.Nr: 00-039-1316 bzw. 01-086-0273.

homogene Gitterverzerrungen zurückführen [107]. Erstgenannter Beitrag wird über

die Messung eines Standardmaterials korrigiert. Die beiden letztgenannten Verbrei-

terungsbeiträge weisen unterschiedliche Winkelabhängigkeiten auf, was genutzt wer-

den kann, um nach der Methode von Klug und Alexander [103] die Kristallitgrößen

zu bestimmen. Dazu wird ein Full-Pattern-Fit durchgeführt, welcher die Peakver-

breiterungen als Funktion der Peakposition berechnet. Wie man aus Abbildung 4.1

entnehmen kann, liefert die Nd2Fe14B Phase auf Grund der komplexen Kristallbasis

eine vergleichsweise hohe Anzahl an Reflexen, deutlich zu sehen am lila-farbenen

Referenzpattern. Dies und die starke Verbreiterung der Peaks führen dazu, dass die

Reflexe der beiden Phasen nicht oder nur in Einzelfällen getrennt werden können.

Um eine Korngrößenanalyse durchzuführen, wurde die Untersuchung des Diffrakto-

gramms auf zwei Teilbereiche beschränkt und die Winkelbereiche 35◦ < 2θ < 41◦

und 46◦ < 2θ < 55◦ getrennt ausgewertet. Aus dem ersten Teil wurden die gefitte-
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ten Reflexe der Nd2Fe14B Phase verwendet, aus dem zweiten die der Fe3B Phase.

Die Auswertung ergab volumengewichtete mittlere Korngrößen für Nd2Fe14B (Fe3B)

von <D>vol = 18 nm (25 nm) mit Fehlern von jeweils ungefähr 25%. Dieser Analyse

liegt die Annahme einer Log-Normalverteilung der Kristallitgrößen mit einer Brei-

te von 1.7 zugrunde, was sich für nanokristalline Materialien als geeignet erwiesen

hat [104, 108]. Der vergleichsweise hohe Fehler resultiert aus der Schwierigkeit die

Reflexe zu trennen.

Abbildung 4.2: TEMAnalyse des Nd2Fe14B/Fe3B Nanokomposites. (a) Im high-

angle annular dark-field scanning TEM (HAADF-STEM) Modus, entsteht der

Streukontrast (in erster Näherung) durch die unterschiedlichen Atomzahlen der

beiden Phasen. Die helleren (dunkleren) Bereiche stellen die Nd2Fe14B (Fe3B)

Phase dar. (b) Die energy-filtered TEM (EFTEM) Map bildet die Verteilung der

Nd-Atome ab (weiße Farbe). (c) Dark-field TEM (DFTEM) Bild, welches Kristal-

lite in Bragg-Bedingung zeigt (helle Bereiche). Ein Vergleich von (a)−(c) erlaubt
die Abschätzung der mittleren Korngrößen der Nd2Fe14B (∼ 22 nm) und Fe3B

(∼ 29 nm) Phasen.

Untermauert werden diese Resultate durch TEM Untersuchungen, die an der

Karlsruhe Nano Micro Facility (KNMF) durchgeführt wurden, einer Einrichtung des

Karlsruhe Instituts für Technologie (KIT). Die Probe wurde mit Hilfe der Focused

Ion Beam (FIB) Technik entsprechend präpariert. Dabei schneidet ein Galliumionen-

Strahl eine sogenannte TEM-Lamelle in Keilform aus dem Vollmaterial heraus. Zur

Mikroskopie stand ein FEI Titan 80-300 (aberration corrected) Transmissionselek-
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tronenmikroskop zur Verfügung [97]. Dieses Instrument bietet unter anderem die

Möglichkeit der high-angle annular dark field (HAADF) TEM sowie der energy-

filtered (EF) TEM. Bei der erstgenannten Methode entsteht das Bild durch Detek-

tion von nicht-kohärent, unter großen Winkeln gestreuten Elektronen. Diese Me-

thode ist sensitiv auf Variationen der Atomzahl [101]. Im Scanning-Modus werden

somit auf Grund ihrer unterschiedlichen chemischen Komposition die beiden Pha-

sen sichtbar. Abbildung 4.2 (a) zeigt ein so entstandenes HAADF-TEM Bild. Die

helleren Bereiche gehören zur Nd2Fe14B, die dunkleren Regionen zur Fe3B Phase.

Zu diesem Schluss kommt man zum einen durch Auswerten von energiedispersiven

Röntgenspektren, welche in entsprechenden Bereichen aufgenommen wurden (siehe

Appendix 5) und zum andern durch Vergleich mit den im EFTEM-Modus aufge-

nommenen Bildern (vgl. Abb. 4.2 (b)). In diesem Modus werden nur Elektronen

detektiert, die auf Grund von Wechselwirkungen mit den Elektronenhüllen der Ato-

me einen bestimmten Energieverlust aufweisen. Das so entstandene Bild Abbildung

4.2 (b) zeigt die Verteilung der Nd-Atome für einen Ausschnitt aus Abbildung 4.2

(a). Durch optische Inspektion beider Bilder erkennt man eine Übereinstimmung im

Hinblick auf die oben genannte Phasenzugehörigkeit der helleren/dunkleren Berei-

che. Die beschriebenen Aufnahmen können genutzt werden, um die im Dark-Field

(DF) TEM sichbaren Kristallite den beiden Phasen zuzuordnen. Im DFTEM-Modus

werden nur Elektronen abgebildet, die an der Probe gestreut wurden, wobei Elek-

tronen, die unter Bragg-Bedingung in Kristalliten gestreut werden, diese Kristallite

als weiße Bereiche sichtbar machen. Abbildung 4.2 (c) zeigt ein DF-Bild des auch in

(b) sichtbaren Probenbereichs. Man erkennt die feinkörnige Struktur des Nanokom-

posites mit Kristallitgrößen von 20 − 30 nm. Mit Hilfe des Software-Tools ImageJ

können die sichtbaren Körner in diesen DF-Bildern vermessen werden und durch

teil-transparentes Überlagern (nicht gezeigt) der EFTEM bzw. der HAADF-STEM

Bilder den Phasen zugeordnet werden. Die so ausgewerteten Kristallitgrößen lassen

sich zu 22 nm für die Nd2Fe14B bzw. zu 29 nm für die Fe3B Phase beziffern. Zusam-

mengefasst zeigt die TEM-Untersuchung eine Konsistenz mit der XRD-Analyse.

Darüber hinaus liefert sie den Befund, wie aus Abb. 4.2 (a) und (b) ersichtlich, dass

beide Phasen homogen verteilt sind.
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4.2 SANS

In den nachfolgenden Abschnitten werden die Ergebnisse der magnetischen SANS

diskutiert. Besonderer Fokus wird dabei auf die Ergebnisse der Messungen an den

Instrumenten Quokka und D11 gelegt. Details zu den experimentellen Setups finden

sich in Tabelle 3.2. Die Messungen fanden in der Art statt, dass die Probe zuerst im

höchsten verfügbaren Magnetfeld – µ0H = 10T (Quokka) und µ0H = 16T (D11) –

gemessen wurde. Bei diesen Feldern befindet sich die Probe auf einem sogenannten

Major-Loop, man vergleiche die Magnetisierungskurve aus Abbildung 3.2. Es ist an-

zunehmen, dass diese Magnetfelder ausreichen, um die Probe in einen domänenfreien

Zustand zu bringen. Danach fanden die Messungen bei kleineren Feldern statt, wo-

bei diese sukzessive reduziert wurden. Dieses Vorgehen soll die Reproduzierbarkeit

der Messungen gewährleisten.

4.2.1 2D-Detektordaten

Im Gegensatz zur nuklearen Streuung weist die magnetische Streuung in der Re-

gel sogar für texturfreie Proben anisotrope Streubilder auf. Genauer gesagt ist die

magnetische Streuung auch im texturfreien Fall nicht nur eine Funktion des Be-

trags des Streuvektors q sondern auch von dessen Orientierung. Im vorliegenden

Fall kann von einer texturfreien Probe ausgegangen werden, womit sichtbare Aniso-

tropien der magnetischen SANS zuzuschreiben sind. Wie in den Gleichungen (2.18)

bis (2.21) ersichtlich, weisen die einzelnen Streubeiträge der magnetischen SANS

unterschiedliche Winkelabhängigkeiten auf. Somit ist je nach erkennbarer Anisotro-

pie eine qualitative Aussage über die dominanten Streubeiträge möglich. Gezeigt

werden, falls nicht anders ausgezeichnet, Daten für die senkrechte (k0⊥H‖ez) bzw.

parallele (k0‖H‖ez) Streugeometrie.

Die Abbildungen 4.3 und 4.4 zeigen totale unpolarisierte 2D-SANS Querschnit-

te des Nd2Fe14B/Fe3B Nanokomposites bei T = 300K in den beiden Streugeo-

metrien k0‖H‖ez bzw. k0⊥H‖ez für ausgewählte Felder. Diese 2D-Detektorbilder

zeigen die Überlagerung der nuklearen und magnetischen Streubeiträge. Wie aus

Symmetriegründen für einen texturfreien Ferromagneten zu erwarten ist, sind alle

Streubilder in der longitudinalen Geometrie isotrop. Ein Blick auf den für diese Geo-
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Abbildung 4.3: dΣ/dΩ von Nd2Fe14B/Fe3B für verschiedene angelegte Magnet-

felder µ0H ( k0‖H‖ez; T = 300K).

metrie zugrundeliegenden Streuquerschnitt aus Gl. (2.21) zeigt, dass dieser zunächst

nicht klar erkennbar isotrop ist. Entscheidend ist dabei aber, dass die magnetischen

Streuamplituden |M̃x,y,z|2 selbst Funktionen des Winkel θ sein können. Es bleibt

festzuhalten, dass die Streuung in dieser Geometrie an einer texturfreien Probe ein

isotropes Streubild ergeben muss und die hier gezeigten Daten dieses Bild bestäti-

gen. Dies ist außerdem konsistent mit Blick auf die mikromagnetische Gleichung

(2.52), welche den für diese Geometrie gültigen Streuquerschnitt im Hochfeldfall

ausdrückt und ein isotropes Streubild vorhersagt. In Bezug auf die Feldabhängig-

keit der Streuintensitäten, lässt sich eine Zunahme der Gesamtintensität für kleiner

werdende angelegte Magnetfelder beobachten.

Eine solche Feldabhängigkeit der Gesamtintensität lässt sich gleichermaßen

für die transversale Geometrie feststellen (vgl. Abb. 4.4). Wobei hier ein Maxi-

mum bei der Koerzitivfeldstärke von µ0Hc = −0.55T zu verzeichnen ist. Für das

größte Feld von µ0H = 10T weist das Detektorbild keine Anisotropien auf. Be-

denkt man, dass sich die Probe bei µ0H = 10T nahe der Sättigung befindet (vgl.

Abbildung 3.2), so ist es bemerkenswert, dass keine sin2 θ-förmige Anisotropie zu

erkennen ist. Um das zu verstehen betrachte man zunächst den nuklearen und den

magnetischen Streulängendichte-Kontrast. In Gleichung (1.1) wurde dieser für die

magnetische Streuung, wie er im Partikel-Matrix Konzept benutzt wird, bereits ein-

geführt und berechnet sich aus ∆ρ2mag = b2H(∆M)2. Der nukleare Kontrast berechnet

sich für den vorliegenden Fall aus der Differenz der nuklearen Streulängendichten

∆ρ2nuc = (∆ρi − ∆ρj)
2 zwischen den Nd2Fe14B (i) und den Fe3B (j) Partikeln. Für

die folgende Abschätzung wurden die Werte für die nukleare Streulänge aus [65]
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entnommen und für µ0∆M = 0.01T, der Sprung in der Sättigungsmagnetisierung

beider Phasen, verwendet (vgl. Tabelle 3.1). Man erhält ∆ρ2nuc = 5.95 · 10−12 Å−2
und ∆ρ2mag = 0.0005 · 10−12 Å−2. Daraus ist ersichtlich, dass die nukleare Streu-

ung für hohe Felder als dominant angenommen werden kann. Mit anderen Worten,

die magnetische Streuung |M̃z|2 sin2 θ ist so schwach, dass sie im Hochfeldfall durch

optische Inspektion der 2D-Daten nicht zu erkennen ist. Weiter unten wird eine Ana-

lyse des Aspektverhältnisses des Streubildes für verschiedene q Bereiche vorgestellt,

welche die Tendenz bestätigen wird, dass der Streubeitrag ∝ |M̃z|2 klein ist.

Außerdem sollte man berücksichtigen, dass die Probe zwar in der Annäherung

an die Sättigung ist aber noch nicht ganz gesättigt ist. Deshalb sind Fluktuation

in den transversalen Magnetisierungskomponenten und damit verknüpfte Streubei-

träge von |M̃x|2 und |M̃y|2 cos2 θ nicht auszuschließen. Berücksichtigt man diese Bei-

träge, so bewirkt der cos2 θ-Term eine Elongation der Intensität in Richtung des

angelegten Feldes, was die Sichtbarkeit des |M̃z|2 sin2 θ erschwert oder verhindert.

Im vorliegenden Fall ist von einer Kombination aus dominanter nuklearer Streuung

und zusätzlicher Spinfehlorientierungstreuung auszugehen.

Abbildung 4.4: dΣ/dΩ von Nd2Fe14B/Fe3B für verschiedene angelegte Magnet-

felder µ0H (k0⊥H‖ez; T = 300K). Die Streuintensitäten steigen mit abnehmen-

dem Feld H an und erreichen ein Maximum bei µ0Hc = −0.55T. Für µ0H = 1T

und 0T ist eine Elongation der Intensität entlang der Feldrichtung erkennbar.

Reduziert man die angelegten Magnetfelder, so sind in den 2D-Daten Inten-

sitätselongationen in Feldrichtung erkennbar. Man vergleiche die Detektorbilder in

Abbildung 4.4 für die Felder µ0H = 1T und 0T. Für kleine Impulsüberträge q,

nahe des Beamstopps, ist die erhöhte Intensität in Feldrichtung am deutlichsten zu

erkennen. Dies ist ein Indiz für Spinfehlorientierungstreuung. Durch aufkommen-
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de Fluktuationen in den transversalen Magnetisierungskomponenten gewinnen die

Streubeiträge |M̃x|2 und |M̃y|2 cos2 θ an Bedeutung, wobei der cos2 θ-Term, der Ma-

xima in Feldrichtung hat, die beschriebene Anisotropie widerspiegelt. Die in Kapi-

tel 2.4.2 im Rahmen des mikromagnetischen Ansatzes gezeigte Kleeblattanisotropie

wurde in den gemessenen Daten nicht gefunden. Gleichwohl lässt sich mit diesem

Ansatz die beobachtete Elongation in der Intensität einer anisotropiefelddominier-

ten Spinfehlorientierung zuordnen. Dazu betrachte man Abbildung 2.2, welche den

Übergang zwischen dipolfelddominierter (Kleeblattanisotropie) zu anisotropiefeld-

dominierter (cos2 θ) Spinfehlorientierungstreuung sichtbar macht. Entscheidend da-

bei ist das Verhältnis Hp/∆M aus der Anisotropiefeldstärke Hp und dem Sprung in

der Sättigungsmagnetisierung ∆M zwischen Partikel und Matrix. Für das vorliegen-

de Material ist der Sprung in der Sättigungsmagnetisierung µ0∆M = 0.01T und die

Anisotropiefeldstärke µ0Hp = 2K1/Ms ≈ 7T. Dies macht deutlich, dass mit Blick

auf die Materialparameter keine Kleeblattanisotropie zu erwarten ist. Zusammenge-

fasst kann angenommen werden, dass die Struktur der Spinfehlorientierung im hier

untersuchten Material im Wesentlichen durch das Anisotropiefeld bestimmt ist. Wie

bereits erwähnt findet sich in den vorliegenden Daten das Maximum der Gesamtin-

tensität und somit das Maximum des magnetischen Streubeitrags bei der Koerzitiv-

feldstärke. Das in Abbildung 4.4 dargestellte Streubild weist für dieses Magnetfeld

eine isotrope Streuung auf. Dies spricht dafür, dass die einzelnen Streubeiträge von

gleicher Größenordnung sind. Am Koerzitivfeld (an dem die Nettomagnetisierung

verschwindet) könnte die Nanokristallinität und die statistische Gleichverteilung der

magnetischen Anisotropieachsen des Probenmaterials eine Domänenstruktur mit ei-

ner hohen Anzahl an Domänen begünstigen, in der die Richtungen der Domänen-

magnetisierungen statistisch gleichverteilt sind. Ein Vergleich der ermittelten Korn-

größen mit den theoretischen Werten für die kritischen Durchmesser (Kugel) für

Eindomänenpartikel erlaubt diese Annahme. Für Nd2Fe14B (Fe3B) findet sich die-

ser zu 260 nm (70 nm) [49], was in beiden Fällen oberhalb der Korngröße liegt. Für

eine solche Spin-Struktur gäbe es im makroskopischen Mittel keine Vorzugsrichtung,

was für den magnetischen Streuquerschnitt bedeute, dass dieser isotrop sein muss.

Anders ausgedrückt, die Fluktuationen in allen Komponenten der Magnetisierung

wären gleich und somit wäre der Streuquerschnitt aus Symmetriegründen isotrop.
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Abbildung 4.5: Differenzplot der 2D-Detektordaten dΣ−/dΩ − dΣ+/dΩ für

Nd2Fe14B/Fe3B bei verschiedenen Magnetfeldern (k0 ⊥ H ‖ ez; T = 300K).

Die sichtbare Anisotropie bei µ0H = 10T weist auf ÑM̃z sin
2 θ als dominanten

Streubeitrag hin (vgl. Gl. 2.18).

Abbildung 4.5 zeigt polarisationsabhängige 2D-Daten für verschiedene angeleg-

te Magnetfelder. Aufgetragen ist die Differenz zwischen den polarisationsabhängigen

Streuquerschnitten dΣ−/dΩ und dΣ+/dΩ. In diesen SANSPOL-Streuquerschnitten

nach Gleichung (2.18) finden sich die polarisationsabhängigen Interferenz-Terme

ÑM̃z sin
2 θ und ÑM̃y sin θ cos θ. Während die sin2 θ Anisotropie bei einem ange-

legten Magnetfeld von µ0H = 10T noch zu erkennen ist, kann eine sin θ cos θ-förmi-

ge Anisotropie nicht nachgewiesen werden. In der unten aufgeführten Analyse der

azimutal gemittelten polarisationsabhängigen Daten werden mögliche Ursachen für

diese Befunde diskutiert. Bezüglich der nicht sichtbaren Anisotropien für µ0H = 2T

und 4T kann angenommen werden, dass durch die erhöhten Streuintensitäten die

Differenz dΣ−/dΩ− dΣ+/dΩ aus statistischen Gründen nicht mehr zu erkennen ist,

da die spinunabhängigen Spinfehlorientierungsstreubeiträge dominant sind.

4.2.2 Aspektverhältnis der 2D-Daten

Nachstehende, quantitative Betrachtung erlaubt es, die oben gemachten qualitativen

Aussagen zu untermauern. Dazu dient das in Abbildung 4.6, für verschiedene feste

Impulsüberträge q, als Funktion der angelegten Magnetfelder aufgetragene Aspekt-

verhältnis w = Ipara/Iperp der Streuintensität parallel bzw. senkrecht zur Magnet-

feldrichtung. Dieses Verhältnis quantifiziert die hier für die transversale Geometrie

vorgefundenen Anisotropien. Findet man Ipara/Iperp > 1 drückt dies ein Übergewicht
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an Streuintensität in Feldrichtung aus, welche dem Term |M̃y|2 cos2 θ zugeschrieben

werden kann. Mit anderen Worten, Ipara/Iperp > 1 ist ein Indikator für Spinfehl-

orientierungstreuung. Im q-Bereich 0.04 nm−1 < q < 0.15 nm−1 ist eine deutliche

Feldabhängigkeit von Ipara/Iperp zu erkennen, wobei in allen Feldbereichen ein Wert

w > 1 zu finden ist. Vom höchsten Magnetfeld an wächst dieser Wert mit kleiner

werdenden Feldern zu einem Maximum nahe des Nullfeldes. Dieses Anwachsen ist

gleichzusetzen mit dem Aufkommen von Fluktuationen in den transversalen Magne-

tisierungskomponenten und ist im Einklang mit der oben beschriebenen Interpreta-

tion der 2D-Detektordaten. Auch die Isotropie des Streubildes beim Koerzitivfeld

findet sich hier bestätigt. So sinkt das Aspektverhältnis bei Hc deutlich herab. Es

bleiben für die beiden kleinsten, gezeigten q-Werte ein Rest an Anisotropie übrig

(w ∼= 1.25). Bei q = 0.15 nm−1 findet sich das aus der optischen Inspektion er-

wartete Aspektverhältnis w ≈ 1. Für q = 0.3 nm−1 lässt die Auswertung aufgrund

der hohen Fehler nur bedingt Aussagen zu. Qualitativ lässt sich vermuten, dass

in diesem Bereich eine nur schwache Feldabhängigkeit vorhanden ist. Zusammen-

gefasst lässt sich festhalten, dass die Analyse des Aspektverhältnisses die aus den

2D-Streubildern gemachten Aussagen bestätigt.

4.3 Analyse der 1D-Daten

In diesem Abschnitt werden die aus den 2D-Streudaten azimutal gemittelten 1D-

Daten vorgestellt und diskutiert. Das erste Augenmerk liegt auf den polarisations-

abhängigen Daten. Danach wird auf die Streudaten der unpolarisierten Messungen

eingegangen, wobei gezeigt wird, wie der magnetische Streubeitrag separiert werden

kann.

4.3.1 Polarisationsabhängige Streuquerschnitte

Die im Folgenden vorgestellten polarisationsabhängigen, azimutal gemittelten Daten

(differentieller SANSPOL-Streuquerschnitt, Gleichung (2.18)) wurden in der senk-

rechten Streugeometrie (k0 ⊥H ‖ ez) am Instrument Quokka aufgenommen. Abbil-

dung 4.7 (a) zeigt diese Daten als Funktion des Impulsübertrags q und für angelegte

Magnetfelder von µ0H = 2, 4 und 10T. Wie oben beschrieben finden sich die po-
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Abbildung 4.6: Aspektverhältnis w = Ipara/Iperp der Streuintensitäten der

Streuintensität parallel bzw. senkrecht zur Magnetfeldrichtung als Funktion des

angelegten Magnetfeldes (k0 ⊥ H ‖ ez; T = 300K); w = 1 entspricht isotroper

Streuung (horizontale gestrichelte Linien).

larisationsabhängigen Terme in den SANSPOL-Querschnitten zu ÑM̃z sin
2 θ und

ÑM̃y sin θ cos θ. Übereinstimmend mit den 2D-Daten erkennt man für µ0H = 10T

eine schwache Polarisationsabhängigkeit, die dem ÑM̃z sin
2 θ Term zugeordnet wer-

den kann. Der Differenzplot ∆dΣ = dΣ−/dΩ − dΣ+/dΩ in Abbildung 4.7 (b) of-

fenbart, dass ∆dΣ klein, verglichen mit dΣ−/dΩ bzw. dΣ+/dΩ und nur schwach

feldabhängig ist. Diese Beobachtung bestätigt die Annahme, dass die polarisati-

onsunabhängigen Streubeiträge dominant sind. Eine Auswertung von polarisations-

abhängigen Streudaten ist somit nicht a priori geeignet um Spinfehlorientierungen

zu untersuchen.
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Abbildung 4.7: (a) Azimutal gemittelter, differentieller, polarisationsabhängiger

SANS-Querschnitt von Nd2Fe14B/Fe3B in Log-Log Auftragung als Funktion des

Impulsübertrags q und des angelegten Magnetfelds µ0H (k0 ⊥ H ‖ ez; T =

300K). (b) Differenzplot Σ− − Σ+. Die Polarisationsabhängigkeit lässt sich dem

Term ÑM̃z sin
2 θ zuschreiben.

Wie Abbildung 4.7 (b) außerdem erkennen lässt, spiegeln diese Terme die gefun-

dene, starke Feldabhängigkeit der Streuintensitäten nicht wider. Da die Erhöhung

der Intensitäten den Streubeiträgen der transversalen Streuamplituden M̃x und M̃y

zugeschrieben werden kann, lässt sich deshalb annehmen, dass der Interferenz-Term

ÑM̃y sin θ cos θ keine wesentlichen Streubeiträge liefert. Die schwache Polarisati-

onsabhängigkeit von dΣ±/dΩ kann demnach dem Term ÑM̃z sin
2 θ zugeschrieben

werden. Zu ähnlichen Resultaten kommen auch Arbeiten an nanokristallinem Co

[46] und an einem zweiphasigen Fe-basierten Nanokomposit [56], in denen Beiträge

von ÑM̃y sin θ cos θ ebenfalls nicht nachgewiesen werden konnten. Eine mögliche Er-

klärung für den nicht nachweisbaren Beitrag der ÑM̃y sin θ cos θ Terme findet sich

in der Orientierungsverteilung der Spinkomponenten. Die y-Komponenten der Ma-

gnetisierung können in negative wie auch in positive y-Richtung zeigen, während

die z-Komponenten nur positive Richtungen annehmen. Möglicherweise werden die
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ÑM̃y sin θ cos θ Beiträge heraus gemittelt.

4.3.2 Unpolarisierte Streuquerschnitte

In diesem Abschnitt sollen die azimutal gemittelten Daten der in der senkrechten

Geometrie durchgeführten Messungen diskutiert und anhand derer gezeigt werden,

wie der magnetische Streubeitrag daraus zu separieren ist.
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Abbildung 4.8: Azimutal gemittelter differentieller SANS Querschnitt dΣ/dΩ

von Nd2Fe14B/Fe3B (Log-Log Skala) als Funktion des Impulsübertrags q und

des angelegten Magnetfelds µ0H (k0 ⊥ H ‖ ez; T = 300K). Die Streubeiträge

der Spinfehlorientierung steigen mit abnehmendem Magnetfeldfeld an und errei-

chen ein Maximum bei µ0Hc = −0.55T (geschlossene Symbole). Eine Erhöhung

des Feldes zu größeren negativen Feldwerten führt erneut zur Unterdrückung von

Spinfehlorientierungen, was eine Abnahme der Streuintensität zur Folge hat (of-

fene Symbole).

Abbildung 4.8 zeigt den differentiellen, azimutal gemittelten SANS Streuquer-

schnitt für k0 ⊥ H ‖ ez als Funktion des Impulsübertrags q und für ausgewählte

Magnetfelder. Deutlich zu erkennen ist die starke Feldabhängigkeit der Streuinten-
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sität für kleine und mittlere q-Werte. So steigt die Intensität kontinuierlich vom

höchsten angelegten Feld von µ0H = 10T bis zum Koerzitivfeld µ0Hc = −0.55T
an. Wird das angelegte Magnetfeld weiter zu negativen Werten erhöht, sinkt die

Streuintensität erneut ab.

Wie in der Auswertung der 2D-Daten erörtert wurde, kann die Feldabhängig-

keit der Streuintensität den Spinfehlorientierungen zugeordnet werden. In diesem

Szenario forciert das angelegte Magnetfeld die magnetischen Momente entlang der

Feldrichtung. Je stärker das angelegte Feld ist, desto kleiner sind die Abweichun-

gen, welche wie beschrieben als Spinfehlorientierung bezeichnet werden. Als Ursa-

chen solcher Abweichungen wurden bereits magnetostatische Streufelder und lokale

Variationen in der magnetokristallinen Anisotropie genannt, wovon letztere als do-

minante Ursache im vorliegenden Material anzunehmen ist. Wird das Magnetfeld

verringert, so vergrößert sich, gemäß des Brown’schen Gleichgewichts der Drehmo-

mente, der Einfluss des durch das Anisotropiefeld verursachten Drehmoments auf

die magnetischen Momente, wodurch diese stärker in die lokale Richtung des Aniso-

tropiefeldes ausgelenkt werden. Als Konsequenz wächst die Spinfehlorientierung und

somit die damit verbundene Streuung mit abnehmendem Feld bis zu einem Maxi-

mum am Koerzitivfeld an. Wird das äußere Magnetfeld weiter in negative Richtung

erhöht, gewinnt dieses wieder an Einfluss, was die Spinfehlorientierung bzw. den

zugehörigen Streubeitrag erneut reduziert. Eine detailliertere Diskussion über die

zugrundeliegende Spin-Struktur wird in Abschnitt 4.3.4 geführt.

Am Datensatz dΣ
dΩ
(10T) lässt sich im Bereich von q ≈ 0.25 nm−1 ein Schulter -

förmiger Kurvenverlauf beobachten. Als wahrscheinlichsten Ursprung dieser Schulter

kann hier nukleare Partikel-Streuung angenommen werden. Die zu q ≈ 0.25 nm−1

passende Realraumlänge ergibt sich zu 2π/0.25 nm ≈ 25nm, was in guter Nähe-

rung die Partikelgrößen wiedergibt. Zum Verständnis sei noch einmal auf den oben

berechneten nuklearen Streukontrast zwischen den Kristalliten der beiden Phasen

verwiesen. Da die Partikelgrößen einer Verteilung unterliegen, was zu einer Verbreite-

rung der Intensitätsmaxima führt, so ist die Beobachtung einer Schulter ein Indiz für

einen dominanten nuklearen Streubeitrag in dΣ
dΩ
(10T). Ein zentrales Resultat aus der

Streutheorie, was als Porod Gesetz bekannt ist, sagt aus, dass sich die Streuung an

Partikeln mit scharfen Grenzflächen bei genügend großen q in einem potenzgesetzar-
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Abbildung 4.9: Feldabhängigkeit des Potenzgesetzexponenten n, welcher durch

einen Fit von dΣ
dΩ = K/qn (K = konstant) an die experimentellen Daten dΣ/dΩ

(Abb. 4.8) und dΣM/dΩ (Abb. 4.10) bestimmt wurde. In beiden Fällen wurde

der Fit auf den Bereich 0.6 nm−1 ≤ q ≤ 0.7 nm−1 beschränkt. Horizontale Linie:

n = 4.

tigen Abfall der Intensität dΣ/dΩ ∝ q−n mit Exponent n = 4 äußert. In Abbildung

4.9 sind die Ergebnisse der Auswertung gezeigt, die im Hinblick auf diesen Expo-

nenten durchgeführt wurden. Dabei wurde im Bereich 0.6 nm−1 ≤ q ≤ 0.7 nm−1

die Fitfunktion K/qn (K = konstant) an die Daten angepasst. Die offenen Symbole

entsprechen dem Exponenten, welcher im totalen Streuquerschnitt dΣ/dΩ ermittelt

wurde. Die geschlossenen Symbole wurden in den unten gezeigten Spinfehlorientie-

rungsstreuquerschnitten dΣM/dΩ gefunden. Man erkennt, dass sich der Exponent n

aus dΣ/dΩ für größer werdende Magnetfelder dem Wert n = 4 annähert und diesen

bei µ0H = 10T einnimmt. Dies spricht für die oben gemachte Annahme, dass die

Streuung bei µ0H = 10T im Wesentlichen der nuklearen Streuung entspricht.

Mit dieser Annahme können die Daten dΣ/dΩ genutzt werden, um näherungs-
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weise den Spinfehlorientierungsstreuquerschnitt

dΣM

dΩ
=

8π3

V
b2H

[
|M̃x|2 + |M̃y|2 cos2 θ − (M̃yM̃

∗
z + M̃zM̃

∗
y ) sin θ cos θ

]
(4.1)

zu erhalten. Dazu wird der gemittelte dΣ/dΩ bei 10T von den gemittelten dΣ/dΩ

bei kleineren Feldern subtrahiert.

Das Ergebnis für dΣM/dΩ ist in Abbildung 4.10 dargestellt. Hier sei erwähnt,

dass dadurch, dass |M̃z|2 als klein anzunehmen ist, auch der Kreuzterm ∝ M̃yM̃z

in dΣM/dΩ als klein, im Vergleich zu den beiden andern Termen in Gl. (4.1)

angenommen werden kann. Auf Grund der starken Streubeiträge der transversalen

Streuamplituden bleiben die resultierenden Streuquerschnitte dΣM/dΩ von der

selben Größenordnung. Erkennbar ist allerdings, dass die Form der Kurven deutlich

von denen der totalen Streuquerschnitte dΣ/dΩ abweicht. Insbesondere ist die

zuvor angesprochene Schulter bei q ≈ 0.25 nm−1 (vgl. Abb. 4.8) in dΣM/dΩ nicht

länger nachweisbar. Auffallend ist die starke Feldabhängigkeit von dΣM/dΩ, wobei

man bei q ≈ 0.035 nm−1 den maximalen Anstieg um den Faktor ≈ 180 verzeichnet.

Untersucht man diese Daten in Bezug auf den exponentiellen Abfall bei größeren

q (vgl. Abb. 4.9), so stellt man fest, dass die ermittelten Exponenten für alle

Magnetfelder deutlich größer als n = 4 sind. Das mikromagnetische Modell sagt für

Spinfehlorientierungen einen Exponenten von bis zu n = 8 voraus. Dazu betrachte

man den hier als dominant anzunehmenden Term SHRH aus Gleichung (2.42). Die

Streufunktion SH hat für Partikel mit scharfen Grenzflächen einen asymptotischen

Verlauf von q−4. Gleiches gilt für die Responsfunktion RH , wie man nach Einsetzen

von p(q,Hi) = Ms/Heff in Gleichung (2.45) erkennt. Zusammen ergibt sich für

dΣM/dΩ ∝ q−8. Das gefundene asymptotische Verhalten mit n ≈ 5.5 unterstützt

die Auffassung von dominanter Spinfehlorientierungsstreuung in den vorliegenden

Streudaten.
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Abbildung 4.10: Feldabhängigkeit des Spinfehlorientierungsstreuquerschnitts

dΣM/dΩ als Funktion des Impulsübertrags q in Log-Log Auftragung von

Nd2Fe14B/Fe3B (T = 300K). dΣM/dΩ wurde durch Subtraktion des totalen

Streuquerschnitts dΣ/dΩ beim höchsten angelegten Magnetfeld µ0H = 10T von

den Daten bei niedrigeren Feldern bestimmt. Gestrichelte Linie: dΣM/dΩ ∝ q−5.5.

4.3.3 Korrelationsfunktionen

Aus den oben extrahierten Streudaten dΣM/dΩ können mittels direkter Fourier-

Transformation gemäß Gleichung (2.59),

C(r) =
k

r

∫ ∞

0

dΣM

dΩ
(q) sin(qr) q dq ,

die Korrelationsfunktionen der Spinfehlorientierung C(r) bestimmt werden. In Ab-

bildung 4.11 sind die berechneten Korrelationsfunktionen für ausgewählte Magnet-

felder gezeigt. Deutlich erkennbar ist die Feldabhängigkeit in Bezug auf die Kur-

venform und die Tatsache, dass diese Korrelationsfunktionen keinem exponentiellen

Abfall folgen, welcher in dieser Auftragung (log-linear Skala) in einer Gerade als

Kurvenform resultieren würde. Der allgemeinen Streutheorie folgend äußert sich

Streuung an kontinuierlichen Profilen, wie im vorliegenden Fall an den transver-

salen Magnetisierungsfluktuationen, in Korrelationsfunktionen, deren Steigung bei

r = 0 verschwindet [75]. Dies ist auf die Abwesenheit von scharfen Grenzflächen
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Abbildung 4.11: Feldabhängigkeit der Korrelationsfunktion der Spinfehlorien-

tierung C(r) von Nd2Fe14B/Fe3B (log-linear Skala). Die gestrichelte Linie stellt

eine Extrapolation der 6T Kurve zu r = 0 dar: C(r) = 4, 58− 0, 043 r2.

in den Streuprofilen/Magnetisierungsprofilen zurückzuführen. Eine weitere Konse-

quenz dessen ist ein asymptotischer Verlauf von dΣM/dΩ 6= q−4 [75]. Letzteres

bestätigt sich, wie oben bereits gezeigt, in den dΣM/dΩ Daten (vgl. Abb. 4.9). Auch

der Kurvenverlauf von C(r) mit verschwindender Steigung bei r = 0 lässt sich in

Abbildung 4.11 zumindest tendenziell erkennen. Zusammengefasst lässt sich sagen,

dass sich die zu erwartenden Eigenschaften für Streuung an ausgedehnten kontinu-

ierlichen Magnetisierungsprofilen in den vorhandenen Daten wiederfinden.

Die für verschiedene Felder unterschiedliche Kurvenfom von C(r) ist ein Aus-

druck der Feldabhängigkeit der zugrunde liegenden Struktur der spinfehlorientierten

Bereiche. Die so bestimmten Korrelationsfunktionen beschreiben die Korrelation der

transversalen Magentisierungskomponenten als Funktion des Abstandes r. Die Größe

bzw. die räumliche Ausdehnung der Spinfehlorientierungen, charakterisiert durch die

transversalen Magnetisierungskomponenten, ist verknüpft mit dem Verlauf der Kor-

relationsfunktion. In Abbildung 4.11 erkennt man beispielsweise, dass die Kurven

mit abnehmendem Magnetfeld flacher werden. Für schwach ausgedehnte Magneti-
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sierungsinhomogenitäten, wie sie bei hohen Feldstärken zu erwarten sind, sind die

magnetischen Momente über kürzere Längen korreliert, was in stärker abfallenden

Korrelationsfunktionen resultiert. Wird die Magnetfeldstärke geringer, gewinnt die

Austauschsteifigkeit an Einfluss, was in einer zunehmenden Parallelorientierung der

magnetischen Momente resultiert. Das bedeutet ein höheres Maß an Korrelation

über größere Längen. Dieses Szenario lässt sich qualitativ in den gezeigten Daten

(Abb. 4.11) erkennen. Eine quantitative Auswertung in Form der Korrelationslängen

lC als Maß für die räumliche Ausdehnung der Magnetisierungsinhomogenitäten wird

im Folgenden vorgestellt.

4.3.4 Korrelationslängen

In diesem Abschnitt sollen die Korrelationslängen der Spinfehlorientierung lC be-

stimmt werden, welche wie in Kapitel 2.4.4 beschrieben als der Wert von r definiert

wurden, bei dem die Korrelationsfunktion auf einen Wert C(lC) = C(r = 0)/e ab-

gefallen ist. Dazu wurden die Korrelationsfunktionen mittels einer Parabelgleichung

C(r) = C(r = 0) − ar2 zu r = 0 extrapoliert. Die Vernachlässigung des Linear-

terms ist dabei konsistent mit der Forderung einer verschwindenden Steigung von

C(r) bei r = 0. In Abbildung 4.11 ist diese Extrapolation exemplarisch anhand von

C(r) bei µ0H = 6T gezeigt. Die so ermittelten Korrelationslängen lC sind in Ab-

bildung 4.12 als Funktion des angelegten Magnetfeldes gezeigt. Eingezeichnet sind

zudem der mittlere Radius der Nd-Fe-B Partikel R ≈ 11 nm und das Koerzitiv-

feld µ0Hc = −0.55T. Neben den QUOKKA Daten sind außerdem (analog zu oben

ausgewertete) Daten aus Messungen an den Instrumenten KWS-1 und D11 gezeigt.

An den Korrelationslängen der QUOKKA Daten ist auffallend, dass lC von einem

Plateau ähnlichen Verlauf (lC ≈ 12.5 nm) bei großen Feldern zu einem Maximum

von lC ≈ 18 nm bei µ0Hc = −0.55T ansteigt. In guter Übereinstimmung findet man

die Korrelationslängen, ermittelt aus den KWS-1 Daten, deren Messungen in der

gleichen Streugeometrie durchgeführt wurden. An der KWS-1 stand allerdings le-

diglich ein maximales Magnetfeld von µ0H = 5T zur Verfügung. Aus diesem Grund

wurde dΣM

dΩ
aus diesen Daten durch Subtraktion des Datensatzes dΣ

dΩ
(5T) ermittelt,

welcher nicht vernachlässigbare Beiträge von Spinfehlorientierungsstreuung enthält.

Wie sich hier zeigt, hat dies nur einen geringen Einfluss auf die so bestimmten Kor-
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Abbildung 4.12: Feldabhängigkeit der Korrelationslänge der Spinfehlorien-

tierung lC . Durchgezogene Linie: Fit an die Daten von lC(H) = L +√
2A/[µ0Ms(H +H⋆)], wobei L = 10, 9 nm und µ0H

⋆ = +0, 60T als Fitparame-

ter dienten; die Austauschsteifigkeitskonstante A = 12.5 pJ/m und µ0Ms = 1.6T

wurden konstant gehalten. Zum Vergleich sind neben den Daten, die am Quok-

ka (ANSTO, Australien) erhalten wurden auch Daten gezeigt, welche an den

SANS Instrumenten KWS-1 (JCNS, Deutschland) and D11 (ILL, Frankreich)

erhalten wurden. Gestrichelte horizontale Linie: Mittlerer Nd2Fe14B Partikel Ra-

dius R = 11nm. Gepunktete vertikale Linie: Experimentelle Koerzitivfeldstärke

µ0Hc = −0.55T.

relationslängen. Einen qualitativ ähnlichen Verlauf bei großen Feldern zeigen die aus

der Messung in der longitudinalen Geometrie (D11) ermittelten Korrelationslängen.

Die Diskrepanzen sind Ausdruck der Tatsache, dass sich die Streuquerschnitte in

den beiden Geometrien unterscheiden (vgl. Gl. (2.48) und (2.53)).

Die oben erwähnte Beziehung zwischen der räumlichen Ausdehnung der

Magnetisierungsinhomogenitäten und der Kurvenform der Korrelationsfunktionen

bestätigt sich in der Feldabhängigkeit der gezeigten Korrelationslängen. Diese sind

ein Maß dafür, über welche Längenskalen die Korrelationen der transversalen Ma-
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gnetisierungskomponenten, die die Inhomogenität charakterisieren, abfallen. Mit

größer werdenden Magnetfeldern erwartet man eine zunehmende Unterdrückung

der Spinfehlorientierung, was sich darin äußert, dass die gestörten Bereiche kleiner

werden und die Korrelationslängen reduziert sind. Zur Beschreibung einer solchen

Feldabhängigkeit von lC , wie sie sich in den gezeigten Daten beobachten lässt, wurde

in verschiedenen Arbeiten [52, 55] der in Gleichung (2.67) vorgestellte phänomeno-

logische Ausdruck

lc(H) = L+

√
2A

(µ0MsH)
(4.2)

verwendet. Wie in [52] zu sehen, eignet sich dieser Ausdruck zur Beschreibung von

Materialien, in denen die magnetische Anisotropie und magentostatische Streufelder

vernachlässigbar sind. Der feldunabhängige Term L spiegelt dabei die Größe des zu

Grunde liegenden Defekts wider. In Kapitel 2.4.4 wurde in Abbildung 1.7 gezeigt, wie

sich lC für ein Modell einer hartmagnetischen Inklusion in einer weichmagnetischen

Matrix mit größer werdendem Feld an den Radius der Inklusion R annähert. Der

Parameter L kann dabei mit dem Radius R identifiziert werden. Der feldabhängige

Term entspricht der Austauschlänge des angelegten Magnetfeldes lH [49].

Zur Beschreibung der vorliegenden Daten wurde Gleichung (2.67) zu

lc(H) = L+

√
2A

µ0Ms(H +H∗)
(4.3)

modifiziert. Der Parameter H∗ soll hierbei den Einfluss des magnetodipolaren Streu-

feldes (Entmagnetisierungsfeld Hd) sowie des magnetokristallinen Anisotropiefeldes

modellieren. Der so erhaltene Ausdruck wurde an die experimentellen Daten (lC(H),

mit µ0H ≥ −0.25T) gefittet, wobei L und H∗ als Fitparameter dienten und die

Austauschkonstante mit A = 12.5 pJ/m sowie die Sättigungsmagnetisierung mit

µ0Ms = 1.6T festgehalten wurde. Das Resultat dieses Fits ist in Abbildung 4.12

als durchgezogene Linie dargestellt. Für den feldunabhängigen Parameter L erhält

man 10.9 nm und für µ0H
∗ ergibt sich 0.6T. Bevor diese Ergebnisse in Bezug auf

die zu Grunde liegende magnetische Mikrostruktur zur Diskussion stehen soll der

eingeführte Parameter H∗ motiviert werden.

In Abschnitt 2.4.4 wurde die Beziehung zwischen der Korrelationslänge der

Spinfehlorientierung und den in den mikromagnetischen Gleichungen auftauchen-
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den Austauschlängen beschrieben. Je nach dominierendem Feld (vgl. 2.31) wer-

den die Ausdehnungen von Spinfehlorientierungen durch die entsprechenden Aus-

tauschlängen bestimmt [48, 49]. Da in dem vorliegenden Material der Einfluss

des Anisotropiefeldes bei kleinen angelegten Feldern nicht vernachlässigt werden

kann, ist es sinnvoll Gleichung (2.67) dahingehend zu modifizieren. Man würde er-

warten, dass für verschwindende äußere Felder und dominierendem Anisotropie-

feld die Ausdehnung der Magnetisierunginhomogenitäten durch die Austauschlänge

lK =
√
A/K bestimmt wird [48, 49] und sich dies in Gleichung (4.3) widerspiegelt.

Berücksichtigt man das Resultat, dass µ0H
∗ = 0.6T annähernd dem Koerzitivfeld

µ0Hc = 0.55T entspricht, lässt sich µ0H
∗ durch

µ0H
∗ = µ0Hc = α2K1/Ms −NeffMs (4.4)

beschreiben. Dieser phänomenologische Ausdruck wird in der Literatur [49] verwen-

det, um experimentelle Koerzitivfelder zu modellieren. Das effektive Entmagneti-

sierungsfeld NeffMs ist für austauschgekoppelte Nanokomposite üblicherweise klein

(Neff < 0.1) [49] und soll für nachfolgende Betrachtung vernachlässigt werden. Der

Parameter α beschreibt die Abweichung des experimentellen Koerzitivfeldes µ0Hc

vom theoretisch Maximalen µ0HA = 2K1/Ms. Setzt man µ0H
∗ = µ0Hc = α2K1/Ms

[49] in Gleichung (4.3) ein, erhält man für H = 0:

lc(H) = L+

√
1

α

√
A

K1

. (4.5)

Auf diese Weise enthält Gleichung (4.3) die Austauschlänge des Anisotropiefeldes.

Für austauschgekoppelte Nanokomposite sind in α neben der statistischen Vertei-

lung der leichten Achsen auch Einflüsse unregelmäßiger Partikelformen und der

Austauschkopplung der Partikel berücksichtigt. Zusammengefasst beschreibt α eine

effektive Abschwächung des magnetokristallinen Anisotropiefeldes. Es ist anzuneh-

men, dass sich diese Mechanismen auch auf die räumliche Struktur der Spinfehlori-

entierungen auswirken. Da die Korrelationslänge lC ein Maß für die Größe dieser

Inhomogenitäten darstellt, ist somit auch das Auftreten von α in Gleichung (4.3)

motiviert.

In dem bereits mehrfach angesprochenen Modell der kugelförmigen Inklusion

in einer anisotropiefeldfreien Matrix (vgl. Kapitel Theorie 2 und [52]) entspricht die
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Abbildung 4.13: Illustration zur Bedeutung von lC = R + lH . In Anwesenheit

eines äußeren Feldes H richtet sich die Magnetisierung Mp der Nd2Fe14B Partikel

von der uniaxialen Anisotropieachse Ku hin zur Richtung des äußeren Feldes H

aus. Die hohe Anisotropie der Nd2Fe14B Partikel führt zu Spinfehlorientierungen

innerhalb der Fe3B Kristalliten. Ausschlaggebend ist der Sprung in Ku an der

hard-soft Phasengrenze. Durch die Austauschwechselwirkung wird die Spinunord-

nung in die Fe3B Phase übertragen und klingt mit der charakteristischen Länge

lH ab.

Inklusion einer Störung in der Magnetisierung, die auf benachbarte magnetische Mo-

mente durch die Austauschwechselwirkung übertragen wird. Die Störung entsteht

dabei durch den Sprung in der Anisotropiefeldstärke. Um die Anwendung dieses

Modells zu motivieren, betrachte man folgenden Vergleich. Die Sättigungsmagneti-

sierung und die Austauschsteifigkeit beider Phasen kann, wie in erwähntem Modell,

als nahezu identisch angenommen werden. Außerdem ist der Sprung in der Anisotro-

piefeldstärke mit etwa dem Faktor ∼ 10 zwischen den beiden Phasen entsprechend

hoch. Die Nd-Fe-B Partikel, eingebettet in die weichmagnetische Phase, repräsen-

tieren damit den zugrunde liegenden Defekt. Dies zeigt auch das Fit-Ergebnis für

den feldunabhängigen Parameter L = 10.9 nm, was in guter Näherung mit dem

Partikelradius zu identifizieren ist. Abbildung 4.13 verdeutlicht anhand eines sehr
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einfachen Modells das beschriebene Szenario. Der Defekt, eingezeichnet als graue

Kreisscheibe, repräsentiert die hartmagnetischen Nd-Fe-B Partikel, deren Magneti-

sierungen Mp in die Richtung der leichten Achsen Ku ausgelenkt sind und somit

von der Richtung des angelegten Magnetfeldes abweichen. Diese Abweichung vari-

iert je nach Stärke des äußeren Feldes und bestimmt somit die Feldabhängigkeit der

räumlichen Ausdehnung der spinfehlorientierten Bereiche. Der feldabhängige Term

lH drückt dabei den charakteristischen Abfall der fehlorientierten Spins innerhalb

der weichmagnetischen Fe3B Phase aus. Damit lässt sich feldabhängig eine Eindring-

tiefe charakterisieren, die sich für den remanenten Zustand zu ≈ 5.5 nm ergibt (vgl.

Abb. 4.12).

In Anbetracht der gefundenen mit kleiner werdendem Feld stetig wachsenden

lC lässt sich im Kontext dieses Szenarios folgendes vermuten: zum einen, dass die

Magnetisierung in den Nd-Fe-B Partikeln homogen rotiert, die Partikel sich also

in einem Eindomänenzustand befinden und zum anderen die Magnetisierung der

weichmagnetischen Phase in den von den hartmagnetischen Partikeln unbeeinflus-

sten Bereichen in Feldrichtung verharrt. In einer Finiten Elemente Simulation [109]

für ein sehr ähnliches Material (40% Nd2Fe14B, 30% Fe3B und 30% α−Fe) wur-

de für den remanenten Zustand explizit dieses Szenario vorhergesagt. Da sich lC

mittels Gleichung (4.3) sehr gut bis zu µ0H = 0.25T beschreiben lässt, kann man

folgern, dass eine Magnetisierungsumkehr durch Rotation bis zu diesem Feldwert

möglich ist. Im Stoner-Wohlfahrt Modell ist ein solches Szenario an eine reversible

Magnetisierungskurve geknüpft [32]. Ebenso wurde in [10] eine teilweise reversible

Magnetisierungsumkehr für austauschgekoppelte Nanokomposite vorhergesagt und

anhand eines zu dem hier vorliegenden vergleichbaren Materials bestätigt. Dem fol-

gend, um die Reversibilität zu prüfen, wurden Demagnetisierungsremanenzen Mr

mittels Magnetometrie bestimmt. Abbildung 4.14 veranschaulicht diese Untersu-

chung anhand der auf Mr,sat normierten Demagnetisierungsremanenzen Mr. Hierbei

bezeichnet Mr,sat die remanente Magnetisierung nach der Sättigung. Nach einem

zuvor angelegten negativen Feld wird Mr dann ebenfalls im Nullfeld bestimmt. Zwi-

schen den Messungen wird die Probe in einen Zustand nahe der magnetischen Sätti-

gung bei µ0H = 14T versetzt. Ein Verhältnis von Mr/Mr,sat = 1 weist in dieser

Auftragung auf einen reversiblen Prozess hin. Für das auch in der magnetischen
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SANS verwendete Magnetfeld µ0H = −0.25T findet sich Mr/Mr,sat ≈ 0.98, ein

Wert, der die Reversibilität und die oben vermutete homogene Rotation der Ma-

gnetisierung innerhalb der Partikel – bis mindestens zu diesem Feldwert – bestätigt.

Für das Koerzitivfeld findet sich ein Wert von Mr/Mr,sat ≈ 0.56, der auf einen kom-

plexen Ummagnetisierungsprozess nahe Hc hinweist. Aussagen über diesen Prozess

nahe Hc sind aus den durchgeführten Experimenten nicht machbar.

 !"#  $"%  $"#  &"%  &"#  #"% #"#

 &"#

 #"%

#"#

#"%

&"#

 !

"

#$

%&

'(#$

)

'

 *+*),,*-

 

*

 

!

"
 

!
#
$
%
&

,

!**./0

,

!

1

*

Abbildung 4.14: Demagnetisierungsremanenzen von Nd2Fe14B/Fe3B. Nach An-

legen von µ0H = 14T wird ein negatives Feld angelegt und danach die Remanenz

Mr(H = 0) bestimmt. Aufgetragen ist Mr(H = 0) normiert auf die Remanenz

nach der magnetischen Sättigung Mr,sat als Funktion des zuvor angelegten ne-

gativen Magnetfelds H. Diese Prozedur wurde für die Messung eines jeden Da-

tenpunkts wiederholt. Ein Verhältnis Mr(H = 0)/Mr,sat = 1 weist auf einen

reversiblen Magnetisierungsprozess hin.
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4.3.5 Mikromagnetische Analyse

In diesem Abschnitt soll das in Kapitel 2 vorgestellte mikromagnetische Modell An-

wendung finden, speziell Gleichungen (2.40) bis (2.53). Für das vorliegende Material

wurde gezeigt, dass die Spinfehlorientierungsstreuung anisotropiefelddominiert ist.

Deshalb wurde der Beitrag von SM RM zu dΣM

dΩ
(Gleichung (2.47)) vernachlässigt.

Der azimutal gemittelte Streuquerschnitt im mikromagnetischen Modell lässt sich

damit für die beiden Geometrien wie folgt angeben:

dΣ

dΩ
(q,Hi) =

dΣres

dΩ
(q) + SH(q)RH(q,Hi) . (4.6)

Die Streufunktion SH ist für beide Geometrien gleich, die Responsfunktionen lauten

gemäß Gleichungen (2.48) und (2.53):

R⊥H =
p2

4

(
2 +

1√
1 + p

)
(4.7)

und

R
‖
H =

p2

2
.

Für bekannte Materialparameter Ms und A lassen sich die Werte für die Respons-

funktionen für die entsprechenden (q,Hi)-Werte bestimmen, wobei Hi = H − Hd

und Hd dem Entmagnetisierungsfeld entspricht. Bei festem q = q′ stellt Gleichung

(4.6) mit dΣ
dΩ

vs RH eine Geradengleichung dar. Abweichungen vom linearen Verlauf

lassen sich dabei der Wahl der Parameter Ms, A und Hd zuordnen. Wenn Ms wie

für das vorliegende Material bekannt ist, lassen sich A und Hd über das Maß der

Abweichung experimentell bestimmen. Dazu nutzt man den Ausdruck:

χ2(A,Hd) =
∑

m

∑

n

1

σ2
m,n

(
dΣexp

dΩ
(qm, Hn)−

dΣsim

dΩ
(qm, Hi,n)

)2

, (4.8)

was einer gewichteten Summe der Varianzen der einzelnen Geradenfits entspricht.

Dabei nummerieren die Indizes m und n die Impulsüberträge q bzw. die ange-

legten Magnetfelder H. Mit σ2
m,n, dem Fehler in den experimentellen Streudaten

dΣexp

dΩ
(qm, Hn), wird die Summe gewichtet und dΣsim

dΩ
(qm, Hn) beschreibt den Fit

gemäß Gleichung (4.6). Die Werte für A und Hd, die χ2 minimieren, entsprechen

den Best-Fitparametern.
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Abbildung 4.15: Graustufen Plot von χ2(A,Hd) [Gl. (4.8)] für (a) k0⊥H und

(b) k0‖H. Die helleren Bereiche verbildlichen geringere χ2 Werte. Zur Berechnung

von χ2 wurden die experimentellen Daten aus Abb. 4.16 (a) und (b) benutzt.

Abbildung 4.15 zeigt einen graufarben Plot von χ2(A,Hd) für die beiden Streu-

geometrien. Die zu Grunde liegenden experimentellen Streuquerschnitte sind in Ab-

bildung 4.16 dargestellt. Die Minima in χ2(A,Hd) lassen sich für A = 10.2±2.9 pJ/m

und µ0Hd = 0.00±0.07T (k0⊥H) und A = 13.1±3.2 pJ/m und µ0Hd = 1.08±0.10T
(k0‖H) finden. Beide Werte für die Austauschkonstante A stimmen innerhalb des

Fehlers mit dem Literaturwert (A = 12.5 pJ/m) überein. Die Werte für das Entma-

gnetisierungsfeld Hd unterscheiden sich, was der unterschiedlichen Positionierung

der Probe in Bezug auf die Richtung des äußeren Feldes geschuldet ist. In der senk-

rechten Geometrie ist das Magnetfeld in der Ebene der flachen Ribbons orientiert,

was die kleine Entmagnetisierung erwarten lässt. Im Gegensatz dazu findet man für

Hd einen vergleichsweise hohen Wert für den Fall der longitudinalen Streugeometrie,

in der die Richtung des äußeren Feldes senkrecht zur Probenoberfläche orientiert ist.

Abbildung 4.16 zeigt die Ergebnisse des Fits unter Verwendung der ermittel-

ten Werte für Hd und des Literaturwerts für A = 12.5 pJ/m. Außerdem sind die

berechneten Residuen-Streuquerschnitte dΣres

dΩ
(q) gezeigt.

Es bietet sich an, die berechneten dΣres/dΩ zu verwenden, um wie oben be-
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schrieben dΣ/dΩM = dΣ/dΩ − dΣres/dΩ aus den experimentellen Daten zu extra-

hieren. Die damit (analog zu oben) berechneten Korrelationsfunktionen (siehe Abb.

4.17) unterscheiden sich qualitativ in den Absolutwerten, jedoch bleiben die daraus

ermittelten Korrelationslängen, welche den Kurvenverlauf quantitativ beschreiben,

nahezu unverändert und unterscheiden sich von den oben gezeigten nur um 1− 3%.

Da hierdurch keine weitere Information zu gewinnen ist, sind die mit dΣres/dΩ be-

rechneten lC nicht gezeigt. Es bleibt jedoch festzuhalten, dass die verwendete Defi-

nition der Korrelationslänge eine robuste Methode bietet, um die räumlichen Aus-

dehnungen von Spinfehlorientierungen zu charakterisieren.

4.3.6 Realraum-Analyse der Korrelationsfunktion

Die oben beschriebene mikromagnetische Methode stellt eine Analyse der

feldabhängigen SANS Daten im reziproken Raum dar. Eine komplementäre Analyse

im Realraum lässt sich mit Hilfe eines einfachen Modells und den Korrelationsfunk-

tionen der Spinfehlorientierung C(r) durchführen. Für das in Kapitel 2 vorgestellte

Modell einer sphärischen Inklusion (Radius R) in einer anisotropiefeldfreien Matrix

wurde durch Gleichung (2.65) ein geschlossener Ausdruck für C(r) angegeben. In

einem globalen Fit an die in Abbildung 4.17 gezeigten C(r) Daten wurden K,R und

A bestimmt. Der Parameter R, der in diesem Modell dem Radius der sphärischen In-

klusion entspricht, repräsentiert den mittleren Anisotropiefeldradius. In Anlehnung

an dieses Modell lässt sich unter dem in dieser Analyse bestimmten Parameter R die

durchschnittliche Ausdehnung von Bereichen mit homogenem Anisotropiefeld ver-

stehen. Für R findet man mit 11.9±0.2 nm einen Wert, der sehr gut mit dem durch-

schnittlichen Radius der Nd-Fe-B Partikel übereinstimmt. Die Austauschkonstante

ergibt sich zu A = 11.8± 2 pJ/m. Beide Ergebnisse sind in guter Übereinstimmung

mit den vorangegangenen Resultaten.
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Abbildung 4.16: Azimutal gemittelter totaler SANS Streuquerschnitt dΣ/dΩ

des Nd2Fe14B/Fe3B Nanokomposits (log-log Skala, T = 300K). (a) k0⊥H; (b)

k0‖H. (◦) Experimenteller dΣ/dΩ bei verschiedenen angelegten Magnetfeldern.

(—–) Mikromagnetischer Fit basierend auf Gl. (4.6); Die Linien verbinden die

berechneten dΣ/dΩ bei den entsprechenden q und H Werten. (•) Residuen-

Streuquerschnitt dΣres/dΩ.
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Abbildung 4.17: (◦) Korrelationsfunktion C(r) der Spinfehlorientierung bei

ausgewählten externen Magnetfeldern. C(r) wurde durch direkte Fourier-

Transformation des experimentellen dΣM/dΩ mittels Gleichung (2.59) bestimmt.

(——) Globaler Fit an dΣM/dΩ gemäß Gleichung (2.65).
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Kapitel 5

Zusammenfassung und Ausblick

In dieser Arbeit wurden mit Hilfe magnetischer Neutronenkleinwinkelstreuung

(SANS) charakteristische, magnetische Längenskalen sowie intrinsische magnetische

Materialparameter eines auf Nd-Fe-B basierenden Nanokomposites bestimmt. Das

untersuchte Nanokomposit besteht aus einer hartmagnetischen Nd2Fe14B Phase, die

mit einer weichmagnetischen Fe3B Phase austauschgekoppelt ist. Die Mechanismen,

die zur Koerzitivität führen sowie die zugrundeliegende Domänenstruktur in solchen

austauschgekoppelten Nanokompositen gelten noch als relativ unverstanden und als

eine der zentralen Herausforderungen auf diesem Forschungsgebiet [8]. Aus expe-

rimenteller Sicht stellt die magnetische SANS die einzige etablierte experimentelle

Methode dar, die Zugang zur magnetischen Mikrostruktur im gesamten Proben-

volumen und gleichzeitig Auflösungen im Nanometerbereich (auf den interessanten

Längenskala von 1− 100 nm) liefert. Die Aufgabe in dieser Arbeit war es, neuerlich

entwickelte Konzepte zur magnetischen SANS zur Untersuchung eines austausch-

gekoppelten Nanokomposites anzuwenden und Aussagen über die magnetische Mi-

krostruktur während des Ummagnetisierungsprozesses zu treffen.

Die Proben, die in der Arbeitsgruppe von Prof. Dr. Kiyonori Suzuki (Monash

University, Melbourne, Australien) hergestellt wurden, weisen einen Volumenanteil

an Nd2Fe14B (Fe3B) von 48% (52%) auf. Die Kristallitgrößen der beiden Phasen

wurden in dieser Arbeit zum einen nach der Methode von Klug und Alexander durch

Auswerten von Röngtendiffraktogrammen bestimmt, zum andern wurde die nuklea-

re Mikrostruktur mittels Transmissionselektronenmikrospkopie – HAADF-STEM,
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EFTEM und DFTEM – abgebildet, was eine direkte Bestimmung der Kristallit-

größen erlaubte. In guter Übereinstimmung zwischen den beiden Methoden fanden

sich die durchschnittlichen Kristallitgrößen von 22 nm (Nd2Fe14B) und 29 nm (Fe3B).

Zusätzlich zeigen die TEM-Aufnahmen eine homogene Verteilung der beiden Pha-

sen.

Die magnetfeldabhängigen SANS-Messungen wurden bei einer Probentempe-

ratur von T = 300K durchgeführt. Gemessen wurde in zwei verschiedenen Streu-

geometrien, in denen das angelegte Feld senkrecht bzw. parallel zum einkommen-

den Neutronenstrahl orientiert war. Die aufgenommen Daten zeigten eine star-

ke Feldabhängigkeit in Bezug auf die Gesamtintensität und auf die, in der senk-

rechten Streugeometrie (k0 ⊥ H ‖ ez), sichtbaren Winkelanisotropien der 2D-

Detektorbilder. Da die untersuchten Proben isotrope Mikrostrukturen aufweisen,

konnten die beobachteten Anisotropien der magnetischen Streuung zugewiesen wer-

den. Für das höchste angelegte Magnetfeld von µ0H = 10T zeigte sich ein isotropes

Streubild. Bemerkenswerter Weise war die, nahe der magnetischen Sättigung mögli-

che, sin2 θ-förmige Anisotropie, die aus dem Streubeitrag |M̃z|2 sin2 θ resultiert, nicht

zu erkennen. Das wurde dahingehend interpretiert, dass die Streuung bei diesem Feld

durch nukleare Streuung dominiert wird und |M̃z|2 nahe der Sättigung einen nur

kleinen Streubeitrag liefert. Diese Beobachtung ist konsistent mit der Abschätzung

der nuklearen und magnetischen Streukontraste, ∆ρ2nuc = 5.95 · 10−12 Å−2 und

∆ρ2mag = 0.0005 · 10−12 Å−2. In letzterer Abschätzung wurde ∆ρ2mag = b2H(∆M)2

angenommen. Der Vergleich dieser Streukontraste zeigt, dass die beobachteten star-

ken Feldabhängigkeiten nicht durch Sprünge in der Magnetisierung erklärbar sind.

Mit der Reduktion der Magnetfeldstärke erhöhten sich die Gesamtintensitäten

und es wurden Intensitätsmaxima entlang der Richtung des äußeren Feldes sicht-

bar, welche den |M̃x|2 und |M̃y|2 cos2 θ Streubeiträgen zugeschrieben wurden. Diese

Streuung, die aus langreichweitigen, transversalen Magnetisierungsfluktuationen re-

sultiert, wird als Spinfehlorientierungsstreuung bezeichnet.

Am Koerzitivfeld µ0Hc = −0.55T, bei welchem man die höchste Gesamtin-

tensität verzeichnete, zeigte sich ein isotropes Streubild. Dies kann durch eine Mi-

krostruktur erklärt werden in der die durchschnittlichen Streuprofile – in diesem

Fall die Magnetisierungsfluktuationen – in allen Richtungen gleich sind. Bedenkt
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man, dass am Koerzitivfeld die Nettomagnetisierung verschwindet, lässt sich eine

dazu passende magnetische Mikrostruktur mit vielen Domänen mit Ausdehnungen,

die in etwa den Partikelgrößen entsprechen und einer statistischen Gleichverteilung

bezüglich ihrer Richtung, als zu Grunde liegend annehmen. Beim weiteren Erhöhen

der Magnetfeldstärke in negative Richtung war eine erneute Reduktion der Gesam-

tintensität festzustellen, was konsistent mit der Vorstellung ist, dass das äußere Feld

die transversalen Magnetisierungsfluktuationen zunehmend unterdrückt.

In den Messungen in der longitudinalen Streugeometrie (k0 ‖H ‖ ez) konnten,

wie für texturfreie Proben aus Symmetriegründen zu erwarten ist, keine Anisotropien

in den 2D-Streudaten festgestellt werden. Qualitativ zeigte sich eine Übereinstim-

mung in Bezug auf die Zunahme der Gesamtintensität bei Reduktion des angelegten

Magnetfelds.

In den azimutal gemittelten Streuquerschnitten dΣ
dΩ
(q,H) verdeutlichte sich

die starke Feldabhängigkeit der Streuintensität. Der maximale Anstieg wurde

bei den kleinsten q-Werten festgestellt und betrug zwischen den Messungen bei

µ0Hc = −0.55T und 10T mehr als zwei Größenordnungen (k0 ⊥ H). Die Da-

tensätze dΣ
dΩ
(q,Hmax) bei den jeweils höchsten Magnetfeldern Hmax konnten ge-

nutzt werden um die azimutal gemittelten magnetischen Streubeiträge dΣM

dΩ
(q,H) =

dΣ
dΩ
(q,H) − dΣ

dΩ
(q,Hmax) zu extrahieren. Die so erhaltenen magnetischen Streubei-

träge blieben von der gleichen Größenordnung und wiesen auf Grund der nicht mehr

enthaltenen nuklearen Streuung eine veränderte Kurvenform auf. Eine Analyse des

asymptotischen Abfalls der Streuquerschnitte dΣ
dΩ
(q,H) bei großen q ergab Exponen-

ten n > 4. Dies ist in Übereinstimmung damit, dass Streuung an kontinuierlichen

Profilen ohne scharfe Grenzflächen (wie den Magnetisierungsprofilen im vorliegen-

den Fall) Exponenten n > 4 erwarten lässt [75]. Außerdem sagt der im Verlauf dieser

Arbeit verwendete mikromagnetische Ansatz konsistenterweise Exponenten für die

Spinfehlorientierungsstreuung von bis zu n = 8 voraus. Diese Resultate zeichne-

ten ein übereinstimmendes Bild von dominanter Spinfehlorientierungsstreuung bei

kleinen und mittleren Magnetfeldstärken.

Die Berechnung der Korrelationsfunktion der Spinfehlorientierung C(r) lieferte

die Möglichkeit, die Korrelationslängen der Spinfehlorientierung lC zu bestimmen.

Sie stellen ein Maß für die Ausdehnung der Magnetisierungsinhomogenitäten dar.
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Die als Funktion des angelegten Magnetfeldes ermittelten Korrelationslängen zeigten

einen plateauähnlichen Verlauf bei großen Feldstärken und einen kontinuierlichen

Anstieg bei kleineren Feldern bis zu einem Maximum beim Koerzitivfeld (vgl. Abb.

5.1). Durch die Modifikation einer gebräuchlichen phänomenologischen Gleichung

lC(H) = L+
√

2A/[µ0Ms(H +H⋆)]

konnte die Feldabhängigkeit von lC beschrieben werden. Hierbei wurde der Parame-

ter H∗ eingeführt, welcher den Einfluss des Anisotropiefeldes sowie des magnetosta-

tischen Feldes modellierte.
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Abbildung 5.1: Magnetfeldabhängigkeit der Korrelationslänge der Spinfehlori-

entierung lC von Nd2Fe14B/Fe3B. Durchgezogene Linie: Fit an die Daten von

lC(H) = L +
√

2A/[µ0Ms(H +H⋆)], wobei L = 10.9 nm und µ0H
⋆ = +0.60T

als Fitparameter dienten; die Austauschsteifigkeitskonstante A = 12.5 pJ/m und

µ0Ms = 1.6T wurden konstant gehalten. Gestrichelte horizontale Linie: mittlerer

Nd2Fe14B Partikelradius R = 11nm. Gepunktete vertikale Linie: experimentelle

Koerzitivfeldstärke µ0Hc = −0.55T. Inset: schematische Darstellung der Magne-

tisierung um einen Nd2Fe14B Partikel.

Ein Fit dieser Gleichung an lC(H) ergab L = 10.9 nm und µ0H
⋆ = +0.60T;
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die Austauschsteifigkeitskonstante A = 12.5 pJ/m und µ0Ms = 1.6T wurden dabei

konstant gehalten. Die experimentellen Korrelationslängen lC nähern sich für große

Felder dem Radius der Nd2Fe14B Partikel (R ≈ 11 nm) an, womit L mit R identifi-

ziert werden kann. Dies entspricht dem in [52] gezeigten Verhalten einer hartmagne-

tischen Inklusion in einer magnetischen, anisotropiefeldfreien Matrix. In Anlehnung

daran konnten die hartmagnetischen Nd2Fe14B Partikel als Ursprung der Magneti-

sierungsinhomogenitäten angenommen werden. Als Konsequenz daraus entsprechen

die feldabhängigen Beiträge
√

2A/[µ0Ms(H +H⋆)] charakteristischen Längen, über

welche die Spinunordnung in der weichmagnetischen Phase abklingt. Abbildung 5.1

veranschaulicht noch einmal dieses Szenario in dem angenommen wurde, dass die

Magnetisierung der Nd2Fe14B Partikel in Richtung ihrer leichten Achsen (je nach

Magnetfeld) ausgelenkt ist und somit von der durch das äußere Feld vorgegebenen

Richtung abweicht. Durch die Austauschwechselwirkung wird diese Fehlorientierung

in die weichmagnetische Fe3B Phase übertragen. Für den remanenten Zustand lässt

sich die Eindringtiefe der Spinunordnung in die Fe3B Phase zu 5− 6 nm quantifizie-

ren.

In Anbetracht der stetig wachsenden lC ließ sich annehmen, dass die beschrie-

bene Auslenkung in Richtung der leichten Achsen in Form einer homogenen Ro-

tation stattfindet. Gleichwohl ließ sich daraus vermuten, dass die von den hartma-

gnetischen Partikeln unbeeinflussten magnetischen Momente der weichmagnetischen

Fe3B Phase in Feldrichtung verharren; sowohl für den remanenten Zustand als auch

für µ0H = −0.25T. Diese Schlussfolgerungen sind konsistent mit Ergebnissen [109]

basierend auf einer Finite Elemente Simulation eines vergleichbaren Materials, die

für den remanenten Magnetisierungszustand explizit dieses Verhalten vorhersagen.

Eine homogene Rotation spiegelt sich während der Magnetisierungsumkehr in

den Magnetisierungskurven M(H) als reversibler Prozess wider, weshalb die Rever-

sibilität der Magnetisierungskurve des untersuchten Materials anhand von Dema-

gnetisierungsremanenzen überprüft wurde. Diese zeigten reversible Prozesse bis hin

zu dem auch in der magnetischen SANS angelegten Magnetfeld von µ0H = −0.25T.
Damit ließ sich folgern, dass ein wesentlicher Teil der Magnetisierungsumkehr – zu-

mindest bis µ0H = −0.25T – durch homogene Rotation der Magnetisierung in den

Nd2Fe14B Partikeln stattfindet.
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Im weiteren Verlauf dieser Arbeit wurden mikromagnetische Ansätze verwen-

det, um die Neutronenstreudaten, die im Hochfeldbereich gemessen wurden, zu un-

tersuchen. Durch einen mikromagnetischen Fit an die experimentellen Streuquer-

schitte wurde das effektive EntmagnetisierungsfeldHd und die Austauschsteifigkeits-

konstante A bestimmt. In dieser Auswertung wurden für die longitudinale Streugeo-

metrie ein Wert von µ0Hd = 1.08 ± 0.10T gefunden, der auf Grund der senkrecht

zum angelegten Feld positionierten, sehr flachen Probe vergleichsweise hoch ist. Für

die transversale Streugeometrie fand man µ0Hd = 0.00±0.07T. In dieser Geometrie

ist die Probenoberfläche in Feldrichtung orientiert, was konsistenterweise niedrigere

Entmagnetisierungsfelder erwarten lässt. Die Austauschsteifigkeitskonstante ergab

sich zu A = 10.2 ± 2.9 pJ/m (k0 ⊥ H) und A = 13.1 ± 3.2 pJ/m (k0 ‖ H). Diese

Werte stimmen im Rahmen der berechneten Fehler mit dem in der Literatur bisher

nur als Abschätzung zu findenden Wert von A = 12.5 pJ/m überein.

Durch den gefundenen geschlossenen Ausdruck in Gleichnung (2.65) für die

Korrelationsfunktion

C(r) =
KR4

H2
i

∞∫

0

J0(qr) J
2
1 (qR)

(1 + l2H q2)2
dq ,

konnte eine komplementäre Analyse im Realraum, welche experimentelle Korrelati-

onsfunktionen C(r) untersuchte, durchgeführt werden. Der dabei bestimmte Wert

für die Austauschkonstante von A = 11.8 pJ/m bestätigte die vorangegangen Re-

sultate. Diese Analyse basiert auf dem zuvor erwähntem Modell einer sphärischen,

magnetischen Inklusion mit homogenem magnetischen Anisotropiefeld in einer ma-

gnetischen, anisotropiefeldfreien Matrix. Der in dieser Analyse ermittelte Radius

der Inklusion R entspricht dem Anisotropiefeldradius und ergab sich zu R = 11.9m.

Dieses Ergebnis untermauerte die Identifizierung des Parameters L mit dem Radius

der Nd2Fe14B Partikel.

Besonders die vorgestellte Methode zur Quantifizierung der Ausdehnung der

Magnetisierungsinhomogenitäten bietet in zukünftigen Experimenten verschiedene

Möglichkeiten zur Untersuchung der magnetischen Mikrostruktur. Zum einen könn-

te bei höherer Datendichte in Bezug auf die in der magnetischen SANS gemesse-

nen Magnetfelder derjenige Feldstärkenbereich ermittelt werden in dem eine nicht

reversible Ummagnetisierung startet. Dies könnte sich in einer Veränderung (z.B.
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Krümmungswechsel) des Kurvenverlaufs der feldabhängigen lC Daten bemerkbar

machen. Hier kann der Datenpunkt lC(Hc) als Beispiel dienen, dessen Feldabhängig-

keit nicht mehr durch Gleichung (4.3) beschrieben werden kann. Außerdem könnte

diese Methode in einer Untersuchung einer Probenreihe angewendet werden, die glei-

che Phasen aber andere Mikrostruktur (veränderte Korngrößen, andere Volumenan-

teile) aufweisen. Die möglicherweise durch gezielte Modifizierung der Mikrostruktur

induzierten Veränderungen der makroskopischen magnetischen Materialeigenschaf-

ten (z.B. Koerzitivfeld) könnten durch Bestimmung von feldabhängigen lC in Bezie-

hung zu vergrößerten oder verkleinerten Magnetisierungsinhomogenitäten gebracht

werden. Gerade in Hinblick auf theoretische Arbeiten an vergleichbaren Materialien,

welche den Einfluss der Ausdehnung der weich- bzw. hartmagnetischen Phasen auf

das Koerzitivfeld behandeln [10, 29, 33, 110, 111], könnten solche Untersuchungen

experimentelle Unterstützung liefern.

Numerische Simulationen, die die magnetische Mikrostruktur von der auf Eisen

basierenden Legierung NANOPERM modellieren, wurden in [112, 113] genutzt, um

die Fourierkoeffizienten M̃x,y,z zu berechnen und somit 2D-Detektorstreubilder zu si-

mulieren. Die in [114] gefunden Ergebnisse aus experimenteller magnetischer SANS

an NANOPERM zeigten gute Übereinstimmung mit diesen Simulationen in Bezug

auf die gemessenen Streubilder und deren Feldabhängigkeiten. Eine solche Simula-

tion könnte die in dieser Arbeit erzielten Ergebnisse untermauern und über diese

Arbeit hinaus dazu dienen, die hier angewendeten Methoden zu etablieren. Da in

der Literatur experimentell bestimmte Werte für die Austauschsteifigkeitskonstante

A für Fe3B nicht vorhanden sind, könnte der hier bestimmte Wert für A für eine

solche Simulation hilfreich sein.
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Energiedispersive Röntgenspektroskopie EDX

Abbildung 2: EDX-Analyse der im obersten Bild (STEM Aufnahme) gekenn-

zeichneten Bereiche.

In den EDX Profilen der hellen Bereiche sind die für das Element Neodymium

(Nd) charakteristischen Röntgenstrahlungen nachweisbar. In den dunklen Bereichen

sind diese dagegen nicht zu erkennen. Dies ist in Übereinstimmung mit den in Ab-
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schnitt 4.1 gemachten Aussagen, dass die in den STEM Aufnahmen sichtbaren hellen

Bereiche der Nd2Fe14B Phase und die dunklen Bereiche der Fe3B Phase zuzuordnen

sind.

Abbildung 3: EDX-Analyse der in der STEM Aufnahme gekennzeichneten Be-

reiche ( vgl. oberstes Bild in Abb. 2).
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