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Exact fluctuation theorem without ensemble quantities
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Evaluating the entropy production (EP) along a stochastic trajectory requires the knowledge of the system
probability distribution, an ensemble quantity notoriously difficult to measure. In this paper we show that the
EP of nonautonomous systems in contact with multiple reservoirs can be expressed solely in terms of physical
quantities measurable at the single-trajectory level with a suitable preparation of the initial condition. As a result,
we identify universal energy and particle fluctuation relations valid for any measurement time. We apply our
findings to an electronic junction model, which may be used to verify our prediction experimentally.
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I. INTRODUCTION

Nowadays experimental techniques enable the measure-
ment of energy and particle fluctuations in very small
systems such as single molecules, quantum dots, or electric
circuits [1–12]. These fluctuations have been shown to satisfy
universal constraints known as fluctuation theorems (FTs),
which generalize many former results derived near equilibrium
such as fluctuation-dissipation or Onsager-Casimir reciprocity
relations [13–28].

Most FTs are understood as special limiting cases of the
finite-time FT for the entropy production (EP) defined at the
trajectory level [21]. For a system in contact with several
energy and particle reservoirs this EP becomes the sum of
an entropy flow term describing the entropy changes in the
reservoirs due to energy and particles currents and a second
term describing the change of the system entropy along the
trajectory [21]. Contrary to the entropy flow, this second
term is expressed in terms of the initial and final system
probability distribution. Since these probabilities are ensemble
quantities evaluated at the trajectory level, their experimental
measurement has been possible only for systems with very few
degrees of freedom [10,12,29,30]. Furthermore, even when
measurable, these probabilities prevent the expression of the
EP solely in terms of physical observables measurable along
a single experimental trajectory.

Two types of specific setups have been previously consid-
ered to resolve this issue. The first one consists of a system
driven by a time-dependent force (i.e., nonautonomous) and
connected to a single heat reservoir. In this case the EP reduces
to the dissipated mechanical work and the FT reduces to the
celebrated Crooks FT [18,19], which has been successfully
exploited experimentally [1,2,8]. The second setup is made
of an autonomous system (no time-dependent force) in a
nonequilibrium steady state between multiple reservoirs. In
the long-time limit (in a large deviation sense) the FT for EP
reduces to a FT for energy and matter currents. This limit is
needed precisely to eliminate the system entropy contribution
to the EP. These so-called steady-state FTs [22,23,31] have
also been verified experimentally [7,32].

In this paper we show that the EP in general setups can
be expressed solely in terms of physical quantities directly
measurable at the single-trajectory level provided the initial
condition of the system is carefully prepared. These setups

consist of systems driven by a time-dependent force, in contact
with multiple reservoirs, for which the initial conditions
correspond to equilibrium with respect to a reference reservoir.
We then establish a general finite-time FT for the work and the
energy and matter currents that reduces to the Crooks FT in the
presence of a single reservoir and a finite-time current FT in
the absence of time-dependent driving. Our FT is particularly
relevant for electron counting statistics experiments performed
in nonautonomous junctions [7,8,12].

II. FINITE-TIME FLUCTUATION THEOREM

We consider a system with a discrete set of energy levels
denoted by εm(λt ), controlled by a time-dependent parameter
λt , and connected to ν = 1, . . . ,N macroscopic reservoirs
with inverse temperatures βν = T −1

ν (kB = 1) and chemical
potentials μν . Our setup is schematically represented in
Fig. 1(a).

We start by defining the forward experiment. The system is
initially assumed at equilibrium with respect to a reference
reservoir denoted by ν = 1 at the value of the driving
parameter λ0. We denote its initial probability distribution
by p

eq
m (λ0). Such a state could be prepared by disconnecting

all but the reference reservoir and letting the system relax
to equilibrium [see Fig. 1(b)]. We will later return to more
realistic preparations of such a state. All the reservoirs are
then simultaneously connected to the system at t = 0 and the
driving parameter λt starts changing until time τ , when it
reaches its final value λτ . During this time, energy and particles
are exchanged between the system and the reservoirs and
mechanical work wλ (system energy changes induced by the
driving parameter) is performed on the system. After τ , all but
the reference reservoir ν = 1 are simultaneously disconnected
from the system, which then reaches after a time τr the
equilibrium distribution p

eq
m (λτ ) with respect to the reference

reservoir. The entire duration of the forward experiment is
τ ′ = τ + τr , but we will later see that the disconnection
procedure and the subsequent equilibration from τ to τ ′ is
in fact not required for our final FT (9) to hold. We denote by
m the trajectory followed by the system between 0 and τ ′. The
EP along m during this forward experiment reads [23,33]

�is[m|λ] = ln peq
m0

(λ0) − ln peq
mτ ′ (λτ ) −

N∑
ν=1

βνqν[m|λ] (1)
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FIG. 1. (Color online) (a) Schematic representation of our setup.
(b) Idealized preparation of the initial state of the system, at
equilibrium with reservoir ν = 1 and disconnected from reservoirs
ν = 2, . . . ,N . (c) Schematic representation of the forward (solid
black line) and backward (dashed red line) protocols.

in terms of the equilibrium distributions

peq
m (λt ) = e−β1[εm(λt )−μ1nm−�1(λt )], (2)

where εm(λt ) and nm denote the system energy and particle
number in state m and �1(λt ) denotes the equilibrium grand
potential with respect to ν = 1. The first two terms in (1)
represent the change in the system entropy. The third one is
the entropy change in the reservoirs expressed in terms of the
heat qν[m|λ] ≡ �εν[m|λ] − μν�nν[m|λ], where �εν[m|λ]
and �nν[m|λ] denote, respectively, the energy and matter
flowing from the reservoir ν.

We now consider the backward experiment. The system is
initially in the final equilibrium state of the forward protocol
p

eq
m (λτ ) and all the reservoirs are then reconnected. During

a time τ , the system is driven by the time-reversed driving
of the forward experiment λ̃t ≡ λτ−t until it reaches its final
value λ̃τ ≡ λ0. All reservoirs except the reference one ν = 1
are then disconnected and the system is allowed to relax to the
equilibrium state p

eq
m (λ̃τ ) = p

eq
m (λ0). Again, we will see that

this last step is in fact not required for our FT (9) to hold.
A central result in stochastic thermodynamics is that the

EP (1) can be expressed as [19,21,23]

�is[m|λ] = ln{P [m|λ]/P [m̃|λ̃]}, (3)

where P [m|λ] is the probability to observe a trajectory m
during the forward experiment and P [m̃|λ̃] is the probability
to observe the time-reversed trajectory m̃ during the backward
experiment. As a result, EP satisfies the involution �is[m̃|λ̃] =
−�is[m|λ] under time reversal, which directly implies the
FT [21,33,34]

ln
P (�is)

P̃ (−�is)
= �is, (4)

where P (x) and P̃ (x) are the probability distributions of the EP
during the forward and the backward experiment, respectively.

We now make use of energy and particle number conserva-
tion at the single-trajectory level. Energy changes are separated
into contributions due to the driving parameter (mechanical

work) and the reservoirs (energy flows), while particle changes
are only due to particle flows

εmτ ′ (λτ ′) − εm0 (λ0) = wλ[m|λ] +
N∑

ν=1

�εν[m|λ], (5)

nmτ ′ (λτ ′) − nm0 (λ0) =
N∑

ν=1

�nν[m|λ]. (6)

Together with the equilibrium condition (2), we can rewrite
the EP as

�is = β1(wλ − ��1) +
N∑

ν=2

(
Aε

ν�εν + An
ν�nν

)
, (7)

where we omitted the trajectory dependence to lighten the
notation and introduced the thermodynamic forces

Aε
ν = β1 − βν, An

ν = βνμν − β1μ1, (8)

associated with the energy and matter transfers, respectively.
We also defined the change in the reference grand potential
��1 = �1(τ ) − �1(0), which only depends on the initial
and final values of the driving parameter and thus does not
fluctuate. As a result, the FT for the EP can be written as

ln
P

(
β1wλ + τ

∑N
ν=2

[
Aε

νj
ε
ν + An

νj
n
ν

])
P̃

(−β1wλ − τ
∑N

ν=2

[
Aε

νj
ε
ν + An

νj
n
ν

])

= ln
P

(
wλ,

{
jε
ν

}
,
{
jn
ν

})
P̃

(−wλ,
{ − jε

ν

}
,
{ − jn

ν

})

= β1(wλ − ��1) + τ

N∑
ν=2

(
Aε

νj
ε
ν + An

νj
n
ν

)
(9)

in terms of the energy and particle currents jε
ν = �εν/τ and

jn
ν = �nν/τ , respectively, entering the system from reservoir

ν. The first equality in (9) results from the fact that when
EP is a sum of odd terms under time reversal, a detailed FT
also holds for their joined probability distribution [35]. The
FT (9) is our main result. It holds for specific initial conditions
corresponding to equilibrium with respect to a reference
reservoir (2), but is valid for any time and is exclusively
expressed in terms of physical observables at the trajectory
level: the mechanical work performed on the system wλ and the
energy and particle currents jε

ν and jn
ν . The generalization to

time-dependent temperatures and chemical potentials is given
in the Appendix.

As previously announced, disconnecting all but the ref-
erence reservoir and letting the system relax in the forward
as well as in the backward experiment is in fact not needed.
All the fluctuating quantities appearing in the argument of
the probability distributions in (9) stop evolving during these
relaxation process, i.e., wλ = jε

ν = jn
ν = 0 for ν = 2, . . . ,N .

As a result, the measurement of the mechanical work and of
the fluxes can be performed during any chosen time regardless
of the final state of the system and the type of driving.

The initial condition (2) can be prepared without discon-
necting the reservoirs by letting the system relax with all
temperatures and chemical potentials of the reservoirs set to
β1 and μ1. The latter are then simultaneously switched to their
nominal values βν and μν on a time scale shorter than that
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of the system dynamics. We show in the Appendix that such
switching is not affecting (9). Alternatively, one may directly
weight measurement outcomes along single trajectories with
the equilibrium distribution (2) in experimental situations for
which the initial state of the system is controlled.

In the presence of a single reservoir Aε
ν = An

ν = 0, (9)
reduces to the Crooks FT [18,19] for the mechanical work
ln{P [m|λ]/P [m̃|λ̃]} = exp[β(wλ[m|λ] − ��)]. On the other
hand, in the absence of time-dependent driving our FT (9)
becomes equivalent to a current FT [22–24]

ln
P

({
jε
ν

}
,
{
jn
ν

})
P

({−jε
ν

}
,
{−jn

ν

}) = τ

N∑
ν=2

(
Aε

νj
ε
ν + An

νj
n
ν

)
. (10)

Remarkably, this FT is now valid at all times (due to our
choice of initial condition), while when initially at steady state
a long-time limit is needed.

For isothermal setups (βν = β for all ν), our FT (9)
simplifies to

ln
P (wλ + wc)

P̃ (−wλ − wc)
= ln

P (wλ,wc)

P̃ (−wλ, − wc)
=β(wλ + wc − ��1),

(11)

where the chemical work for transferring particles from one
reservoir to another is

wc = τ

N∑
ν=2

(μν − μ1)jn
ν . (12)

Despite their very different nature, mechanical and chemical
work play the same role in this result.

III. MODEL SYSTEM

As a concrete application, we consider a single-level quan-
tum dot connected to two electronic reservoirs at equilibrium
with the same temperature but different chemical potentials.
We also assume that an external field drives the energy of
the single level as εt = ε − a cos ωt with an amplitude a

and frequency ω. The corresponding backward protocol for
a given measurement time τ is ε̃t ≡ ετ−t . If m = 0,1 denote,
respectively, the empty and filled single level, in the Coulomb
blockade regime the dynamics of the occupation probabilities
pm is described by the master equation ṗm = ∑

m,m′ 
mm′pm′ ,
where 
mm = −∑

m′ 
m′m [24,36]. The Fermi golden rule
rate to charge and uncharge the dot are respectively given
by 
10 = ∑

ν=1,2 γνfν(εt ) and 
01 = ∑
ν=1,2 γν(1 − fν(εt )) in

terms of the tunneling rates γν and the Fermi-Dirac distribution
function fν(x) = [1 + exp β(x − μν)]−1 of the reservoirs ν =
1,2. Similar experimental setups have been considered in
Refs. [7,8]. Since the single-electron transfers and the dot
occupation can be monitored experimentally, these setups are
ideal to verify our predictions.

For this isothermal setup, we will explicitly verify the
FT (11) by numerically calculating the statistics of the
mechanical and chemical work using the generating function
techniques developed in Ref. [23]. The mechanical work
wλ is the energy provided by the external field to lift the
energy of the single level when charged. When uncharged,
no mechanical work is performed by the field. The chemical

FIG. 2. (Color online) Simulations of the chemical work distri-
bution P (wc) (left column) and the mechanical work distribution
P (wλ)dwλ ≡ P (wλ ∈ [wλ,wλ + dwλ]) (right column), along the
forward protocol and for three different measurement times τ . Each
histogram contains 50 bins that span the support of the distribution.
We used β = 1, μ1 = 1, μ2 = 3, ε = 2, a = 0.5, ω = π/2, γ1 = 1.5,
and γ2 = 1.4.

work wc = τ�μjn
2 , with �μ = μ2 − μ1, is in turn the energy

needed to transfer τjn
2 electrons from reservoir ν = 2 to

reservoir ν = 1.
Simulations of the chemical work distribution P (wc) are

illustrated in the left column of Fig. 2 for several values of the
measurement time τ . The chemical work takes discrete values
wc = k�μ, where k is the number of particles transferred
from reservoir 2 to 1 during time τ . The distribution spreads
and drifts as the measurement time τ increases.

Simulations of the mechanical work distribution P (wλ)
are depicted in the right column of Fig. 2. At short times,
i.e., for τ � 
−1

10 ,
−1
01 , electron transfers barely occur during

the measurement and the distribution is essentially P (wλ) ∼
p

eq
0 δ(wλ) + p

eq
1 δ(wλ − a cos(ωτ )). It becomes smoother as

electrons start to be randomly exchanged with the quantum
dot for increasing measurement times. The initial peaks
completely disappear for τ � 
−1

10 ,
−1
01 . This distribution has

a limited support determined by the minimum and maximum
work that can be done by the protocol on the quantum dot
during τ .

The distributions for the mechanical and chemical work
P (wc) and P (wλ) in general do not satisfy a FT for finite
time τ . However, their joined distribution P (wc,wλ) as well
as the distribution for their sum P (wc + wλ) does satisfy the
FT (11). Numerical evaluations of the latter along the forward
and backward protocol by use of the generating function
techniques [23] are shown in the left column of Fig. 3.
The oscillations in these distributions can be understood by
noting that P (wλ + wc) = ∑

k P (wλ − k�μ,k�μ). Provided
the width of the mechanical work distribution is of order �μ

or smaller, oscillations are to be expected. Moreover, for short
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FIG. 3. (Color online) The left column shows the probability
distribution for the sum of the mechanical and chemical work along
the forward (solid black lines) and backward (dashed red lines)
protocols for different measurement times τ . The right column shows
explicit verification of the fluctuation relation (11). The quantity on
the ordinate is l(wλ + wc) ≡ ln[P (wλ + wc)/P̃ (−wλ − wc)] + β��

and equals wλ + wc when the FT is satisfied. The parameters are the
same as in Fig. 2.

measurement times, the distribution is identically zero on finite
subsets of the work axis due to the limited amount of work
that can be performed by the mechanical driving. The FT (11)
is explicitly verified in the right column of Fig. 3. Here again,
portions of work are missing at short times due to the limited
support of the mechanical work distribution.

IV. CONCLUSION

Various fluctuation relations have been derived in the recent
years, many of which lack a direct connection to experimental
observables. The FT derived in this paper is solely expressed
in terms of physical observables at the trajectory level and
generalizes the former experimentally relevant FTs to setups
involving time-dependent forces and multiple reservoirs.
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APPENDIX

We now consider the generalization of the FT (9) in the
presence of time-dependent inverse temperatures βν(t) and
chemical potentials μν(t) for ν = 1, . . . ,N . The system is
assumed to be described by a stochastic master equation whose

transition rates satisfy the local detail balance condition

ln

ν

mm′(t)


ν
m′m(t)

= −βν(t)[�εν − μν(t)�nν], (A1)

where �εν and �nν denote, respectively, the amount of energy
and particles flowing out of reservoir ν during the transition
from m′ to m.

A system trajectory m is a particular realization of the
stochastic process during which the system undergoes a
succession of transitions at times ti for i = 1, . . . ,k involving
an energy and particle number exchange �εi

ν and �ni
ν with a

given reservoir ν. In the following we make the identifications
t0 = 0 and tk+1 = τ and denote by εmi

(t) and nmi
, respectively,

the energy and particle number of the system in state mi at
time t .

We introduce the instantaneous energy and matter currents
out of reservoir ν and the mechanical power, respectively, as

jε
ν (t) ≡ τ−1

k∑
i=1

�εi
νδ(t − ti), (A2)

jn
ν (t) ≡ τ−1

k∑
i=1

�ni
νδ(t − ti), (A3)

ẇλ(t) ≡
k∑

i=0

ε̇mi
(t)χi(t) (A4)

in terms of the Dirac delta function δ(t) and step functions
χi(t), which are equal to 1 for t ∈]ti ,ti+1[ and 0 otherwise.
The conservation laws (5) and (6) are then equivalent to the
constraints

ε̇(t) = ẇλ(t) +
N∑

ν=1

jε
ν (t), (A5)

ṅ(t) =
N∑

ν=1

jn
ν (t) (A6)

in terms of the energy ε(t) and number of particles n(t) in the
open system at time t .

Using the expression (3) for the EP as well as (A1)–(A6),
we find that

�is[m|{βν(t)},{μν(t)},λ(t)]

= ln pm0 − ln pmτ
+

k∑
i=1

ln

mi−1mi

(ti)


mimi−1 (ti)

= {
β1(t)

[
εmt

(t) − μ1(t)nmt

]}t=τ

t=0

−
∫ τ

0
dt

N∑
ν=1

βν(t)
[
jε
ν (t) − μν(t)jn

ν (t)
]

=
∫ τ

0
dt[β̇1(t)ε(t)] − d

dt
[β1(t)μ1(t)n(t)]

+
∫ τ

0
dt

N∑
ν=2

[
Aε

ν(t)jε
ν (t) + An

ν (t)jn
ν (t)

]

−β1(τ )φ1(τ ) + β1(0)φ1(0) +
∫ τ

0
dt β1(t)ẇλ(t). (A7)
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Assuming that the inverse temperature and chemical poten-
tial of the reference reservoir ν = 1 is time independent,
we get

ln
P (�is)

P̃ (−�is)
= β1(wλ − �φ1) +

∫ τ

0
dt

N∑
ν=2

[
Aε

ν(t)jε
ν (t)

+An
ν (t)jn

ν (t)
]
, (A8)

expressed in terms of the time-dependent thermodynamic
forces

Aε
ν(t) = β1 − βν(t), (A9)

An
ν (t) = βν(t)μν(t) − β1μ1 (A10)

and the grand canonical potential difference

�φ1 = φ1(τ ) − φ1(0). (A11)

The FT (A8) is the generalization of (9) when considering
time-dependent temperatures and chemical potentials in all
the reservoirs.

As announced in the paper, a sudden switch in the
temperatures and chemical potentials of all but the reference
reservoir does not contribute to the EP appearing on the
right-hand side of the FT (A8). Indeed, since the switch is
performed on a time scale shorter than the typical time scale
of transfer processes between the reservoirs and the system, all
the currents remain zero during the switch jε

ν (ts) = jn
ν (ts) =

wλ = �φ1 = 0. We implicitly assumed that the relaxation time
scale of the reservoirs is much shorter than all other relevant
time scales.
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