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ABSTRACT

To address the issue of malware detection, researchers have
recently started to investigate the capabilities of machine-
learning techniques for proposing effective approaches. Sev-
eral promising results were recorded in the literature, many
approaches being assessed with the common “10-Fold cross
validation” scheme. This paper revisits the purpose of mal-

ware detection to discuss the adequacy of the “10-Fold” scheme

for validating techniques that may not perform well in real-
ity. To this end, we have devised several Machine Learning
classifiers that rely on a novel set of features built from ap-
plications’ CFGs. We use a sizeable dataset of over 50,000
Android applications collected from sources where state-of-
the art approaches have selected their data. We show that
our approach outperforms existing machine learning-based
approaches. However, this high performance on usual-size
datasets does not translate in high performance in the wild.

Categories and Subject Descriptors

D.4.6 [Operating Systems|: Security and Protection—In-
vasive software (e.g., viruses, worms, Trojan horses)
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1. INTRODUCTION

The increasing adoption of smartphones and electronic
tablets has created unprecedented opportunities of damages
by malicious software which are hidden among the millions
of mobile apps available, often for free, on application mar-
kets [1]. Malware pose various threats that range from sim-
ple user tracking and leakage of personal information [2], to
unwarranted premium-rate subscription of SMS services, ad-
vanced fraud, and even damaging participation to botnets.
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Machine learning techniques, by allowing to sift through
large sets of applications to detect malicious applications
based on measures of similarity of features, appear to be
promising for large-scale malware detection. Unfortunately,
measuring the quality of a malware detection scheme has
always been a challenge, especially in the case of malware
detectors whose authors claim that they work “in the wild”.

In this paper: a) We propose a novel feature set for machine-
learning classifiers for malware detection, based on abstract
basic blocks extracted from the Control-Flow Graph; b) We
show that our implemented classifiers yield a high malware
discrimating power when evaluated with the 10-fold cross
validation scheme; c) We show that 10-fold validation on
the usual sizes of datasets presented in the literature is not
a reliable performance indicator for realistic malware detec-
tors.

We introduce in section 2 our datasets. Section 3 describes
our approach of malware detection. Section 4 presents the
assessment of our approach. Related work is discussed, and
section 6 concludes and enumerates future work.

2. DATASETS

In this section, we present the datasets that are used to
build and assess our classifiers.

We have used two sources of Android applications that
are often used by researchers and practitioners of machine
learning-based malware detection for Android.

Building an Android market dataset.

Google Play is the main Android applications market avail-
able. We have built a tool that automatically crawls and
downloads free applications available in this source.In the
course of six months, we have collected a dataset of nearly
52000 unique applications.

Collecting known malware.

For training needs, we must have access to a reliable set
of Android malware. To this end, we leverage a dataset re-
leased in the course of the Genome project [3]. The Genome
dataset contains over 1200 Android malware samples.

Malware labeling.

In order to construct a reference classification to which we
can compare the predictions of our approaches, we collected
from VirusTotal' the analysis report of each application in

"https://www.virustotal . com
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our datasets. VirusTotal is a service that allows to readily
obtain information on antivirus products which have identi-
fied a given application sample as malware.

3. OUR APPROACH

In this paper we propose a novel approach to extract, from
an application program, elements of applications’ Control
Flow Graphs which should capture, in a more meaningful
way than n-grams, the implementation of a malicious be-
havior inside program code.

3.1 Novel Feature Set for Malware Detection

We perform static analysis of Android applications’ byte-
code to extract a representation of the program control-flow
graph (CFQG). The extracted CFG is expressed as charac-

ter strings using a method devised by Pouik et al. [4]. This
method is based on a grammar proposed by Cesare and Xi-
ang [7].

Given the abstract representation of an application’s CFG,
we collect all the basic blocks and refer to them as the fea-
tures of the application. A basic block is a sequence of in-
structions in the CFG with only one entry point and one
exit point.

For reproducibility purposes, the feature matrices that we
have computed are publicly available for download?.

3.2 C(lassification Model

We now discuss the different steps, illustrated in Figure 1,
for building the classification model.

Step 0: Set composition. Our complete dataset contains
over 50 000 applications that we divide into two distinct sets,
one significantly smaller than the other, for the purpose of
assessment. The first set, Set,, contains all known malware,
i.e., all items in the Genome dataset. To complete this set,
we randomly select a subset of the Google Play dataset to
add as the goodware portion of the dataset. The second
set, Sets, is then composed of the remaining subset of the
Google Play dataset. Sets is always used as a testing set,
whereas Set. can be used as training set (in the wild) or as
the entire universe (10-Fold).

Step 1: Feature Evaluation. Once the sets of an experi-
ment are defined, a feature evaluation step is performed to
measure the discriminating power of every feature.

Step 2: Feature Selection. For practical reasons, given
the large number of features to process, we only retain, after
the evaluation step, the best N features, i.e. those with the
highest InfoGain values.

Step 3: Classification validation scenarios. We propose
to use two distinct scenarios to validate our malware detec-
tion approach.

10-Fold cross wvalidation. For assessing our malware de-
tection approach with the 10-fold cross validation scheme we
consider Set, as the dataset where both training and testing
data will be drawn.

Validation in the wild. We perform large-scale experi-
ments where the training is performed on Set,. The trained
classifier is then used to predict the class of every single ap-
plication from Sets. Those predictions are compared to our
reference classification obtained from VirusTotal.

’https://github.com/malwaredetector/malware-detect
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Figure 1: The steps in our approach

3.3 Varying & Tuning the Experiments

We now succinctly describe the parameters that are used
in our experiments.

Goodware/Malware ratio. We performed various experi-
ments tuning the ratio value to 1/2, 1, 2 and up to 3, rep-
resenting respectively 620, 1247, 2500 and 3500 Android
applications selected in the goodware set.

Volume of processed features. Our experiments were done
with different numbers of selected features: 50, 250, 500,
1000, 1500, 5000.

Classification algorithm. Our malware detectors are im-
plemented using 4 well-known machine learning algorithms,
namely RandomForest, J48, JRip and LibSVM,

Since the selection of Goodware performed in Step 1 is
performed randomly, we repeat 10 times each experiment
with a given triplet of parameter values. In total, 4 (values
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for number of Goodware) x6 (values for number of features)
x4 (number of algorithms) x10 = 960 runs were processed
for our experiments.

4. ASSESSMENT

Figure 2 depicts the distribution of precision, recall and
F-measure that the 960 10-fold cross validation tests have

yielded.
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Figure 2: Distribution of precision, recall and F-
measure for the malware class yielded by all 960 10-
fold cross validation experiments

The results indicate that the vast majority of our 960 built
classifiers exhibit a very high precision rate with a median
value of 0.94. Although recall values are lower than precision
values, a large portion of our classifiers exhibit a high recall
rate. The F-measure values obtained are high, going from
0.53 to 0.96, with a median value of 0.91.

Figure 3 illustrates the distribution of precision, recall and
F-measure values for the 960 large-scale experiments. Those
classifiers exhibit a very low precision rate with a median
value of 0.11. The global performance of the classifiers is
very in large-scale experiments, with F-measure values close
to 0.
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Figure 3: Distribution of precision, recall and F-
measure values in “in the wild” experiments

S. RELATED WORK

None of the approaches introduced by the literature dis-
cussed in this section provide a large scale evaluation of their
approach.

Android malware detection.

Using permissions and API calls as features, Wu et al. [0]
performed their experiments on a dataset of 1500 goodware
and 238 malware. In 2013, Amos et al. [7] leveraged dynamic
application profiling in their malware detector. Demme et
al. [8] also used dynamic application analysis to perform mal-
ware detection with a dataset of 210 goodware and 503 mal-
ware. Yerima et al. [9] built classifiers based on API calls,
external program execution and permissions. Their dataset
consists in 1000 goodware and 1000 malware. Canfora et
al. [10] experimented feature sets based on SysCalls and per-
missions. Their classifiers were evaluated on a dataset of 200
goodware and 200 malware.
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6. CONCLUSION

We have discussed in this paper the validation of machine-
learning malware detection with 10-fold cross validation and
in the wild with realistic datasets. We proposed a novel
Feature set that yield high performance measures in 10-Fold
cross validation. Beyond this validation, we have assessed
the actual ability of our classifiers to detect Malware in a
large dataset. The recorded poor performance has provided
us with new insights regarding the validity of 10-fold cross
validation. In future work, we plan to investigate under
what conditions 10-fold cross validation could be a reliable
indicator of realistic malware detectors accuracy.
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