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Abstract— Compressive Sensing (CS) has been widely investi-
gated in the Cognitive Radio (CR) literature in order to reduce
the hardware cost of sensing wideband signals assuming prior
knowledge of the sparsity pattern. However, the sparsity order of
the channel occupancy is time-varying and the sampling rate of
the CS receiver needs to be adjusted based on its value in order to
fully exploit the potential of CS-based techniques. In this context,
investigating blind Sparsity Order Estimation (SOE) techniques
is an open research issue. To address this, we study an eigenvalue-
based compressive SOE technique using asymptotic Random
Matrix Theory. We carry out detailed theoretical analysis for
the signal plus noise case to derive the asymptotic eigenvalue
probability distribution function (aepdf) of the measured signal’s
covariance matrix for sparse signals. Subsequently, based on the
derived aepdf expression, we present a technique to estimate
the sparsity order of the wideband spectrum with compressive
measurements using the maximum eigenvalue of the measured
signal’s covariance matrix. The performance of the proposed
technique is evaluated in terms of normalized SOE Error (SOEE).
It is shown that the sparsity order of the wideband spectrum can
be reliably estimated using the proposed technique.

I. INTRODUCTION

Cognitive Radio (CR), which can exploit the unused li-
censed spectrum opportunistically, is considered a promising
candidate to enhance the spectral efficiency in future wireless
systems [1, 2]. In this direction, Spectrum Sensing (SS) is
an important spectrum awareness mechanism required by the
CRs. Several SS techniques such as matched filter, cyclo-
stationary feature detection, energy detection, autocorrelation
and eigenvalue-based detection have been proposed in the
literature for sensing the presence of a Primary User (PU) [3–
6]. Most of the existing SS techniques focus on the detection
of narrowband signals considering a single radio channel.
However, in practical scenarios, the CRs need to detect and
acquire information about a wide spectrum band in order
to utilize the spectrum efficiently. Furthermore, CRs do not
have prior knowledge about the PU’s signal and channel. In
this aspect, investigating efficient blind wideband spectrum
awareness techniques is an important and relevant research
challenge. One of the main challenges in implementing a
wideband CR is the design of the Radio Frequency (RF) front-
end. The sensing RF chain of a CR receiver should be able to
receive a wideband signal, sample it using a high speed Analog
to Digital Converter (ADC) and perform measurements for the
detection of PU signals. Furthermore, the main limitation in
an RF front-end’s ability to detect weak signals is its dynamic
range i.e., the requirement for a large number of bits in the

ADC. For this purpose, the wideband sensing requires multi-
GHz speed ADCs, which together with high resolution might
be infeasible with current technology [7].

In the above context, Compressive Sensing (CS) has
emerged as an important technique which can significantly
reduce the acquisition cost at the CR node [8, 9]. According
to CS theory, certain signals can be recovered from far fewer
samples or measurements than those required by conventional
methods [8]. In sparse signals, most of the signal energy is
concentrated in a few non-zero spectral coefficients. Further-
more, it’s not necessary for the signal itself to be sparse but
it can be compressible within sparse representations of the
signal in some known transform domain, which depends on the
nature of the waveform [10, 11]. For example, smooth signals
are sparse in the Fourier basis, whereas piecewise smooth
signals are sparse in a wavelet basis. Most of the CS literature
has focused on improving the speed and accuracy of recover-
ing the original sparse signal from compressive measurements
[12–14]. In the context of CR networks, CS techniques are
suitable for acquiring the spectrum usage information in a
wide spectrum band as in many cases the spectrum occupancy
is sparse in the frequency and time domains [15].

A. Contributions

Most of the CS contributions in the context of a wideband
CR assume that the wideband signal is sparse in some domain
and the number of measurements is kept fixed based on the
assumed sparsity order. In addition, in most of the contribu-
tions, it is assumed that the sparsity order of the signal is
known beforehand. However, in the context of CR networks,
this prior information is not available at the CR sensor and
has to be estimated. Furthermore, in compressive wideband
systems, the required number of measurements to achieve a
successful recovery rate proportionally varies with the sparsity
order of wideband signals [16]. In this context, Sparsity Order
Estimation (SOE) is crucial in order to choose the appropriate
number of measurements based on the estimated sparsity order.

In the above context, a two-step CS algorithm has been
recently proposed in [16]. In the proposed algorithm, the
sparsity order of the wideband signals is estimated in the first
step and the total number of collected samples are adjusted in
the second step based on the estimated sparsity order. How-
ever, the considered estimation approach is based on Monte
Carlo simulations and the proposed simulation-based approach
requires the reconstruction of the original sparse signal. In



this aspect, we consider an eigenvalue-based approach using
the eigenvalues of the CS measurement vector in order to
estimate the sparsity order of the wideband spectrum using
Random Matrix Theory (RMT). In our previous works [17–
19], the eigenvalue-based approach has been used for Signal
to Noise Ratio (SNR) estimation in various noise/channel
correlated scenarios. Our proposed method requires no prior
information about the PU signals neither the knowledge of
channel nor the noise covariance. Another main advantage
of the proposed method is that compressive measurements
can be used for acquiring the sparsity order information
with a trade-off between estimation performance (expressed
in terms of SOE Error (SOEE)) and hardware cost (number
of measurements). It should be noted that this work focuses
on the SOE and the support recovery of the sparsity pattern is
not addressed here. After estimating the sparsity order, already
existing support recovery algorithms [20, 21] can be straight-
forwardly applied. The signal model used in this paper has
been inspired from the model used in [20] which focuses on
the input-output mutual information and the support recovery
rate in the asymptotic limit. Our theoretical analysis differs
from [20] as we derive the aepdf expression based on the
Multiple Measurement Vector (MMV) model instead of the
Single Measurement Vector (SMV) model considered in [20],
which is the main contribution of this paper. Based on the
derived aepdf expressions, we propose a technique in order to
estimate the sparsity order of the channel occupancy within
the considered wideband spectrum.

B. Structure and Notation

The remainder of this paper is structured as follows: Section
II describes the system and signal models. Section III presents
theoretical analysis using the RMT approach. Section IV
proposes an eigenvalue-based SOE technique based on the
derived aepdf expression. Section V evaluates the performance
of the proposed SOE technique with numerical simulations.
Section VI presents conclusions. The appendix includes some
preliminaries on random matrix transforms.

Throughout this paper, boldface upper and lower case letters
are used to denote matrices and vectors respectively, E[∙] de-
notes expectation, C denotes complex numbers, (∙)T and (∙)†

denote the transpose and the conjugate transpose respectively,
P [∙] denotes the probability, Xi,j denotes the (i, j)th element
of X, fX(∙) denotes the eigenvalue distribution function of X,
RX represents the covariance matrix of X, R̂X represents the
sample covariance of X, SX represents the Stieltjes transform
of X, RX represents the R transform, ΣX represents the Σ
transform and ηX represents the η transform [22].

II. SYSTEM AND SIGNAL MODEL

Let us consider a total bandwidth of W Hz with N number
of carriers each having W/N channel bandwidth. Since all the
carriers may not be occupied all the time, we assume sparse
channel occupancy in the considered wideband spectrum.
In this context, we consider multiple subbands within the
considered wideband spectrum and represent each subband

with a center carrier frequency. Let σ be the sparsity order,
which is defined as the ratio of the number of the occupied
carriers to the total number of carriers over the considered
wideband spectrum. Let ρ be the compression ratio, which
indicates the number measurements as defined later. As in [20],
we formulate the SMV problem with the following complex-
valued observation model

y = AUXb + z, (1)

where A is an N × N diagonal matrix with independent and
identically distributed (i.i.d.) diagonal Bernoulli distributed
elements i.e., P [Ai,i = 1] = ρ = 1 − P [Ai,i = 0], U is
an N ×N random matrix with i.i.d. elements, X is an N ×N
random matrix with i.i.d. elements, b is an N × 1 vector
with i.i.d. complex components bi distributed with Bernoulli
distribution i.e., P [bi = 1] = σ = 1 − P [bi = 0], and z
is an i.i.d. complex Gaussian N × 1 vector with components
zi ∼ CN (0, 1). It should be noted that the N ×N matrix AU
denotes the compressed sensing matrix while the N ×1 vector
Xb denotes the sparse vector representing the sparseness of
the carrier occupancy. It should be noted that the parameter ρ
is equivalent to the ratio of the dimensions of the measurement
matrix considered in the literature [23].

In this paper, we are interested in analyzing the MMV
scenario, where the combination of concatenated multiple
measurement vectors has been represented in the form of a
matrix Y. We consider N ×N sensing matrix AU consisting
of ρN number of non-zero rows. This is equivalent to the
scenario with a CR node equipped with M = ρN number of
frequency selective filters considered in [15], where M filters
are used to measure M different linear combinations of the
received signals of all N carriers. Let N also be the number of
samples collected by a sensor during the measurement process
and therefore each measurement vector of Y contains N
number of samples. We assume that the PU channel occupancy
status remains constant during the period of measurement. In
this context, we extend the above SMV problem (1) into the
following MMV model:

Y = AUBX + Z = AUS + Z, (2)

where B = diag(b) is an N × N diagonal matrix with
the diagonal having i.i.d. Bernoulli distributed elements i.e.,
P [Bi,i = 1] = σ = 1 − P [Bi,i = 0]. The N × N matrix
S = BX is a sparse signal matrix with uniform sparsity
(sparsity order σ) across all the columns. It can be noted that Y
contains ρN number of non-zero rows and each non-zero row
contains N number of samples. We assume that the matrices
A, U, B, X and Z are mutually independent. Furthermore,
we consider U and X to be N × N random matrices having
i.i.d. entries with zero mean and variance 1/N . The sensing
matrix AU is assumed to be known by the receiver.

Assuming that the source signal is independent from the
noise, the covariance matrix of the measured signal, denoted
by RY, can be calculated as [5]:

RY = E[YY†] = E
[
(AUBX)(AUBX)†

]
+ E[ZZ†]. (3)



In this paper, we are interested in finding out the eigenvalue
distribution f(λ) of RY. Since all the matrices A,U,B,X
and Z are square, fRY (λ) = fR̄Y

(λ), where R̄Y =
E
[
U†A†AUBXX†B†

]
+ E[ZZ†] = RR1 + RZ with R =

E
[
U†A†AU

]
, R1 = E

[
BXX†B†

]
and RZ = E[ZZ†]. In

practice, the covariance matrix RY is not available and we
have to rely on the sample covariance matrix. Let us define the
sample covariance matrices of the measured signal and noise
as: R̂Y(N) = 1

N YY† and R̂Z(N) = 1
N ZZ†. Similarly, let

R̂ and R̂1 be the sample covariance matrices corresponding to
the covariance matrices R and R1 respectively. It can be noted
that R̂ and R̂1 are asymptotically free from any deterministic
matrix for the considered X and U [20].

In this study, we are interested in studying the constant
power case considering equal received power across all the
carriers. The detailed analysis for time varying power and
correlated scenarios has been carried out in [24]. The signal
model can be written as:

Y = AU
√

pBX + Z, (4)

where p denotes the constant power across all the carriers.
Since we assume normalized noise variance, SNR ≡ p. The
value of SNR is assumed to be known and it can be acquired
through SNR estimation techniques like in [17, 18].

III. ANALYSIS

Assuming that signal and noise are uncorrelated with each
other, for large values of N , the measured signal’s sample co-
variance matrix can be written using the following asymptotic
approximation [5]:

lim
N→∞

R̂Y(N) ≈ pR̂R̂1 + R̂Z. (5)

The aepdf of the measured signal’s sample covariance matrix
given by (5) can be used to estimate the sparsity order for the
considered case. Due to noncommutative nature of random
matrices, it’s not straightforward to calculate the eigenvalue
distribution of R̂Y(N) by knowing the eigenvalue distribu-
tions of R̂, R̂1 and R̂Z. Using free probability analysis, the
asymptotic spectrum of the sum or product can be obtained
from the individual asymptotic spectra without involving the
structure of the eigenvectors of the matrices [22]. The asymp-
totic eigenvalue distribution of Y in this context can be
obtained by applying Σ and R transforms [22]. To recover
the aepdf of R̂Y(N), we need to know the Stieltjes transform
of its asymptotic density function (see Theorem 6.7). In this
section, we use free probability theory to derive the Stieltjes
transform of R̂Y(N), which is then subsequently used to find
the aepdf and to estimate the sparsity order in our considered
problem.

From [22, Theorem 2.39], the η transform of R̂ satisfies the
following relation:

1 =
1 − ηR̂(z)

1 − ηF(zηR̂(z))
(6)

with F = A†A. Since A is diagonal with Bernoulli i.i.d.

diagonal elements, its η transform can be written as [20]:

ηF(z) = ηA(z) = 1 − ρ +
ρ

1 + z
. (7)

Using (7) in (6), the η transform of R̂ is given by the positive
solution of the following polymonial:

zη2
R̂

(z) − ((1 − ρ)z − 1)ηR̂(z) − 1 = 0. (8)

Using the similar procedure, the η transform of R̂1 is given
by the positive solution of the following polymonial:

zη2
R̂1

(z) − ((1 − σ)z − 1)ηR̂1
(z) − 1 = 0. (9)

Equation (8) corresponds to the η transform of the HH† with
N × ρN random matrix H with i.i.d. elements having zero
mean and variance 1/N . Similarly, (9) corresponds to the
η transform of the HH† with H of dimension N × σN .
Since the HH† follows the Marchenko-Pastur (MP) law, the
Σ transforms of R̂ and R̂1 can be written as [22]:

ΣR̂(z) =
1

ρ + z
, ΣR̂1

(z) =
1

σ + z
. (10)

Theorem 3.1: The Stieltjes transform SR̂Y
(z) of the

asymptotic distribution of eigenvalues of 1
N YY†, where Y =

AUp1/2BX + Z for arbitrary value of p can be obtained
for any z ∈ C by solving a polymonial with the following
coefficients

c0 = −p2,

c2 = p2(ρσ − 1 − z) − p3(ρ + σ) + p4,

c3 = −p3(ρ + σ)(z + 1) + 2p2(ρσ − z + zp2),

c4 = zp4(2 − z) − 2zp3(ρ + σ) − p2(z − ρσ),

c5 = 2z2p4 − zp3(ρ + σ),

c6 = p4z2, (11)

where cn is the nth order coefficient of the polymonial, ρ and
σ denote the compression ratio and sparsity order respectively,
and p is the common receive SNR of all the PU signals.

Proof: Since R̂ and R̂1 are independent Wishart ma-
trices, they are asymptotically free [22]. As a result, the
combined aepdf of the term R̂R̂1 in (5) can be obtained
by applying multiplicative free convolution property of Σ
transform in the following way

ΣR̂R̂1
(z) = ΣR̂(z) ∙ ΣR̂1

(z). (12)

The η transform corresponding to ΣR̂R̂1
(z) in (12) can be

obtained using (22) and its polymonial can be written as:

z(η(z) + 1)(η(z) + ρ)(η(z) + σ) − η(z). (13)

Then using the relation between η and Stieltjes transform given
by (23) in Appendix, the polymonial for Stieltjes transform of
the asymptotic distribution of the eigenvalues of the product
of R̂ and R̂1 can be written as:

z2S3(z)+z(2−ρ−σ)S2(z)+(−z+(ρ−1)(σ−1))S(z)−1 = 0.
(14)



Let RR̂c
be the R transform of the product term R̂R̂1 and is

calculated using (14) and (19), which is given by

RR̂c
(z) =

−(zρ + zσ − 1)
2z2

−
√

(z2ρ2 − 2z2ρσ − 2zρ + z2σ2 − 2zσ + 1)
2z2

. (15)

Then the R transform of pR̂R̂1 in the second term of (5)
becomes pRR̂c

(pz). Since the term R̂Z in (5) follows the
MP distribution, the R transform of R̂Y using additive free
convolution property can be written as:

RR̂Y
(z) = pRR̂c

(pz) + RR̂Z
(z). (16)

Then the polymonial for the Stieltjes transform of the density
of R̂Y in (11) is obtained using (19).
The aepdf of R̂Y can be obtained using Stieltjes inversion
formula (24).

IV. PROPOSED COMPRESSIVE SPARSITY ORDER

ESTIMATION METHOD

The SOE is the process of identifying the number of non-
zero elements of a sparse vector and does not need to have
the exact knowledge of their amplitudes or positions. In this
section, we propose a SOE method based on the maximum
eigenvalue of the measured signal’s covariance matrix. Based
on the polymonial of the Stieltjes transform specified in the
above section, the support range of the corresponding aepdf
is obtained using (24). For convenience, a lookup table (Table
I) is provided in order to illustrate the SOE method in the
considered scenario (see Section V). In the lookup table, we
present the maximum eigenvalues of R̂Y for the considered
case and the corresponding values of σ. For any instantaneous
maximum eigenvalue (λmax) of R̂Y, its value is compared
with the values of λmax stored in the lookup table and the
corresponding value of σ is obtained. Furthermore, for any
intermediate values of λmax, suitable interpolation method can
be applied for estimating the corresponding value of σ.

The Stieltjes transform of R̂Y for the considered constant
power case is calculated using polymonial (11). The value of
p is assumed to be known and in practice, its value can be
obtained by using SNR estimation techniques like in [17].
Furthermore, the parameter ρ is assumed as an operating
parameter of the CR sensing module and its value depends
on how much compressed measurements we want to carry
out in order to reduce the hardware costs at the expense of
some estimation error. Since we know the value of ρ and p in
(11), we can estimate the value of σ by sensing the maximum
eigenvalue of R̂Y, where Y = AUp1/2BX + Z, obtained
using (11) and (24). To clarify the above process, we include
procedures for lookup table formation and sparsity order
estimation below.

Procedure for lookup table formation

1) Select the operating parameter ρ.

2) Select the value of p based on SNR estimation tech-
niques like in [17, 18].

3) Evaluate SR̂Y
(z) using (11).

4) Find λmax(R̂Y) using (24).
5) For each value of σ in (0, 1), repeat steps 3 and 4.
6) Store all λmax(R̂Y) and corresponding σ e.g., Table I.

Procedure for sparsity order estimation

1) Calculate instantaneous R̂Y(N) = 1
N YY†.

2) Calculate λmax (R̂Y(N)).
3) Find σ corresponding to λmax from the lookup table.
4) Use suitable interpolation for any intermediate value of

λmax.

V. NUMERICAL RESULTS

To evaluate the performance of the proposed SOE method
for the considered scenario, the normalized SOE Error (SOEE)
is used and defined as:

SOEE =
E[(σ̂ − σ)2]

σ2
, (17)

where σ̂ is the estimated sparsity order with the proposed
method and σ is the actual sparsity order. In (17), the ex-
pectation is taken over the square of the difference between
the instantaneous value of the estimated sparsity order and the
actual sparsity order considering 103 number of realizations
of the considered MMV observation model. In the following
subsections, we present numerical results for SOE for the
considered scenario. In the numerical results, we compare the
performance of the proposed SOEE technique in compressive
and full measurement cases. The compressive measurement
case corresponds to the signal model given by (2) while the
full measurement case corresponds to the signal model given
by Y =

√
pBX + Z. It should be noted that the theoretical

analysis for the full measurement case has already been carried
out in [17]. From practical perspectives, the difference between
full measurement and compressive measurement cases is that
the former considers all the measurements across the carriers
whereas the later case considers the sparse linear combinations
of carrier measurements.

To validate our theoretical analysis presented in Section III,
we plot the theoretical and simulated eigenvalue distributions
of R̂Y(N) in Fig. 1 with parameters ρ = 0.8, σ = 0.6, N =
100, SNR = 0dB. The theoretical aepdf in this case was
obtained by solving the polymonial given by (11) and using
the Stieltjes inversion formula in (24). From the figure (Fig.
1), it can be noted that the theoretical curve perfectly matches
with the simulated one.

For sparsity order estimation purpose, we provide a lookup
table (Table I), where the maximum eigenvalues of pR̂R̂1 +
R̂Z are provided for different values of σ for compressive and
full measurement cases. The value of σ can be estimated using
this table based on the SOE method described in Section IV.
For example, if the maximum eigenvalue of an instantaneous
R̂Y is 6.05 for the compressive measurement case, it can
be estimated that the sparsity order of the occupancy of the
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Fig. 1: Theoretical and simulated eigenvalue distributions of
R̂Y(N) (ρ = 0.8, σ = 0.6, N = 100, SNR = 0dB) (a)

Y =
√

pBX + Z (b) Y = AU
√

pBX + Z

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.005

0.01

0.015

0.02

0.025

 

 

Fig. 2: Normalized SOEE versus sparsity order with compressive and full
measurements (SNR = 2dB, N = 100)

considered wideband spectrum is 0.4. Figure 2 presents the
normalized SOEE versus sparsity order for compressive and
full measurement cases for SNR = 2 dB. From this figure,
it can be noted that the normalized SOEE is higher for the
compressive case than for the full measurement case. For
SNR = 2 dB as shown in Fig. 2, the normalized SOEE for the
compressive case is almost 2.4 % and for the full measurement
case is nearly about 1.8 % at the sparsity order of 0.5. On
the other hand, the advantage is that we have used 80 %
compression i.e., 20 % saving can be achieved in terms of
hardware resources, which is a considerable gain. Furthermore,
Fig. 3 presents the normalized SOEE versus SNR considering
a fixed sparsity order of 0.6. Our simulation results show that
at lower values of SNR, the compressive case with ρ = 0.8
performs better than the full measurement case in terms of the
normalized SOEE (below SNR value of −0.5 dB in Fig. 3).
An intuitive explanation is that in the full measurement case,
the contribution of the noise in the aepdf becomes dominant
with a faster rate compared to the compressive measurement
case.

Figure 4 depicts the estimation error in terms of normalized
SOEE versus compression ratio ρ for SNR value of 2 dB.
In this simulation settings, the value of σ was considered as
0.6 and the estimation error for each ρ was calculated by
interpolating the instantaneous maximum eigenvalue with the

provided set of the values of σ and λmax for the considered
value of ρ. It can be noted that ρ = 1 corresponds to no-
compression and the estimation error in terms of normalized
SOEE increases as ρ decreases i.e., with the increase in the
compression.

TABLE I: Lookup table for sparsity order estimation for the
considered scenario (ρ = 0.8, SNR = 2 dB)

Sparsity Level (σ) Compressive Full
1 9.63 7.44
0.9 9.03 7.14
0.8 8.41 6.83
0.7 7.85 6.53
0.6 7.26 6.21
0.5 6.67 5.88
0.4 6.05 5.52
0.3 5.44 5.15
0.2 4.85 4.76
0.1 4.25 4.31
0 3.79 3.79
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Fig. 3: Normalized SOEE versus SNR with compressive and full
measurements (σ = 0.6, N = 100)

VI. CONCLUSION

In this paper, firstly, the theoretical expression for aepdf
of the measured signal’s covariance matrix has been derived
for the constant received power scenario using an RMT-
based approach. Then a technique has been proposed for
estimating the sparsity order of spectrum occupancy within
a wideband spectrum in the context of a wideband CR. The
performance of the proposed method has been evaluated in
terms of the normalized SOEE. It can be concluded that the
proposed technique can reliably estimate the sparsity order for
the considered scenario even with compressive measurements.
Furthermore, it has been noted that there exists a trade-off
between the hardware sensing cost and the estimation error
while using compressive measurements. In our future work,
we plan to apply the proposed compressive SOE technique
for implementing an adaptive CS at the CR receiver.
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APPENDIX
Random Matrix Theory Preliminaries

Let FX(x) be the eigenvalue probability density function of a
matrix X.

Theorem 6.1: The Stieltjes transform SX(z) of a positive
semidefinite matrix X is defined by [22]

SX(z) = E

[
1

X − z

]

=

∫ ∞

−∞

1

λ − z
dFX(λ). (18)

Theorem 6.2: The R transform is related to the inverse of
Stieltjes transform as [22]:

RX(z) = S−1
X (−z) −

1

z
. (19)

Theorem 6.3: For a Wishart random matrix X, the R trans-
form of the density of eigenvalues of X is defined as [22]:

RX(z) =
β

1 − z
. (20)

For any a > 0, RaX(z) = aRX(az).
Theorem 6.4: For a Wishart random matrix X, the Σ trans-

form of the density of eigenvalues of X is defined as [22]:

ΣX(z) =
1

z + β
. (21)

Theorem 6.5: The Σ transform of the density of eigenvalues
of X is related to the η transform by the following relation
[22]:

ΣX(z) = −
1 + z

z
η−1
X (1 + z). (22)

Theorem 6.6: The η transform of the density of eigenvalues
of X is related to the Stieltjes transform by the following
relation [22]:

ηX(z) =
SX(− 1

z )

z
. (23)

Theorem 6.7: The aepdf of X is obtained by determining
the imaginary part of the Stieltjes transform SX for real
arguments in the following way.

fX(x) = lim
y→0+

1
π

Im{SX(x + jy)}. (24)
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