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Heterogeneous materials

Many natural or engineered materials are heterogeneous

200 ym BSEM
—

» Homogeneous at the macroscopic length scale
» Heterogeneous at the microscopic length scale



Heterogeneous materials

Need to model the macro-structure while taking the
micro-structures into account

— better understanding of material behaviour, design, etc..

Two choices:
» Direct numerical simulation: brute force!

» Multiscale methods: when modelling a non-linear materials
— Computational Homogenisation
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Semi-concurrent Computational Homogenisation
(FE2, ..)

Macrostructure

—A =

Effective strain

Effective strain M
tensor ey (t)

tensor E%\'I(t)

Effective
Stress

uy (t) = el (£) (x — %) + i (1)



Problem

» For non-linear materials: Have to solve a RVE boundary
value problem at each point of the macro-mesh where it is
needed. Still expensive!

» Need parallel programming
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Strategy

» Use model order reduction to make the solving of the RVE
boundary value problems computationally achievable

» Linear displacement:

M(1) = (6”(0 €xy(i‘)>

exy(t) ey ()
u(t) = eM(t)(x—x)+ 0 with Gr=0

Fluctuation G approximated by: U ~ >, ¢jc;



Projection-based model order reduction

The RVE problem can be written:

Fin (G((1)), €"1(1)) + Eexi (€(1)) = 0 (1)

Non-linear

We are interested in the solution G(eM) for many different
values of eM(t € [0, T]) = exx, exy, €yy-

Projection-based model order reduction assumption:

Solutions G(eM) for different parameters M are contained in a
space of small dimension span((&;)icy1,n)



RVE boundary value problem
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Proper Orthogonal Decomposition (POD)

How to choose the basis [¢¢, ¢p,...] =D ?
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How to choose the basis [¢¢, ¢p,...] =D ?

» “Offline” Stage = Learning stage : Solve the RVE problem
for ﬁcertgin number of chosen values of eM

eyy(t)




Proper Orthogonal Decomposition (POD)

How to choose the basis [¢¢, ¢p,...] =D ?

» “Offline” Stage = Learning stage : Solve the RVE problem
for ?ﬁcertgin number of chosen values of e”

eyy(t)

t=0 Co (t)'

» We obtain a base of solutions (the snapshot):
(U,Uz,...,Up) =S



Find the basis [¢4, ¢a, . . .| = ® that minimises the cost
function:

MpoD

= > llui— Z¢k (dk- uj) | (2)

neEPS

with the constraint (¢;, ¢j) = dj;
Use SVD (Singular Value Decomposition)



Reduced equations

» Reduced system after linearisation: min || K® o + Fext||
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» Reduced system after linearisation: min || K® o + Fext||

» In the Galerkin framework: ®" K& o + @7 Feyy = 0



Reduced equations

» Reduced system after linearisation: min || K® o + Fext||

» In the Galerkin framework: ®" K& o + @7 Feyy = 0

» That's it! In the online stage, this much smaller system will
be solved.
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Optimal snapshot selection



Arbitrary sampling unsatisfactory

Problem: parameter space is HUGE!

No guarantee that the arbitrary sampling “explores” the
parameter space well enough

A =T

eyy (t) \\\ LT N




Load of worst prediction

Rather than an arbitrary sampling, iteratively add the path of
worst prediction:

A

M
vy




Load of worst prediction

find the step increment A¢’ that maximises:
Huexact(tia 6(ti) + Aﬁ/) - Uapprox(tia 6(Z‘i) + AGI)H

A




First paths generated

0.15

Initial loading




Example

Snapshot selection using the load of worst prediction algorithm
(36 load paths generated)
First 3 modes:

AYATATATAYAVATATAY
TAVAVATATAVATAT, v
WAL TATAVATATLYA s
AAAA
2




Coarse contribution Fluctuation




Is that good enough?

» Speed-up actually poor

» Equation “@7 Kd o + @7 Feyxy = 0 quicker to solve but
@' Ko still expensive to evaluate

» Need to do something more —- system approximation
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Idea

» Define a surrogate structure that retains only very few




Idea

» Define a surrogate structure that retains only very few

=
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» Reconstruct the operators using a second POD basis
representing the internal forces



“Gappy“ technique

Originally used to reconstruct altered signals
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» Fini (P ) approximated by Fy (P ) = W 3
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» Fini (P ) is evaluated exactly only on a few selected
nodes: Fiy; (P )
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“Gappy“ technique

Originally used to reconstruct altered signals
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» Fini (P ) approximated by Fy (P ) = W 3
» Fini (P ) is evaluated exactly only on a few selected
nodes: Fiy; (P )

> /3 found through: min H‘T’ﬁ _Eiﬂa)Hz

» Selection of the controlled elements using DEIM



Controlled elements locations

KRN0
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Results



Error

Number of static basis vectors

Number of displacement basis vectors
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Speedup
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Relative error in energy norm
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Conclusion

» Model order reduction can be used to solved the RVE
problem faster and with a reasonable accuracy

» An efficient snapshot selection algorithm can be developed
when dealing with time-dependent parameters

» The controlled elements generated by the DEIM algorithm
lie where damage is high

» Can be thought of as a bridge between analytical and
computational homogenisation:
the reduced bases are pseudo-analytical solutions of the
RVE problem that is still computationally solved at very
reduced cost



Thank you for your attention!
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