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Heterogeneous materials

Many natural or engineered materials are heterogeneous

I Homogeneous at the macroscopic length scale
I Heterogeneous at the microscopic length scale



Heterogeneous materials

Need to model the macro-structure while taking the
micro-structures into account

=⇒ better understanding of material behaviour, design, etc..

Two choices:
I Direct numerical simulation: brute force!
I Multiscale methods: when modelling a non-linear materials

=⇒ Computational Homogenisation
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Semi-concurrent Computational Homogenisation
(FE2, ...)
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Problem

I For non-linear materials: Have to solve a RVE boundary
value problem at each point of the macro-mesh where it is
needed. Still expensive!

I Need parallel programming
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Strategy

I Use model order reduction to make the solving of the RVE
boundary value problems computationally achievable

I Linear displacement:

εM(t) =

(
εxx (t) εxy (t)
εxy (t) εyy (t)

)
u(t) = εM(t)(x− x̄) + ũ with ũ|Γ = 0

Fluctuation ũ approximated by: ũ ≈
∑

i φiαi



Projection-based model order reduction

The RVE problem can be written:

Fint(ũ(εM(t)), εM(t))︸ ︷︷ ︸
Non-linear

+ Fext(ε
M(t)) = 0 (1)

We are interested in the solution ũ(εM) for many different
values of εM(t ∈ [0,T ]) ≡ εxx , εxy , εyy .

Projection-based model order reduction assumption:

Solutions ũ(εM) for different parameters εM are contained in a
space of small dimension span((φi)i∈J1,nK)



RVE boundary value problem

Matrix

Inclusions



Proper Orthogonal Decomposition (POD)

How to choose the basis [φ1,φ2, . . .] = Φ ?

I “Offline“ Stage ≡ Learning stage : Solve the RVE problem
for a certain number of chosen values of εM

I We obtain a base of solutions (the snapshot):
(u1,u2, ...,unS ) = S



Proper Orthogonal Decomposition (POD)

How to choose the basis [φ1,φ2, . . .] = Φ ?

I “Offline“ Stage ≡ Learning stage : Solve the RVE problem
for a certain number of chosen values of εM

I We obtain a base of solutions (the snapshot):
(u1,u2, ...,unS ) = S



Proper Orthogonal Decomposition (POD)

How to choose the basis [φ1,φ2, . . .] = Φ ?

I “Offline“ Stage ≡ Learning stage : Solve the RVE problem
for a certain number of chosen values of εM

I We obtain a base of solutions (the snapshot):
(u1,u2, ...,unS ) = S



I Find the basis [φ1,φ2, . . .] = Φ that minimises the cost
function:

J(Φ) =
∑
µ∈Ps

‖ui −
nPOD∑

k

φk. 〈φk,ui〉 ‖2 (2)

with the constraint
〈
φi,φj

〉
= δij

I Use SVD (Singular Value Decomposition)



Reduced equations

I Reduced system after linearisation: min
α

‖KΦα + Fext‖

I In the Galerkin framework: ΦT KΦα + ΦT Fext = 0
I That’s it! In the online stage, this much smaller system will

be solved.
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Arbitrary sampling unsatisfactory

Problem: parameter space is HUGE!
No guarantee that the arbitrary sampling ”explores“ the
parameter space well enough



Load of worst prediction

Rather than an arbitrary sampling, iteratively add the path of
worst prediction:



Load of worst prediction

find the step increment ∆εi that maximises:

‖uexact(ti , ε(ti) + ∆εi)− uapprox(ti , ε(ti) + ∆εi)‖

ε(ti+1) = ε(ti) + ∆εimax



First paths generated
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Example

Snapshot selection using the load of worst prediction algorithm
(36 load paths generated)
First 3 modes:
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Is that good enough?

I Speed-up actually poor
I Equation “ΦT KΦα + ΦT Fext = 0“ quicker to solve but

ΦT KΦ still expensive to evaluate
I Need to do something more =⇒ system approximation
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Idea

I Define a surrogate structure that retains only very few
elements of the original one

I Reconstruct the operators using a second POD basis
representing the internal forces
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“Gappy“ technique

Originally used to reconstruct altered signals

I Fint (Φα) approximated by Fint (Φα) ≈ Ψβ

I Fint (Φα) is evaluated exactly only on a few selected
nodes: ̂Fint (Φα)

I β found through: min
β

∥∥∥Ψ̂β − ̂Fint (Φα)
∥∥∥

2

I Selection of the controlled elements using DEIM
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Controlled elements locations

Mode 1Mode 2

Mode 3
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Error

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

0.001

0.003

0.01

0.03

0.1

0.3

1

Number of displacement basis vectors

N
um

be
r 

of
 s

ta
tic

 b
as

is 
ve

ct
or

s R
elative error in energy norm



Speedup
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Conclusion

I Model order reduction can be used to solved the RVE
problem faster and with a reasonable accuracy

I An efficient snapshot selection algorithm can be developed
when dealing with time-dependent parameters

I The controlled elements generated by the DEIM algorithm
lie where damage is high

I Can be thought of as a bridge between analytical and
computational homogenisation:
the reduced bases are pseudo-analytical solutions of the
RVE problem that is still computationally solved at very
reduced cost



Thank you for your attention!
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