arXiv:1306.6817v1l [math.DG] 28 Jun 2013

ON IMMERSIBLE G-STRUCTURES

ANDREA SANTI

ABSTRACT. The paper revisits and extends the theory of induced G-
structures introduced by A. A. Rosly and A. S. Schwarz in [17].

Let N be a n-dimensional smooth manifold endowed with a H-structure,
i.e. areduction p: Q — N of the principal bundle Fi of all linear frames
on N to a Lie subgroup H of GL,(R). Any m-dimensional submani-
fold M of N, satisfying fairly general regularity conditions, inherits a
reduction 7 : P — M of Fis to a Lie subgroup G of GL,,(R), called the
G-structure induced by the ambient geometry (N, Q).

We estabilish necessary and sufficient conditions for a G-structure on
a manifold M to be locally equivalent to the G-structure induced by
an homogeneous ambient geometry (N, Q) = (H/K,H/K), where K
denotes the kernel of the isotropy representation i : K — GL, (R).

In the special case of integrable ambient geometry (R™, R™ x H), the ob-
structions to constructing local equivalences are shown to be functions
with values in the cohomology groups H 1”2’2(h) of a “restricted” Spencer
cochain complex. Several examples are described in detail.

1. INTRODUCTION

Let M be a m-dimensional manifold and denote by
Fyr = {linear isomorphism €, : R™ — T, M |x € M} (1.1)

the GL;,(R)-principal bundle of all linear frames on M. A G-structure on
M is a reduction 7 : P — M of (LLI) to a Lie subgroup G of GL,,(R).
Quite common examples of G-structures are provided by Riemannian met-
rics, conformal structures, almost complex structures, etc.

The general theory of G-structures is a well-estabilished topic in Math-
ematics, see e.g. [10, 24] as a starting point to the vast literature on the
subject. Of particular interest was the so called (local) integrability problem,
that is the problem of determining whether there exists, around a fixed point
r, € M, a system of coordinates {z° : U — R} with the property that the
local frame

€:e; {e;} = std. basis of R™
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belongs to P|, = 7~ !(x) at any point € U. In the above mentioned cases,
an integrable G-structure corresponds to a flat Riemannian space, a locally
conformally flat manifold and a complex manifold, respectively.

The integrability problem was completely solved (for G-structures of fi-
nite type) by Guillemin in [7]. In particular, he showed that the Spencer
cohomology group HP?(g) associated to the Lie algebra g of G describes the
space of p-order obstructions to integrability, around each point z, € M.

This paper deals with weaker notions of integrability for G-structures.
They are motivated as follows. Assume 7 : P — M is induced by an im-
mersion of M into an ambient space IV which is endowed with an integrable
H-structure, for a Lie subgroup H of GL,(R) (see §2 for the precise defi-
nition of induced structure and the relation between the groups G and H).
We call H-immersible any G-structure which is locally of this kind.

Of course, in the special case dim M = dim N (i.e. M open in N), one has
G = H and H-immersibility coincides with the usual notion of integrability.

The notions of induced G-structure and H-immersibility were first intro-
duced by Rosly and Schwarz in [17]. At that time, the main motivation to
study such concepts was related to the interpretation of the torsion and cur-
vature constraints appearing in various D = 4 supergravity theories. They
estabilished sufficient and necessary conditions for a given G-structure to be
H-immersible (see Theorem of this paper) and considered the Spencer
cohomology groups HP2(h|gm) to describe part of the obstructions.

More common examples of H-immersible G-structures are provided by
submanifolds of a flat Riemannian space and immersed CR manifolds. The
formal obstructions to H-immersibility correspond to the Gauss-Codazzi-
Ricci equations and to the usual CR integrability conditions, respectively.

The main aim of this paper is to revisit and extend the results of [17]. In
particular, Theorem Bl of this paper extends the above mentioned Theorem
[£2]to the case of an homogeneous ambient space. The result is the following.

Theorem. Let M be a m-dimensional manifold endowed with a G-structure
m: P — M whose soldering form is denoted by 0 : TP — R™ and N = H/K
a n-dimensional homogeneous space together with its canonically associated
H-structure p : Q — N. Assume that the Lie group

G ={g € GL,(R)|3h € H withh = <g :>}

Then there exists a local immersion v : M — N such that P is locally induced
by (N, Q) if and only if there exists a 1-form w'™ € QF (M, b) satisfying the
Maurer-Cartan equation and such that o ow™ = o*@ for some local section

o: M — P, where @ : h— 6/% denotes the canonical projection.

The above result is suitable to study immersions of G-structures into Klein
geometries which are mutant in the sense of [2I], moreover the arguments
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used in its proof can be easily adapted to deal with G-structures of higher
order [20].

In §4.2, the framework of immersible G-structures is used to derive the
following.

Theorem. A m-dimensional Riemannian manifold (M,g) admits a local
conformal tmmersion into the flat Riemannian space R™ if and only if the
following conformal analogue of the Gauss-Codazzi-Ricci equations hold

g(RXYZ7 W) - gE(O‘(K Z)va(Xa W)) + gE(O‘(Xa Z),OL(K W)) =
= g0 B(X,Y,Z,W)
(Vxa)(Y, Z) = (Vya)(X, Z) = D(X)g(Y, Z) = D(Y)g(X, Z)

0=gr(Rxyup,v)+ ZQE(Q(Xa E;), mge(aY, E;),v)+

= > 9m(a(X, B),v)gp(alY, Ei), 1)

together with the following third order immersibility conditions

(VxB)(Y,Z)+ gr(D(X),a(Y, Z)) symmetric in X and YV
(VxD)(Y, 1) + > ge(a(X, E:),p)B(Y, E;) symmetric in X and Y

The precise definition of all tensors «, B, etc. is in §4.2.

The main result of §5 is given by Proposition where we show that

the cohomology groups H %’2(6), associated to a differential cochain complex
which generalizes the usual Spencer complex of a Lie subalgebra b of gl,,(R),
describe the spaces of obstructions to H-immersibility.
We decided to call such H%’2(h) the restricted Spencer cohomology groups.
We will calculate them in [19] in the special case b = gl,,(H)@®sp(1), to study
the necessary and sufficient conditions under which a CR quaternionic man-
ifold [13] is immersible into the quaternionic projective space HP™ endowed
with its canonical quaternionic structure [18].

The paper is organized as follows: in §2 we give the basic definitions
and properties of induced G-structures; in §3 we recall how to associate a
H-structure to any homogeneous manifold N = H/K and then prove the
above mentioned Theorem [B.I] on G-structures induced by a homogeneous
ambient geometry; in §4 we regain the main result of [I7] by specializing
Theorem [B.1] to the case of an integrable ambient geometry, and consider
in detail two examples; in §5 we give the basic definitions and properties of
restricted Spencer cohomology groups and present few more examples.

Notations. Given a manifold M, we denote by T, M its tangent space at a
point x € M and by TM := U, T M its tangent bundle. The class of all
local smooth sections of T'M is denoted by X;,.(M) while that of all local
smooth p-forms with values in a fixed vector space V by Qf (M,V).

loc
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Conventions. We mainly stick to the conventions adopted in [5]: in partic-
ular the exterior differential d acting on Q7 (M,V) is defined accordingly.

loc
The curvature of a linear connection V is given by the following expression:

RxyvZ =VxVyZ—-VyVxZ — V[X’y}Z . (1.2)

Note that (L2) is the opposite of that considered in some texts, as e.g. [2].
Finally, the bracket [c, 5] between forms o, 5 € Q) (M, h) with values in a
Lie algebra b is defined as in [21].

Acknowledgement. The author is grateful to A. Spiro for the paper [I7],
which was previously unknown to him. The author was supported by project
F1R-MTH-PUL-08HALO-HALOSO8 of University of Luxembourg during
the early stages of this work.

2. PRELIMINARIES

Let N be a n-dimensional manifold endowed with a H-structure, that is
a reduction
p:Q— N, (2.1)
to a Lie subgroup H of GL,(R), of the principal bundle
Fn = {linear isomorphisme, : R" — T, N |z € N}
~ {frame (v1,...,v,)of T, N |z € N}
of all linear frames on N. Consider a m-dimensional submanifold M of N,
where m < n (we do not discard the case M open in N). We will now
see that, under fairly general assumptions, the H-structure (2.I]) induces a

G-structure on M, the Lie subgroup G of GL,,(R) being an appropriate
subquotient of H.

Definition 2.1. A submanifold M of N is called regular if at any point
x € M there is a frame (v1,...,vy) of T, M which can be completed to a
frame (v1,...,Um, Vmit,--.,vn) of TpN belonging to Q|, = p~!(z).

Any frame (v1,...,v,) of TN as in Definition 2] is called adapted and
the set of all adapted frames is denoted by

P — fadapted frame (v1,...,v,)of T,N |z € M} . (2.2)

On the other hand, any frame (v1,...,v,,) of T, M which can be completed
to an adapted frame is called induced and the set of all induced frames is
denoted by

P — finduced frame (vy, ..., vy)of T,M |z € M} . (2.3)

Notation. Matrices in gl,,(R) are represented in block form w.r.t. the de-
composition R” = R™ @ R"™"™, i.e. any h € gl,(R) is denoted by

hi1  hi2
h = 2.4
<h21 h22> ’ (24)
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for blocks hi1 € gl,,(R), hoo € gl,_,,,(R), h12 € Mat(m,n — m;R) and
hoo € Mat(n — m, m;R).

The main result of this section is the following.

Proposition 2.2. Let M be a regular submanifold of a manifold N which
1s endowed with a H-structure p : Q — N. If we denote by 1: M — N the
defining embedding, then:
i) The set PP of adapted frames is a reduction of the pull-back bundle
1*Q — M to the subgroup

H ={heH|h= <3 :>}

made up of elements of H preserving the subspace R™ of R™.
ii) The set P™? of induced frames is endowed with a natural projection
7 P 5 M together with a right action of the Lie group

G ={g€ CLn(R)|3h € H with h = <g :>}

which makes w: P™ — M a G-structure on M.

Proof. First note that the set P2 inherits from 2*Q a natural projection
7 PO 5 M (U1, . vp) = @ if (v1,...,v,) € PP NQI, (2.5)

and a natural right H'-action which is transitive on the fibers of (2.3]). Part
(¢) of the proposition is then true if one shows the existence of local smooth
sections of 1*Q — M taking values in PP (see pag. 84 of [I1]). This is now
accomplished by exhibiting a suitable set of local coordinates of +*Q.

Let {2°}™, be a set of coordinates defined on an open set U of M which is
completed to a set {x'}"_; of coordinates of N and consider also the local
identification ¢*@Q) ~ U x H determined by a fixed smooth local section

2> (L@ g L)

xl
of the bundle *@Q. Denote by ¢ : U — GL,(R) the function given by
P(z) = (1/1§ (x)) and by P the parabolic subgroup of GL,(R) made up of
invertible matrices preserving the subspace R™. One can then easily check
that the (locally defined) map

U:"Q - R™ x GL,(R)/P

)EQl,, z€U

given by
(z,h) — (z(x),...,2™(z), [ (z)h) mod P), ze€U,heH

satisfies U71(R™ x [Id]) = 7~ 1(U) € PP and has constant rank equal to
m+ (dim H —dim H') at all points of +*@Q. By Theorem 15.5 of [9], one gets
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systems of local coordinates {£*} of H and {1’} of GL,(R)/P such that,
for indices 1 <7 <m, 1 < a <dimH  and 1 < 3 < dim H — dim H’, the set

{a',¢%n" o f} (2.6)
is a set of local coordinates of +*@) satisfying
U R™ x [Id]) = {n” o f = 0} .
The required smooth section of *@Q) — M is then given in coordinates (2.0))
simply by (z!,...,2™) ~ (2',...,2™,0,...,0).

Part (i7) of the proposition is now a direct consequence of the following two
identifications

Pind ~ Padp/H”, G ~ H,/H”, (27)
Id
0

In particular, the bundle projection 7 : P4 — M is nothing else that the
map induced on the quotient by the projection (2.5]). O

where H” ={h € H'|h = < I)} is a closed normal subgroup of H'.

The following definition is well-posed due to Proposition

Definition 2.3. The G-structure 7 : P4 — M canonically associated to a
regular submanifold M of N as in Proposition is called the G-structure
induced by the ambient geometry (N, Q).

3. G-STRUCTURES INDUCED BY A HOMOGENEOUS AMBIENT GEOMETRY

We now restrict ourselves to the case of an ambient geometry which
determined by a homogeneous manifold N = H / K, where H denotes a Lie
group acting transitively and effectively on N and K is the stabilizer at a
fixed point 0 € N. We first recall how to naturally associate a H-structure
p: Q@ — N to any homogeneous manifold N = H /K . After that, we
prove a result giving necessary and sufficient conditions for a G-structure
m: P — M on a manifold M to be locally equivalent to the G-structure
7 : P4 — M induced by an homogeneous ambient geometry (N, Q).

Convention. We always make use of the canonical identification T, N ~ h / £,
where § and ¢ denote the Lie algebras of H and K respectively. We also
assume that a complement 6 = £ ® R" has been fixed once and for all (the
examples in §4 and §5 always admit a natural choice of it). In particular,
an identification T, N ~ R" has also been fixed once and for all.

Consider the isotropy representation of the stabilizer K:

i: K — Aut (T,N) ~GL,(R), k> dLg|,: T,N = T,N, (3.1)
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where L; : N — N is the left action of k€ K on N = H/K. Denoting the
kernel of ([B.I)) by K = Ker i, one can always consider the principal bundle

p:H/K - H/K (3.2)
whose structure group is K /K, together with the following commutative

diagram )
H / K — Fy

K/K | l GL.(R)
H/K = N

Here the injective bundle morphism H /K — Fy is the one induced by the
map ) 3

H—)FN, thLh‘O:anTON%T[mN,
while the Lie group monomorphism K /K — GL,,(R) is induced by @&I)). Tt
follows that the bundle ([B.2]) is identifiable with a reduction of Fy, i.e. with

a H-structure p : Q — N where H ~ K /K. We conclude by noticing that
the soldering form

9 e QU H/KH/E), w— (dLilo) " (dplj(w) if weTyH/K

of the H-structure (B.2]) is uniquely determined by the Maurer-Cartan form
wyre : TH — b of the Lie group H via the equation

™) = pownc , (3.3)
where ¢ : H — H /K and ¢ : h—h / t are the canonical projections.

We are now ready to state and prove the following.

Theorem 3.1. Let M be a m-dimensional manifold endowed with a G-
structure m : P — M and N = ﬁ/f( a n-dimensional homogeneous space
together with its canonically associated H -structure p : Q — N, where Q) ~
ﬁ/K, H ~ f(/K and K is the kernel of the isotropy representation (3.1).
Assume that the Lie group

H’:{heH\h:(S I)}

made up of elements of H C GL,(R) preserving the subspace R™ of R™
satisfies

G ={g € GL,(R)|3h € H withh = <g :>} .

Fiz a point x, € M. Then there exists a local immersion v : M — N
with 1(x,) = o and such that P is locally equivalent to the G-structure P™4
induced by the ambient geometry (N, Q) if and only if there exists a 1-form
wd e Q! (M, 6) defined around x, and satisfying

loc
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i) pow™ : TM — b/t ~R" takes values into R™ and
Qo wind — o*p
for some local section o : M — P of the G-structure m : P — M,

whose soldering form has been denoted by 6 : TP — R™;
ii) the Maurer-Cartan equation dw™d 4 %[wmd,wmd] =0.

Proof. We first prove the necessary implication: Assume there exists a local
immersion 2 : M — N such that P is the G-structure induced by the ho-
mogeneous ambient geometry (N, Q). Let ¢ : M — P be a local section
of the bundle P2 < 4*Q of adapted frames and denote by o : M — Pnd
the section induced via the identifications (2.7). By local triviality of the
fibration ¢ : H — @, one also gets a local section ¥ : M — ¢*H satisfying
¢ oY =¢. Consider the following commutative diagram

*H — H
' { L ¢
pind  padp — xQ — Q
T { I L p
M = M = M — N

7

and define w™ = S*wpye : TM — . The Maurer-Cartan equation

dw™ + w4, wn4] = 0 obviously holds while (i) follows from the equation
pow™ = ¥*(pown) = L (¢*9) = ¢* = 0. Note that the last equality
involving the soldering forms of the bundles @ and P exactly amounts to
the fact that P is the G-structure induced by the ambient geometry (N, Q).

We now prove the other implication. Consider the local one-form w™—wy;c

on the product M x H and denote its kernel at (z, iz) € M x H by D](x i)
The distribution D = Ker(w'™ —wys¢) satisfies the following two properties:

— it has constant rank rk D = dim M,
— it is involutive (this follows from hypothesis (i7)).

By standard arguments, the existence of a local map ¥ : M — H satisfying
W = Yoo and Y(zo) =e
is guaranteed. Using (i), one easily sees that the differential of the map
1:=pogoX: M — N (3.4)
is injective i.e. (3.4) is a local immersion around x, € M; what we need to

show is that P is the G-structure induced by the ambient geometry (N, Q)
through (3.4]). Consider the commutative diagram

*Q — Q
]l\k — ]l\} p 1"Q = {(z,q)|x € M,q € Qwith«(z) = p(q)}
1
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and define a H'-reduction P2IP of the principal H-bundle ¢*Q by
P = {(z,¢(S(x))h) |z € M,h € H'} ;

a local section of this bundle is provided by ¢ := ¢po X : M — Ppadp
Hypothesis (i) implies that

"0 = pow™ = poXwye : TM — R™
and, exploiting (3.3]), one gets
V(ds(v)) = I(de o dX(v)) = ¢ o wpc(dX(v)) = 0(do(v)), (3.5)

for any v € T, M. Equation (3.0]) says exactly that ¢*¢ = 00, i.e.
— the submanifold (34) is regular,

— the bundle P2 is the bundle of adapted frames to M and
— the G-structure P is induced by (N, Q) through (3.4).

This concludes the proof. O

In §4, we specialize Theorem BTl to the case of an ambient geometry given
by the integrable H-structure (N, Q) = (R",R™ x H). As a direct corollary
of Theorem [B.Ilwe obtain Theorem [4.2], which was first estabilished by Rosly
and Schwarz in [I7]; after that we consider two examples in detail.

4. THE THEOREM OF ROSLY AND SCHWARZ

For any Lie subgroup H of GL, (R), the integrable H-structurep : @Q — R"
is defined as follows: It is the unique reduction to the group H of the bundle
Fgrn of all linear frames on R"™ such that the global section of Fg» given by
partial derivatives

. oxl'™ T gt

takes values in @[, for any € R™. From now on the integrable H-structure
is denoted by the symbol p : R® x H — R"™.

There is also the notion of mazimal transitive prolongation of the Lie
algebra b of H [24]: Tt is the unique (possibly infinite-dimensional) Z-graded
Lie algebra

h => b7 (4.1)
PEZL
which is maximal between the class of Z-graded Lie algebras satisfying

- hP is finite dimensional for every p € Z,

-p0=h, 57 =R" and h? = 0 for p < —1,

- the adjoint action of h° on h~! is the standard action of h on R,
- for all p > 0, if X € b? is such that [X,h~!] =0, then X = 0.
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It is well known that h? is identifiable as a vector space with the intersection
R" @ SPHIR™ N h @ SPR™ and that the maximal transitive prolongation
(1)) describes the Lie algebra of all infinitesimal automorphisms of the
H-structure p : R"x H — R™ if dim h*° < oo (in that case b is of finite type).

It is convenient to consider the following.

Definition 4.1. The G-structure m : P4 — A induced by the ambient
geometry (R™,R"™ x H) onto a regular submanifold M of R" is called H-
immersible. Any G-structure on a manifold M which is locally equivalent to
a H-immersible structure is also called H-immersible.

The following Theorem is due to Rosly and Schwarz.

Theorem 4.2 ([I7]). Let M be a m-dimensional manifold endowed with a
G-structure 1 : P — M and H C GL,(R) a Lie group which is of finite type
and satisfies

G ={g € GLn(R)|3h € Hwithh = (g :>}

Then the G-structure w : P — M is H-immersible around x, € M if and
only if there exists

O‘)imd — Z WP € Qlloc(Ma h00)7 wP e Q}OC(M, hp)u
p=>—1

defined around x, and satisfying
i) w™ i TM — R™ takes values into R™ and

wl=0%0

for some local section o : M — P of the G-structure m : P — M,
whose soldering form has been denoted by 0 : TP — R™;
i1) the Maurer-Cartan equation

. 1 . .
dw™? 4 §[wmd,wmd] =0. (4.2)
Proof. Let H be the simply connected Lie group whose Lie algebra is h>
and consider the homogeneous manifold N = H/K, where K is the analytic

closed subgroup of H corresponding to the following subalgebra:
E=b0+ht+p7 4+ .

The Theorem follows by checking that the K /K-structure p : H/K — H/K
associated to the natural abelian complement h=! = R™ to € in b (see the
discussion at the beginning of §3) is integrable around o € N, by noticing
that E/ £ ~ b as Lie algebras, and by applying Theorem [3.11 O
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The following observation is also due to Rosly and Schwarz [17]. Let M
be a m-dimensional manifold endowed with a G-structure m: P — M. Let
us fix a (local) frame

e:R™"—->TM, e, €P|,

and denote the inverse coframe by w™' : TM — R™. Since the maximal
transitive prolongation of a Lie group H admits a natural Z-gradation (4.1]),
the Maurer-Cartan equation (4.2]) boils down to a family of equations pa-
rameterized by k£ € N:

1
PR = okt 4 2 Z [wh,w* 1T = —[w™ L, Wb (4.3)
0<r<k—1

This fact suggests a recursive procedure to construct solutions of (4.2)).
More precisely, assume a set {w’};<, which is a solution of the equations
{Pi=! = —[w™, w}icr has been determined; (&3) is then an equation in
the unknown w* € Q! (M, §*), with

loc

PRl = PRl b € 02, (M )

We conclude §4 by showing how the well-known Gauss-Codazzi-Ricci
equations underlying the embedding problem of a Riemannian manifold
(M, g) into the flat space R™ fit into the scheme of immersible G-structures.
Similar equations are then obtained for the analogous problem up to confor-
mal changes of metric. The obtained results are basic knowledge in Mathe-
matics, except perhaps the conformal case.

4.1. The Riemannian case. Let p : @ — N be the standard O, (R)-
structure

Q = {(v1,...,vy,) frame of T, N | ¢'(v;,vj) = ;j for all 1 <i,j < n}

associated to a n-dimensional Riemannian manifold (N, g’). Of course, any
submanifold 2 : M — N is regular and the O,,(R)-structure 7 : P4 — M
induced by the ambient geometry (N, Q) is the standard O,,(R)-structure
associated to the pull-back metric 2*¢’.

We consider m-dimensional Riemannian manifolds (M,g¢) and study the
existence of local isometric immersions into the flat space (R",(-,-)), for a
fixed codimension p :=n —m > 0.

By identifying each T, M ~ R™ by means of a local orthonormal coframe
w |y TuM — R™, (4.4)

equation ([4.3) with k£ = 0 is equivalent to
[0, &2 (w)] + [€0(v), w] = —dw ™[z (v, w) (4.5)
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for any v,w € R™ in the unknown £, € R™ ® s0,,(R). The decomposition

50, (R) = {(g —gT) | A € 50,m(R) , B € Mat(p,m;R) , D € s0,(R)}

(4.6)
determines an identification &, ~ w, + Il + %,, for unique linear maps

wy € R™ ®s0,(R), II, € R™ ®@Mat(p,m;R), ¢, € R™ ®s0,(R) , (4.7)
and (L5) decomposes into the following two equations
~ @ (w)(v) + wo (v) (w) = —dw™ o (v,w),  ~Tp(w)(v) + Iy (v)(w) = 0.

It is well-known that the first equation has always a unique solution w,; the
first order H-immersibility conditions implies also II, € S?R™ ® R? and
(#35) admits always a smooth solution

w® € QL .(M,s0,(R)) . (4.8)
We denote the forms (7)) associated to a solution (4.8]) still by
@ € Qoo (M, 50,m(R)) , 1T € Qpo(M, Mat(p,m;R)) , % € Qpo(M, 50,(R)) ;

they determine the connection form of the Levi-Civita covariant derivative
VL€ on M and a symmetric tensor field o € [10e(S?TM* ® E) taking values
in a (locally defined) vector bundle £ ~ M x RP — M which is endowed

with a connection V+ compatible with the fiber metric gp ~ (-, -)|gs.

As the first prolongation so,,(R)! = 0, equation (&3] with k& = 1 is equivalent

* 0 = dw® (v, w) + [W’(v),w (w)]

and it boils down to the vanishing of the following local two-forms:

G(v,w) = dw(v,w) + [@(v), w(w)] = M(v)" - T(w) + M(w)" - T(v) =0,

C(v,w) := dll(v,w) + (v) - w(w) — [(w) - w(v) + ¥ (v) - M(w) — Y(w) - M(v) =0,
R(v,w) := dp(v,w) + [(v), ¥ (w)] = TI(v) - M(w)" + (w) - M(v)" = 0.

These second order H-immersibility conditions for the existence of an iso-
metric immersion into R™ are the usual Gauss-Codazzi-Ricci equations for
vector fields X,Y, Z, W € X(M) and sections u,v € T'(E), i.e.

0=g(RxyZ,W)—gp(a(Y,Z),a(X,W)) + gr(a(X, Z),a(Y,W))
0= (Vxa)(Y,Z) — (Vya)(X, Z)
0= gE(RXYN7 V) + ZQE(Q(Xv Ei)nu)gE(a(Y? Ei)? V)+

_ ZQE(Q(X, Ei),v)ge(a(Y, E;), 1)

Here V := VEC 4+ V- denotes the covariant derivative on the vector bundle
TM & E — M, compatible with the fiber metric g ® gg, determined by
the connection form w @ ¢; R is the curvature of V and {E;} any local
orthonormal frame of M.
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As 50, (R)! = 0, equations ([@3) are trivially satisfied when k > 2.

The above discussion together with Theorem furnishes yet another proof
of the well-known fact that any tuple (E, gg, a, V') satisfying the Gauss-
Codazzi-Ricci equations determines a (local) isometric immersion M C R
(see e.g. [15, pag. 47] or [23], pag. 49]).

Vice-versa, to any isometric immersion into flat space R™, one can always as-
sociate a tuple (E, g, o, V1) satisfying the Gauss-Codazzi-Ricci equations:
It is given by the second fundamental form ¢, the normal bundle £ = NM
together with the induced metric g := ()|, and finally the projection
V4L :TM ® NM — NM along NM of the Levi-Civita connection of R™.

4.2. The conformal case. We retain the notation of §4.1. We want to
determine the H-immersibility conditions for a m-dimensional Riemannian
manifold (M, g) to admit a conformal immersion into the flat space R", for
a fixed n > 3. Considering the standard CO(R)-structures associated to
(M, g) and R™, we are led to study equations (4.3]) in the case h = co,(R).
Recall that the maximal transitive prolongation co,(R)> is finite-
dimensional [10} 22] and isomorphic to

so(n+1,1;R) =~ R" + c0,,(R) + R™ = R" + 0, (R) + co(n,R)" ,
the identification R™ = co,,(R)" being given by
v {u—uut —o(ut @u) +ut(u)ld}

where ¢ : R @ R" — R" ® R™ denotes the duality isomorphism induced
by the standard scalar product of R".

From now on, we will identify each T, M ~ R™ by means of a local orthonor-
mal coframe (£.4]). For any &, € R™ ®co,(R), the decompositions (£.6]) and
c0,(R) = 50,(R) @ RId induce an identification &, ~ w, + I, + ¥, + A,
where

wy, € R™ ®s0,,(R), II, € R™ @ Mat(p, m;R)
Yy € R™ ®s0,(R), A\, € R™,

and equation (4.3]) with k£ = 0 decomposes into
—wg(w)(v) + @ (v)(w) — Ae(w)(v) + Az(v)(w) = —dw_l\x(fu,w) )
—IL;(w)(v) + Iz (v)(w) =0 .

In particular, as in §4.1, it always exists a unique smooth solution of the
form (A.8)), that is we restrict to the case A = 0 in the decomposition

Wrw+ I+ + .
Equation ([@3]) with & =1 is given by
— [V, 10 (w)] = 7 (v), w] = s (v, w) + [W°]2(v), 0o (w)] (4.9)
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and it is an equation in the unknown
ne € R™ @ co,(R)! . (4.10)

To proceed further, we recall that co,(R)! ~ R™ = R™ @ RP* so that any
element (4.10) can be decomposed as

ne(v) = @5 (v) + ur*(v) € R™ + RP*
With this in mind, equation ([4.9) split into the following four equations:
G(v,w) =—w U (v) + ¢(u (v) ®w) +v & T (w) — P(T* (W) ®v) € s50,,(R)
C(v,w) = $p(u*(v) ® w) — P(u™*(w) ©®v) € Mat(p, m; R)
R(v,w) =0 € s0,(R)
@ (v)(w) — @ (w)(v) =0 € RId .
A smooth solution w! € O} (M, c0,(R)!) of (£3) is thus identifiable with
a pair (B, D) formed by a symmetric tensor field B € I'.(S?T*M) and a
D €T1,.(T*M ® E), satisfying the following conformal version of the usual
Gauss-Codazzi-Ricci equations for X, Y, Z, W € X(M) and p,v € T'(E):
9(Rxy 2, W) — gp(a(Y, Z),a(X,W)) + gp(a(X, Z), (Y, W)) =
=—g0O B(X,Y,Z,W)
(Vxa)(Y,Z) = (Vya)(X, Z) = D(X) (Y, Z) - D(Y)g(X, Z)

0=ygp(Rxyp,v)+ ZQE m)ge(a(Y, E),v)+

_ZQE alX , 2' ,V)QE(Q(KEi)7M)

Here E, a, gg, V = VF¢ + V1, R and {E;} have to be interpreted as in
§4.1 while the symbol g ® B denotes the Kulkarni-Nomizu product of the
symmetric tensors g and B of type (0,2) (see [2, pag.47] for the definition
of the Kulkarni-Nomizu product).

As c0,(R)? = 0 but co,(R)! # 0, equations (&3] for k = 2 are not trivially
satisfied. They are given by

dw! (v, w) + [W°(v), W (w)] + [w (v),w’(w)] = 0
and furnish the following third order H-immersibility conditions
(VxB)(Y,Z)+ ge(D(X),a(Y,Z)) symmetric in X and Y
(VxD)(Y,pn) + ZgE (X, E;),n)B(Y,E;) symmetric in X and Y

where XY, Z € X(M), p € T'(E) and, in the second equation, D has to be
interpreted as a section of T*M ® E* using the duality associated to gg.

The above discussion together with Theorem proves that it is possible
to associate a local conformal immersion of M into flat space R™ to any
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tuple (E,gg,a,V*+, B, D) which satisfies the above mentioned conformal
Gauss-Codazzi-Ricci equations and third order conditions.

Vice-versa, to any conformal immersion 2 : M — R™ with ¢*(-,-) = e*fg,
one associate a tuple (E, gg, o, V*+, B, D) as follows. The tensor field o €
I(S?T*M ® E) = T(S*T*M ® NM) is the second fundamental form of the
isometric immersion 4 : (M, €2/ g) — (R™, (-,-)) while

g = (- )|E,
Vw = Vxu—df(X)u,

B:=Hf—df odf + %g(df,df)g,
D:=a(,Vf),

where V is the projection along NM of the Levi-Civita connection of R",
Hf and V f denote the Hessian and the gradient of f w.r.t. g respectively.
Using [2, Thm. 1.159], one can check that such a tuple satisfies the confor-
mal Gauss-Codazzi-Ricci equations and that the fields B and D do indeed
satisfy also the third order conditions. The quite long but straightforward
calculations are omitted.

Specializing to the p = 0 case furnishes yet another proof of the well-known
fact that a Riemannian manifold (M, g) of dimension m > 3 is locally con-
formally flat if and only if the Weyl-Schouten tensor (if m = 3) or the Weyl
tensor (if m = 4) vanishes (see Example [5.3]in §5). On the other hand the
case p > 0, although a basic result, is not available in the Literature at the
best of the author’s knowledge.

Last Sec. §5 is devoted to the introduction of some cohomology groups

which are the target spaces of the obstructions to costructing the equivalence
mentioned in Theorem

5. RESTRICTED SPENCER COHOMOLOGY GROUPS

Let b be a Lie subalgebra of gl,,(R) and consider the decomposition (2.4))
for some fixed m < n. Rosly and Schwarz remarked in [17] that, whenever a

set of solutions {w'};<y of equations {P*~! = —[w™!, wi]};<x has been deter-
mined, equation (@3)) in the unknown w* € QL .(M, h*) is linear algebraic

at any point € M. This says that solutions of ([4.3]) exist if and only if
PF—1 gatisfies some algebraic conditions.

The main purpose of this Section is to define and study the basic proper-
ties of some cohomological groups which are the natural spaces where these
algebraic obstructions live.

We decided to call these groups the restricted Spencer cohomology groups.
They are a necessary ingredient to study problems which are more compli-
cated than those treated in the examples of Section §4. For example, we will
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use them in [19] to study the necessary and sufficient conditions under which
a CR quaternionic manifold is immersible into the quaternionic projective
space HP™ with its canonical quaternionic structure.

Definition 5.1. The restricted Spencer cohomology groups H?(h) (of the
Lie algebra h w.r.t. the fixed subspace R of R™) are the cohomology groups
associated to the differential complex

s ORI () = CRA() = Cp () = o
where

i) the space of (p, g)-cochains is CL?(h) = hP~! @ ATR™*, Vp,q > 0,
i) the coboundary map 979 : C%%(h) — CB 14T (h) is given by

g+1
() (@, wgr1) = > (1) [e(@r, .. @im1, By Tig1, -, Tgir), 4]
i=1
for any ¢ € CR(h) and x4, ..., 2441 € R™.

The main result of this section is the following.

Proposition 5.2. Let M be a m-dimensional manifold endowed with a G-
structure  : P — M with soldering form 6 : TP — R™, and H C GL,(R)
a Lie group which satisfies

G ={g € GL,(R)|3h € H withh = (g :>}

Given a local section 0 : M — P of m: P — M, use the coframe
wl =0%0 € Q.(M,R™) (5.1)

to identify local g-forms on M with values into h?~' to local functions on M
with values in CR(h). Then

i) Equation @3)) with k = 0 has a solution w° € Q (M,h°) if and

only if e
[P~']a] = 0 € H(b)
for all x € M.
i) Let w¥ € QF (M, H9),...,wP™t € QL (M,hP71) be a sequence of

forms which satisfy equations [E3)) for all 0 < k < p. Then equation

([E3) with k = p has a solution wP € Q) _(M,b?) if and only if
[PP~!]a] = 0 € HE*(h)

for all x € M.

Proof. Equation ([43]) with & = 0 is equivalent to the existence of an element
& € C’}%’l(f)) such that

[0, & (w)] + [€a(v), w] = =P 7o (v, w)
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for any v, w € R™ and z € M. Equivalently 0! (¢,) = =P~ Y, € C’?f(f)) at
any x € M, which proves the necessary implication. Vice-versa, consider a
vector space direct sum

C}z’l(h) = Kerd"' @ cht,

and decompose each &, = & + ¢ accordingly. As 9! : Cflil(f)) N 0%2([))
induces an isomorphism between C'! and Im 9!, one gets that

z = Wy =& = — (0" o) TH(P T 2)

is the required smooth solution of ([4.3]) with k£ = 0. In this case, by Exercise
5.20 of Chapter I of [21] one has that

0=dw™ 0 = [dw 0 = [w,dw’]) = ~[lw™, W], "] — W, dw’]

= [[w’, ) 0™+ [0 w1, W) = W dw]
1

= [[WO’WO]’W—I] - 5[[“}07“}0]7“}_1]] - [w_lvdwo] = _[W—I’PO] = 07
that is P°|, € C}l%’z(b) is a cocycle.
Equation (4.3]) with & = 1 is equivalent to the existence of a 7, € 012%’1(6)
such that

[0, 12 (w)] + [n2(v), w] = —P°|z(v,w)

ie. 0%'(n,) = —PY|, at any 2 € M. One proceed as above to construct a
smooth solution w! € QL (M, pt).
The next cases k > 2 are proved by a straightforward induction argument
which we omit. U

At the best of the author’s knowledge, the groups H %q(f)) introduced in
Definition 5.1l have never been considered in the Literature. They are related
to the cohomology groups HP%(h|gm) considered in [17] as follows.

Denote by h|rm C Hom(R™,R™) the space of maps made up of restrictions
to R™ of elements of h and by CP4(h|gm) the associated Spencer cochains
[7,22]. There exists a natural restriction morphism of differential complexes
C4(h) — CPU(h|gm) which induces a map at the level of cohomologies

RS : H(h) — HP(hlgm) - (5.2)

As P71, takes always values into the subspace R™ @ A2R™* of C’?f(b), one
can show that
[Pl )=0€ HY(h) <+ RSP ]=0.

In general a similar property does not hold for the classes [PP~1|,] if p > 1
and (5.2)) is not injective. For example, a closer look at §4.1 reveals that

H"?(50,,(R)[gm ) = H"*(50,,(R) + Hom(R™, R”)) ~ H"*(s0,,,(R)),
H5%(50,(R)) ~ H"*(s0,,(R)) + R” ® R>! + 50,(R) @ A’R™*,
where R?! is the gl,,(R)-irreducible submodule of R™* @ A2R™* different

from APR™*, the second order obstructions to immersibility being given by
G|, € H"?(50,,(R)), C|, € RP ® R>! and RJ; € 50,(R) ® A2R™*.
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We conclude the paper with two examples.

Example 5.3. We obtained that a Riemannian manifold (M, g) of dimen-
sion n > 3 is locally conformally flat if and only if there exists a B € S2T*M
such that

g(nyZ, W) =—g0 B(X, Y, Z, W)
(VXB)(Yv Z) = (VYB)(Xv Z)

for all X, Y, Z, W € X(M). In this case the codimension p = 0 and the
restricted Spencer groups coincide with H?%(co,,(R)); it is known that the
only non-trivial ones are H'2(co,,(R)) if n > 4 and H?*?(co3(R)) [14].

In case n > 4, the first condition is equivalent to the vanishing of the
Weyl tensor (see Theorem 1.114 [2]), the second one being automatically
satisfied. In case n = 3, the first condition is automatically satisfied while
the second one is equivalent to the vanishing of the Weyl-Schouten tensor
(see Section 16.4 [2]).

Example 5.4. Let (N, J) be an almost complex manifold of real dimension
dim N = 2n and fix a natural number 1 < r < n. We denote by p: Q — N
the H-structure determined by the frames (v1,...,v9,) of T, N satisfying

Vg =Juy; V1<i<r and Vpgnyj = Juorp; VI<ji<n—r.

The Lie group H is isomorphic to GL,(C) and it is possible to decompose
its Lie algebra b in terms of gl,.(C)-modules as follows:

h ~ g[T(C) + R2r QR" ™ 4+ T +R" T ® R2r* + T 7 (53)

where T" and T" are two copies of the trivial gl.(C)-module R"~" @ R*~"*
(T" is a Lie subalgebra while [T, 7"] C T").

The structure groups of the bundles (2.2)) and (2.3)) associated to a regular

submanifold M C N of dimension dim M = n + r are isomorphic and corre-
spond, respectively, to the analytic subgroups H' C H and G C GL,,.(R)
associated to the Lie subalgebra gl,.(C) 4+ R?" @ R~ + T’ inside (5.3).
It follows that M is endowed with a distribution D C TM of rkD = 2r
together with a field of partial almost complex structures J : D — D: We
are dealing with n + r-dimensional almost CR manifolds (M, D, J) of CR
dimension r and CR codimension n — r.

We now recover the usual integrability conditions for (M,D,J) to be
locally embeddable, i.e. locally induced by an immersion into N = C" with
its standard complex structure. The conditions are only formal as gl,,(C) is
of infinite type [10] and we can not apply Theorem

First note that the cohomology groups H%’z(g[n((C)) are zero if p > 1. In
fact any restricted cocycle

n € C%*(al,(C))

can be extended to a unique cocycle 7 € CP2(gl,,(C)) by C-linearity. The
assertion is then an easy consequence of the fact HP2(gl,(C)) = 0 for all
p>1[7 12
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We are led then to study the existence of a form w® € Q} (M, gl,,(C)) which
solves the system

dw™ |2 (v, w) 4 [0, W02 (w)] + [0z (v), w] =0 (5.4)

where v, w € R®™" and we identified each tangent space T, M ~ R"™" via
an admissible coframe as usual. We now proceed in a slightly different way.
Note that (5.4]) admits a solution if and only if the torsion

T|, € R™" @ AR
of the covariant derivative V associated to any connection 1-form
@ € Dyoe(M, 9)
is restricted exact. We determine the space
R™" @ A’R™™ N Imo"! (5.5)

as follows. First note that Im %! = Im @1’1| A2Rn+r Where

#7s Cran) - CrLR(g) L CPa(h) = b @ AR
denotes the Spencer operator between the usual Spencer cochains. Secondly
it is not difficult to see that Im @1’1 = R2" @ AGOR2* | R2n @ A(LDR2* —
= {T € R* @ A’R*™ | T'(v,w) — T(Jv, Jw) = —JT(Jv,w) — JT (v, Jw)} .

It follows that (5.5) equals the space of maps T € R"" @ A2R"*"* which
satisfy

T (v,w)=T(Jv, Jw) € R* | T(v,w)—T(Jv, Jw) = —JT(Jv,w)—JT (v, Jw) ,

for any v,w € R?". Hence (M, D, J) is formally locally embeddable in C" if
and only if there exists a connection V with VD C D, VJ = 0 and whose
torsion satisfies

T(X,Y)-T(JX,JY) €D,
TX,Y)-T(JX,JY)=—-JT(JX,Y)—-JT(X,JY),
for any X,Y € D. Equivalently one gets
(X, Y]-[JX,JY] €D
(X, Y- [JX,JY]=-J[JX,Y] - JX,JY]
forall X, Y € D.

It is well-known [I, [3] that the above formal conditions are sufficient for
local embeddability under the additional assumption of analyticity. It might
be interesting to get an alternative proof of this fact by using the above
discussion together with results on partial differential equations as presented
in [6] 4, [16].
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