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ON IMMERSIBLE G-STRUCTURES

ANDREA SANTI

Abstract. The paper revisits and extends the theory of induced G-
structures introduced by A. A. Rosly and A. S. Schwarz in [17].
Let N be a n-dimensional smooth manifold endowed with aH-structure,
i.e. a reduction p : Q → N of the principal bundle FN of all linear frames
on N to a Lie subgroup H of GLn(R). Any m-dimensional submani-
fold M of N , satisfying fairly general regularity conditions, inherits a
reduction π : P → M of FM to a Lie subgroup G of GLm(R), called the
G-structure induced by the ambient geometry (N,Q).
We estabilish necessary and sufficient conditions for a G-structure on
a manifold M to be locally equivalent to the G-structure induced by
an homogeneous ambient geometry (N,Q) = (H̃/K̃, H̃/K), where K

denotes the kernel of the isotropy representation i : K̃ → GLn(R).
In the special case of integrable ambient geometry (Rn,Rn

×H), the ob-
structions to constructing local equivalences are shown to be functions
with values in the cohomology groups Hp,2

R (h) of a “restricted” Spencer
cochain complex. Several examples are described in detail.

1. Introduction

Let M be a m-dimensional manifold and denote by

FM = {linear isomorphism ǫx : Rm → TxM |x ∈M} (1.1)

the GLm(R)-principal bundle of all linear frames on M . A G-structure on
M is a reduction π : P → M of (1.1) to a Lie subgroup G of GLm(R).
Quite common examples of G-structures are provided by Riemannian met-
rics, conformal structures, almost complex structures, etc.

The general theory of G-structures is a well-estabilished topic in Math-
ematics, see e.g. [10, 24] as a starting point to the vast literature on the
subject. Of particular interest was the so called (local) integrability problem,
that is the problem of determining whether there exists, around a fixed point
xo ∈ M , a system of coordinates {xi : U → R} with the property that the
local frame

ǫ : ei 7→
∂

∂xi
, {ei} = std. basis of Rm
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2 ANDREA SANTI

belongs to P |x = π−1(x) at any point x ∈ U . In the above mentioned cases,
an integrable G-structure corresponds to a flat Riemannian space, a locally
conformally flat manifold and a complex manifold, respectively.

The integrability problem was completely solved (for G-structures of fi-
nite type) by Guillemin in [7]. In particular, he showed that the Spencer
cohomology group Hp,2(g) associated to the Lie algebra g of G describes the
space of p-order obstructions to integrability, around each point xo ∈M .

This paper deals with weaker notions of integrability for G-structures.
They are motivated as follows. Assume π : P → M is induced by an im-
mersion of M into an ambient space N which is endowed with an integrable
H-structure, for a Lie subgroup H of GLn(R) (see §2 for the precise defi-
nition of induced structure and the relation between the groups G and H).
We call H-immersible any G-structure which is locally of this kind.
Of course, in the special case dimM = dimN (i.e. M open in N), one has
G = H and H-immersibility coincides with the usual notion of integrability.

The notions of induced G-structure and H-immersibility were first intro-
duced by Rosly and Schwarz in [17]. At that time, the main motivation to
study such concepts was related to the interpretation of the torsion and cur-
vature constraints appearing in various D = 4 supergravity theories. They
estabilished sufficient and necessary conditions for a given G-structure to be
H-immersible (see Theorem 4.2 of this paper) and considered the Spencer
cohomology groups Hp,2(h|Rm) to describe part of the obstructions.

More common examples of H-immersible G-structures are provided by
submanifolds of a flat Riemannian space and immersed CR manifolds. The
formal obstructions to H-immersibility correspond to the Gauss-Codazzi-
Ricci equations and to the usual CR integrability conditions, respectively.

The main aim of this paper is to revisit and extend the results of [17]. In
particular, Theorem 3.1 of this paper extends the above mentioned Theorem
4.2 to the case of an homogeneous ambient space. The result is the following.

Theorem. Let M be a m-dimensional manifold endowed with a G-structure
π : P →M whose soldering form is denoted by θ : TP → R

m and N = H̃/K̃
a n-dimensional homogeneous space together with its canonically associated
H-structure p : Q→ N . Assume that the Lie group

G = {g ∈ GLm(R) | ∃h ∈ H withh =

(

g ∗
0 ∗

)

} .

Then there exists a local immersion ı :M → N such that P is locally induced
by (N,Q) if and only if there exists a 1-form ωind ∈ Ω1

loc(M, h̃) satisfying the

Maurer-Cartan equation and such that ϕ ◦ωind = σ∗θ for some local section
σ :M → P , where ϕ : h̃→ h̃/k̃ denotes the canonical projection.

The above result is suitable to study immersions ofG-structures into Klein
geometries which are mutant in the sense of [21], moreover the arguments
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used in its proof can be easily adapted to deal with G-structures of higher
order [20].

In §4.2, the framework of immersible G-structures is used to derive the
following.

Theorem. A m-dimensional Riemannian manifold (M,g) admits a local
conformal immersion into the flat Riemannian space R

n if and only if the
following conformal analogue of the Gauss-Codazzi-Ricci equations hold

g(RXY Z,W )− gE(α(Y, Z), α(X,W )) + gE(α(X,Z), α(Y,W )) =

= −g 7B(X,Y, Z,W )

(∇Xα)(Y, Z)− (∇Y α)(X,Z) = D(X)g(Y, Z)−D(Y )g(X,Z)

0 = gE(RXY µ, ν) +
∑

i

gE(α(X,Ei), µ)gE(α(Y,Ei), ν)+

−
∑

i

gE(α(X,Ei), ν)gE(α(Y,Ei), µ)

together with the following third order immersibility conditions

(∇XB)(Y, Z) + gE(D(X), α(Y, Z)) symmetric in X and Y

(∇XD)(Y, µ) +
∑

i

gE(α(X,Ei), µ)B(Y,Ei) symmetric in X and Y

The precise definition of all tensors α,B, etc. is in §4.2.

The main result of §5 is given by Proposition 5.2 where we show that
the cohomology groups Hp,2

R (h), associated to a differential cochain complex
which generalizes the usual Spencer complex of a Lie subalgebra h of gln(R),
describe the spaces of obstructions to H-immersibility.
We decided to call such Hp,2

R (h) the restricted Spencer cohomology groups.
We will calculate them in [19] in the special case h = gln(H)⊕sp(1), to study
the necessary and sufficient conditions under which a CR quaternionic man-
ifold [13] is immersible into the quaternionic projective space HPn endowed
with its canonical quaternionic structure [18].

The paper is organized as follows: in §2 we give the basic definitions
and properties of induced G-structures; in §3 we recall how to associate a
H-structure to any homogeneous manifold N = H̃/K̃ and then prove the
above mentioned Theorem 3.1 on G-structures induced by a homogeneous
ambient geometry; in §4 we regain the main result of [17] by specializing
Theorem 3.1 to the case of an integrable ambient geometry, and consider
in detail two examples; in §5 we give the basic definitions and properties of
restricted Spencer cohomology groups and present few more examples.

Notations. Given a manifold M , we denote by TxM its tangent space at a
point x ∈M and by TM := ∪x∈MTxM its tangent bundle. The class of all
local smooth sections of TM is denoted by Xloc(M) while that of all local
smooth p-forms with values in a fixed vector space V by Ωp

loc(M,V ).
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Conventions. We mainly stick to the conventions adopted in [5]: in partic-
ular the exterior differential d acting on Ω•

loc(M,V ) is defined accordingly.
The curvature of a linear connection ∇ is given by the following expression:

RXY Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z . (1.2)

Note that (1.2) is the opposite of that considered in some texts, as e.g. [2].
Finally, the bracket [α, β] between forms α, β ∈ Ω•

loc(M, h) with values in a
Lie algebra h is defined as in [21].

Acknowledgement. The author is grateful to A. Spiro for the paper [17],
which was previously unknown to him. The author was supported by project
F1R-MTH-PUL-08HALO-HALOS08 of University of Luxembourg during
the early stages of this work.

2. Preliminaries

Let N be a n-dimensional manifold endowed with a H-structure, that is
a reduction

p : Q→ N , (2.1)

to a Lie subgroup H of GLn(R), of the principal bundle

FN = {linear isomorphism ǫx : Rn → TxN |x ∈ N}

≃ {frame (v1, . . . , vn) of TxN |x ∈ N}

of all linear frames on N . Consider a m-dimensional submanifold M of N ,
where m ≤ n (we do not discard the case M open in N). We will now
see that, under fairly general assumptions, the H-structure (2.1) induces a
G-structure on M , the Lie subgroup G of GLm(R) being an appropriate
subquotient of H.

Definition 2.1. A submanifold M of N is called regular if at any point
x ∈ M there is a frame (v1, . . . , vm) of TxM which can be completed to a
frame (v1, . . . , vm, vm+1, . . . , vn) of TxN belonging to Q|x = p−1(x).

Any frame (v1, . . . , vn) of TxN as in Definition 2.1 is called adapted and
the set of all adapted frames is denoted by

P adp = {adapted frame (v1, . . . , vn) of TxN |x ∈M} . (2.2)

On the other hand, any frame (v1, . . . , vm) of TxM which can be completed
to an adapted frame is called induced and the set of all induced frames is
denoted by

P ind = {induced frame (v1, . . . , vm) of TxM |x ∈M} . (2.3)

Notation. Matrices in gln(R) are represented in block form w.r.t. the de-
composition R

n = R
m ⊕ R

n−m, i.e. any h ∈ gln(R) is denoted by

h =

(

h11 h12
h21 h22

)

, (2.4)
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for blocks h11 ∈ glm(R), h22 ∈ gln−m(R), h12 ∈ Mat(m,n − m;R) and
h22 ∈ Mat(n−m,m;R).

The main result of this section is the following.

Proposition 2.2. Let M be a regular submanifold of a manifold N which
is endowed with a H-structure p : Q → N . If we denote by ı : M →֒ N the
defining embedding, then:

i) The set P adp of adapted frames is a reduction of the pull-back bundle
ı∗Q→M to the subgroup

H ′ = {h ∈ H |h =

(

∗ ∗
0 ∗

)

}

made up of elements of H preserving the subspace R
m of Rn.

ii) The set P ind of induced frames is endowed with a natural projection
π : P ind →M together with a right action of the Lie group

G = {g ∈ GLm(R) | ∃h ∈ H ′ with h =

(

g ∗
0 ∗

)

}

which makes π : P ind →M a G-structure on M .

Proof. First note that the set P adp inherits from ı∗Q a natural projection

π : P adp →M , (v1, . . . , vn)→ x if (v1, . . . , vn) ∈ P
adp ∩Q|x (2.5)

and a natural right H ′-action which is transitive on the fibers of (2.5). Part
(i) of the proposition is then true if one shows the existence of local smooth
sections of ı∗Q→M taking values in P adp (see pag. 84 of [11]). This is now
accomplished by exhibiting a suitable set of local coordinates of ı∗Q.
Let {xi}mi=1 be a set of coordinates defined on an open set U of M which is
completed to a set {xi}ni=1 of coordinates of N and consider also the local
identification ı∗Q ≃ U ×H determined by a fixed smooth local section

x→ (

n
∑

i=1

ψi
1(x)

∂

∂xi
, . . . ,

n
∑

i=1

ψi
n(x)

∂

∂xi
) ∈ Q|x , x ∈ U

of the bundle ı∗Q. Denote by ψ : U → GLn(R) the function given by
ψ(x) = (ψi

j(x)) and by P the parabolic subgroup of GLn(R) made up of
invertible matrices preserving the subspace R

m. One can then easily check
that the (locally defined) map

Ψ : ı∗Q→ R
m ×GLn(R)/P

given by

(x, h)→ (x1(x), . . . , xm(x), [ψ(x)h] mod P ) , x ∈ U , h ∈ H

satisfies Ψ−1(Rm × [Id]) = π−1(U) ⊂ P adp and has constant rank equal to
m+(dimH −dimH ′) at all points of ı∗Q. By Theorem 15.5 of [9], one gets
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systems of local coordinates {ξα} of H and {ηβ} of GLn(R)/P such that,
for indices 1 ≤ i ≤ m, 1 ≤ α ≤ dimH ′ and 1 ≤ β ≤ dimH −dimH ′, the set

{xi, ξα, ηβ ◦ f} (2.6)

is a set of local coordinates of ı∗Q satisfying

Ψ−1(Rm × [Id]) = {ηβ ◦ f = 0} .

The required smooth section of ı∗Q→M is then given in coordinates (2.6)
simply by (x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0).
Part (ii) of the proposition is now a direct consequence of the following two
identifications

P ind ≃ P adp/H ′′ , G ≃ H ′/H ′′ , (2.7)

where H ′′ = {h ∈ H ′ |h =

(

Id ∗
0 ∗

)

} is a closed normal subgroup of H ′.

In particular, the bundle projection π : P ind → M is nothing else that the
map induced on the quotient by the projection (2.5). �

The following definition is well-posed due to Proposition 2.2.

Definition 2.3. The G-structure π : P ind →M canonically associated to a
regular submanifold M of N as in Proposition 2.2 is called the G-structure
induced by the ambient geometry (N,Q).

3. G-structures induced by a homogeneous ambient geometry

We now restrict ourselves to the case of an ambient geometry which
determined by a homogeneous manifold N = H̃/K̃, where H̃ denotes a Lie

group acting transitively and effectively on N and K̃ is the stabilizer at a
fixed point o ∈ N . We first recall how to naturally associate a H-structure
p : Q → N to any homogeneous manifold N = H̃/K̃. After that, we
prove a result giving necessary and sufficient conditions for a G-structure
π : P → M on a manifold M to be locally equivalent to the G-structure
π : P ind →M induced by an homogeneous ambient geometry (N,Q).

Convention. We always make use of the canonical identification ToN ≃ h̃/k̃,

where h̃ and k̃ denote the Lie algebras of H̃ and K̃ respectively. We also
assume that a complement h̃ = k̃ ⊕ R

n has been fixed once and for all (the
examples in §4 and §5 always admit a natural choice of it). In particular,
an identification ToN ≃ R

n has also been fixed once and for all.

Consider the isotropy representation of the stabilizer K̃:

i : K̃ → Aut (ToN) ≃ GLn(R) , k̃ 7→ dLk̃|o : ToN → ToN , (3.1)
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where L
k̃
: N → N is the left action of k̃ ∈ K̃ on N = H̃/K̃. Denoting the

kernel of (3.1) by K = Ker i, one can always consider the principal bundle

p : H̃/K → H̃/K̃ (3.2)

whose structure group is K̃/K, together with the following commutative
diagram

H̃/K −→ FN

K̃/K ↓ ↓ GLn(R)

H̃/K̃ = N

.

Here the injective bundle morphism H̃/K → FN is the one induced by the
map

H̃ → FN , h̃ 7→ dL
h̃
|o : R

n ≃ ToN → T[h̃]N ,

while the Lie group monomorphism K̃/K → GLn(R) is induced by (3.1). It
follows that the bundle (3.2) is identifiable with a reduction of FN , i.e. with

a H-structure p : Q → N where H ≃ K̃/K. We conclude by noticing that
the soldering form

ϑ ∈ Ω1(H̃/K, h̃/k̃) , w→ (dL
h̃
|o)

−1(dp|[h̃](w)) if w ∈ T[h̃]H̃/K

of the H-structure (3.2) is uniquely determined by the Maurer-Cartan form

ωMC : TH̃ → h̃ of the Lie group H̃ via the equation

φ∗ϑ = ϕ ◦ ωMC , (3.3)

where φ : H̃ → H̃/K and ϕ : h̃→ h̃/k̃ are the canonical projections.

We are now ready to state and prove the following.

Theorem 3.1. Let M be a m-dimensional manifold endowed with a G-
structure π : P → M and N = H̃/K̃ a n-dimensional homogeneous space
together with its canonically associated H-structure p : Q→ N , where Q ≃
H̃/K, H ≃ K̃/K and K is the kernel of the isotropy representation (3.1).
Assume that the Lie group

H ′ = {h ∈ H |h =

(

∗ ∗
0 ∗

)

}

made up of elements of H ⊂ GLn(R) preserving the subspace R
m of R

n

satisfies

G = {g ∈ GLm(R) | ∃h ∈ H ′ withh =

(

g ∗
0 ∗

)

} .

Fix a point xo ∈ M . Then there exists a local immersion ı : M → N
with ı(xo) = o and such that P is locally equivalent to the G-structure P ind

induced by the ambient geometry (N,Q) if and only if there exists a 1-form

ωind ∈ Ω1
loc(M, h̃) defined around xo and satisfying
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i) ϕ ◦ ωind : TM → h̃/k̃ ≃ R
n takes values into R

m and

ϕ ◦ ωind = σ∗θ

for some local section σ : M → P of the G-structure π : P → M ,
whose soldering form has been denoted by θ : TP → R

m;
ii) the Maurer-Cartan equation dωind + 1

2 [ω
ind, ωind] = 0.

Proof. We first prove the necessary implication: Assume there exists a local
immersion ı : M → N such that P is the G-structure induced by the ho-
mogeneous ambient geometry (N,Q). Let ς : M → P adp be a local section
of the bundle P adp ⊂ ı∗Q of adapted frames and denote by σ : M → P ind

the section induced via the identifications (2.7). By local triviality of the

fibration φ : H̃ → Q, one also gets a local section Σ : M → ı∗H̃ satisfying
φ ◦ Σ = ς. Consider the following commutative diagram

ı∗H̃ −→ H̃
↓ ↓ φ

P ind ← P adp ⊂ ı∗Q −→ Q
π ↓ ↓ ↓ ↓ p

M = M = M −→ N
ı

and define ωind = Σ∗ωMC : TM → h̃. The Maurer-Cartan equation
dωind + 1

2 [ω
ind, ωind] = 0 obviously holds while (i) follows from the equation

ϕ◦ωind = Σ∗(ϕ◦ωMC) = Σ∗(φ∗ϑ) = ς∗ϑ = σ∗θ. Note that the last equality
involving the soldering forms of the bundles Q and P exactly amounts to
the fact that P is the G-structure induced by the ambient geometry (N,Q).

We now prove the other implication. Consider the local one-form ωind−ωMC

on the product M × H̃ and denote its kernel at (x, h̃) ∈M × H̃ by D|(x,h̃).

The distribution D = Ker(ωind−ωMC) satisfies the following two properties:

– it has constant rank rkD = dimM ,
– it is involutive (this follows from hypothesis (ii)).

By standard arguments, the existence of a local map Σ :M → H̃ satisfying

ωind = Σ∗ωMC and Σ(xo) = e

is guaranteed. Using (i), one easily sees that the differential of the map

ı := p ◦ φ ◦ Σ :M → N (3.4)

is injective i.e. (3.4) is a local immersion around xo ∈ M ; what we need to
show is that P is the G-structure induced by the ambient geometry (N,Q)
through (3.4). Consider the commutative diagram

ı∗Q −→ Q
↓ ↓ p
M −→ N

ı

ı∗Q = {(x, q) |x ∈M, q ∈ Qwith ı(x) = p(q)}
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and define a H ′-reduction P adp of the principal H-bundle ı∗Q by

P adp := {(x, φ(Σ(x))h) |x ∈M,h ∈ H ′} ;

a local section of this bundle is provided by ς := φ ◦ Σ : M → P adp .
Hypothesis (i) implies that

σ∗θ = ϕ ◦ ωind = ϕ ◦ Σ∗ωMC : TM → R
m

and, exploiting (3.3), one gets

ϑ(dς(v)) = ϑ(dφ ◦ dΣ(v)) = ϕ ◦ ωMC(dΣ(v)) = θ(dσ(v)) , (3.5)

for any v ∈ TxM . Equation (3.5) says exactly that ς∗ϑ = σ∗θ, i.e.

– the submanifold (3.4) is regular,
– the bundle P adp is the bundle of adapted frames to M and
– the G-structure P is induced by (N,Q) through (3.4).

This concludes the proof. �

In §4, we specialize Theorem 3.1 to the case of an ambient geometry given
by the integrable H-structure (N,Q) = (Rn,Rn ×H). As a direct corollary
of Theorem 3.1 we obtain Theorem 4.2, which was first estabilished by Rosly
and Schwarz in [17]; after that we consider two examples in detail.

4. The Theorem of Rosly and Schwarz

For any Lie subgroupH of GLn(R), the integrable H-structure p : Q→ R
n

is defined as follows: It is the unique reduction to the group H of the bundle
FRn of all linear frames on R

n such that the global section of FRn given by
partial derivatives

x→ (
∂

∂x1
|x, . . . ,

∂

∂x1
|x)

takes values in Q|x for any x ∈ R
n. From now on the integrable H-structure

is denoted by the symbol p : Rn ×H → R
n.

There is also the notion of maximal transitive prolongation of the Lie
algebra h of H [24]: It is the unique (possibly infinite-dimensional) Z-graded
Lie algebra

h∞ =
∑

p∈Z

hp (4.1)

which is maximal between the class of Z-graded Lie algebras satisfying

- hp is finite dimensional for every p ∈ Z,
- h0 = h, h−1 = R

n and hp = 0 for p < −1,
- the adjoint action of h0 on h−1 is the standard action of h on R

n,
- for all p ≥ 0, if X ∈ hp is such that [X, h−1] = 0, then X = 0.
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It is well known that hp is identifiable as a vector space with the intersection
R
n ⊗ Sp+1

R
n∗ ∩ h ⊗ Sp

R
n∗ and that the maximal transitive prolongation

(4.1) describes the Lie algebra of all infinitesimal automorphisms of the
H-structure p : Rn×H → R

n if dim h∞ <∞ (in that case h is of finite type).

It is convenient to consider the following.

Definition 4.1. The G-structure π : P ind → M induced by the ambient
geometry (Rn,Rn × H) onto a regular submanifold M of Rn is called H-
immersible. Any G-structure on a manifold M which is locally equivalent to
a H-immersible structure is also called H-immersible.

The following Theorem is due to Rosly and Schwarz.

Theorem 4.2 ([17]). Let M be a m-dimensional manifold endowed with a
G-structure π : P →M and H ⊂ GLn(R) a Lie group which is of finite type
and satisfies

G = {g ∈ GLm(R) | ∃h ∈ H withh =

(

g ∗
0 ∗

)

} .

Then the G-structure π : P → M is H-immersible around xo ∈ M if and
only if there exists

ωind =
∑

p≥−1

ωp ∈ Ω1
loc(M, h∞) , ωp ∈ Ω1

loc(M, hp) ,

defined around xo and satisfying

i) ω−1 : TM → R
n takes values into R

m and

ω−1 = σ∗θ

for some local section σ : M → P of the G-structure π : P → M ,
whose soldering form has been denoted by θ : TP → R

m;
ii) the Maurer-Cartan equation

dωind +
1

2
[ωind, ωind] = 0 . (4.2)

Proof. Let H̃ be the simply connected Lie group whose Lie algebra is h∞

and consider the homogeneous manifold N = H̃/K̃ , where K̃ is the analytic

closed subgroup of H̃ corresponding to the following subalgebra:

k̃ = h0 + h1 + h2 + · · · .

The Theorem follows by checking that the K̃/K-structure p : H̃/K → H̃/K̃

associated to the natural abelian complement h−1 = R
n to k̃ in h̃ (see the

discussion at the beginning of §3) is integrable around o ∈ N , by noticing

that k̃/k ≃ h as Lie algebras, and by applying Theorem 3.1. �
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The following observation is also due to Rosly and Schwarz [17]. Let M
be a m-dimensional manifold endowed with a G-structure π : P → M . Let
us fix a (local) frame

ǫ : Rm → TM , ǫx ∈ P |x

and denote the inverse coframe by ω−1 : TM → R
m. Since the maximal

transitive prolongation of a Lie group H admits a natural Z-gradation (4.1),
the Maurer-Cartan equation (4.2) boils down to a family of equations pa-
rameterized by k ∈ N:

P k−1 := dωk−1 +
1

2

∑

0≤r≤k−1

[ωr, ωk−1−r] = −[ω−1, ωk] . (4.3)

This fact suggests a recursive procedure to construct solutions of (4.2).
More precisely, assume a set {ωi}i<k which is a solution of the equations
{P i−1 = −[ω−1, ωi]}i<k has been determined; (4.3) is then an equation in
the unknown ωk ∈ Ω1

loc(M, hk), with

P k−1 = P k−1(ω−1, . . . , ωk−1) ∈ Ω2
loc(M, hk−1) .

We conclude §4 by showing how the well-known Gauss-Codazzi-Ricci
equations underlying the embedding problem of a Riemannian manifold
(M,g) into the flat space Rn fit into the scheme of immersible G-structures.
Similar equations are then obtained for the analogous problem up to confor-
mal changes of metric. The obtained results are basic knowledge in Mathe-
matics, except perhaps the conformal case.

4.1. The Riemannian case. Let p : Q → N be the standard On(R)-
structure

Q = {(v1, . . . , vn) frame of TxN | g
′(vi, vj) = δij for all 1 ≤ i, j ≤ n}

associated to a n-dimensional Riemannian manifold (N, g′). Of course, any
submanifold ı : M → N is regular and the Om(R)-structure π : P ind → M
induced by the ambient geometry (N,Q) is the standard Om(R)-structure
associated to the pull-back metric ı∗g′.
We consider m-dimensional Riemannian manifolds (M,g) and study the
existence of local isometric immersions into the flat space (Rn, (·, ·)), for a
fixed codimension p := n−m ≥ 0.

By identifying each TxM ≃ R
m by means of a local orthonormal coframe

ω−1|x : TxM → R
m , (4.4)

equation (4.3) with k = 0 is equivalent to

[v, ξx(w)] + [ξx(v), w] = −dω
−1|x(v,w) (4.5)
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for any v,w ∈ R
m in the unknown ξx ∈ R

m∗ ⊗ son(R). The decomposition

son(R) = {
(

A −B
T

B D

)

| A ∈ som(R) , B ∈Mat(p,m;R) , D ∈ sop(R)}

(4.6)
determines an identification ξx ≃ ̟x +Πx + ψx, for unique linear maps

̟x ∈ R
m∗⊗som(R) , Πx ∈ R

m∗⊗Mat(p,m;R) , ψx ∈ R
m∗⊗sop(R) , (4.7)

and (4.5) decomposes into the following two equations

−̟x(w)(v) +̟x(v)(w) = −dω
−1|x(v,w) , −Πx(w)(v) + Πx(v)(w) = 0 .

It is well-known that the first equation has always a unique solution ̟x; the
first order H-immersibility conditions implies also Πx ∈ S2

R
m∗ ⊗ R

p and
(4.5) admits always a smooth solution

ω0 ∈ Ω1
loc(M, son(R)) . (4.8)

We denote the forms (4.7) associated to a solution (4.8) still by

̟ ∈ Ω1
loc(M, som(R)) , Π ∈ Ω1

loc(M,Mat(p,m;R)) , ψ ∈ Ω1
loc(M, sop(R)) ;

they determine the connection form of the Levi-Civita covariant derivative
∇LC onM and a symmetric tensor field α ∈ Γloc(S

2TM∗⊗E) taking values
in a (locally defined) vector bundle E ≃ M × R

p → M which is endowed
with a connection ∇⊥ compatible with the fiber metric gE ≃ (·, ·)|Rp .

As the first prolongation son(R)
1 = 0, equation (4.3) with k = 1 is equivalent

to
0 = dω0(v,w) + [ω0(v), ω0(w)]

and it boils down to the vanishing of the following local two-forms:

G(v,w) := d̟(v,w) + [̟(v),̟(w)] −Π(v)T ·Π(w) + Π(w)T · Π(v) = 0 ,

C(v,w) := dΠ(v,w) + Π(v) ·̟(w)−Π(w) ·̟(v) + ψ(v) ·Π(w) − ψ(w) · Π(v) = 0 ,

R(v,w) := dψ(v,w) + [ψ(v), ψ(w)] −Π(v) ·Π(w)T +Π(w) · Π(v)T = 0 .

These second order H-immersibility conditions for the existence of an iso-
metric immersion into R

n are the usual Gauss-Codazzi-Ricci equations for
vector fields X,Y,Z,W ∈ X(M) and sections µ, ν ∈ Γ(E), i.e.

0 = g(RXY Z,W )− gE(α(Y,Z), α(X,W )) + gE(α(X,Z), α(Y,W ))

0 = (∇Xα)(Y,Z)− (∇Y α)(X,Z)

0 = gE(RXY µ, ν) +
∑

i

gE(α(X,Ei), µ)gE(α(Y,Ei), ν)+

−
∑

i

gE(α(X,Ei), ν)gE(α(Y,Ei), µ)

Here ∇ := ∇LC +∇⊥ denotes the covariant derivative on the vector bundle
TM ⊕ E → M , compatible with the fiber metric g ⊕ gE, determined by
the connection form ̟ ⊕ ψ; R is the curvature of ∇ and {Ei} any local
orthonormal frame of M .
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As son(R)
1 = 0, equations (4.3) are trivially satisfied when k ≥ 2.

The above discussion together with Theorem 4.2 furnishes yet another proof
of the well-known fact that any tuple (E, gE , α,∇

⊥) satisfying the Gauss-
Codazzi-Ricci equations determines a (local) isometric immersion M ⊂ R

n

(see e.g. [15, pag. 47] or [23, pag. 49]).
Vice-versa, to any isometric immersion into flat space Rn, one can always as-
sociate a tuple (E, gE , α,∇

⊥) satisfying the Gauss-Codazzi-Ricci equations:
It is given by the second fundamental form α, the normal bundle E = NM
together with the induced metric gE := (·, ·)|E , and finally the projection
∇⊥ : TM ⊗NM → NM along NM of the Levi-Civita connection of Rn.

4.2. The conformal case. We retain the notation of §4.1. We want to
determine the H-immersibility conditions for a m-dimensional Riemannian
manifold (M,g) to admit a conformal immersion into the flat space R

n, for
a fixed n ≥ 3. Considering the standard CO(R)-structures associated to
(M,g) and R

n, we are led to study equations (4.3) in the case h = con(R).
Recall that the maximal transitive prolongation con(R)

∞ is finite-
dimensional [10, 22] and isomorphic to

so(n+ 1, 1;R) ≃ R
n + con(R) + R

n∗ = R
n + con(R) + co(n,R)1 ,

the identification R
n∗ = con(R)

1 being given by

u∗ 7→ {u 7→ u⊗ u∗ − φ(u∗ ⊗ u) + u∗(u) Id} ,

where φ : Rn∗ ⊗ R
n → R

n ⊗ R
n∗ denotes the duality isomorphism induced

by the standard scalar product of Rn.

From now on, we will identify each TxM ≃ R
m by means of a local orthonor-

mal coframe (4.4). For any ξx ∈ R
m∗⊗con(R), the decompositions (4.6) and

con(R) = son(R) ⊕ R Id induce an identification ξx ≃ ̟x + Πx + ψx + λx,
where

̟x ∈ R
m∗ ⊗ som(R) , Πx ∈ R

m∗ ⊗Mat(p,m;R)

ψx ∈ R
m∗ ⊗ sop(R) , λx ∈ R

m∗ ,

and equation (4.3) with k = 0 decomposes into

−̟x(w)(v) +̟x(v)(w) − λx(w)(v) + λx(v)(w) = −dω
−1|x(v,w) ,

−Πx(w)(v) + Πx(v)(w) = 0 .

In particular, as in §4.1, it always exists a unique smooth solution of the
form (4.8), that is we restrict to the case λ = 0 in the decomposition

ω0 ≃ ̟ +Π+ ψ + λ .

Equation (4.3) with k = 1 is given by

− [v, ηx(w)] − [ηx(v), w] = dω0|x(v,w) + [ω0|x(v), ω
0|x(w)] (4.9)
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and it is an equation in the unknown

ηx ∈ R
m∗ ⊗ con(R)

1 . (4.10)

To proceed further, we recall that con(R)
1 ≃ R

n∗ = R
m∗ ⊕ R

p∗ so that any
element (4.10) can be decomposed as

ηx(v) = ~u∗x(v) + u⊥∗
x (v) ∈ R

m∗ + R
p∗ .

With this in mind, equation (4.9) split into the following four equations:

G(v,w) = −w ⊗ ~u∗(v) + φ(~u∗(v)⊗ w) + v ⊗ ~u∗(w)− φ(~u∗(w) ⊗ v) ∈ som(R)

C(v,w) = φ(u⊥∗(v)⊗ w)− φ(u⊥∗(w) ⊗ v) ∈ Mat(p,m;R)

R(v,w) = 0 ∈ sop(R)

~u∗(v)(w) − ~u∗(w)(v) = 0 ∈ R Id .

A smooth solution ω1 ∈ Ω1
loc(M, con(R)

1) of (4.9) is thus identifiable with
a pair (B,D) formed by a symmetric tensor field B ∈ Γloc(S

2T ∗M) and a
D ∈ Γloc(T

∗M ⊗E), satisfying the following conformal version of the usual
Gauss-Codazzi-Ricci equations for X,Y,Z,W ∈ X(M) and µ, ν ∈ Γ(E):

g(RXY Z,W )− gE(α(Y,Z), α(X,W )) + gE(α(X,Z), α(Y,W )) =

= −g 7B(X,Y,Z,W )

(∇Xα)(Y,Z) − (∇Y α)(X,Z) = D(X)g(Y,Z) −D(Y )g(X,Z)

0 = gE(RXY µ, ν) +
∑

i

gE(α(X,Ei), µ)gE(α(Y,Ei), ν)+

−
∑

i

gE(α(X,Ei), ν)gE(α(Y,Ei), µ)

Here E, α, gE , ∇ = ∇LC + ∇⊥, R and {Ei} have to be interpreted as in
§4.1 while the symbol g 7 B denotes the Kulkarni-Nomizu product of the
symmetric tensors g and B of type (0, 2) (see [2, pag.47] for the definition
of the Kulkarni-Nomizu product).

As con(R)
2 = 0 but con(R)

1 6= 0, equations (4.3) for k = 2 are not trivially
satisfied. They are given by

dω1(v,w) + [ω0(v), ω1(w)] + [ω1(v), ω0(w)] = 0

and furnish the following third order H-immersibility conditions

(∇XB)(Y,Z) + gE(D(X), α(Y,Z)) symmetric in X and Y

(∇XD)(Y, µ) +
∑

i

gE(α(X,Ei), µ)B(Y,Ei) symmetric in X and Y

where X,Y,Z ∈ X(M), µ ∈ Γ(E) and, in the second equation, D has to be
interpreted as a section of T ∗M ⊗ E∗ using the duality associated to gE .

The above discussion together with Theorem 4.2 proves that it is possible
to associate a local conformal immersion of M into flat space R

n to any
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tuple (E, gE , α,∇
⊥, B,D) which satisfies the above mentioned conformal

Gauss-Codazzi-Ricci equations and third order conditions.

Vice-versa, to any conformal immersion ı : M → R
n with ı∗(·, ·) = e2fg,

one associate a tuple (E, gE , α,∇
⊥, B,D) as follows. The tensor field α ∈

Γ(S2T ∗M ⊗E) = Γ(S2T ∗M ⊗NM) is the second fundamental form of the
isometric immersion ı : (M,e2f g)→ (Rn, (·, ·)) while

gE := e−2f (·, ·)|E ,

∇⊥
Xµ := ∇Xµ− df(X)µ ,

B := Hf − df ⊙ df +
1

2
g(df, df)g ,

D := α(·,∇f) ,

where ∇ is the projection along NM of the Levi-Civita connection of Rn,
Hf and ∇f denote the Hessian and the gradient of f w.r.t. g respectively.
Using [2, Thm. 1.159], one can check that such a tuple satisfies the confor-
mal Gauss-Codazzi-Ricci equations and that the fields B and D do indeed
satisfy also the third order conditions. The quite long but straightforward
calculations are omitted.

Specializing to the p = 0 case furnishes yet another proof of the well-known
fact that a Riemannian manifold (M,g) of dimension m ≥ 3 is locally con-
formally flat if and only if the Weyl-Schouten tensor (if m = 3) or the Weyl
tensor (if m = 4) vanishes (see Example 5.3 in §5). On the other hand the
case p > 0, although a basic result, is not available in the Literature at the
best of the author’s knowledge.

Last Sec. §5 is devoted to the introduction of some cohomology groups
which are the target spaces of the obstructions to costructing the equivalence
mentioned in Theorem 4.2.

5. Restricted Spencer cohomology groups

Let h be a Lie subalgebra of gln(R) and consider the decomposition (2.4)
for some fixed m ≤ n. Rosly and Schwarz remarked in [17] that, whenever a
set of solutions {ωi}i<k of equations {P i−1 = −[ω−1, ωi]}i<k has been deter-
mined, equation (4.3) in the unknown ωk ∈ Ω1

loc(M, hk) is linear algebraic
at any point x ∈ M . This says that solutions of (4.3) exist if and only if
P k−1 satisfies some algebraic conditions.

The main purpose of this Section is to define and study the basic proper-
ties of some cohomological groups which are the natural spaces where these
algebraic obstructions live.

We decided to call these groups the restricted Spencer cohomology groups.
They are a necessary ingredient to study problems which are more compli-
cated than those treated in the examples of Section §4. For example, we will
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use them in [19] to study the necessary and sufficient conditions under which
a CR quaternionic manifold is immersible into the quaternionic projective
space HPn with its canonical quaternionic structure.

Definition 5.1. The restricted Spencer cohomology groups Hp,q
R (h) (of the

Lie algebra h w.r.t. the fixed subspace Rm of Rn) are the cohomology groups
associated to the differential complex

· · · → Cp+1,q−1
R (h)→ Cp,q

R (h)→ Cp−1,q+1
R (h)→ · · · ,

where

i) the space of (p, q)-cochains is Cp,q
R (h) = hp−1 ⊗ Λq

R
m ∗, ∀p, q ≥ 0,

ii) the coboundary map ∂p,q : Cp,q
R (h)→ Cp−1,q+1

R (h) is given by

∂p,q(c)(x1, . . . , xq+1) :=

q+1
∑

i=1

(−1)i[c(x1, . . . , xi−1, x̂i, xi+1, . . . , xq+1), xi]

for any c ∈ Cp,q
R (h) and x1, . . . , xq+1 ∈ R

m.

The main result of this section is the following.

Proposition 5.2. Let M be a m-dimensional manifold endowed with a G-
structure π : P → M with soldering form θ : TP → R

m, and H ⊂ GLn(R)
a Lie group which satisfies

G = {g ∈ GLm(R) | ∃h ∈ H withh =

(

g ∗
0 ∗

)

} .

Given a local section σ :M → P of π : P →M , use the coframe

ω−1 = σ∗θ ∈ Ω1
loc(M,Rm) (5.1)

to identify local q-forms on M with values into hp−1 to local functions on M
with values in Cp,q

R (h). Then

i) Equation (4.3) with k = 0 has a solution ω0 ∈ Ω1
loc(M, h0) if and

only if

[P−1|x] = 0 ∈ H0,2
R (h)

for all x ∈M .
ii) Let ω0 ∈ Ω1

loc(M, h0), . . . , ωp−1 ∈ Ω1
loc(M, hp−1) be a sequence of

forms which satisfy equations (4.3) for all 0 ≤ k < p. Then equation
(4.3) with k = p has a solution ωp ∈ Ω1

loc(M, hp) if and only if

[P p−1|x] = 0 ∈ Hp,2
R (h)

for all x ∈M .

Proof. Equation (4.3) with k = 0 is equivalent to the existence of an element

ξx ∈ C
1,1
R (h) such that

[v, ξx(w)] + [ξx(v), w] = −P
−1|x(v,w)
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for any v,w ∈ R
m and x ∈M . Equivalently ∂1,1(ξx) = −P

−1|x ∈ C
0,2
R (h) at

any x ∈ M , which proves the necessary implication. Vice-versa, consider a
vector space direct sum

C1,1
R (h) = Ker ∂1,1 ⊕ C

1,1 ,

and decompose each ξx = ξ′x + ξ′′x accordingly. As ∂1,1 : C1,1
R (h) → C0,2

R (h)
induces an isomorphism between C

1,1 and Im ∂1,1, one gets that

x→ ω0|x := ξ′′x = −(∂1,1|
C1,1)

−1(P−1|x)

is the required smooth solution of (4.3) with k = 0. In this case, by Exercise
5.20 of Chapter I of [21] one has that

0 = d[ω−1, ω0] = [dω−1, ω0]− [ω−1, dω0] = −[[ω−1, ω0], ω0]− [ω−1, dω0]

= [[ω0, ω0], ω−1] + [[ω0, ω−1], ω0]− [ω−1, dω0]

= [[ω0, ω0], ω−1]−
1

2
[[ω0, ω0], ω−1]]− [ω−1, dω0] = −[ω−1, P 0] = 0 ,

that is P 0|x ∈ C
1,2
R (h) is a cocycle.

Equation (4.3) with k = 1 is equivalent to the existence of a ηx ∈ C
2,1
R (h)

such that
[v, ηx(w)] + [ηx(v), w] = −P

0|x(v,w)

i.e. ∂2,1(ηx) = −P
0|x at any x ∈ M . One proceed as above to construct a

smooth solution ω1 ∈ Ω1
loc(M, h1).

The next cases k ≥ 2 are proved by a straightforward induction argument
which we omit. �

At the best of the author’s knowledge, the groups Hp,q
R (h) introduced in

Definition 5.1 have never been considered in the Literature. They are related
to the cohomology groups Hp,2(h|Rm) considered in [17] as follows.

Denote by h|Rm ⊂ Hom(Rm,Rn) the space of maps made up of restrictions
to R

m of elements of h and by Cp,q(h|Rm) the associated Spencer cochains
[7, 22]. There exists a natural restriction morphism of differential complexes
Cp,q
R (h)→ Cp,q(h|Rm) which induces a map at the level of cohomologies

RS : Hp,q
R (h)→ Hp,q(h|Rm) . (5.2)

As P−1|x takes always values into the subspace Rm⊗Λ2
R
m ∗ of C0,2

R (h), one
can show that

[P−1|x] = 0 ∈ H0,2
R (h) ⇐⇒ RS[P−1|x] = 0 .

In general a similar property does not hold for the classes [P p−1|x] if p ≥ 1
and (5.2) is not injective. For example, a closer look at §4.1 reveals that

H1,2(son(R)|Rm) = H1,2(som(R) + Hom(Rm,Rp)) ≃ H1,2(som(R)) ,

H1,2
R (son(R)) ≃ H

1,2(som(R)) + R
p ⊗R2,1 + sop(R)⊗ Λ2

R
m∗ ,

where R2,1 is the glm(R)-irreducible submodule of Rm∗ ⊗ Λ2
R
m∗ different

from Λ3
R
m∗, the second order obstructions to immersibility being given by

G|x ∈ H
1,2(som(R)), C|x ∈ R

p ⊗R2,1 and R|x ∈ sop(R)⊗ Λ2
R
m∗.
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We conclude the paper with two examples.

Example 5.3. We obtained that a Riemannian manifold (M,g) of dimen-
sion n ≥ 3 is locally conformally flat if and only if there exists a B ∈ S2T ∗M
such that

g(RXY Z,W ) = −g 7B(X,Y,Z,W )

(∇XB)(Y,Z) = (∇YB)(X,Z)

for all X,Y,Z,W ∈ X(M). In this case the codimension p = 0 and the
restricted Spencer groups coincide with Hp,2(con(R)); it is known that the
only non-trivial ones are H1,2(con(R)) if n ≥ 4 and H2,2(co3(R)) [14].

In case n ≥ 4, the first condition is equivalent to the vanishing of the
Weyl tensor (see Theorem 1.114 [2]), the second one being automatically
satisfied. In case n = 3, the first condition is automatically satisfied while
the second one is equivalent to the vanishing of the Weyl-Schouten tensor
(see Section 16.4 [2]).

Example 5.4. Let (N,J) be an almost complex manifold of real dimension
dimN = 2n and fix a natural number 1 ≤ r ≤ n. We denote by p : Q→ N
the H-structure determined by the frames (v1, . . . , v2n) of TxN satisfying

vr+i = Jvi ∀ 1 ≤ i ≤ r and vr+n+j = Jv2r+j ∀ 1 ≤ j ≤ n− r .

The Lie group H is isomorphic to GLn(C) and it is possible to decompose
its Lie algebra h in terms of glr(C)-modules as follows:

h ≃ glr(C) + R
2r ⊗ R

n−r∗ + T ′ + R
n−r ⊗ R

2r∗ + T ′′ , (5.3)

where T ′ and T ′′ are two copies of the trivial glr(C)-module R
n−r ⊗ R

n−r∗

(T ′ is a Lie subalgebra while [T ′′, T ′′] ⊂ T ′).
The structure groups of the bundles (2.2) and (2.3) associated to a regular

submanifold M ⊂ N of dimension dimM = n+ r are isomorphic and corre-
spond, respectively, to the analytic subgroups H ′ ⊂ H and G ⊂ GLn+r(R)
associated to the Lie subalgebra glr(C) + R

2r ⊗ R
n−r∗ + T ′ inside (5.3).

It follows that M is endowed with a distribution D ⊂ TM of rkD = 2r
together with a field of partial almost complex structures J : D → D: We
are dealing with n + r-dimensional almost CR manifolds (M,D, J) of CR
dimension r and CR codimension n− r.

We now recover the usual integrability conditions for (M,D, J) to be
locally embeddable, i.e. locally induced by an immersion into N = C

n with
its standard complex structure. The conditions are only formal as gln(C) is
of infinite type [10] and we can not apply Theorem 4.2.

First note that the cohomology groups Hp,2
R (gln(C)) are zero if p ≥ 1. In

fact any restricted cocycle

η ∈ Cp,2
R (gln(C))

can be extended to a unique cocycle η̃ ∈ Cp,2(gln(C)) by C-linearity. The
assertion is then an easy consequence of the fact Hp,2(gln(C)) = 0 for all
p ≥ 1 [7, 12].
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We are led then to study the existence of a form ω0 ∈ Ω1
loc(M, gln(C)) which

solves the system

dω−1|x(v,w) + [v, ω0|x(w)] + [ω0|x(v), w] = 0 (5.4)

where v,w ∈ R
n+r and we identified each tangent space TxM ≃ R

n+r via
an admissible coframe as usual. We now proceed in a slightly different way.
Note that (5.4) admits a solution if and only if the torsion

T |x ∈ R
n+r ⊗ Λ2

R
n+r∗

of the covariant derivative ∇ associated to any connection 1-form

̟ ∈ Ω1
loc(M, g)

is restricted exact. We determine the space

R
n+r ⊗ Λ2

R
n+r∗ ∩ Im∂1,1 (5.5)

as follows. First note that Im ∂1,1 = Im /∂
1,1
|Λ2Rn+r where

/∂
p,q

: Cp,q(h)→ Cp−1,q+1(h) , Cp,q(h) = hp−1 ⊗ Λq
R
2n ∗

denotes the Spencer operator between the usual Spencer cochains. Secondly

it is not difficult to see that Im /∂
1,1

= R
2n⊗Λ(2,0)

R
2n∗+R

2n⊗Λ(1,1)
R
2n∗ =

= {T ∈ R
2n ⊗ Λ2

R
2n∗ |T (v,w) − T (Jv, Jw) = −JT (Jv,w) − JT (v, Jw)} .

It follows that (5.5) equals the space of maps T ∈ R
n+r ⊗ Λ2

R
n+r∗ which

satisfy

T (v,w)−T (Jv, Jw) ∈ R
2r , T (v,w)−T (Jv, Jw) = −JT (Jv,w)−JT (v, Jw) ,

for any v,w ∈ R
2r. Hence (M,D, J) is formally locally embeddable in C

n if
and only if there exists a connection ∇ with ∇D ⊂ D, ∇J = 0 and whose
torsion satisfies

T (X,Y )− T (JX, JY ) ∈ D ,

T (X,Y )− T (JX, JY ) = −JT (JX, Y )− JT (X,JY ) ,

for any X,Y ∈ D. Equivalently one gets

[X,Y ]− [JX, JY ] ∈ D

[X,Y ]− [JX, JY ] = −J [JX, Y ]− J [X,JY ]

for all X,Y ∈ D .

It is well-known [1, 3] that the above formal conditions are sufficient for
local embeddability under the additional assumption of analyticity. It might
be interesting to get an alternative proof of this fact by using the above
discussion together with results on partial differential equations as presented
in [6, 4, 16].
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