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Introduction

Maillage qui répond aux criteres de Conditions aux limites =
qualité liés a la forme des éléments Calcul par la méthode des EF

|

(Entrée) : Modele CAO

Préparation du modele CAO Mise en donnée

: & &
‘\ la génération du maillage Calcul

Analyse des résultats

(o)
X

Optimisation

Selon des statistiques publiées par [Cottrell et al. (2009)], environ 80% du
temps humain lors d'un processus d'analyse éléments finis est consacré a la
préparation du modele CAO et la génération du maillage.



Motivations

Analyse sur des géométries non-conformes au maillage

Modele CAO Maillage simple a construire Conditions aux limites +

K\ Calcul éléments finis

Peut-on avoir la précision
et les taux de convergence

~—

T/ comme dans le cas du
maillage conforme ?
e -
Repre.s\entation par les  Converion - Représentation volumique  ——acls Analyse éléments finis
frontieres ; f?thIOhS par Level set XFEM
paramétriques _ )
[Osher & Sethian (1988)] [Moés et al. (1999)]



Plan de la présentation

> Représentation géométrique par Level sets
» La méthode des éléments finis étendus (XFEM)
» Analyse par XFEM dans le cas de l'interpolation linéaire et d'ordre supérieur

» Conclusions et Perspectives



La méthode des Level sets [Osher and Sethian (1988)]

T 11

O Représentation implicite de la frontiére: ¢(z) >0 u |
o(z) = 0 —~
I'={z:¢(z)=0} Q

~ N

il \k ]

O La version la plus utilisée est le champ de distance signée: a(z) < 0 < [/
¢(z) =d(z) =sign(z) -min{lz—Q|: Q €T} > — 1

) +1 si z € extérieur
sign (z) = . L
—1 sl z € intérieur

O o(z) est discrétisée par le maillage EF:

&n(z) =Y _ Ni(z)é

iel

O o (z,t) présente l'intérét d'étre régie par la loi d'évolution:

99 (z,1)
ot

+ Vo (z.t)- % -0 (Hamilton-Jacobi)
Volz, o



Représentation géomeétrique par Level set

Inconvénients 1/2

* L'approximation du domaine dépend de la taille des éléments du maillage EF

Approximation géométrique d'une sphere sur trois
maillages de densité croissante 6



Techniques de raffinement basées sur un sous-maillage

Sous-maillage gradué (SMG) en 2D

Niveau_1 Niveau_2
g —_>

Si une représentation fine de la frontiere
courbe est nécessaire:

= chaque élément de frontiere est subdivisé
en quatre sous-triangles

= traiter chaque niveau de sous-maillage par
I'algorithme de conversion

= appliquer la technique de découpage pour
subdiviser les sous-éléments du dernier
niveau



Techniques de raffinement basées sur un sous-maillage

Sous-maillage gradué (SMG) en 2D

Maillage grossier de Raffinement par SMG Approximation géométrique
I'approximation EF de niveau (n =7)



Techniques de raffinement basées sur un sous-maillage

Sous-maillage gradué (SMG) en 3D

Niveau_1
g _
—N

Si une représentation fine de la frontiere
courbe est nécessaire:

= chaque élément de frontiere est subdivisé
en huit sous-éléments tétraédriques

= traiter chaque niveau de sous-maillage par
I'algorithme de conversion

= appliquer la technique de découpage pour
subdiviser les sous-éléments du dernier
niveau



Techniques de raffinement basées sur un sous-maillage

Sous-maillage gradué (SMG) en 3D

e

Approximation géométrique d'une microstructure contenant des
inclusions en forme de tore indépendamment de la taille du maillage EF

10



Représentation géomeétrique par Level set

Inconvénients 2/2

 La représentation implicite ne permet pas de préserver les arétes vives et

les coins d’'une piece mécanique

‘ Union

Exemple d'arbre CSG (Constructive Solid Geometry)
d'une piece mécanique résultant de combinaisons
booléennes d'un cube et 3 cylindres dans un maillage

tétraédrique structuré 11




Représentation implicite avec plusieurs Level sets

» Technique récursive de découpage

Cette technique est concue comme une
extension de la technique de subdivision
standard utilisée dans XFEM

» Exemples de représentation de formes

g

Représentation implicite par une Représentation implicite en utilisant plusieurs Level sets
unique Level set construite a partir de construites séparément et la technique de découpage
la combinaison booléenne de demi-
espaces (8-plans et 3-cylindres)

12



Plan de la présentation

» La méthode des éléments finis étendus (XFEM)

13



Meéthode des Eléments finis étendus (XFEM)
[Moés et al. (1999)]

XFEM a été originalement développée pour I'étude des fissures
——) autorise au maillage de ne plus étre conforme a la fissure

——) permetd'éviter la lourde tache de remaillage

d Modélisation des interfaces matériau-vide

» Approximation du champ de déplacement [Sukumar et al. (2001)]

u" (z) = Z N; (z) w;V (o(z)) avec V (o(z)) = {

ic]

» Subdivision des éléments frontiére et intégration numérique:

sous-éléments ™ ¢

| tevew - Y [ jevee) a. e v

14



Intégration numérique

O Intégrales de domaine

> La fonction indicatrice:

1 s1 (Ej’: E&) c Qh
A = _
0 si Ea &y

» La formule de quadrature d'une fonction réguliére:

f AIUdeQ:/fdQJrfA;UdeQ
Griup I B

O Intégrales de frontiére

> La fonction indicatrice:

[1]

B 1 si1 EQPEF}I
7)o si Ea gl

» La formule de quadrature d'une fonction réguliére:

/Br;r)EdeF:Z/EBFEdeF:ZZ/ =p fdl

Epp Epp Eap Eap




Plan de la présentation

» Analyse par XFEM dans le cas de l'interpolation linéaire et d'ordre supérieur

O Analyse de convergence en maillage non-conforme a la frontiére de la géométrie

U Analyse de convergence en maillage non-conforme aux frontiéres courbes

16



Maillage non-conforme a la frontiere de la geéométrie

Le probleme de Laplace
Au=0 dans  (2,y) € U =)0, 1[xJy", 1[ avec y* € [0,1]
u = u (z,y*) sur Y=y

Vu-n=Vu“®-n, sur (z=01y"<y<l) et y=1

Solution analytique:

u™ (z,y) = [cosh (my) — coth () sinh (7y)] sin (7z)

CL de Dirichlet:

O la méthode par pénalisation

L la méthode de Nitsche [Hansbo & Hansbo (2002)]

O la méthode des multiplicateurs de Lagrange [Moés et al. (2006); Géniaut et al. (2007);
Béchet et al. (2009)]

3 -Q'h
th . A
1 e I 10
<
NA
r'l. Y
Ch X 17




Maillage non-conforme a la frontiere de la geéométrie

» les conditions aux limites de Dirichlet sont imposées sous forme faible par I'approche
des multiplicateurs de Lagrange

trouver (up, Ap) € % x £n  tels que :

/ Arop Vo, - Vg, dQ + / g vp\, dl = / Zp vpty dl’
Griup B(I'n) B(I'n)

—/ Ep ppup dI' = —/ Ep ppup dl pour tous (vh, un) € % X Lh
B(T'p) B(T'p)

Erreurs relatives:

10000

/ 7 h o ex | h ez 1/2 I *\{ ]
& (U, V) = (IG?’;J” Ao V (u uet) - V (u i ) dﬂ) .| 7\/\;____*__________

/ = A Wt
fc:muﬁ Aog Vue® - Vue® df2

D
. h a2 J-_-".12 -% 1 | |
) Jewp E8 (v —u)” dl s o
Jpwp)Er ()" dT £ o
w 001 .
Jowop Ep (M= Vues)? ar)
i oy =B AT — VU
L2, \) = | 2 - o
i) perp) 28 (Vnu®)” dl 0.0001 | A .
’ __a—Trfeur en energie (R=0.63) —+—
L st Erreur en ML (—) —*
Erreur en u (R=223) —=—
1e-06 : : .
0.01 0.1

h



Maillage non-conforme a la frontiere de la geéométrie

» Domaine implicite carré

0344
0389
033
0777
o721
0566
051

0554
0429
0443
0387
0332
0276
022

0184

0108
k Y
00531 X

-0.00261

Solution XFEM du probleme de Laplace

Erreur relative

0.1 - 4

_ 4’_-_-_-_#_{-_-_ | / o ]
o
001 | * — .

X i
0.001
0.0001 Erreur en energie (R=097) ——
Eoa Erreur en ML (R=1.2) —
Erreur en u” (R=2.08) ——
«19_05 1 1 1 1 1 1 1 1
0.01 0.1

h

Convergence de la méthode XFEM
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Erreur relative

Maillage non-conforme a la frontiere de la geéométrie

» Domaine implicite carré

1r
0.1 o
T -
et L
.--"I-)
0.01 » __________..-516""'
0.001 |- e
.--'"A—ffffff
0.0001 ¢ — Erreur en energie (R=095) —+—
Erreur en ML (R=1.33) *
Erreur en u” (R=2) —=—
1e-05
0.01

h

Convergence de la méthode des EF

avec maillage conforme

Erreur relative

01 F

0.01

0.001

0.0001 -

1e-05

—t

A

" Erreur en energie (R=097) ——

A
Ty
+ P
-
- -
¥ |
o 1
--).(__.f"_
_-""/
__,-—"-—l
o~
P P |
-
-
-
e
.
.r')f.
i

Erreur en ML (R=1.2) #
Erreur en u” (R=2.08) ——

0.01

0.1
h

Convergence de la méthode XFEM
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Maillage non-conforme a la frontiere de la geéométrie

Probléme de Laplace en 3D

Domaine non-conforme au maillage Solution XFEM du champ potentiel

21



Erreur relative

Maillage non-conforme a la frontiere de la geéométrie

Probléme de Laplace en 3D

1 T 1 —TTT T T
L __..--"""-J- - L ,-*f-"-f 4
-.-‘-____"f.-’_" .-"-'
0.1 7, 3 01 F / _:
=
i
E
3
0.01 £ E g 001 F E
Erresir en energie: FEM (R=0.75) —— | I Erreur en energie: XFEM (R=0.75/1.15) —— ]
0.001 L Erreur en M%z FEM (R=0.83) —=— | 0.001 Erreur en ML: XFEM (R=0.92/1 44) ——
' F Erreur en u™: FEM (R=1.83) —*— ) b Erreur en u™: XFEM (R=1.42/2.09) ]
- . ) . . . . . I . . . . . . .- - ) ) ) ) ) L ]
0.01 0.1 1 0.01 0.1
h
Convergence de la méthode des EF Convergence de la méthode XFEM

avec maillage conforme



Maillage non-conforme aux frontieres courbes

» Tube cylindrique sous pression: Calcul EF en élasticité linéaire

Solution analytique:

= |es composantes du tenseur des contraintes:

a’p b2

W
gr'r(r]:bz_az[l rg)! E
b B
a’p b2
T66 [Tj — 7192 )(1 _-)J.'
b* — a® re X
Trg = Oz = Tzz = 0

Erreur relative en énergie:

, A AR O h e J0 1/2
& () = Jern Mo € (u* — u) € (u" —u) = Convergence en O (h?)
fcrru; Arus E(HE'T) : C E(ue‘r) ds
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Maillage non-conforme aux frontieres courbes

» Tube cylindrique sous pression: Calcul EF en élasticité linéaire

24



Maillage non-conforme aux frontieres courbes

» Tube cylindrique sous pression en 2D

XFEM classuque (Llnealre (R= =0.9 994)

XFEM et SMG de niveau n=6 a |'intérieur de Ep (Linéaire) (R=0.996)

1 XFEM classique (Quadratique) (R=1.60) -
i XFEM et SMG de niveau n=1 (Quadratique) A

) -

) -

)

v

i SMG de niveau n=2 (Quadratique
- SMG de niveau n=4 (Quadratique

. H SMG de niveau n=6 (Quadratique) (R=2.0086) —a— -

.
=
[

=

—

4
1

0.01

Erreur relative

0.001 |-

0.0001

———> Convergence en O (h?)



Maillage non-conforme aux frontieres courbes

» Tube cylindrique sous pression en 2D

1

0.1

I|4r1 T B | II

0.01 -

—
L=
[

Pl

—

Erreur relative

1e-05 |

1e-06

0.001 |

0.0001 |

1e-07

XFEM classigue (Cubique) (R=1.51

XFEM et SMG de niveau n=1 a l'intérieur de Eg (Cubique) --

)
(
SMG de niveau n=2 (Cubique

SMG de niveau n=3 (Cubique

SMG de niveau n=4 (Cubique) (R=2.75

SMG de niveau n=6 (Cubique) (R=3.02

SMG de niveau n=7 (Cubique) (R=3.04

R . S

* 4]

s

———> Convergence en O (h?)
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Maillage non-conforme aux frontieres courbes

» Tube cylindrique sous pression en 2D

1

0.1 |
0.01 -
& ()

2 0.001 |

©

o

5

o

5 0.0001 |

1e-05 |

1e-06 |-

1e-07

XFEM classigue (Cubique) (R=1.51
XFEM et SMG de niveau n=1 a l'intérieur de Eg (Cubique) --
SMG de niveau n=2 (Cubique

SMG de niveau n=3

SMG de niveau n=4 (Cubique) (R=2.75
SMG de niveau n=6 (Cubique) (R=3.02
SMG de niveau n=7 (Cubique) (R=3.04

)
(
(
(
)
)
)

Cubique

R . S

Controle de l'erreur

i

* 4]

s

0.1

h

———> Convergence en O (h?)
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|

'
=

Erreur relative

» Tube cylindrique sous pression en 3D

0.1 |

e’

0.01 |

0.001 [

0.0001

Maillage non-conforme aux frontieres courbes

L] I L]
XFEM classique (Linéaire) (R=0.97)

XFEM et SMG de niveau n=2 a l'intérieur de Eg (Lineaire) (R=0.97)
XFEM classique (Quadratique) (R=1.50) -

SMG de niveau n=2 (Quadratique)

SMG de niveau n=3 (Quadratique) (R=1.94)

bcﬂ@q--:.
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Conclusions 1/2

Représentation implicite par Level sets:

v" Modélisation géométrique indépendante de la taille des éléments du maillage EF

—) arétes vives + frontieres courbes

Analyse par la méthode XFEM:

v' Validation de l'approche sur des géométries totalement indépendantes du
maillage

v' Confirmation de l'ordre de convergence optimal pour les frontiéres courbes et
XFEM d'ordre supérieur

29



Conclusions 2/2

v La technique SMG et XFEM permettent d'éviter la problématique des éléments
courbes non valides dans le cas d'un maillage d'ordre supérieur conforme aux
frontieres [George and Borouchaki (2011), Johnen et al. (2011)]

30



Perspectives

Modélisation des interfaces matériaux courbes par XFEM d'ordre supérieur

Appliquer les CL de Dirichlet sur des frontieres courbes par XFEM d'ordre
supérieur

Tester cette approche dans un cas industriel en comparant le temps de calcul lié a
I'opération globale avec le processus standard (CAO-calcul)

Optimisation topologique a partir des fichiers CAO et XFEM d'ordre supérieur

31



Merci pour votre attention



Meéthode des Eléments finis étendus (XFEM)
[Moés et al. (1999)]

XFEM a été originalement développée pour I'étude des fissures
——) permet d'éviter la lourde tache de remaillage

——) autorise au maillage de ne plus étre conforme 3 la fissure

Principe:
Concept de la Partition de I'Unité [Melenk and Babuska (1996)]

d(2)= Y Ni(@)w +) Ni(z)-d(z)a

icl icl*
- -

—_ —

T i
approx EF classigue enrichissement

. . . L. ; niveau zéro Level set (,f)
Fissure: Approximation enrichie du champ de déplacement:

u(z) =) Ni(@wi+) Ni(z)H(z)a;+) Y Ni(z)Fi(z)]

I'EI zEIﬁ _‘j':l iEI;cpt.n[.c

Interfaces matériau-matériau:

U(x) =) |i(z)| Ni(z) -

i€l

Z oi(z)Ni(z)

il

[Moés et al. (2003)] 33



Conversion d'une fonction paramétrique vers une
représentation Level set

Algorithme 1/2 [Moumnassietal. (2011)]

Entrées: Sorties:
= fonction paramétrique S (u)/S (u,v) = une bande d'éléments w
= maillage triangulaire/tétraédrique = Level set ¢y,

= une valeur initiale (u,.)[u Us) == P = un maillage polygonal T';,
|

]
un vecteur initial 7

Elément de départ

Point d'intersection

P(x) =0

34



Conversion d'une fonction paramétrique vers Level set

Algorithme 2/2 [Moumnassiet al. (2011)]

La construction du niveau zéro de la Level set s'effectue de proche
en proche, d'un élément déja traité vers ses éléments voisins

niveau zéro o = 0

: : : 3
maillage polygonal (triangulaire) I', bande d’éléments w °



