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Abstract — We present a promising approach to reduce the difficulties associated with meshing complex
curved domain boundaries for higher-order finite elements. In this work, higher-order XFEM analyses for
strong discontinuity in the case of linear elasticity problems are presented. Curved implicit boundaries
are approximated inside an unstructured coarse mesh by using parametric information extracted from
the parametric representation (the most common in Computer Aided Design CAD). This approximation
provides local graded sub-mesh (GSM) inside boundary elements (i.e. an element split by the curved
boundary) which will be used for integration purpose. Sample geometries and numerical experiments
illustrate the accuracy and robustness of the proposed approach.
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Résumé — Nous présentons une approche prometteuse afin de réduire les difficultés liées aux maillages de
géométries avec frontieres courbes pour I'analyse avec des éléments finis d’ordre supérieur. Une analyse
par XFEM d’ordre supérieur dans le cas de la modélisation des interfaces matériau-vide est testée sur un
ensemble représentatif de problemes d’élasticité linéaire. Les frontieres implicites courbes sont approximées
a l'intérieur d’un maillage grossier non structuré en utilisant les informations paramétriques extraites de
la représentation paramétrique (la plus populaire en conception CAO). Cette approximation génére un
sous-maillage gradué (SMQG) a lintérieur des éléments traversés par la frontiere qui sera utilisé & des fins
d’intégrations numérique. Exemples de géométries et des expériences numériques illustrent la précision et

la robustesse de ’approche proposée.

1 Introduction

High-order finite element methods offer high accuracy
and rates of convergence using coarse meshes. However,
applying higher-order finite elements to curved domains
requires (i) the need to conform curved mesh entities to
curved boundaries and (ii) a correct treatment for higher-
order integration rules to compute volume and bound-
ary integrals. Moreover, the construction of curved ele-
ment meshes may lead to invalid curved elements near a
curved boundary, for example due to an excessive distor-
tion. Therefore, it is necessary to develop efficient pro-
cedures to detect the validity of mesh elements and to
correct the invalid elements ensuring that the Jacobian
determinant is strictly positive.

# Corresponding author: mohammed .moumnassi@ymail.com

Our interests in simplification of meshes, correct treat-
ment of numerical integration over elements with curved
boundaries, motivated us to seek a flexible and simple
technique, while retaining benefits of the high-order finite
element method (FEM). Ideally, the information about
the domain geometry should be independent of the finite
element mesh size or its order of interpolation. A large
number of researchers [1-7] have investigated a variety of
concepts do not require the generation of a conforming
mesh and modelling geometrical features independently
of the finite element mesh used for analysis. These con-
cepts differ from each other on the following points:

Types of numerical methods: eXtended finite
element method (XFEM) [8], the generalized fi-
nite element method (GFEM) [9], finite cell method
(FCM) [2,10], Cartesian Grid FEM (cg-FEM) [7], etc.
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(a)

Fig. 1. Microstructure containing a distribution of voids with different sizes and shapes. (a) Unstructured coarse mesh for finite
element analysis. (b) Adaptive sub-mesh refinement of level (n = 7) using GSM. (c) Implicit computational domain.

Types of the background mesh grid: struc-
tured [2,4] or unstructured [1] coarse mesh.
Techniques to represent boundaries: explicit sur-
face representations [5], level set representation [1,4],
parametric function to level set/signed distance rep-
resentation [1,11], medical image modalities [2,4].
Strategies to construct boundaries over the
background mesh grid: Quadtree/Octree partition
of space [2,4], degenerated and graded sub-meshes
(DSM and GSM) in 2D/3D [1].

Here, we use a background unstructured simplex mesh
that serves to construct the computational domain and
serves for analysis by higher-order shape functions. For
this purpose, we use the implicit representation (Level Set
Description) to define the geometrical features to repre-
sent domain boundaries and XFEM for analysis. To con-
struct the curved boundaries with minimal dependence
on this background mesh, we use the hybrid method pro-
posed by Moumnassi et al. [1] which exploits the advan-
tages of the parametric and implicit (level set) representa-
tions. We employ a graded sub-mesh (GSM) [1] strategy
to construct curved domain boundaries over the back-
ground mesh, and for the integration of the weak form.
The proposed representation guarantees the desired ap-
proximation a priori of the original object and also pro-
vides an efficient numerical integration where integrals
over curved domains and curved boundaries are based on
the standard Gauss quadrature.

Our approach shares some similarities with the Finite
Cell Method [2] and the recent one proposed by Legrain
et al. [4] in which use high-order XFEM. However, it can
be seen as more general in that it is possible to construct
the approximation directly from an arbitrary paramet-
ric definition of the object (the most common in Com-
puter Aided Design CAD) and handles corners and sharp
edges exactly. Moreover, an arbitrary background mesh
(unstructured) can be used.

2 Implicit curved domain based
on parametric representation

Recently, Moumnassi et al. [1] developed a hy-
brid parametric/implicit representation well-suited to
methods based on fixed grids such as the extended fi-
nite element method (XFEM). They showed that it was
possible, using a marching algorithm for automatic con-
version from a parametric surface into a zero level set
defined on a narrow band of the background mesh, to
construct a finer graded sub-mesh (GSM) inside the split
elements, to build an implicit computational domain in-
dependently of the finite element mesh size or its order of
interpolation. A framework based on multiple level sets,
constructive solid geometry (CSG) and a cutting method
was used to construct a fully implicit domain for analysis.
This framework will be considered in this work to con-
struct curved boundaries from parametric functions and
to build implicit computational domains independently of
the background finite element mesh size that will be used
for XFEM analysis.

Figure 1 shows an example to construct an implicit
computational domain independently of the background
finite element mesh size. Geometrical features describ-
ing curved boundaries are based on parametric functions
which are converted into multiple zero level sets on the
background mesh grid. The marching algorithm locates
the narrow band that encloses the curved boundary from
all elements in the mesh, in which only the selected el-
ements will be used to construct the graded sub-mesh
(GSM). The parametric information is used as a guide to
generate the profile of the curved region inside the finer
graded mesh and the level set resulted from this conver-
sion is used to classify the sub-elements into the solid part
and the void part. This sub-mesh is only used to carefully
locate the curved regions inside the set of mesh elements
which contains the zero level set and to generate Gauss
points to integrate the weak form, which differentiates
them from finite elements.
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Fig. 2. (a) Sets of elements I, B, O and Gryup inside an unstructured mesh grid. (b) Sub-elements Ea and Ea,. resulting
from a graded sub-mesh refinement of level (n = 3). (¢) Example of boundary integrals on Ea ..

Now we have the necessary tools for analysis: compu-
tational domain and the background coarse mesh that will
serve as support for shape functions. The next step will be
devoted to adapting the use of XFEM for our approach.

3 Finite element analysis

We consider a background mesh grid Gr (see Fig. 2a)
that serves as support for the finite element shape func-
tions of order p. Gr encloses a computational domain
Qn, € R™, (n = 2,3) and its boundaries I'y. The com-
putational domain divides Gr into three sets: the sets of
elements I (Interior), B (Boundary) and O (Outside). In-
terior elements Ej are those which are completely inside
Qp; exterior elements Fp which are completely outside
Qp; boundary elements E'g which are split by [},. The
union of the two sets of elements I and B, denoted Gr;up
covers entirely the computational domain. In the case of
modelling void-material interfaces by XFEM, the spatial
discretization of PDEs is done on Gryyp, and the degrees
of freedom on the set of elements O will be deleted from
the weak formulation.

3.1 Numerical integration

The set of elements B which cover boundaries of the
computational domain, in turn, is divided into two subsets
of elements (see Fig. 2b): I B (inside the boundary I7,) and
OB (outside the boundary I}). The boundary elements
FEp € B are further subdivided into sub-elements F o such
that Ep = UZ=1 FE A. Sub-elements of an interior bound-
ary element I B are located within the domain Ex = Erp
whereas the sub-elements of an exterior boundary element
OB are located outside Eao = Fop.

Domain integrals: the interior of the computational
domain €, to be considered for the analysis is then de-
fined by the union of the interior elements (I) with the
interior boundary sub-elements (I B). Therefore, the inte-
gral of a generic function f over a curved computational

domain €2, is then given by:

/GTIUBAIUBfdQZ/IfdQ—f—/BAIUdeQ (1)

where
fdQ = fdQ
/I %1: Er

and

[ Awsra=¥ [ awsf a0
B T ) En

=22

Ep Ep VEa

=22

Ep Eip

A [ dS

£ dQ

Erp

Apup is the indicator function [1], taking value 1 if
(E],EA) € Qp and 0if Ep ¢ Q.

Boundary integrals: the curved boundaries are ap-
proximated by a set of linear segments Fa, in 2D (see
Fig. 2b) or triangles in 3D inside a boundary element Ep.
We denote the part of the boundary Iy, inside Ep by Ep,.
such that Ep, = |J;_, Ea,. Therefore, the integral of a
generic function f over a curved boundary I}, is given by:

A(F)deZ%[EBF de:ZZ/ fdr

Ep, Ea, ’Far
(2)

where B(I") defines the set of boundary elements B that
enclose a part or all of the boundary I',. Figure 2¢ show
an example of boundary integrals over a curved part of
boundary Ep,. inside a finite element mesh Ep.

Note that, the integrals over the sub-elements E 4 and
E A, are based on standard Gauss quadrature. These sub-
elements are only used to generate Gauss points to in-
tegrate the weak form and the treatment of Neumann
boundary conditions, which differentiates them from fi-
nite elements.
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(a)

(b)

(c)

Fig. 3. A quarter of a thick-wall cylinder under internal pressure. (a) The background coarse mesh and a graded sub-mesh
(GSM) of level (n = 10). (b) Correct imposition of pressure over the curved internal boundary. (¢) Von Mises stress distribution

using cubic element.

3.2 Numerical examples

In order to study the influence of the accurate repre-
sentation of curved domain and the accurate treatment of
numerical quadrature on curved boundaries using higher-
order XFEM, we analyze the relative error in the energy
norm (Eq. (3)) and convergence rates for a test example
with known analytical solution. Note that, for a smooth
problem, the rate at which the energy error decreases as
a uniform mesh is refined is O (h?), where h is the size of
finite elements and p is the polynomial order of the shape
functions.

& () =

fG”UB AIUB € (Uh — uex)
S, A1up €(uc®)

:C:e (uh —ue’”) 2 1/2
: C:e(uf®) df)

(3)

Let us consider the axisymmetric analysis of a thick-
wall cylinder under internal pressure p = 3000 MPa
with Young’s modulus E = 10° MPa and Poisson’s ratio
v = 0.3. In this case, plane stress conditions are assumed,
in which analytical solutions are known. Only a quarter of
the section was considered. The process to construct the
computational domain, the accurate boundary integrals
of pressure over the curved internal boundary and the re-
sult of analysis are depicted in Figure 3. Figure 3a shows
the construction of the computational domain over the
background coarse mesh used for analysis and the graded
sub-mesh (GSM) used to carefully locate the curved in-
ternal and external boundaries.

Different background meshes are considered with dif-
ferent levels of sub-mesh refinement. Convergence stud-
ies are carried out using linear, quadratic and cubic ele-
ments. The results of the convergence study using XFEM
are shown in Figures 4a and 4b respectively for lin-
ear/quadratic elements and cubic element. The relative

error in the energy norm is plotted as a function of the
mesh size (log-log plot). In Figure 4, the rate of conver-
gence R is also indicated for several level of sub-mesh
refinement (n =1 to 7) inside a boundary element Ep.

From these results, it is clear that the use of the clas-
sical description of boundaries with higher-order finite el-
ements lead to suboptimal convergence rates in the anal-
ysis. This is explained by the domination of errors in the
boundary description over errors of discretization. By us-
ing the proposed approach, it is clear that not only the
accuracy, but also the convergence rates are increased. In
the cases of quadratic and cubic approximations, the ben-
efit of introducing additional sub-meshes along the curved
boundaries is immediately apparent, even for only one re-
finement inside each boundary element Ep. For quadratic
element, GSM refinement of level (n = 2) is sufficient to
achieve the theoretical rate of convergence, i.e. O(hP=2).
For cubic element, GSM refinement of level (n = 6) is
needed to achieve the theoretical rate of convergence, i.e.
O(hP=3).

This methodology shows significant improvement in
quality of the solution until the theoretical rate of
convergence, i.e. O(hP), is attained. This means that cor-
rect treatment of numerical integration over (i) a curved
domain and (ii) on a curved element boundary inside a
boundary element Ep are achieved with success using a
non-conforming mesh.

However, three drawbacks are present in the above
approach for practical use:

— For a fixed p >= 2 polynomial order of the discretiza-
tion, the computational analysis shows that the level
number n used to generate local GSM refinement in-
side a boundary element Ep for achieving the optimal
rate of convergence is different in the case of coarse
and fine meshes. A constant ratio h/n cannot give the
optimal convergence for all background meshes. Sup-
plementary refinement of the GSM level is necessary
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Fig. 4. Convergence results: (a) linear and quadratic elements, (b) cubic element.

as the background mesh is refined to provide the opti-
mal convergence. This is because GSM refinement gen-
erates linear geometric approximations of the curved
boundaries inside a boundary element Ep.

— GSM refinement increases the number of sub-elements
which increases the number of integration points for
both domain and boundary integrals inside a bound-
ary element.

— An appropriate user-specified level of GSM refinement
is necessary to get an optimal solution accuracy for a
given background mesh and polynomial order of the
discretization.

For the last drawback, it is possible to define a cri-
terion for this particular problem in order to set up the
required number of GSM refinement for a given polyno-
mial order of the discretization. However, this approach
has been applied on a simple example (an infinite plate
with a central hole) which achieves a higher-order rate of
convergence. Nevertheless, the required level n of GSM
is different from the previous example. Consequently, we
cannot establish a simple general criterion, we think that
the level number n of GSM depends strongly on local cur-
vature of boundaries, background mesh size and boundary
conditions.

Despite these drawbacks, this approach remains an
easy and accurate alternative to model geometrical fea-
tures independently of the finite element mesh size used
for analysis (see Fig. 1 for 2D and Fig. 5 for 3D). Also,
it guarantees the desired approximation a priori of the
original domain geometry by using different level of the
graded sub-mesh (GSM) refinement without changing the
background mesh size. Furthermore, computational anal-
ysis using higher-order finite element leads, most impor-
tantly, to a small size of the resulting matrix to be solved,
compared to advanced conforming mesh techniques like

Fig. 5. Modelling a microstructure using a background coarse
mesh and GSM refinement independently of the finite element
mesh size.

h-refinement, for a similar accuracy. For illustration, Fig-
ure 6 provides a numerical example of traction using the
microstructure of Figure 1.

4 Conclusions

Instead of the use of a conforming curved mesh to
represent curved boundaries and to perform higher-order
finite element analysis, the use of the above framework
(non-conforming mesh, parametric functions, graded sub-
mesh (GSM) and higher-order XFEM) simplifies mesh
generation, achieves the optimal accuracy and higher-
order convergence.
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