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Abstract – We present a promising approach to reduce the difficulties associated with meshing complex
curved domain boundaries for higher-order finite elements. In this work, higher-order XFEM analyses for
strong discontinuity in the case of linear elasticity problems are presented. Curved implicit boundaries
are approximated inside an unstructured coarse mesh by using parametric information extracted from
the parametric representation (the most common in Computer Aided Design CAD). This approximation
provides local graded sub-mesh (GSM) inside boundary elements (i.e. an element split by the curved
boundary) which will be used for integration purpose. Sample geometries and numerical experiments
illustrate the accuracy and robustness of the proposed approach.

Key words: Higher-order XFEM / curved boundary / parametric functions / implicit boundary
representation / graded sub-mesh (GSM)

Résumé – Nous présentons une approche prometteuse afin de réduire les difficultés liées aux maillages de
géométries avec frontières courbes pour l’analyse avec des éléments finis d’ordre supérieur. Une analyse
par XFEM d’ordre supérieur dans le cas de la modélisation des interfaces matériau-vide est testée sur un
ensemble représentatif de problèmes d’élasticité linéaire. Les frontières implicites courbes sont approximées
à l’intérieur d’un maillage grossier non structuré en utilisant les informations paramétriques extraites de
la représentation paramétrique (la plus populaire en conception CAO). Cette approximation génère un
sous-maillage gradué (SMG) à l’intérieur des éléments traversés par la frontière qui sera utilisé à des fins
d’intégrations numérique. Exemples de géométries et des expériences numériques illustrent la précision et
la robustesse de l’approche proposée.

1 Introduction1

High-order finite element methods offer high accuracy2

and rates of convergence using coarse meshes. However,3

applying higher-order finite elements to curved domains4

requires (i) the need to conform curved mesh entities to5

curved boundaries and (ii) a correct treatment for higher-6

order integration rules to compute volume and bound-7

ary integrals. Moreover, the construction of curved ele-8

ment meshes may lead to invalid curved elements near a9

curved boundary, for example due to an excessive distor-10

tion. Therefore, it is necessary to develop efficient pro-11

cedures to detect the validity of mesh elements and to12

correct the invalid elements ensuring that the Jacobian13

determinant is strictly positive.14

a Corresponding author: mohammed.moumnassi@ymail.com

Our interests in simplification of meshes, correct treat- 15

ment of numerical integration over elements with curved 16

boundaries, motivated us to seek a flexible and simple 17

technique, while retaining benefits of the high-order finite 18

element method (FEM). Ideally, the information about 19

the domain geometry should be independent of the finite 20

element mesh size or its order of interpolation. A large 21

number of researchers [1–7] have investigated a variety of 22

concepts do not require the generation of a conforming 23

mesh and modelling geometrical features independently 24

of the finite element mesh used for analysis. These con- 25

cepts differ from each other on the following points: 26

Types of numerical methods: eXtended finite 27

element method (XFEM) [8], the generalized fi- 28

nite element method (GFEM) [9], finite cell method 29

(FCM) [2,10], Cartesian Grid FEM (cg-FEM) [7], etc. 30
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(a) (b) (c)

Fig. 1. Microstructure containing a distribution of voids with different sizes and shapes. (a) Unstructured coarse mesh for finite
element analysis. (b) Adaptive sub-mesh refinement of level (n = 7) using GSM. (c) Implicit computational domain.

Types of the background mesh grid: struc-1

tured [2, 4] or unstructured [1] coarse mesh.2

Techniques to represent boundaries: explicit sur-3

face representations [5], level set representation [1, 4],4

parametric function to level set/signed distance rep-5

resentation [1, 11], medical image modalities [2, 4].6

Strategies to construct boundaries over the7

background mesh grid: Quadtree/Octree partition8

of space [2, 4], degenerated and graded sub-meshes9

(DSM and GSM) in 2D/3D [1].10

Here, we use a background unstructured simplex mesh11

that serves to construct the computational domain and12

serves for analysis by higher-order shape functions. For13

this purpose, we use the implicit representation (Level Set14

Description) to define the geometrical features to repre-15

sent domain boundaries and XFEM for analysis. To con-16

struct the curved boundaries with minimal dependence17

on this background mesh, we use the hybrid method pro-18

posed by Moumnassi et al. [1] which exploits the advan-19

tages of the parametric and implicit (level set) representa-20

tions. We employ a graded sub-mesh (GSM) [1] strategy21

to construct curved domain boundaries over the back-22

ground mesh, and for the integration of the weak form.23

The proposed representation guarantees the desired ap-24

proximation a priori of the original object and also pro-25

vides an efficient numerical integration where integrals26

over curved domains and curved boundaries are based on27

the standard Gauss quadrature.28

Our approach shares some similarities with the Finite29

Cell Method [2] and the recent one proposed by Legrain30

et al. [4] in which use high-order XFEM. However, it can31

be seen as more general in that it is possible to construct32

the approximation directly from an arbitrary paramet-33

ric definition of the object (the most common in Com-34

puter Aided Design CAD) and handles corners and sharp35

edges exactly. Moreover, an arbitrary background mesh36

(unstructured) can be used.37

2 Implicit curved domain based 38

on parametric representation 39

Recently, Moumnassi et al. [1] developed a hy- 40

brid parametric/implicit representation well-suited to 41

methods based on fixed grids such as the extended fi- 42

nite element method (XFEM). They showed that it was 43

possible, using a marching algorithm for automatic con- 44

version from a parametric surface into a zero level set 45

defined on a narrow band of the background mesh, to 46

construct a finer graded sub-mesh (GSM) inside the split 47

elements, to build an implicit computational domain in- 48

dependently of the finite element mesh size or its order of 49

interpolation. A framework based on multiple level sets, 50

constructive solid geometry (CSG) and a cutting method 51

was used to construct a fully implicit domain for analysis. 52

This framework will be considered in this work to con- 53

struct curved boundaries from parametric functions and 54

to build implicit computational domains independently of 55

the background finite element mesh size that will be used 56

for XFEM analysis. 57

Figure 1 shows an example to construct an implicit 58

computational domain independently of the background 59

finite element mesh size. Geometrical features describ- 60

ing curved boundaries are based on parametric functions 61

which are converted into multiple zero level sets on the 62

background mesh grid. The marching algorithm locates 63

the narrow band that encloses the curved boundary from 64

all elements in the mesh, in which only the selected el- 65

ements will be used to construct the graded sub-mesh 66

(GSM). The parametric information is used as a guide to 67

generate the profile of the curved region inside the finer 68

graded mesh and the level set resulted from this conver- 69

sion is used to classify the sub-elements into the solid part 70

and the void part. This sub-mesh is only used to carefully 71

locate the curved regions inside the set of mesh elements 72

which contains the zero level set and to generate Gauss 73

points to integrate the weak form, which differentiates 74

them from finite elements. 75
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Fig. 2. (a) Sets of elements I , B, O and GrI∪B inside an unstructured mesh grid. (b) Sub-elements EΔ and EΔΓ resulting
from a graded sub-mesh refinement of level (n = 3). (c) Example of boundary integrals on EΔΓ .

Now we have the necessary tools for analysis: compu-1

tational domain and the background coarse mesh that will2

serve as support for shape functions. The next step will be3

devoted to adapting the use of XFEM for our approach.4

3 Finite element analysis5

We consider a background mesh grid Gr (see Fig. 2a)6

that serves as support for the finite element shape func-7

tions of order p. Gr encloses a computational domain8

Ωh ⊂ R
n, (n = 2, 3) and its boundaries Γh. The com-9

putational domain divides Gr into three sets: the sets of10

elements I (Interior), B (Boundary) and O (Outside). In-11

terior elements EI are those which are completely inside12

Ωh; exterior elements EO which are completely outside13

Ωh; boundary elements EB which are split by Γh. The14

union of the two sets of elements I and B, denoted GrI∪B15

covers entirely the computational domain. In the case of16

modelling void-material interfaces by XFEM, the spatial17

discretization of PDEs is done on GrI∪B , and the degrees18

of freedom on the set of elements O will be deleted from19

the weak formulation.20

3.1 Numerical integration21

The set of elements B which cover boundaries of the22

computational domain, in turn, is divided into two subsets23

of elements (see Fig. 2b): IB (inside the boundary Γh) and24

OB (outside the boundary Γh). The boundary elements25

EB ∈ B are further subdivided into sub-elements EΔ such26

that EB =
⋃n

k=1 EΔ. Sub-elements of an interior bound-27

ary element IB are located within the domain EΔ = EIB28

whereas the sub-elements of an exterior boundary element29

OB are located outside EΔ = EOB .30

Domain integrals: the interior of the computational31

domain Ωh, to be considered for the analysis is then de-32

fined by the union of the interior elements (I) with the33

interior boundary sub-elements (IB). Therefore, the inte-34

gral of a generic function f over a curved computational35

domain Ωh is then given by: 36∫
GrI∪B

ΛI∪B f dΩ =
∫

I

f dΩ +
∫

B

ΛI∪B f dΩ (1)

where 37∫
I

f dΩ =
∑
EI

∫
EI

f dΩ 38

and 39∫
B

ΛI∪B f dΩ =
∑
EB

∫
EB

ΛI∪B f dΩ 40

=
∑
EB

∑
EΔ

∫
EΔ

ΛI∪B f dΩ 41

=
∑
EB

∑
EIB

∫
EIB

f dΩ 42

43

ΛI∪B is the indicator function [1], taking value 1 if 44

(EI , EΔ) ∈ Ωh and 0 if EΔ /∈ Ωh. 45

Boundary integrals: the curved boundaries are ap- 46

proximated by a set of linear segments EΔΓ in 2D (see 47

Fig. 2b) or triangles in 3D inside a boundary element EB . 48

We denote the part of the boundary Γh inside EB by EBΓ 49

such that EBΓ =
⋃n

k=1 EΔΓ . Therefore, the integral of a 50

generic function f over a curved boundary Γh is given by: 51

52∫
B(Γ )

f dΓ =
∑
EBΓ

∫
EBΓ

f dΓ =
∑
EBΓ

∑
EΔΓ

∫
EΔΓ

f dΓ

(2)
where B(Γ ) defines the set of boundary elements B that 53

enclose a part or all of the boundary Γh. Figure 2c show 54

an example of boundary integrals over a curved part of 55

boundary EBΓ inside a finite element mesh EB . 56

Note that, the integrals over the sub-elements EΔ and 57

EΔΓ are based on standard Gauss quadrature. These sub- 58

elements are only used to generate Gauss points to in- 59

tegrate the weak form and the treatment of Neumann 60

boundary conditions, which differentiates them from fi- 61

nite elements. 62
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(a) (b) (c)

Fig. 3. A quarter of a thick-wall cylinder under internal pressure. (a) The background coarse mesh and a graded sub-mesh
(GSM) of level (n = 10). (b) Correct imposition of pressure over the curved internal boundary. (c) Von Mises stress distribution
using cubic element.

3.2 Numerical examples1

In order to study the influence of the accurate repre-2

sentation of curved domain and the accurate treatment of3

numerical quadrature on curved boundaries using higher-4

order XFEM, we analyze the relative error in the energy5

norm (Eq. (3)) and convergence rates for a test example6

with known analytical solution. Note that, for a smooth7

problem, the rate at which the energy error decreases as8

a uniform mesh is refined is O (hp), where h is the size of9

finite elements and p is the polynomial order of the shape10

functions.11

E (Ωh) =(∫
GrI∪B

ΛI∪B ε
(
uh − uex

)
: C : ε

(
uh − uex

)
dΩ∫

GrI∪B
ΛI∪B ε(uex) : C : ε(uex) dΩ

)1/2

(3)

Let us consider the axisymmetric analysis of a thick-12

wall cylinder under internal pressure p = 3000 MPa13

with Young’s modulus E = 106 MPa and Poisson’s ratio14

ν = 0.3. In this case, plane stress conditions are assumed,15

in which analytical solutions are known. Only a quarter of16

the section was considered. The process to construct the17

computational domain, the accurate boundary integrals18

of pressure over the curved internal boundary and the re-19

sult of analysis are depicted in Figure 3. Figure 3a shows20

the construction of the computational domain over the21

background coarse mesh used for analysis and the graded22

sub-mesh (GSM) used to carefully locate the curved in-23

ternal and external boundaries.24

Different background meshes are considered with dif-25

ferent levels of sub-mesh refinement. Convergence stud-26

ies are carried out using linear, quadratic and cubic ele-27

ments. The results of the convergence study using XFEM28

are shown in Figures 4a and 4b respectively for lin-29

ear/quadratic elements and cubic element. The relative30

error in the energy norm is plotted as a function of the 31

mesh size (log-log plot). In Figure 4, the rate of conver- 32

gence R is also indicated for several level of sub-mesh 33

refinement (n = 1 to 7) inside a boundary element EB . 34

From these results, it is clear that the use of the clas- 35

sical description of boundaries with higher-order finite el- 36

ements lead to suboptimal convergence rates in the anal- 37

ysis. This is explained by the domination of errors in the 38

boundary description over errors of discretization. By us- 39

ing the proposed approach, it is clear that not only the 40

accuracy, but also the convergence rates are increased. In 41

the cases of quadratic and cubic approximations, the ben- 42

efit of introducing additional sub-meshes along the curved 43

boundaries is immediately apparent, even for only one re- 44

finement inside each boundary element EB. For quadratic 45

element, GSM refinement of level (n = 2) is sufficient to 46

achieve the theoretical rate of convergence, i.e. O(hp=2). 47

For cubic element, GSM refinement of level (n = 6) is 48

needed to achieve the theoretical rate of convergence, i.e. 49

O(hp=3). 50

This methodology shows significant improvement in 51

quality of the solution until the theoretical rate of 52

convergence, i.e. O(hp), is attained. This means that cor- 53

rect treatment of numerical integration over (i) a curved 54

domain and (ii) on a curved element boundary inside a 55

boundary element EB are achieved with success using a 56

non-conforming mesh. 57

However, three drawbacks are present in the above 58

approach for practical use: 59

– For a fixed p >= 2 polynomial order of the discretiza- 60

tion, the computational analysis shows that the level 61

number n used to generate local GSM refinement in- 62

side a boundary element EB for achieving the optimal 63

rate of convergence is different in the case of coarse 64

and fine meshes. A constant ratio h/n cannot give the 65

optimal convergence for all background meshes. Sup- 66

plementary refinement of the GSM level is necessary 67
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Fig. 4. Convergence results: (a) linear and quadratic elements, (b) cubic element.

as the background mesh is refined to provide the opti-1

mal convergence. This is because GSM refinement gen-2

erates linear geometric approximations of the curved3

boundaries inside a boundary element EB.4

– GSM refinement increases the number of sub-elements5

which increases the number of integration points for6

both domain and boundary integrals inside a bound-7

ary element.8

– An appropriate user-specified level of GSM refinement9

is necessary to get an optimal solution accuracy for a10

given background mesh and polynomial order of the11

discretization.12

For the last drawback, it is possible to define a cri-13

terion for this particular problem in order to set up the14

required number of GSM refinement for a given polyno-15

mial order of the discretization. However, this approach16

has been applied on a simple example (an infinite plate17

with a central hole) which achieves a higher-order rate of18

convergence. Nevertheless, the required level n of GSM19

is different from the previous example. Consequently, we20

cannot establish a simple general criterion, we think that21

the level number n of GSM depends strongly on local cur-22

vature of boundaries, background mesh size and boundary23

conditions.24

Despite these drawbacks, this approach remains an25

easy and accurate alternative to model geometrical fea-26

tures independently of the finite element mesh size used27

for analysis (see Fig. 1 for 2D and Fig. 5 for 3D). Also,28

it guarantees the desired approximation a priori of the29

original domain geometry by using different level of the30

graded sub-mesh (GSM) refinement without changing the31

background mesh size. Furthermore, computational anal-32

ysis using higher-order finite element leads, most impor-33

tantly, to a small size of the resulting matrix to be solved,34

compared to advanced conforming mesh techniques like35

Fig. 5. Modelling a microstructure using a background coarse
mesh and GSM refinement independently of the finite element
mesh size.

h-refinement, for a similar accuracy. For illustration, Fig- 36

ure 6 provides a numerical example of traction using the 37

microstructure of Figure 1. 38

4 Conclusions 39

Instead of the use of a conforming curved mesh to 40

represent curved boundaries and to perform higher-order 41

finite element analysis, the use of the above framework 42

(non-conforming mesh, parametric functions, graded sub- 43

mesh (GSM) and higher-order XFEM) simplifies mesh 44

generation, achieves the optimal accuracy and higher- 45

order convergence. 46
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(a) (b)

Fig. 6. Von Mises stress distribution (a) and displacement field (b) using cubic element.
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finite element method, Comput. Methods Appl. Mech. 37

Eng. 190 (2001) 4081–4193 38
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